WO2010016291A1 - Matériau piézoélectrique organique et son procédé de production, et oscillateur ultrasonore, sonde ultrasonore et dispositif de détection d'image ultrasonore le comprenant - Google Patents

Matériau piézoélectrique organique et son procédé de production, et oscillateur ultrasonore, sonde ultrasonore et dispositif de détection d'image ultrasonore le comprenant Download PDF

Info

Publication number
WO2010016291A1
WO2010016291A1 PCT/JP2009/054291 JP2009054291W WO2010016291A1 WO 2010016291 A1 WO2010016291 A1 WO 2010016291A1 JP 2009054291 W JP2009054291 W JP 2009054291W WO 2010016291 A1 WO2010016291 A1 WO 2010016291A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic piezoelectric
piezoelectric material
ultrasonic
organic
film
Prior art date
Application number
PCT/JP2009/054291
Other languages
English (en)
Japanese (ja)
Inventor
朱里 水谷
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2010523780A priority Critical patent/JPWO2010016291A1/ja
Publication of WO2010016291A1 publication Critical patent/WO2010016291A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to an organic piezoelectric material using an organic piezoelectric material, a manufacturing method thereof, an ultrasonic transducer, an ultrasonic probe, and an ultrasonic image detection apparatus using the organic piezoelectric material.
  • Inorganic piezoelectric materials and organic piezoelectric materials are known as piezoelectric materials used for sensors such as an ultrasonic probe.
  • the inorganic piezoelectric material for example, a single crystal such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 , a thin film such as ZnO or AlN, or a sintered body such as Pb (Zr, Ti) O 3 system is polarized. It has been known.
  • these inorganic piezoelectric materials have properties such as high elastic stiffness, high mechanical loss coefficient, high density and high dielectric constant.
  • organic piezoelectric materials such as polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) and polyvinylidene cyanide (hereinafter abbreviated as “PVDCN”) are known as organic piezoelectric materials (see Patent Document 1). ).
  • PVDF polyvinylidene fluoride
  • PVDCN polyvinylidene cyanide
  • a PVDF film is polarized after heat treatment (see Patent Document 2), and is made of a copolymer of ethylene trifluoride or tetrafluoroethylene and vinylidene fluoride. What was produced by extending
  • a method for producing an organic piezoelectric material comprising producing an organic piezoelectric material in which organic piezoelectric bodies are laminated.
  • An ultrasonic vibrator comprising the organic piezoelectric material according to any one of 8.1 to 6.
  • An ultrasonic probe comprising the ultrasonic transducer according to 10.8 or 9.
  • An ultrasonic image detection apparatus comprising the ultrasonic probe according to 11.10.
  • the present invention is an organic piezoelectric material having a first organic piezoelectric body having an electromechanical coupling constant kt of 0.25 or more, an adjacent to the first organic piezoelectric body, and an elongation at break of 70% or more. , 910% or less of the second organic piezoelectric body.
  • the piezoelectric material is composed of at least the first organic piezoelectric body and the second organic piezoelectric body that do not have a layer such as an electrode between each layer, thereby providing excellent piezoelectric characteristics. It is possible to provide an organic piezoelectric material that provides an ultrasonic vibrator having excellent processability and high mechanical strength, and further, an ultrasonic vibrator using the organic piezoelectric material, a method for producing the piezoelectric material, an ultrasonic probe, and an ultrasonic transducer. A sound image detection apparatus can be provided.
  • the organic piezoelectric material of the present invention contains a first organic piezoelectric body and a second organic piezoelectric body adjacent to the first organic piezoelectric body.
  • the term “adjacent to the first organic piezoelectric body” refers to a mode in which the first organic piezoelectric body and the second organic piezoelectric body are laminated in direct contact with each other without interposing a layer such as an electrode. That is, the organic piezoelectric material of the present invention has a configuration in which at least a first organic piezoelectric body and a second organic piezoelectric body are laminated.
  • An organic piezoelectric body is an organic substance having a positive piezoelectric effect that generates a charge by applying mechanical force or strain and a reverse piezoelectric effect that generates a force or strain by applying an electric field.
  • the electromechanical coupling constant kt is 4.2.6 for the vibration of the disk-shaped vibrator described in the electrical test method of the JEITA EM-4501 (formerly EMAS-6100) piezoelectric ceramic vibrator. The value is based on the term and is based on the following formula.
  • kt ( ⁇ / tan ( ⁇ )) 1/2
  • ( ⁇ / 2)
  • S (S / P)
  • P the peak frequency of the resistance value near the thickness resonance frequency
  • S the peak frequency of conductance
  • the first organic piezoelectric body needs to have an electromechanical coupling constant kt of 0.25 or more, preferably 0.30 or more, and particularly preferably 0.34 or more.
  • the kt of the first organic piezoelectric body it is possible to set the kt of the first organic piezoelectric body to 0.25 or more by selecting the first organic piezoelectric body from materials as described below.
  • the first organic piezoelectric material can be used regardless of whether it is a low-molecular material or a high-molecular material, but a high-molecular material is particularly preferable, and the molecular weight is particularly those having a weight average molecular weight of 100,000 to 300,000. Preferably used.
  • a polymer compound having a weight average molecular weight / number average molecular weight (Mw / Mn) of 5.0 or less is particularly preferable from the viewpoint of piezoelectric characteristics.
  • Tosoh high performance liquid chromatography HLC-8220 is loaded with two Tosoh column TSKgel ⁇ -M (7.8 mm ID ⁇ 30 cm), and the detector is used as a differential refractive index detector. N, N-dimethylformamide is used as a developing solvent, and the flow rate is 1.0 ml / min at 40 ° C.
  • Examples of the polymeric organic piezoelectric material used for the first organic piezoelectric material include vinylidene fluoride polymer, vinylidene fluoride copolymer, vinylidene cyanide polymer, vinylidene cyanide copolymer, and the like.
  • a vinylidene fluoride polymer or a vinylidene fluoride copolymer is particularly preferably used from the viewpoints of piezoelectric properties, processability, availability, and the like.
  • it is a homopolymer of polyvinylidene fluoride or a copolymer containing vinylidene fluoride as a main component, which has a CF 2 group having a large dipole moment.
  • a copolymer component in the copolymer tetrafluoroethylene, trifluoroethylene, hexafluoropropane, chlorofluoroethylene, or the like can be used.
  • the former copolymer ratio is preferably 60 to 99 mol%, more preferably 85 to 99 mol%, from the viewpoint of piezoelectric characteristics. It is done.
  • a polymer in which vinylidene fluoride is 85 to 99 mol% and perfluoroalkyl vinyl ether, perfluoroalkoxyethylene, and perfluorohexaethylene is 1 to 15 mol% is particularly preferably used from the viewpoint of sensitivity of harmonics. It is done.
  • the second organic piezoelectric body according to the present invention needs to have an elongation at break of 70% or more and 910% or less. By making the second organic piezoelectric body adjacent to the first organic piezoelectric body, it is possible to improve the workability and maintain the mechanical strength of the ultrasonic vibrator while maintaining the piezoelectric characteristics.
  • the elongation at break is a value measured at 5 mm / min using a 20 mm wide, 200 mm test piece in accordance with JIS K7127.
  • the direction of elongation at break of the film subjected to the stretching treatment is a direction in which force is applied in a direction perpendicular to the stretching axis.
  • a polymer organic piezoelectric material is preferably used, and a molecular weight having a weight average molecular weight of 100,000 to 1,000,000 is particularly preferably used.
  • polymer organic piezoelectric material used for the second organic piezoelectric material examples include vinylidene fluoride polymer, vinylidene fluoride copolymer, vinylidene cyanide polymer, vinylidene cyanide copolymer, nylon 9 and nylon 11 Odd-numbered nylons, aromatic nylons, alicyclic nylons, polyhydroxycarboxylic acids such as polylactic acid and polyhydroxybutyrate, cellulosic derivatives, polyureas, and polymer materials having a relatively low relative dielectric constant described below.
  • polymer material having a relatively low dielectric constant examples include, for example, methyl methacrylate resin (3.0), acrylonitrile resin (4.0), acetate resin (3.4), aniline resin (3.5), Aniline formaldehyde resin (4.0), aminoalkyl resin (4.0), alkyd resin (5.0), nylon-6-6 (3.4), ethylene resin (2.2), epoxy resin (2. 5), vinyl chloride resin (3.3), vinylidene chloride resin (3.0), urea formaldehyde resin (7.0), polyacetal resin (3.6), polyurethane (5.0), polyester resin (2.
  • the thickness of the organic piezoelectric material of the present invention is preferably 10 ⁇ m to 300 ⁇ m, particularly preferably 20 ⁇ m to 100 ⁇ m.
  • the organic piezoelectric material of the present invention preferably contains a laminated first organic piezoelectric body and second organic piezoelectric body.
  • the two-layer organic piezoelectric body has a weight average as described below.
  • a preferred embodiment is a two-layer organic piezoelectric body formed by forming a film using a coating solution containing two types of polymer compounds having different molecular weights.
  • the combination of the plurality of organic piezoelectric bodies of the present invention is a polymer compound in which the electrical coupling constant of the first organic piezoelectric body is 0.34 or more and the molecular weight of the second organic piezoelectric body is 5000 or more. A certain combination is preferable, and the molecular weight of the second organic piezoelectric body is particularly preferably 100,000 or more.
  • organic piezoelectric material of the present invention provides a material having high mechanical strength while maintaining piezoelectric characteristics is not clear, but is presumed as follows.
  • the mechanical strength is weak in a certain direction.
  • the organic piezoelectric material of the present invention is composed of at least two layers of organic piezoelectric material, and between the piezoelectric materials. Since the interface exists, it is presumed that the directionality of the mechanical strength changes at the interface, and as a result, the mechanical strength of the whole organic piezoelectric body is improved.
  • FIG. 1 is a schematic cross-sectional view of an example of the organic piezoelectric material of the present invention.
  • the organic piezoelectric material 1 includes a first organic piezoelectric body 2 and a second organic piezoelectric body 3 adjacent thereto, and the first organic piezoelectric body 2 and the second organic piezoelectric body 3 are laminated. It has a structure.
  • the first organic piezoelectric body and the second organic piezoelectric body may be mixed and present.
  • the organic piezoelectric material of the present invention may further include an organic piezoelectric body other than the first and second organic piezoelectric bodies.
  • Examples of the material used as the organic piezoelectric body other than the first and second organic piezoelectric bodies include the materials mentioned in the first and second organic piezoelectric bodies.
  • the organic piezoelectric material of the present invention can be produced by a method of simultaneously forming a plurality of organic piezoelectric films or a method of integrally forming separately formed organic piezoelectric films.
  • solution polymerization coating method a method in which a mixed solution of organic piezoelectric raw materials is coated on a substrate, dried to some extent under reduced pressure conditions (after the solvent is removed), and heated to perform thermal polymerization can be used.
  • the organic piezoelectric is two polymer compounds having different compatibility with the solvent due to different compositions and different molecular weights.
  • Examples include a method in which a body is dissolved in a solution to form a coating solution, and the coating solution is applied onto a substrate and dried to form a film. This is presumed that during the drying process, as the coating solution is concentrated, the difference in solubility between the two organic piezoelectric bodies in the coating solution becomes significant, and two films are formed by a kind of so-called blooming phenomenon.
  • a vinylidene fluoride copolymer having a weight average molecular weight of 1,000,000 and a vinylidene fluoride copolymer having a weight average molecular weight of 100,000 are coated using methyl ethyl ketone as a solvent.
  • a coating liquid containing a second organic piezoelectric body is applied to a solvent that does not substantially dissolve the organic piezoelectric film and dried to produce a second organic piezoelectric film.
  • the stretching treatment can be performed in a uniaxial / biaxial direction so that the organic piezoelectric film having a predetermined shape is not broken.
  • the stretching ratio can be 2 to 10 times, preferably 2 to 6 times.
  • a solution dissolved in ethyl methyl ketone (MEK) is cast on a substrate such as a glass plate, and the solvent is dried at room temperature to obtain a desired thickness.
  • MEK ethyl methyl ketone
  • the ultrasonic vibrator of the present invention is obtained by attaching an electrode to the organic piezoelectric material of the present invention, and an embodiment having the organic piezoelectric material of the present invention between a pair of opposed electrodes is preferable.
  • the organic piezoelectric material of the present invention When used for an ultrasonic vibrator, it can be used as it is in a formed film, but it is preferably subjected to stretching treatment and polarization treatment.
  • Polarization treatment As a method for polarization treatment, a conventionally known DC voltage application treatment, AC voltage application treatment, or corona discharge treatment method can be applied.
  • the corona discharge treatment can be performed by using a commercially available apparatus comprising a high voltage power source and electrodes.
  • the discharge conditions vary depending on the equipment and the processing environment, so the conditions may be selected as appropriate.
  • the voltage of the high-voltage power supply is -1 to -20 kV, the current is 1 to 80 mA, the distance between the electrodes is 1 to 10 cm,
  • the applied voltage is preferably 0.5 to 2.0 MV / m.
  • the polarization treatment may be performed before the following electrode is attached, or after the electrode is attached, the polarization treatment may be performed using the electrode.
  • a base metal such as titanium (Ti) or chromium (Cr) is formed to a thickness of 0.02 to 1.0 ⁇ m by sputtering, and then the above metal element is mainly used.
  • a metal material composed of an alloy thereof and a metal material thereof, and further, if necessary, a part of the insulating material is formed by a sputtering method or other suitable methods to a thickness of 1 to 10 ⁇ m.
  • Electrode formation can be performed by screen printing, dipping, or thermal spraying using a conductive paste in which fine metal powder and low-melting glass are mixed, as well as sputtering.
  • a predetermined voltage can be supplied between the electrodes formed on both sides of the organic piezoelectric material film to polarize the organic piezoelectric material film.
  • the ultrasonic transducer When used for an ultrasonic probe, it is preferably used together with a substrate.
  • the substrate may be a plastic plate or film such as polyimide, polyamide, polyimide amide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate resin, cycloolefin polymer,
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • polycarbonate resin polycarbonate resin
  • cycloolefin polymer cycloolefin polymer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

L'invention porte sur un matériau piézoélectrique organique caractérisé en ce qu'il comprend un premier matériau piézoélectrique organique dont la constante de couplage électromécanique (kt) est égale ou supérieure à 0,25 ; et un second matériau piézoélectrique organique adjacent au premier matériau piézoélectrique organique et dont l’allongement à la rupture varie entre 70 et 910 % (inclus). Le matériau piézoélectrique peut conserver ses excellentes propriétés piézoélectriques, présente une excellente aptitude au traitement et permet de produire un oscillateur ultrasonore à résistance mécanique élevée.
PCT/JP2009/054291 2008-08-06 2009-03-06 Matériau piézoélectrique organique et son procédé de production, et oscillateur ultrasonore, sonde ultrasonore et dispositif de détection d'image ultrasonore le comprenant WO2010016291A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523780A JPWO2010016291A1 (ja) 2008-08-06 2009-03-06 有機圧電材料、その作製方法、それを用いた超音波振動子、超音波探触子および超音波画像検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008202867 2008-08-06
JP2008-202867 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010016291A1 true WO2010016291A1 (fr) 2010-02-11

Family

ID=41663517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054291 WO2010016291A1 (fr) 2008-08-06 2009-03-06 Matériau piézoélectrique organique et son procédé de production, et oscillateur ultrasonore, sonde ultrasonore et dispositif de détection d'image ultrasonore le comprenant

Country Status (2)

Country Link
JP (1) JPWO2010016291A1 (fr)
WO (1) WO2010016291A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159354A1 (fr) * 2015-04-02 2016-10-06 株式会社イデアルスター Film piézoélectrique et son procédé de production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860584A (ja) * 1981-10-06 1983-04-11 Toray Ind Inc 高分子圧電体の製造方法
WO2006127285A1 (fr) * 2005-05-26 2006-11-30 Eastman Chemical Company Pellicule micro-coextrudée modifiée par des couches piézoélectriques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606220B2 (ja) * 1979-04-11 1985-02-16 三菱油化株式会社 ポリ弗化ビニリデンもしくは弗化ビニリデン共重合体の延伸薄膜製造法
JPS5869019A (ja) * 1981-10-22 1983-04-25 Kureha Chem Ind Co Ltd ポリ弗化ビニリデン樹脂成形物の製造法
US4434114A (en) * 1982-02-04 1984-02-28 Pennwalt Corporation Production of wrinkle-free piezoelectric films by poling
EP1787711A4 (fr) * 2004-06-15 2008-04-23 Kureha Corp Membrane de filtration d'eau poreuse á fibres creuses de résine de fluorure de vinylide et son processus de production
JP4835485B2 (ja) * 2007-03-26 2011-12-14 ダイキン工業株式会社 強誘電性の積層体とその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860584A (ja) * 1981-10-06 1983-04-11 Toray Ind Inc 高分子圧電体の製造方法
WO2006127285A1 (fr) * 2005-05-26 2006-11-30 Eastman Chemical Company Pellicule micro-coextrudée modifiée par des couches piézoélectriques

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAROL MAZUR: "ELECTRET AND PIEZOELECTRIC PROPERTIES IN THE LAMINATED SYSTEMS OF PTFE AND PUE POLYMER FILMS", 1992 PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CONDUCTION AND BREAKDOWN IN SOLID DIELECTRICS, IEEE, - 22 June 1992 (1992-06-22), pages 280 - 284 *
KAROL MAZUR: "PIEZOELECTRICITY OF PVDF/PUE, PVDF/PMMA AND PVDF/PMMA+BaTi03 LAMINATES", IEEE TRANSACTIONS ON ELECTRICAL INSULATION, vol. 27, no. ISS.4, August 1992 (1992-08-01), pages 782 - 786 *
NAKAZAWA M. ET AL.: "A 100MHz MULTI-LAYERED HIGH PERFORMANCE TRANSDUCER USING POLYUREA THIN FILM", 2006 IEEE ULTRASONIC SYMPOSIUM, - 2 October 2006 (2006-10-02), pages 2421 - 2424 *
NEWMAN B.A. ET AL.: "ASYMMETRY IN FERROELECTRIC POLYMER LAMINATE COMPOSITES", POLYMER PREPRINTS, vol. 37, no. 1, March 1996 (1996-03-01), pages 616 - 617 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159354A1 (fr) * 2015-04-02 2016-10-06 株式会社イデアルスター Film piézoélectrique et son procédé de production
JP2016197626A (ja) * 2015-04-02 2016-11-24 株式会社イデアルスター 圧電膜、およびその製造方法
KR20170134564A (ko) * 2015-04-02 2017-12-06 가부시키가이샤 이디알 스타 압전막 및 이의 제조방법
CN107534080A (zh) * 2015-04-02 2018-01-02 理想星株式会社 压电膜及其制造方法
US10535811B2 (en) 2015-04-02 2020-01-14 Ideal Star Inc. Piezoelectric film and process for producing same
CN107534080B (zh) * 2015-04-02 2020-08-28 理想星株式会社 压电膜及其制造方法
KR102651023B1 (ko) * 2015-04-02 2024-03-25 피에조포리마돗토코무 가부시키가이샤 압전막 및 이의 제조방법

Also Published As

Publication number Publication date
JPWO2010016291A1 (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
Holmes-Siedle et al. PVdF: An electronically-active polymer for industry
JP5392090B2 (ja) 超音波受信用振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
JP5493520B2 (ja) 有機圧電材料の製造方法、有機圧電材料、超音波振動子、超音波探触子、及び超音波医用画像診断装置
WO2008015917A1 (fr) Sonde à ultrasons et son procédé de fabrication
JP5582136B2 (ja) 有機圧電材料の延伸処理方法、有機圧電材料の製造方法、超音波振動子、超音波探触子および超音波医用画像診断装置
JP5633509B2 (ja) 有機圧電材料、超音波探触子及び超音波画像検出装置
JP5533651B2 (ja) 有機圧電材料の製造方法、超音波振動子及び超音波医用画像診断装置
WO2010061726A1 (fr) Matériau piézoélectrique organique, transducteur ultrasonique et sonde ultrasonique
JP2008188415A (ja) 圧電素子、その製造方法、及び当該圧電素子を具備する超音波探触子
WO2010016291A1 (fr) Matériau piézoélectrique organique et son procédé de production, et oscillateur ultrasonore, sonde ultrasonore et dispositif de détection d'image ultrasonore le comprenant
JP2010095606A (ja) 有機高分子膜、有機圧電膜、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP5315925B2 (ja) 有機圧電材料、有機圧電体膜の製造方法、それらを用いた超音波振動子及び超音波探触子
JP2010123845A (ja) 有機圧電体、有機圧電材料、超音波振動子および超音波探触子
JP5115348B2 (ja) 有機圧電材料、有機圧電体膜の製造方法、超音波振動子、及び超音波探触子
WO2010001633A1 (fr) Matériau piézoélectrique organique, procédé de fabrication du matériau piézoélectrique organique, vibreur à ultrasons et appareil de diagnostic d'image ultrasonore pour une application médicale
JP2010209277A (ja) 有機圧電材料、超音波振動子および超音波探触子
JP2010182994A (ja) 有機圧電材料、超音波振動子および超音波探触子
WO2010029783A1 (fr) Matériau organique piézoélectrique, film organique piézoélectrique, transducteur à ultrasons, procédé de fabrication du transducteur à ultrasons, sonde à ultrasons et dispositif d'imagerie médicale à ultrasons
JP2010219484A (ja) 有機圧電材料、超音波振動子、超音波探触子及び超音波医用画像診断装置
JP5464213B2 (ja) 有機圧電材料、その製造方法、それを用いた超音波振動子、超音波探触子、及び超音波医用画像診断装置
JP5652203B2 (ja) 有機圧電材料および超音波探触子
JP5459216B2 (ja) 有機圧電材料、超音波振動子および超音波探触子
JP2010138339A (ja) チオウレア基含有高分子化合物、ウレア基またはチオウレア基を含有する化合物を含む有機圧電材料及び超音波探触子
JP2010199488A (ja) 有機圧電体、超音波振動子および超音波探触子
JP2010219868A (ja) 有機圧電体、超音波振動子および超音波探触子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523780

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804778

Country of ref document: EP

Kind code of ref document: A1