WO2016006943A1 - 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법 - Google Patents

그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법 Download PDF

Info

Publication number
WO2016006943A1
WO2016006943A1 PCT/KR2015/007117 KR2015007117W WO2016006943A1 WO 2016006943 A1 WO2016006943 A1 WO 2016006943A1 KR 2015007117 W KR2015007117 W KR 2015007117W WO 2016006943 A1 WO2016006943 A1 WO 2016006943A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
nanowires
core
graphene
copper
Prior art date
Application number
PCT/KR2015/007117
Other languages
English (en)
French (fr)
Inventor
이윤구
정영준
안유미
이동화
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020177003161A priority Critical patent/KR101969300B1/ko
Priority to US15/324,543 priority patent/US10566104B2/en
Publication of WO2016006943A1 publication Critical patent/WO2016006943A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Definitions

  • the present invention relates to a method for manufacturing a transparent electrode based on a copper nanowire-graphene core-shell structure. Specifically, by coating a surface of copper nanowires with graphene using a low temperature plasma chemical vapor deposition method, the oxidation characteristics are controlled to be transparent. It relates to a method of manufacturing an electrode.
  • the transparent electrode manufactured by the manufacturing method according to the present invention can control the oxidizable property of copper, and has excellent optical and electrical properties.
  • a transparent electrode is required in that light must be transmitted while allowing electrons to move
  • a touch electrode such as a smart phone is one of the technologies that must not have a transparent electrode.
  • Indium tin oxide is the most widely used material of the transparent electrode which is currently widely used.
  • the indium tin oxide of the thin film has a high light transmittance and has excellent conductivity as an electrode.
  • ITO Indium tin oxide
  • the production of indium which is the core of such indium tin oxide, is almost dependent on one country, China.
  • indium tin oxide has a problem in that it is difficult to apply to a flexible electric device by having a natural ceramic characteristics. Accordingly, various studies are being conducted to develop a material that can replace indium tin oxide as a transparent electrode.
  • nanomaterials materials applied to electronic devices include nanocrystals, carbon nanotubes, silicon nanowires, and metal nanowires.
  • the metal nanowires not only exhibit high conductivity but also have a very small size that is difficult to distinguish from the eye in the visible region, and thus may be applied to the transparent electrode.
  • silver (Ag) has high electrical conductivity and thermal conductivity among all metals, and has a high surface enhancement Raman efficiency in the visible light region, and thus has excellent optical properties.
  • the silver (Ag) is manufactured in the form of nanowires, it is not only applicable to various fields from microelectronic devices to transparent electrodes, but also to be utilized as optical, chemical or biosensors.
  • a technique for mass-producing silver nanowires having a uniform thickness, a uniform size, a clean surface, a high aspect ratio, and a small size deviation is most important.
  • silver nanowires have a disadvantage in that growth is limited in the longitudinal direction.
  • Percolation theory the longer the linear material in a certain area, the smaller the number of individuals used to conduct conductivity. This decrease in population can lead to an increase in transmittance, thereby increasing the transparency of the electrode.
  • Copper is a low cost material with high conductivity, such as gold or silver. But unlike gold or silver, copper oxidizes easily in the atmosphere. In the nano state, the surface area increases, which oxidizes more easily, making it difficult or impossible to incorporate copper that is easy to oxidize into the industry in the atmosphere, or require very expensive and complicated processes.
  • silver nanowires may be locally sintered using a laser.
  • these methods have limitations in producing expensive silver nanowires.
  • Republic of Korea Patent Publication No. 10-2005-0086693 name of the invention: a method for manufacturing nanowires from semiconductor material and nanowire dispersion and electronic device) to obtain a nanowire having a substantially uniform length within a given error margin.
  • the invention can be disclosed.
  • Korean Patent Publication No. 10-2005-0079784 (name of the invention: a high frequency power device using a copper oxide nanowire or a copper nanowire as a cathode and a power device module using the same) is a high frequency having a cathode, a gate and an anode
  • the cathode discloses a high frequency power device formed of copper oxide nanowires formed by contacting a copper surface with an oxidizing solution at a low temperature of 100 ° C. or lower.
  • the manufacturing method of such nanowires does not include a separate process for controlling the oxidation characteristics of copper, there is a problem that it is difficult to control the oxidation characteristics of copper nanowires.
  • the present inventors have devised a method for manufacturing a transparent electrode including metal nanowires capable of controlling oxidation characteristics of a general metal.
  • an object of the present invention is to provide a metal nanowire; And coating the metal nanowires with graphene by plasma chemical vapor deposition, comprising a metal nanowire core and a graphene shell, to provide a method for producing a core-shell structured nanowire.
  • Another object of the present invention is to provide a nanowire having a core-shell structure, including a metal nanowire core and a graphene shell.
  • Another object of the present invention is to provide a transparent electrode formed from nanowires having the core-shell structure.
  • a method for producing a nano-wire of the core-shell structure comprising the steps of providing a metal nanowire; And coating the graphene with the metal nanowires by plasma chemical vapor deposition.
  • Nanowires having a core-shell structure include a metal nanowire core and a graphene shell.
  • the transparent electrode according to the embodiment of the present invention is formed from nanowires having the core-shell structure.
  • the present invention provides a method for producing a nanowire having a core-shell structure in which graphene is introduced to a surface of a metal nanowire by using plasma chemical vapor deposition.
  • the transparent electrode including the nanowires prepared from the manufacturing method has the advantage that the oxidation characteristics of the metal can be controlled, and are excellent in optical, electrical and mechanical properties and can be manufactured at low cost.
  • FIG. 1 is an enlarged surface image of the copper nanowire-graphene core-shell structure of Example 1.
  • FIG. 3 is an SEM photograph of the copper nanowires of Example 1 and Comparative Example 1.
  • FIG. 4A is a graph showing light transmittances of the transparent electrode films of Preparation Examples 1 to 4
  • FIG. 4B is a graph showing light transmittances of the transparent electrode films of Preparation Example 1 and Comparative Preparation Examples 1 and 2.
  • FIG. 4A is a graph showing light transmittances of the transparent electrode films of Preparation Examples 1 to 4
  • FIG. 4B is a graph showing light transmittances of the transparent electrode films of Preparation Example 1 and Comparative Preparation Examples 1 and 2.
  • FIG. 4A is a graph showing light transmittances of the transparent electrode films of Preparation Examples 1 to 4
  • FIG. 4B is a graph showing light transmittances of the transparent electrode films of Preparation Example 1 and Comparative Preparation Examples 1 and 2.
  • FIG. 7 shows a low temperature PECVD process apparatus for the synthesis of graphene-coated copper nanowires (CuNW-G) core-shell nanostructures according to the method of Preparation Example 1.
  • FIG. 8 shows XRD spectra of the copper nanowire (CuNW) transparent electrode of Comparative Preparation Example 1 and the CuNW-G transparent electrode of Preparation Example 1.
  • FIG. 8 shows XRD spectra of the copper nanowire (CuNW) transparent electrode of Comparative Preparation Example 1 and the CuNW-G transparent electrode of Preparation Example 1.
  • FIG. 9 shows XPS spectra of the CuNW transparent electrode of Comparative Preparation Example 1 and the CuNW-G transparent electrode of Preparation Example 1.
  • FIG. 10A shows a projection electron microscope (TEM) image of the CuNW-G core-shell nanostructure of Preparation Example 1
  • FIG. 10B shows a high resolution TEM image of the edge of the CuNW-G core of Preparation Example 1.
  • Figure 11 shows the wire strength profile of CuNW-G core-shell nanostructure of Preparation Example 1.
  • FIG. 12A shows a Raman spectrum change of the CuNW-G core-shell nanostructure of Preparation Example 1
  • FIG. 12B shows an X-ray photoelectron spectroscopy of the CuNW-G core-shell nanostructure of Preparation Example 1 according to a change in processing time. The change in high resolution C 1s of (XPS) is shown.
  • FIG. 13 is a current density-voltage graph of a polymer solar cell (BHJ PSC) using the CuNW transparent electrode of Comparative Preparation Example 1 and the CuNW-G transparent electrode of Preparation Example 1.
  • FIG. 13 is a current density-voltage graph of a polymer solar cell (BHJ PSC) using the CuNW transparent electrode of Comparative Preparation Example 1 and the CuNW-G transparent electrode of Preparation Example 1.
  • CuNW refers to copper nanowires
  • CuNW-G refers to graphene coated copper nanowires
  • a method for producing a graphene-coated copper nanowires is provided.
  • the manufacturing method includes providing a metal nanowire and coating the metal nanowire with graphene by plasma chemical vapor deposition.
  • the metal nanowires have an effect of preventing oxidation of the metal and improving optical, electrical and mechanical properties by including a graphene coating layer. This is because the reaction with oxygen is blocked by the graphene coating layer, and the transmittance and specific resistance are improved as compared with the metal nanowires without any treatment.
  • Plasma chemical vapor deposition can be carried out at a temperature of about 300 to 800 °C. Since the plasma chemical vapor deposition is performed at a lower temperature of about 800 ° C. or less, which is lower than that of the thermal chemical vapor deposition, it is possible to grow metal nanowires without deforming the substrate.
  • the metal nanowires may be copper nanowires, aluminum nanowires, zinc nanowires, gold nanowires, silver nanowires or nickel nanowires, more preferably copper nanowires. .
  • the thickness of the graphene coated on the metal nanowire may be about 0.3nm to 30nm.
  • the numerical range is satisfied, the light transmittance and the surface resistivity are most optimized.
  • the method for producing a copper nanowire comprises the steps a1) preparing a solution of a copper salt compound, ethylenediamine, sodium hydroxide and hydrazine;
  • the mixed solution may be mixed with an aqueous polyvinylpyrrolidone solution and reacted in an ice bath to prepare a copper nanowire b1).
  • a copper salt compound such as copper nitrate is used as a precursor to prepare a solution mixed with ethylenediamine, sodium hydroxide and hydrazine.
  • the copper salt compound may be copper nitrate, and the concentration of copper nitrate is preferably about 0.01M to 1.0M, more preferably about 0.1M.
  • the concentration of sodium hydroxide is preferably about 1M to 18M, more preferably about 15M.
  • copper nanowires are prepared by reacting the mixed solution prepared in step a1) with an aqueous polyvinylpyrrolidone solution in an ice bath. In this case, step b1) is preferably performed for about 5 to 300 minutes, more preferably for about 60 minutes.
  • the method for preparing the copper nanowires is prepared by mixing a copper salt compound, hexadecylamine, glucose and water to prepare a mixed solution (step a2), the mixed solution is an oil bath (oil) bath), remove hexadecylamine and glucose (step b2); After filtering through a membrane filter and dried to prepare a copper nanowire (step c2).
  • step a2) as the copper salt compound, CuCl 2 ⁇ 2H 2 O, Cu (NO 3 ) 2 , Cu (OAc) 2 , CuBr 2, etc. may be used, and the mixed solution is stirred for 24 hours or more.
  • step b2) the temperature of the oil bath is maintained at about 60 to 150 °C, preferably about 100 °C.
  • the reaction is carried out for 1 to 8 hours, preferably 4 to 8 hours. During this reaction, the color of the solution turns from light blue to yellow, and finally it can be seen that the color of red brown (red brown) copper.
  • the reaction is then dispersed in water and centrifuged at 2000 rpm to remove hexadecylamine and glucose.
  • step c2) after centrifugation, isopropyl alcohol is dispersed in the obtained solution, and then filtered through a cellulose acetate membrane filter to obtain copper nanowires (CuNW).
  • CuNW copper nanowires
  • the substrate on which the metal nanowires are formed is loaded into a plasma processing chamber, and then the inside of the chamber is passed through a vacuum pump to a low vacuum, preferably about 5X10 -6. Make it below Torr.
  • the plasma generating gas is then flowed into the chamber such that the ratio of Ar and carbon-containing gas is about 120: 1 sccm to 120: 30 sccm, preferably 120: 3 sccm.
  • the carbon-containing gas CH 4 , C 2 H 2 , C 2 H 4, or CO may be used.
  • an RF power plasma generating power
  • the pressure in the chamber during the plasma treatment is about 10 mTorr to 50 mTorr.
  • This plasma chemical vapor deposition method is carried out at a temperature of about 300 to 800 °C.
  • This graphene formation process is preferably performed for about 3 to 9 minutes, more preferably for about 6 minutes.
  • the supply of plasma generating power is stopped and the supply of plasma generating gas is immediately interrupted. Subsequently, when the plasma generating gas remaining in the chamber is sufficiently exhausted, the chamber is vented. When the chamber vent is complete, the substrate is unloaded from the chamber.
  • Another embodiment of the present invention provides a nanowire having a core-shell structure, including a metal nanowire core and a graphene shell prepared according to the above method. Since the graphene-coated metal nanowires are prevented from oxidizing, the transparent electrode including the same prevents the oxidation of the metal, thereby providing excellent optical, electrical and mechanical properties, and low manufacturing cost.
  • the graphene shell coated on the metal nanowire may be formed in a single layer or multiple layers, the thickness of the graphene shell may be about 0.3nm to 30nm.
  • the numerical range is satisfied, the light transmittance and the surface resistivity are most optimized.
  • the length of the metal nanowires having a core-shell structure may be about 5 ⁇ m to 100 ⁇ m, preferably about 20 ⁇ m.
  • the diameter of the metal nanowire may be about 20nm to about 150nm, preferably about 30nm.
  • the present invention provides a metal nanowire having an aspect ratio of about 1000 to 3000 produced by the above production method.
  • the metal nanowires of the present invention not only exhibit excellent performance as conductive materials by having a high aspect ratio, but also have advantages of excellent optical, electrical and mechanical properties, and high transmittance.
  • the metal nanowires having an increased aspect ratio manufactured according to the manufacturing method of the present invention exhibit high transmittance in the visible light region, and therefore, even inexpensive metals such as copper, which are expensive indium tin oxides (used as conventional transparent electrode layers) It has the advantage that it can have optical properties comparable to that of ITO).
  • the present invention provides a transparent electrode using a nanowire having the core-shell structure.
  • the transparent electrode film according to the embodiment of the present invention is very excellent in oxidative stability (see FIG. 5). This is expected because the graphene shell acts as an oxidative protective layer to control the oxidative properties of metals such as copper, as confirmed by the stability test of Experimental Example 2 below. Since the oxidation stability of the transparent electrode film according to the embodiment of the present invention is very excellent, the solar cell using the same also has an excellent power conversion efficiency (see Experimental Example 5).
  • the prepared copper nanowires were loaded on a graphite stage inside the chamber, and then heated to 500 ° C. at a rate of 50 ° C./min in a vacuum atmosphere (5 ⁇ 10 ⁇ 6 mTorr).
  • H 2 gas was flowed at a flow rate of 40 sccm with a plasma of RF (radio frequency) 50 W, and the pretreatment process was performed for 2 minutes.
  • the pressure was maintained at 10 mTorr, and this graphene formation process was performed for 6 minutes. Then cooled to room temperature at a rate of 18 ° C./min.
  • 1 is an SEM of a nanowire of a copper-graphene core-shell structure obtained by the above production method.
  • the core-shell structure of the nanowires (CuNW-G) formed by coating graphene on the surface of the copper nanowires may be confirmed from the distribution diagrams of copper and carbon of FIG. 2, from which the CuNW-G core-shell nanoparticles are obtained. It can be seen that the structure was formed successfully.
  • Figure 3 shows the SEM image of the nanowires prepared in Example 1 and Comparative Example 1. It can be seen that the nanowires (CuNW-G) of Example 1 have a uniform thickness, a uniform size, and a clean surface compared to the nanowires (CuNW) of Comparative Example 1.
  • Ink formulation was prepared by dispersing CuNW-G via sonication. 0.3 ml of the ink formulation was spray coated onto a (3 ⁇ 3 cm 2 ) glass substrate. Subsequently, the pressure was uniformly applied at 24 MPa, followed by annealing at 300 ° C. under an Ar atmosphere for 1 hour to form a nanowire layer having a copper-graphene core-shell structure to prepare a transparent electrode film.
  • a transparent electrode film was prepared in the same manner as in Preparation Example 1, except that the ink formulation in which CuNW-G was dispersed was used in the amount shown in Table 1 below.
  • a transparent electrode was prepared in the same manner as in Preparation Example 1, except that CuNW prepared in Comparative Example 1 was used instead of CuNW-G prepared in Example 1.
  • a transparent electrode was prepared in the same manner as in Preparation Example 1, except that indium tin oxide (ITO) was used instead of CuNW-G prepared in Example 1.
  • ITO indium tin oxide
  • the light transmittance and sheet resistance of the transparent electrodes prepared from Preparation Examples 1 to 4 were measured using UV / Vis spectroscopy and 4-point probe, and the results are shown in Table 1 and FIG. 4. As described in
  • the CuNW-G transparent electrode of Preparation Example 1 and the CuNW transparent electrode of Comparative Preparation Example 1 had a relatively high light transmittance in the visible light region as compared with the ITO transparent electrode of Comparative Preparation Example 2.
  • the CuNW-G transparent electrodes of Preparation Examples 1 to 4 have a substantially constant light transmittance in the near infrared region. This means that the CuNW-G transparent electrodes of Preparation Examples 1 to 4 have high light transmittance over a wide range of wavelengths and can be used in various optoelectronic devices.
  • the light transmittance of the CuNW-G transparent electrode of Preparation Example 1 was slightly reduced due to the additional light absorption of the graphene shell.
  • the light transmittance of the CuNW-G transparent electrode of Preparation Example 1 still shows a much higher light transmittance than the ITO transparent electrode of Comparative Preparation Example 1.
  • a stability test was performed on a CuNW transparent electrode of Comparative Production Example 1 and a CuNW-G transparent electrode film of Preparation Example 1 in a constant temperature and humidity chamber maintained at 25 ° C. and 50% relative humidity.
  • the stability test was performed by measuring the sheet resistance, and the results are shown in FIG. 5.
  • the resistance of the transparent electrode film of Comparative Preparation Example 1 increased rapidly after 3 days. On the contrary, since the resistance of the transparent electrode film of Preparation Example 1 remained almost constant after 25 days, it was confirmed that the oxidation stability of the transparent electrode film of Preparation Example 1 was very excellent.
  • the transparent electrode film of Production Example 1 had a lower oxidation degree of copper nanowires than the transparent electrode film of Comparative Production Example 1.
  • the graphene shell acts as an oxidative protective layer of the metal nanowires, thereby preventing contact between the gas and the metal nanowires, and ultimately improving the life of the electronic device.
  • the XRD peak intensities of CuO and Cu 2 O indicate that oxidation does not occur to a negligible extent.
  • the XPS results of these two samples are consistent with the XRD measurements.
  • a pronounced XRD peak corresponding to CuO was observed at 934.4 eV, and shakeup satellites of CuO were observed at 940.7 eV and 943.9 eV.
  • no strong XPS peaks of CuO and Cu 2 O were observed. This means that moisture and oxygen could not penetrate the graphene shell.
  • the CuNW-G transparent electrode shows little change in sheet resistance compared to the CuNW transparent electrode. This indicates that the graphene shell of Preparation Example 1 can completely encapsulate the CuNW core and protect the CuNW core from oxidation, thereby improving the long term stability of the CuNW-G transparent electrode.
  • CuNW-G prepared in Preparation Example 1 was observed by a projection electron microscope (TEM). As a result, CuNW was confirmed to form a graphene shell by stacking thin layers (10 to 15 pieces) having a thickness of about 5 nm (FIG. 10B).
  • 10 shows a TEM image of CuNW-G of Preparation Example 1.
  • FIG. 10A shows a TEM image of the middle portion of the CuNW-G core-shell nanostructures. CuNW lattice was strongly observed in the middle of the CuNW-G core-shell nanostructures. The distance between gratings was 0.208 nm.
  • Figure 10b shows a TEM image of the edge portion of the CuNW-G core-shell nanostructure, only the graphene layer was observed.
  • the hexagonal arrangement of the carbon rings of the coated graphene shell was clearly observed in the reverse fast Fourier transform image (FIG. 10B).
  • the distance between two carbon atoms contained in the graphene shell was measured to be 0.143 nm, because nanocrystalline graphene was grown.
  • FIG. 11 shows the intensity profile from a single pixel line.
  • the lattice constant of the graphene shell was measured to be 0.246 nm, which confirmed that a graphene layer was formed on CuNW.
  • 12A shows the Raman spectrum measured at an excitation wavelength of 532 nm. Which represents a typical G-band and 2D band of graphene at each about 1580cm -1 and 2680cm -1.
  • the 2D band exhibits double-resonant Raman scattering and the G band is produced by E 2g photons at the midpoint of the Brillouin region.
  • the appearance of both G and 2D bands in FIG. 10A means that the graphene shell was successfully grown on CuNW by a low temperature PECVD process.
  • the G band appears to be much stronger than the 2D band, which means that the synthesized graphene shell grew in multiple layers.
  • FIG. 12B shows a change in high resolution C 1s of X-ray photoelectron spectroscopy (XPS) of CuNW-G core-shell nanostructure of Preparation Example 1 prepared by low temperature PECVD process at 500 ° C. with a change in processing time.
  • the C 1s spectrum of the CuNW-G core-shell nanostructure shows a pronounced C sp 2 peak centered at 284.58 eV, indicating that most of the carbon atoms of the graphene shell are arranged in a two-dimensional graphite-like honeycomb lattice. Indicates. This fact confirms the formation of CuNW-G core-shell nanostructures in which graphene shells are formed on CuNW.
  • PEDOT PSS (50nm) / PTB7: PC 71 BM (80nm) / LiF (1nm) / Al (120nm) were prepared on each CuNW transparent electrode of Comparative Preparation Example 1 and CuNW-G transparent electrode of Preparation Example 1.
  • Bulk heterojunction polymer solar cells (BHJ PSC) were prepared by deposition in order.
  • PCE Power conversion efficiency
  • J sc short circuit current density
  • FF charge rate
  • BHJ PSCs with CuNW-G transparent electrodes have a power conversion efficiency (PCE) of 4.04%, a short circuit current density (J sc ) of 3.20 mAcm -2 and 67.8% at an open circuit voltage (V oc ) of 0.73 V.
  • PCE power conversion efficiency
  • J sc short circuit current density
  • V oc open circuit voltage
  • FF filling factor
  • the PSC having the CuNW-G transparent electrode of Production Example 1 exhibits more than twice the power conversion efficiency and charging rate than the PSC having the CuNW transparent electrode of Comparative Production Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

본 발명은 금속 나노와이어를 제공하는 단계; 및 플라즈마 화학기상증착법에 의하여 상기 금속 나노와이어를 그래핀으로 코팅하는 단계를 포함하는, 금속 나노와이어 코어 및 그래핀 쉘을 포함하는 코어-쉘 구조의 나노와이어를 제조하는 방법에 관한 것이다. 또한, 본 발명은 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조를 가지는 나노와이어 및 이러한 나노와이어로 형성된 투명 전극에 관한 것이다. 상기 코어-쉘 구조를 가지는 나노와이어로부터 형성된 투명 전극은 구리의 산화특성이 제어될 수 있고, 광학적, 전기적 및 기계적으로 우수하며 저원가로 제조가능하다는 장점을 가진다.

Description

그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법
본 발명은 구리 나노와이어-그래핀 코어-쉘 구조 기반의 투명 전극 제조방법에 관한 것으로, 구체적으로 저온 플라즈마 화학기상증착법을 이용하여 구리 나노와이어 표면을 그래핀으로 코팅함으로써, 산화특성이 제어된 투명 전극을 제조하는 방법에 관한 것이다. 본 발명에 따른 제조방법으로 제조된 투명 전극은 구리의 산화되기 쉬운 특성이 제어될 수 있고, 우수한 광학적 및 전기적 특성을 가진다.
최근 휴대전자기기, 태양전지와 같은 친환경 에너지 소자, 디스플레이의 다양화 및 발전에 따라 투명 전극이 많이 적용되고 있다. 에너지 소자에서는 빛을 투과하면서도 전자의 이동이 가능해야 하는 점에서 투명 전극이 필요하게 되며 최근 스마트폰과 같은 터치 스크린에서는 투명 전극이 없어서는 안 되는 기술 중 하나이다.
현재 가장 널리 이용되고 있는 투명 전극의 소재로는 산화인듐주석(ITO)이 가장 많이 사용되고 있다. 박막의 산화인듐주석은 높은 광 투과율을 갖고, 전극으로써 뛰어난 전도성을 갖는다. 그러나, 이러한 산화인듐주석의 수요가 높아짐에 따라 지구상에 존재하는 산화인듐주석의 양에 대한 우려가 커지고 있다. 더욱이, 이러한 산화인듐주석의 핵심인 인듐의 산출이 거의 중국이라는 한 국가에 의존되고 있다는 문제가 있다. 또한, 산화인듐주석은 자연적인 세라믹 특성을 가짐으로써 유연전기소자에 적용하기 어려운 문제가 있다. 이에, 투명 전극으로서 산화인듐주석을 대체할 수 있는 물질을 개발하기 위해 다양한 연구들이 진행되고 있다.
나노기술이 발전함에 따라 기존에 존재하지 않던, 혹은 제어되지 못했던 나노물질들이 합성되었다. 이러한 나노물질들 중 전자소자에 적용되고 있는 물질로는 나노결정체, 탄소나노튜브, 실리콘 나노와이어, 금속 나노와이어가 있다. 특히, 그 중에서도 금속 나노와이어는 높은 전도성을 나타낼 뿐만 아니라 가시광선영역에서 눈으로 구분하기 어려운 매우 작은 크기를 갖기 때문에 투명 전극에 적용할 수 있는 장점이 있다.
특히 은(Ag)은 모든 금속 중에서 높은 전기전도도 및 열전도도를 가질 뿐만 아니라 가시광선 영역에서 높은 표면 증강 라만 효율을 가져 광학적 특성 또한 매우 우수한 금속이다. 이러한 은(Ag)을 나노와이어 형태로 제조할 경우 마이크로 전자소자부터 투명 전극에 이르기까지 다양한 분야에서 응용할 수 있을 뿐만 아니라, 광학, 화학 또는 바이오 센서로의 활용 또한 기대되고 있다. 그러나, 은 나노와이어가 다양한 분야에 활용되기 위해서는, 균일한 굵기, 균일한 크기, 깨끗한 표면, 높은 종횡비, 작은 크기 편차를 갖는 은 나노와이어를 대량생산하는 기술이 가장 중요하다.
그러나, 은 나노와이어는 길이 방향으로 성장이 제한된다는 단점이 있다. 퍼콜레이션 이론(Percolation theory)에 의하면, 일정한 면적에서 선형물질의 길이가 길수록 전도성을 갖기 위하여 사용되는 개체수가 줄어들게 된다. 이러한 개체수의 감소는 투과율의 증가를 유발하여 전극의 투명도를 증가시킬 수 있다.
구리는 금 또는 은과 같이 높은 전도성을 나타내면서 값이 싼 재료이다. 그러나 금 또는 은과 달리 구리는 대기상태에서 쉽게 산화가 일어난다. 나노 상태에서는 표면적이 증가하여서 더욱 쉽게 산화되므로 산화가 쉬운 구리를 대기 상태에서 산업에 접목시키는 것이 불가능하거나 매우 고가의 복잡한 공정이 필요하다.
특히 최근 유연 전자소자에 대한 기술적 요구가 증가됨에 따라서 인장가능한 고내구성 전극이 요구되고 있다. 기존에 인장가능한 전극을 제조하는 방법으로서 금속 나노와이어를 이용하여 체인형태의 미세구조를 만드는 방법이 있다. 이러한 방법은 대부분 은과 같이 고가의 산화에 안정한 재료를 이용하여 제조하였다.
그러나 이러한 방법은 와이어들간의 연결성이 약하여 전도성이 낮은 단점이 있고 미세 패턴닝이 용이하지 않다. 보다 선택성과 전도성을 향상시키기 위한 방법으로 은 나노와이어를 레이져를 이용하여 국부적으로 소결하는 방식도 있지만 이러한 방법은 고가의 은 나노와이어를 만들어야 한다는 제약이 있다.
대한민국 공개특허공보 제10-2005-0086693호(발명의 명칭: 반도체 물질로부터 나노와이어를 제조하는 방법과 나노와이어 분산 및 전자장치)은 주어진 에러 마진 내에서 실질적으로 균일한 길이를 갖는 나노와이어를 얻을 수 있는 발명을 개시하고 있다.
또한, 대한민국 공개특허공보 제10-2005-0079784호(발명의 명칭: 구리산화물 나노와이어 또는 구리 나노와이어를 캐소드로 사용한 고주파 전력소자 및 이를 이용한 전력소자 모듈)는 캐소드, 게이트 및 애노드를 구비하는 고주파 전력소자에 있어서, 상기 캐소드는 구리 표면을 100℃ 이하의 저온에서 산화용액과 접촉시켜 형성한 구리산화물 나노와이어들로 형성한 고주파 전력 소자를 개시하고 있다.
하지만, 이러한 나노와이어들의 제조방법은 구리의 산화특성을 제어하기 위한 별도의 공정이 포함되어 있지 않으므로, 구리 나노와이어의 산화특성을 제어하기 어렵다는 문제점이 있다.
이에 본 발명자들은 일반적인 금속의 산화특성을 제어할 수 있는 금속 나노와이어를 포함하는 투명 전극의 제조방법을 고안하였다.
즉, 본 발명의 목적은 금속 나노와이어를 제공하는 단계; 및 플라즈마 화학기상증착법에 의하여 상기 금속 나노와이어를 그래핀으로 코팅하는 단계를 포함하는, 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조의 나노와이어의 제조방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조를 가지는 나노와이어를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 상기 코어-쉘 구조를 가지는 나노와이어로부터 형성된 투명 전극을 제공하는 데 있다.
본 발명의 일 구현예에 따른 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조의 나노와이어의 제조방법은 금속 나노와이어를 제공하는 단계; 및 플라즈마 화학기상증착법에 의하여 상기 금속 나노와이어를 그래핀을 코팅하는 단계를 포함하는 방법을 제공한다.
본 발명의 일 구현예에 따른 코어-쉘 구조를 가지는 나노와이어는 금속 나노와이어 코어 및 그래핀 쉘을 포함한다.
본 발명의 일 구현예에 따른 투명 전극은 상기 코어-쉘 구조를 가지는 나노와이어로부터 형성된다.
본 발명은 금속 나노와이어의 표면에 그래핀을 플라즈마 화학기상증착법을 이용하여 도입한 코어-쉘 구조를 가지는 나노와이어를 제조할 수 있는 방법을 제공한다. 상기 제조방법으로부터 제조되는 나노와이어를 포함하는 투명 전극은 금속의 산화특성이 제어될 수 있으며, 광학적, 전기적 및 기계적으로 우수하며 저원가로 제조가능하다는 장점을 가진다.
도 1은 실시예 1의 구리 나노와이어-그래핀 코어-쉘 구조를 확대한 표면 이미지이다.
도 2는 형광 X-선 분석법을 이용하여 얻은, 구리 나노와이어의 이미지이다.
도 3은 실시예 1 및 비교예 1의 구리 나노와이어의 SEM 사진이다.
도 4a는 제조예 1 내지 4의 투명 전극 필름의 광 투과율을 나타낸 그래프이고, 도 4b는 제조예 1 및 비교제조예 1 및 2의 투명 전극 필름의 광 투과율을 나타낸 그래프이다.
도 5는 제조예 1 및 비교제조예 1의 투명 전극 필름의 면저항을 나타낸 그래프이다.
도 6은 제조예 1 및 비교제조예 1의 투명 전극 필름의 안정성 시험 결과를 나타낸 그래프이다.
도 7은 제조예 1의 방법에 따른 그래핀이 코팅된 구리 나노와이어(CuNW-G) 코어-쉘 나노구조의 합성을 위한 저온 PECVD 공정 장치를 나타낸다.
도 8은 비교제조예 1의 구리 나노와이어(CuNW) 투명 전극 및 제조예 1의 CuNW-G 투명 전극의 XRD 스펙트럼을 나타낸다.
도 9는 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극의 XPS 스펙트럼을 나타낸다.
도 10a는 제조예 1의 CuNW-G 코어-쉘 나노구조의 투사전자현미경(TEM) 이미지를 나타내고, 도 10b는 제조예 1의 CuNW-G 코어의 가장자리의 고해상도 TEM 이미지를 나타낸다.
도 11은 제조예 1의 CuNW-G 코어-쉘 나노구조의 선강도 프로파일을 나타낸다.
도 12a는 제조예 1의 CuNW-G 코어-쉘 나노구조의 라만 스펙트럼 변화를 나타내고, 도 12b는 가공 시간의 변화에 따른, 제조예 1의 CuNW-G 코어-쉘 나노구조의 X-선 광전자 분광법(XPS)의 고해상도 C 1s의 변화를 나타낸다.
도 13은 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극을 이용한 고분자 태양전지(BHJ PSC)의 전류 밀도-전압 그래프이다.
이하, 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
본원에 사용된 "CuNW"이란 용어는 구리 나노와이어를 의미하고, "CuNW-G"란 용어는 그래핀이 코팅된 구리 나노와이어를 의미한다.
본 발명의 일 구현예에서는 금속 나노와이어의 표면에 플라즈마 화학기상증착법을 통해 그래핀을 도입하여, 그래핀이 코팅된 구리 나노와이어를 제조하는 방법이 제공된다. 단계별로 자세하게 설명하면, 상기 제조방법은 금속 나노와이어를 제공하는 단계 및 플라즈마 화학기상증착법에 의해 상기 금속 나노와이어를 그래핀으로 코팅하는 단계를 포함한다.
본 발명에서 금속 나노와이어는 그래핀 코팅층을 포함함으로써 금속의 산화가 방지되고, 광학적, 전기적 및 기계적 특성이 향상되는 효과를 가진다. 이는 그래핀 코팅층에 의해 산소와의 반응이 차단되고, 아무런 처리하지 않은 금속 나노와이어에 비해 투과율 및 비저항이 향상되기 때문이다.
그래핀은 플라즈마 화학기상증착법(Plasma Enhanced Chemical Vapor Deposition; PECVD)에 의해 금속 나노와이어 상에 코팅된다. 플라즈마 화학기상증착법은 약 300 내지 800℃의 온도에서 수행될 수 있다. 플라즈마 화학기상증착법은 열 화학기상증착법에 비해 낮은 온도인 약 800℃ 이하의 저온에서 진행되므로 기판을 변형시키지 않고 금속 나노와이어를 성장시키는 것이 가능하다.
본 발명의 일 구현예에서, 상기 금속 나노와이어는 구리 나노와이어, 알루미늄 나노와이어, 아연 나노와이어, 금 나노와이어, 은 나노와이어 또는 니켈 나노와이어일 수 있으며, 보다 바람직하게는 구리 나노와이어일 수 있다.
본 발명의 일 구현예에서, 금속 나노와이어에 코팅된 그래핀의 두께는 약 0.3nm 내지 30nm일 수 있다. 상기 수치 범위를 만족하는 경우에 광 투과율 및 면 비저항이 가장 최적화되는 이점을 가진다.
이하에서는, 구리 나노와이어를 제조하는 방법을 살펴본 뒤, 플라즈마 화학기상증착법에 대해 설명한다.
본 발명의 일 구현예에서, 상기 구리 나노와이어를 제조하는 방법은 구리염 화합물, 에틸렌디아민, 수산화나트륨 및 히드라진을 혼합한 용액을 제조하는 a1) 단계; 상기 혼합 용액을 폴리비닐피롤리돈 수용액과 혼합하고 얼음조에서 반응시켜 구리 나노와이어를 제조하는 b1) 단계를 포함할 수 있다.
상기 a1) 단계에서는 질산구리와 같은 구리염 화합물을 전구체로 사용하여 에틸렌디아민, 수산화나트륨 및 히드라진과 혼합한 용액을 제조한다. 구리염 화합물은 질산구리일 수 있으며, 질산구리의 농도는 약 0.01M 내지 1.0M인 것이 바람직하고, 약 0.1M인 것이 보다 바람직하다. 수산화나트륨의 농도는 약 1M 내지 18M인 것이 바람직하고, 약 15M인 것이 보다 바람직하다. 이후, 상기 b1) 단계에서, a1) 단계에서 제조한 혼합 용액과 폴리비닐피롤리돈 수용액과 얼음조에서 반응시켜 구리 나노와이어를 제조한다. 이 경우, b1) 단계는 약 5분 내지 300분 동안 수행하는 것이 바람직하고, 약 60분 동안 수행하는 것이 보다 바람직하다.
본 발명의 다른 구현예에서, 상기 구리 나노와이어를 제조하는 방법은 구리염 화합물, 헥사데실아민, 글루코오스 및 물을 혼합하여 혼합 용액을 제조하고, (a2 단계), 상기 혼합 용액을 오일 수조(oil bath)에서 반응시키고, 헥사데실아민 및 글루코오스를 제거한 뒤 (b2 단계); 멤브레인 필터로 여과한 뒤 건조하여 구리 나노와이어를 제조(c2 단계)할 수 있다.
상기 a2) 단계에서, 구리염 화합물로는 CuCl2·2H2O, Cu(NO3)2, Cu(OAc)2, CuBr2 등을 사용할 수 있으며, 상기 혼합 용액은 24시간 이상 교반한다.
상기 b2) 단계에서, 오일 수조의 온도는 약 60 내지 150℃, 바람직하게는 약 100℃로 유지한다. 반응은 1 내지 8시간, 바람직하게는 4 내지 8시간 동안 수행한다. 이러한 반응이 진행되는 동안, 용액의 색은 하늘색에서 노란색으로 변하게 되고, 최종적으로는 레드 브라운(red brown)의 구리색으로 변하는 것을 확인할 수 있다. 그 후, 반응물을 물에 분산시키고 2000rpm으로 원심분리하여 헥사데실아민 및 글루코오스를 제거한다.
상기 c2) 단계에서, 원심 분리 후, 얻어진 용액에 이소프로필알콜을 분산시킨 후, 셀룰로오스 아세테이트 멤브레인 필터로 여과시킴으로써 구리 나노와이어(CuNW)를 얻는다.
한편, 구리 나노와이어 등의 금속 나노와이어를 얻은 뒤에, 금속 나노와이어가 형성되어 있는 기판을 플라즈마 처리용 챔버 내에 로딩하고, 이어서, 진공펌프를 통하여 챔버 내부를 낮은 진공, 바람직하게는 약 5X10-6 Torr 이하로 만들어 준다.
이후 챔버 내로 플라즈마 발생 가스를 Ar과 탄소함유가스의 비가 약 120:1sccm 내지 120:30sccm, 바람직하게는 120:3sccm가 되도록 흘려준다. 탄소함유가스로는 CH4, C2H2, C2H4 또는 CO 등이 사용될 수 있다. 흘려주는 가스가 정상상태(steady state)에 도달하면, 약 10W 내지 100W, 바람직하게는 약 50W의 RF 파워(플라즈마 발생 파워)를 가한다. 플라즈마 처리시 챔버 내의 압력은 약 10 mTorr 내지 50 mTorr로 한다. 이러한, 플라즈마 화학기상증착법은 약 300 내지 800℃의 온도에서 수행된다. 이러한 그래핀 형성 공정은 약 3분 내지 9분 동안 수행하는 것이 바람직하고, 약 6분 동안 수행하는 것이 보다 바람직하다.
플라즈마 처리가 완료되면, 플라즈마 발생 파워의 공급을 중단하고, 곧바로 플라즈마 발생 가스의 공급을 차단한다. 이어 챔버 내에 잔존하던 플라즈마 발생 가스가 충분히 배기되면 챔버를 벤트(vent)시킨다. 챔버 벤트가 완료되면 기판을 챔버로부터 언로딩한다.
본 발명의 다른 구현예는, 상기 방법에 따라 제조된 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조를 가지는 나노와이어를 제공한다. 그래핀이 코팅된 금속 나노와이어는 산화가 방지되므로, 이를 포함하는 투명 전극은 금속의 산화를 방지함으로써 광학적, 전기적 및 기계적 특성이 우수하며 제조 비용이 저렴하다는 이점이 있다.
본 발명의 일 구현예에서, 금속 나노와이어에 코팅된 그래핀 쉘은 단층 또는 다층으로 형성될 수 있고, 그래핀 쉘의 두께는 약 0.3nm 내지 30nm일 수 있다. 상기 수치 범위를 만족하는 경우에 광 투과율 및 면 비저항이 가장 최적화되는 이점을 가진다.
본 발명의 일 구현예에서, 코어-쉘 구조를 가지는 금속 나노와이어의 길이는 약 5㎛ 내지 100㎛, 바람직하게는 약 20㎛일 수 있다. 또한, 금속 나노와이어의 직경은 약 20nm 내지 약 150nm, 바람직하게는 약 30nm일 수 있다. 상기 금속 나노와이어에 그래핀을 플라즈마 화학기상증착법으로 코팅하면, 이러한 금속 나노와이어는 유연성 및 저응력 특성을 가지게 된다.
본 발명은 상기 제조방법으로 제조되는, 약 1000 내지 3000의 종횡비를 갖는 금속 나노와이어를 제공한다.
본 발명의 금속 나노와이어는 높은 종횡비를 가짐으로써 전도성 물질로 우수한 성능을 나타낼 뿐만 아니라, 광학적, 전기적 및 기계적 특성이 우수하고 투과율이 높은 장점이 있다. 또한, 본 발명의 제조방법에 따라 제조되는 종횡비가 증가된 금속 나노와이어는 가시광선 영역에서 높은 투과율을 나타내므로 상대적으로 값싼 구리 등의 금속을 사용하더라도 종래 투명 전극층으로 사용된 값비싼 산화인듐주석(ITO)을 이용한 것과 대등한 광학적 특성을 가질 수 있다는 장점이 있다.
또한, 본 발명은 상기 코어-쉘 구조를 가지는 나노와이어를 이용한 투명 전극을 제공한다. 본 발명의 일 구현예에 따른 투명 전극 필름은 산화 안정성이 매우 우수하다(도 5 참조). 이는 하기 실험예 2의 안정성 시험에서 확인되듯이, 그래핀 쉘이 산화 보호층으로 작용하여 구리 등의 금속의 산화 특성을 제어하기 때문이라고 예상된다. 본 발명의 일 구현예에 따른 투명 전극 필름의 산화 안정성이 매우 우수하므로, 이를 이용한 태양 전지 또한, 우수한 전력 변환 효율을 가진다(실험예 5 참조).
이하, 실시예를 통하여 본 발명을 더욱 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 제한되는 것은 아니다.
실시예 1: 그래핀 코팅된 구리 나노와이어
구리 나노와이어의 제조
0.1M 질산구리 10ml, 에틸렌디아민(EDA) 1.25ml, 15M 수산화나트륨 20ml 및 히드라진 250μl를 80℃에서 20분 동안 혼합하여, 혼합 용액을 제조하였다. 상기 혼합 용액과 폴리비닐피롤리돈 5ml를 얼음조에서 한 시간 동안 교반하여, 구리 나노와이어를 제조하였다.
플라즈마 화학기상증착법에 의한 그래핀의 코팅
상기 제조된 구리 나노와이어를 챔버 내부의 그래파이트 스테이지(graphite stage)에 로딩을 한 후, 진공분위기(5X10-6 mTorr) 에서 50℃/분의 속도로 500℃까지 가열시켰다. 구리 나노와이어 표면에 있는 산화물을 제거하기 위하여 H2 가스를 RF(radio frequency) 50W의 플라즈마와 함께 40sccm의 유량으로 흘려주어서 2분 동안 전처리 공정을 진행하였다. 챔버 내에 남아있는 H2 가스를 제거하기 위해 Ar 가스를 3분 동안 흘려주었고, 이어서, Ar과 CH4의 혼합 가스를 RF 50W의 플라즈마와 함께 Ar:CH4=120:3sccm의 유량으로 흘려주었다. 이 때 압력은 10 mTorr로 유지시켰고, 6분 동안 이러한 그래핀 형성 공정을 진행하였다. 이어서, 18℃/분의 속도로 실온까지 냉각시켰다.
도 1은 상기 제조방법에 의해 얻어진 구리-그래핀 코어-쉘 구조의 나노와이어의 SEM이다. 또한, 도 2의 구리 및 탄소의 분포도로부터 구리 나노와이어의 표면에 그래핀이 코팅되어 생성된 나노와이어(CuNW-G)의 코어-쉘 구조를 확인할 수 있는데, 이로부터 CuNW-G 코어-쉘 나노구조가 성공적으로 형성되었음을 알 수 있다.
비교예 1: 구리 나노와이어의 제조
0.1M 질산구리 10ml, 에틸렌디아민(EDA) 1.25ml, 15M 수산화나트륨 20ml 및 히드라진 250μl를 80℃에서 20분 동안 혼합하여 혼합 용액을 제조한 뒤, 폴리비닐피롤리돈 5ml를 첨가하여 얼음조에서 한 시간 동안 혼합하였고, 질소분위기에서 건조시켜, 구리 나노와이어(CuNW)를 제조하였다.
도 3은 실시예 1 및 비교예 1에서 제조된 나노와이어의 SEM 이미지를 나타낸 것이다. 비교예 1의 나노와이어(CuNW)에 비하여 실시예 1의 나노와이어(CuNW-G)가 균일한 굵기, 균일한 크기 및, 깨끗한 표면을 갖는 것을 확인할 수 있다.
제조예 1: 투명 전극 필름의 제조
아세톤 37ml, 에탄올 38ml, 에틸 아세테이트 17ml, 이소프로판올 12ml 및 톨루엔 20ml를 혼합하여 용액을 제조하고, 상기 용액 10ml에 실시예 1에서 제조된, 표면에 그래핀이 코팅된 구리 나노와이어(CuNW-G) 5mg를 첨가하고, 초음파 처리를 통해 CuNW-G를 분산시켜 잉크 제제를 제조하였다 잉크 제제 0.3ml를 (3X3 cm2) 유리 기판 상에 스프레이 코팅시켰다. 이어서, 24MPa로 균일하게 압력을 가한 뒤에 Ar 분위기 하에서 1시간 동안 300℃에서 어닐링 처리를 하여 구리-그래핀 코어-쉘 구조를 갖는 나노와이어층을 형성시켜서, 투명 전극 필름을 제조하였다.
제조예 2 내지 4
CuNW-G가 분산된 잉크 제제를 하기 표 1에 기재된 양으로 사용한 것을 제외하고는 제조예 1과 동일한 방법에 의하여 투명 전극 필름을 제조하였다.
비교제조예 1:
실시예 1에서 제조된 CuNW-G 대신 비교예 1에서 제조된 CuNW를 사용한 것을 제외하고는 제조예 1과 동일한 방법에 의하여 투명 전극을 제조하였다.
비교제조예 2:
실시예 1에서 제조된 CuNW-G 대신 산화인듐주석(ITO)을 사용한 것을 제외하고는 제조예 1과 동일한 방법에 의하여 투명 전극을 제조하였다.
실험예 1: 광투과율 및 면저항 측정
상기 제조예 1 내지 4로부터 제조된 투명 전극을 대상으로 UV/Vis 스펙트로스코피(spectroscopy) 및 4침법(4-point probe)을 이용하여 광투과율 및 면저항을 측정하였으며, 그 결과는 표 1 및 도 4에 기재된 바와 같다.
잉크 제제(ml) 550nm에서의 광 투과율(%) 면저항(Ω/sq)
제조예 1 0.3 88.3 115.2
제조예 2 0.7 85.3 50.7
제조예 3 1.0 77.4 38.0
제조예 4 1.5 74.9 28.9
도 4b는, 제조예 1의 CuNW-G 투명 전극 및 비교제조예 1의 CuNW 투명 전극이 비교제조예 2의 ITO 투명 전극에 비해 가시광선 영역에서 상대적으로 높은 광투과율을 가짐을 나타낸다. 또한, 제조예 1 내지 4의 CuNW-G 투명 전극은 근적외선 영역에서 거의 일정한 광투과율을 지닌다. 이는 제조예 1 내지 4의 CuNW-G 투명 전극이 광범위한 파장에서 높은 광투과율을 지님을 의미하며, 다양한 광전자 장치에 사용될 수 있음을 시사한다. 비교제조예 1의 CuNW 투명 전극에 비해 제조예 1의 CuNW-G 투명 전극의 광투과율이 약간 감소되었는데, 이는 그래핀 쉘의 추가적인 광흡수에 기인한 것이다. 그러나, 제조예 1의 CuNW-G 투명 전극의 광투과율은 여전히 비교제조예 1의 ITO 투명 전극에 비해 훨씬 높은 광투과율을 나타낸다.
실험예 2: 산화 안정성 시험
(1) 25℃, 50% 상대 습도의 조건으로 유지되는 항온항습 챔버에, 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극 필름에 대해 안정성 시험을 수행하였다. 안정성 시험은 면저항을 측정하는 것으로 수행되었으며, 그 결과를 도 5에 기재하였다.
도 5에 나타나듯이, 비교제조예 1의 투명 전극 필름은 3일 후부터 저항이 급격히 상승하였다. 그에 반해, 제조예 1의 투명 전극 필름은 25일이 지난 후에도 저항이 거의 일정하게 유지되는바, 제조예 1의 투명 전극 필름의 산화 안정성이 매우 우수함을 확인할 수 있다.
(2) 또한, 70℃, 70% 상대 습도의 조건으로 유지되는 항온항습 챔버에, 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극 필름 시료를 넣어 각각 안정성 시험을 수행하였다. CuNW와 CuNW-G에서 구리와 산화구리의 강도를 측정한 결과, 도 6을 얻었다.
그 결과, 제조예 1의 투명 전극 필름은 비교제조예 1의 투명 전극 필름에 비하여 구리 나노와이어의 산화 정도가 낮았다. 이와 같이 그래핀 쉘이 금속 나노와이어의 산화 보호층으로 작용하여 가스와 금속 나노와이어의 접촉을 방지하고, 궁극적으로 전자소자의 수명이 향상될 수 있다.
(3) 또한, 25℃, 50% 상대 습도의 조건으로 유지되는 항온항습 챔버에, 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극 필름에 대해 안정성 시험을 수행하는 동안 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극 샘플 모두의 조성물 변화를 특징짓기 위해 XRD(도 8) 및 XPS(도 9) 스펙트럼을 관측하였다. CuNW 투명 전극의 경우, 35.7° 및 39.0°에서 명확한 XRD 피크가 관찰되었는데, 이는 CuO 및 Cu2O의 존재를 나타낸다. 반면에, CuNW-G 투명 전극의 경우, CuO 및 Cu2O의 XRD 피크 강도가 거의 무시할 만한 정도로 산화가 일어나지 않음을 나타낸다. 이러한 두 개의 샘플의 XPS 결과는 XRD 측정과 일치한다. CuNW 투명 전극의 경우, CuO에 상응하는 확연한 XRD 피크가 934.4eV에서 관찰되었고, CuO의 셰이크업 새틀라이트(satellites)가 940.7eV 및 943.9eV에서 관찰되었다. 반면에, CuNW-G 투명 전극의 경우, CuO 및 Cu2O의 강한 XPS 피크가 관찰되지 않았다. 이는 수분 및 산소가 그래핀 쉘을 침투할 수 없었음을 의미한다. 결과적으로, CuNW-G 투명 전극은 CuNW 투명 전극에 비해 시트 저항성(sheet resistance)의 변화를 거의 보이지 않는다. 이는 제조예 1의 그래핀 쉘이 CuNW 코어를 완전히 캡슐화할 수 있고, CuNW 코어를 산화로부터 보호하여, CuNW-G 투명 전극의 장기 안정성이 향상되었음을 나타낸다.
실험예 3: TEM 측정
제조예 1에서 제조된 CuNW-G을 투사 전자 현미경(TEM)으로 관측하였다. 그 결과, CuNW는 약 5nm의 두께로 이루어진 얇은 층(10 내지 15개)들이 쌓여서 그래핀 쉘을 형성하고 있음을 확인하였다(도 10b). 도 10은 제조예 1의 CuNW-G의 TEM 이미지를 나타낸다. 도 10a는 CuNW-G 코어-쉘 나노구조의 중간 부분의 TEM 이미지를 나타낸다. CuNW 격자가 CuNW-G 코어-쉘 나노구조의 중간 부분에서 강하게 관찰되었다. 격자간 거리는 0.208nm였다. 반면에, 도 10b는 CuNW-G 코어-쉘 나노구조의 가장자리 부분의 TEM 이미지를 나타내는데, 그래핀 층만이 관찰되었다. 또한, 코팅된 그래핀 쉘의 탄소 고리의 6각 배열이 역고속 푸리에 변환 이미지에서 명확하게 관찰되었다(도 10b). 여기서, 그래핀 쉘에 함유된 두 개의 탄소 원자 간 거리는 0.143nm로 측정되었는데, 이는 나노결정 그래핀이 성장했기 때문이다.
도 11은 단일 픽셀 라인으로부터의 강도 프로파일을 나타낸다. 그래핀 쉘의 격자 상수는 0.246nm로 측정된 바, 이를 통해 CuNW 상에 그래핀 층이 형성되었음을 확인할 수 있었다.
이러한 TEM 결과 및 강도 프로파일은 CuNW-G 코어-쉘 나노구조가 저온 PECVD 공정에 의해 400℃의 낮은 온도에서 성공적으로 합성될 수 있음을 나타낸다.
실험예 4: 라만 스펙트럼 및 XPS의 측정
라만 분광법에 의해 제조예 1의 CuNW-G 코어-쉘 나노구조에서의 결함 수준 정도 및 그래핀의 존재를 조사하였다. 도 12a는 532nm의 여기 파장에서 측정된 라만 스펙트럼을 나타낸다. 이들은 각각 대략 1580cm-1 및 2680cm-1에서의 그래핀의 전형적인 G 밴드 및 2D 밴드를 나타낸다. 2D 밴드는 더블-공진 라만 산란을 나타내고, G 밴드는 브릴루인(Brillouin) 영역의 중간 지점에서 E2g 광자에 의해 생성된다. 도 10a에서 G 밴드 및 2D 밴드 모두가 나타나는 것은 저온 PECVD 공정에 의해 CuNW 상에서 그래핀 쉘이 성공적으로 성장하였음을 의미한다. 또한, G 밴드가 2D 밴드보다 훨씬 강한 것으로 나타나는데, 이는 합성된 그래핀 쉘이 다층으로 성장하였음을 의미하는 것이다.
또한, X-선 광전자 분광법(XPS)에 의해, 제조예 1의 CuNW-G 코어-쉘 나노구조에서 탄소 원자의 존재 및 sp2/sp3 혼성화율의 정량화를 확인하였다. 도 12b는 가공 시간의 변화에 따른, 500℃에서 저온 PECVD 공정에 의해 제조된 제조예 1의 CuNW-G 코어-쉘 나노구조의 X-선 광전자 분광법(XPS)의 고해상도 C 1s의 변화를 나타낸다. CuNW-G 코어-쉘 나노구조의 C 1s 스펙트럼은 284.58eV에서 중심에 있는 확연한 C sp2 피크를 나타내는데, 이는 그래핀 쉘의 대부분의 탄소 원자가 2차원의 그래파이트 유사 허니콤(honeycomb) 격자에 배열되었음을 나타낸다. 이러한 사실을 통해, 그래핀 쉘이 CuNW 상에 형성된, CuNW-G 코어-쉘 나노구조의 형성을 확인할 수 있었다.
실험예 5: PSC의 성능 시험
본 실험예에서는 CuNW-G 투명 전극의 전력 변환 효율(PCE), 단회로 전류 밀도(Jsc) 및 충전율(FF)에 대한 성능을 평가하였다. 이를 위해 각각의 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극 상에 PEDOT:PSS(50nm)/PTB7:PC71BM(80nm)/LiF(1nm)/Al(120nm)를 순서대로 증착시켜 벌크 헤테로접합 고분자 태양전지(BHJ PSC)를 제조하였다. 이렇게 제조된 비교제조예 1의 CuNW 투명 전극 및 제조예 1의 CuNW-G 투명 전극을 갖는 각각의 고분자 태양 전지에 대해 전력 변환 효율(PCE), 단회로 전류 밀도(Jsc) 및 충전율(FF)을 측정하였다.
그 결과, CuNW-G 투명 전극을 갖는 BHJ PSC는 0.73V의 개방 회로 전압(Voc)에서 4.04%의 전력 변환 효율(PCE), 3.20mAcm-2의 단회로 전류 밀도(Jsc) 및 67.8%의 충전율(FF)을 나타낸 반면, CuNW 투명 전극을 갖는 BHJ PSC는 0.73V의 개방 회로 전압(Voc)에서 1.90%의 전력 변환 효율(PCE), 10.84mAcm-2의 단회로 전류 밀도(Jsc) 및 24.1%의 충전율(FF)을 가짐을 확인하였다.
상기 결과로부터, 제조예 1의 CuNW-G 투명 전극을 갖는 PSC가 비교제조예 1의 CuNW 투명 전극을 갖는 PSC보다 2배 이상의 전력 변환 효율 및 충전율을 나타냄을 알 수 있다.

Claims (13)

  1. 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조의 나노와이어를 제조하는 방법으로서,
    금속 나노와이어를 제공하는 단계; 및
    플라즈마 화학기상증착법에 의하여 상기 금속 나노와이어를 그래핀으로 코팅하는 단계를 포함하는 방법.
  2. 제 1항에 있어서, 상기 플라즈마 화학기상증착법은 300℃ 내지 800℃의 온도에서 수행되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서, 상기 플라즈마 화학기상증착법은 10W 내지 100W의 RF 파워로 수행되는 것을 특징으로 하는 방법.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 금속 나노와이어가 구리 나노와이어인 것을 특징으로 하는 방법.
  5. 제 4항에 있어서, 상기 구리 나노와이어는
    a1) 구리염 화합물, 에틸렌디아민, 수산화나트륨 및 히드라진을 혼합한 용액을 제조하고,
    b1) 상기 혼합 용액을 폴리비닐피롤리돈 수용액과 혼합하고 얼음조에서 반응시켜, 얻어지는 것을 특징으로 하는 방법.
  6. 제 4항에 있어서, 상기 구리 나노와이어는
    a2) 구리염 화합물, 헥사데실아민, 글루코오스 및 물을 혼합하여 혼합 용액을 제조하고;
    b2) 상기 혼합 용액을 오일 수조(oil bath)에서 4 내지 8 시간 동안 반응시킨 뒤, 용액 내의 잔여 헥사데실아민 및 글루코오스를 제거하고,
    c2) 멤브레인 필터로 여과한 뒤 건조하여, 얻어지는 것을 특징으로 하는 방법.
  7. 금속 나노와이어 코어 및 그래핀 쉘을 포함하는, 코어-쉘 구조를 가지는 나노와이어.
  8. 제 7항에 있어서, 상기 그래핀 쉘이 단층 또는 다층으로 형성된 것을 특징으로 하는, 나노와이어.
  9. 제 7항에 있어서, 상기 그래핀 쉘이 금속 나노와이어 위에 0.3nm 내지 30nm 두께로 코팅된 것을 특징으로 하는, 나노와이어.
  10. 제 7항에 있어서, 상기 금속이 구리인 것을 특징으로 하는, 나노와이어.
  11. 제 7항 내지 제 10항 중 어느 한 항에 있어서, 상기 나노와이어의 길이가 5㎛ 내지 100㎛인 것을 특징으로 하는, 나노와이어.
  12. 제 7항 내지 제 10항 중 어느 한 항에 에 있어서, 상기 나노와이어의 직경이 20nm 내지 150nm인 것을 특징으로 하는, 나노와이어.
  13. 제 7항 내지 제 10항 중 어느 한 항에 에 따른 나노와이어를 이용하여 형성된 투명 전극.
PCT/KR2015/007117 2014-07-09 2015-07-09 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법 WO2016006943A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177003161A KR101969300B1 (ko) 2014-07-09 2015-07-09 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법
US15/324,543 US10566104B2 (en) 2014-07-09 2015-07-09 Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140086175 2014-07-09
KR10-2014-0086175 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006943A1 true WO2016006943A1 (ko) 2016-01-14

Family

ID=55064498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007117 WO2016006943A1 (ko) 2014-07-09 2015-07-09 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법

Country Status (3)

Country Link
US (1) US10566104B2 (ko)
KR (1) KR101969300B1 (ko)
WO (1) WO2016006943A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106334790A (zh) * 2016-10-21 2017-01-18 天津大学 铝粉表面原位催化固态碳源制备石墨烯片负载镍增强铝复合材料的方法
WO2017209469A1 (ko) * 2016-05-30 2017-12-07 주식회사 엔젤 전자석 및 그 제조방법
WO2018187633A3 (en) * 2017-04-06 2018-12-06 The Regents Of The University Of California Nanoporous metal foam gas filters
CN109773213A (zh) * 2019-01-28 2019-05-21 哈尔滨工业大学(威海) 一种石墨烯/铜复合纳米片的制备方法
CN110666158A (zh) * 2019-09-29 2020-01-10 深圳第三代半导体研究院 一种石墨烯包覆纳米铜的方法
CN111408714A (zh) * 2020-04-29 2020-07-14 西安稀有金属材料研究院有限公司 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法
CN112331817A (zh) * 2020-08-14 2021-02-05 安徽德亚电池有限公司 一种高导电性电极材料的制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629838B2 (en) * 2015-01-26 2020-04-21 Duksan Hi-Metal Co., Ltd. Core-shell nanowire, method for synthesizing the core-shell nanowire, and transparent electrode and organic light emitting diode including the core-shell nanowire
SE541166C2 (en) 2016-12-12 2019-04-23 Nils Brenning Magnetic nanowires and process for their production
US11180373B2 (en) * 2017-11-29 2021-11-23 Samsung Electronics Co., Ltd. Nanocrystalline graphene and method of forming nanocrystalline graphene
PL239477B1 (pl) * 2018-03-05 2021-12-06 Politechnika Wroclawska Sposób wytwarzania trwałych cienkowarstwowych pokryć grafenowych na metalach
CN110364682B (zh) * 2018-04-11 2022-06-24 广州墨羲科技有限公司 一种三维石墨烯微球复合材料、其制造方法及应用
KR102547500B1 (ko) * 2018-05-18 2023-06-26 성균관대학교산학협력단 그래핀 코팅 금속 나노와이어의 제조방법, 이에 의해 제조된 그래핀 코팅 금속 나노와이어를 포함하는 투명전극 및 반도체 소자
KR102532605B1 (ko) 2018-07-24 2023-05-15 삼성전자주식회사 나노결정질 그래핀 캡층을 포함하는 인터커넥트 구조체 및 이 인터커넥트 구조체를 포함하는 전자 소자
US11217531B2 (en) 2018-07-24 2022-01-04 Samsung Electronics Co., Ltd. Interconnect structure having nanocrystalline graphene cap layer and electronic device including the interconnect structure
KR20200011821A (ko) 2018-07-25 2020-02-04 삼성전자주식회사 탄소물 직접 성장방법
KR102601607B1 (ko) 2018-10-01 2023-11-13 삼성전자주식회사 그래핀의 형성방법
CN109622987A (zh) * 2019-02-13 2019-04-16 济南大学 一步法制备核壳结构的聚吡咯包裹的铜纳米线的方法
CN110057474B (zh) * 2019-03-01 2021-04-13 杭州电子科技大学 一种铜基气凝胶-pdms复合压阻式压力传感材料及其应用
KR20200126721A (ko) 2019-04-30 2020-11-09 삼성전자주식회사 그래핀 구조체 및 그래핀 구조체의 형성방법
KR102274190B1 (ko) * 2019-10-18 2021-07-08 한양대학교 에리카산학협력단 열계면층을 포함하는 반도체 소자 패키지 및 그 제조 방법
GB201915690D0 (en) * 2019-10-29 2019-12-11 Univ Of Hull Light-driven conversion of co2 to solar fuels
US20230102041A1 (en) * 2020-02-03 2023-03-30 Cealtech As Process and device for large-scale production of graphene
KR102302548B1 (ko) * 2020-06-29 2021-09-16 마이크로컴퍼지트 주식회사 표면 처리된 금속 나노와이어의 제조방법
DE102020133062A1 (de) 2020-11-25 2022-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vielzahl von Partikeln mit Beschichtung und Verfahren zu deren Herstellung
FR3118271B1 (fr) * 2020-12-22 2023-07-14 Safran Electronics & Defense Fil conducteur électrique multicouches ayant des couches de graphène
US20220267899A1 (en) * 2021-02-25 2022-08-25 Applied Materials, Inc. Microstructure control of conducting materials through surface coating of powders
CN113293351A (zh) * 2021-06-01 2021-08-24 南京邮电大学 一种铜纳米线表面镀碳方法
KR102399960B1 (ko) * 2021-06-30 2022-05-20 송암시스콤 주식회사 그래핀 도체를 이용한 고효율 변압기
CN113604089B (zh) * 2021-07-02 2022-03-08 中国科学院重庆绿色智能技术研究院 一种宽波段光学吸收剂及涂层制备方法
KR102399954B1 (ko) * 2022-01-25 2022-05-20 송암시스콤 주식회사 그래핀 변압기
KR20230157149A (ko) 2022-05-09 2023-11-16 재단법인대구경북과학기술원 코어-쉘 나노와이어의 제조 방법 및 이를 통해 제조된 코어-쉘 나노와이어

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115298A (ko) * 2009-12-07 2012-10-17 듀크 유니버시티 구리 나노와이어의 성장을 위한 조성물 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230717A1 (en) * 2011-09-02 2013-09-05 Washington University In St. Louis Copper nanostructures and methods for their preparation
SG10201908213VA (en) * 2012-02-24 2019-10-30 California Inst Of Techn Method and system for graphene formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115298A (ko) * 2009-12-07 2012-10-17 듀크 유니버시티 구리 나노와이어의 성장을 위한 조성물 및 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MINGSHANG JIN ET AL.: "Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent.", ANGEW. CHEM. INT., 16 September 2011 (2011-09-16), pages 10560 - 15064 *
TOMO-O TERASAWA ET AL.: "Growth of graphene on cu by plasma enhanced chemical vapor deposition.", CARBON 50., 1 October 2011 (2011-10-01), pages 869 - 874, XP028343562 *
YUXIN ZHAO ET AL.: "A flexible chemical vapor deposition method to synthesize copper@carbon core-shell structured nanowires and the study of their structural electrical properties.", NEW J. CHEM., 1 March 2012 (2012-03-01), pages 1161 - 1169, XP055251242 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209469A1 (ko) * 2016-05-30 2017-12-07 주식회사 엔젤 전자석 및 그 제조방법
CN106334790A (zh) * 2016-10-21 2017-01-18 天津大学 铝粉表面原位催化固态碳源制备石墨烯片负载镍增强铝复合材料的方法
CN106334790B (zh) * 2016-10-21 2019-03-15 天津大学 铝粉表面原位催化固态碳源制备石墨烯片负载镍增强铝复合材料的方法
WO2018187633A3 (en) * 2017-04-06 2018-12-06 The Regents Of The University Of California Nanoporous metal foam gas filters
CN109773213A (zh) * 2019-01-28 2019-05-21 哈尔滨工业大学(威海) 一种石墨烯/铜复合纳米片的制备方法
CN109773213B (zh) * 2019-01-28 2021-11-23 哈尔滨工业大学(威海) 一种石墨烯/铜复合纳米片的制备方法
CN110666158A (zh) * 2019-09-29 2020-01-10 深圳第三代半导体研究院 一种石墨烯包覆纳米铜的方法
CN111408714A (zh) * 2020-04-29 2020-07-14 西安稀有金属材料研究院有限公司 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法
CN111408714B (zh) * 2020-04-29 2022-04-01 西安稀有金属材料研究院有限公司 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法
CN112331817A (zh) * 2020-08-14 2021-02-05 安徽德亚电池有限公司 一种高导电性电极材料的制备方法

Also Published As

Publication number Publication date
US20170154701A1 (en) 2017-06-01
US10566104B2 (en) 2020-02-18
KR101969300B1 (ko) 2019-04-17
KR20170020533A (ko) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2016006943A1 (ko) 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법
Yu et al. Ti3C2Tx (MXene)‐Silicon Heterojunction for Efficient Photovoltaic Cells
Zhou et al. Enhancing electron transport via graphene quantum dot/SnO 2 composites for efficient and durable flexible perovskite photovoltaics
Won et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics
Akman et al. Improving performance and stability in quantum dot-sensitized solar cell through single layer graphene/Cu2S nanocomposite counter electrode
Cheng et al. Copper nanowire based transparent conductive films with high stability and superior stretchability
Hu et al. Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer
WO2012008789A9 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
WO2011081440A2 (ko) 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름
WO2012118350A2 (ko) 그래핀의 n-도핑 방법
Yin et al. Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films
Gao et al. Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CuInS2 quantum dots
KR101939884B1 (ko) 은 나노입자 전극 및 이의 제조방법
CN111004629B (zh) 一种提高全无机钙钛矿量子点CsPbBr3稳定性的方法
Chavan et al. Organic Ligand‐Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells
Ye et al. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability
KR101289214B1 (ko) 그래핀 투명전극 및 이의 제조방법
WO2015009090A1 (ko) 투명 도전성 박막 형성용 코어-쉘 나노 입자, 및 이를 사용한 투명 도전성 박막의 제조 방법
WO2014021640A1 (ko) 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자
WO2011078537A2 (ko) 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
US20130025662A1 (en) Water Soluble Dopant for Carbon Films
WO2016159609A1 (ko) 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
WO2013154248A1 (ko) 그래핀 박막 이송 방법 및 이를 이용한 소자
Yin et al. Moisture annealing effect on CH3NH3PbI3 films deposited by solvent engineering method
Han et al. CuCl2-modified SnO2 electron transport layer for high efficiency perovskite solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15324543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177003161

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15819771

Country of ref document: EP

Kind code of ref document: A1