WO2007074629A1 - カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触媒 - Google Patents

カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触媒 Download PDF

Info

Publication number
WO2007074629A1
WO2007074629A1 PCT/JP2006/324653 JP2006324653W WO2007074629A1 WO 2007074629 A1 WO2007074629 A1 WO 2007074629A1 JP 2006324653 W JP2006324653 W JP 2006324653W WO 2007074629 A1 WO2007074629 A1 WO 2007074629A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
catalyst
carbon nanotube
producing
containing compound
Prior art date
Application number
PCT/JP2006/324653
Other languages
English (en)
French (fr)
Inventor
Kenichi Sato
Keisuke Fujita
Masayuki Maeda
Masahito Yoshikawa
Kazuyoshi Higuchi
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US12/087,125 priority Critical patent/US7704482B2/en
Priority to EP06834408.4A priority patent/EP1977997A4/en
Priority to KR1020087018499A priority patent/KR101328294B1/ko
Priority to CN2006800501598A priority patent/CN101351404B/zh
Priority to JP2007507612A priority patent/JP5223335B2/ja
Publication of WO2007074629A1 publication Critical patent/WO2007074629A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes

Definitions

  • the present invention relates to a method for producing carbon nanotubes. More specifically, the present invention relates to a method for producing carbon nanotubes by contacting a catalyst carrying a metal on a carrier with a carbon-containing compound in a vertical reactor.
  • Carbon nanotubes have a cylindrical shape formed by rolling one side of a graphite. Single-walled carbon nanotubes are wound in one layer, and double-walled carbon is wound in two layers. Nanotubes that are wound in multiple layers are called multi-walled carbon nanotubes. Since carbon nanotubes have high mechanical strength and high conductivity, they can be used as negative electrodes for fuel cells and lithium secondary batteries, and high-strength resins made of composite materials of resin, metal and organic semiconductors, It is expected as a material for conductive resin, transparent conductive film, metal electrolyte powder, ceramic composite and electromagnetic shielding material.
  • carbon nanotubes have a large LZD (ratio of length Z outer diameter) and an outer diameter of several nanometers, probes for scanning tunneling microscopes, field electron emission sources, solar cell elements, and nanotweezers It is expected as a material for
  • carbon nanotubes have a nano-sized space, they are expected as materials for adsorption materials such as hydrogen, medical nanocapsules, and MRI contrast agents.
  • high-purity carbon nanotubes are required, and single-walled or double-walled carbon nanotubes with a thin outer diameter are advantageous.
  • Known methods for producing carbon nanotubes include arc discharge, laser evaporation, and chemical vapor deposition. Among them, high-quality power with few defects in the graphite layer is known as a catalytic chemical vapor deposition method as a method for inexpensively producing single-bonn nanotubes. In the catalytic chemical vapor deposition method, a method of carrying a catalyst on a support is known!
  • Non-Patent Document 1 uses magnesia having mesoporous pores as a carrier, and a carbon source and A method for synthesizing double-walled CNTs using methane and cobalt as the metal has been reported. However, since the reactor uses a horizontal type, it is difficult to efficiently synthesize a large amount of carbon nanotubes.
  • a method of contacting a catalyst containing a metal supported on a carrier and a carbon-containing compound at a high temperature is a method for obtaining high-quality carbon nanotubes in a high yield.
  • carbon nanotubes are generally synthesized by placing a catalyst in a horizontal reactor.
  • the present inventors can uniformly bring a raw material gas into contact with the catalyst by using a vertical reactor.
  • Patent Document 1 The synthesis of carbon nanotubes using a vertical reactor is also disclosed in Patent Document 2.
  • Non-patent document 1 Chemical Physics Letters 368 (2003), 299-306
  • Patent Document 1 JP 2004-123505 A
  • Patent Document 2 Japanese Translation of Special Publication 2006-511437
  • the carbon nanotube production method of the present invention that solves the above problems has the following configuration.
  • a catalyst for producing carbon nanotubes which is a powdery catalyst in which a metal is supported on magnesia and has a strength density of 0.30 gZmL or more and 0.70 gZmL or less, is placed in a vertical reactor in the horizontal direction of the reactor.
  • the carbon-containing compound is present in the cross-sectional direction on the entire surface, and the carbon-containing compound is vertically oriented in the reactor.
  • the carbon-containing composite is brought into contact with the catalyst at 500 to 1200 ° C.
  • a catalyst for producing carbon nanotubes comprising a metal supported on magnesia and having a strength density of 0.30 gZmL or more and 0.70 gZmL or less.
  • a high-quality carbon is produced by a method for producing a carbon nanotube by contacting a specific catalyst carrying a metal on magnesia and a carbon-containing compound in a specific manner using a vertical reactor. Nanotubes can be synthesized in a large amount more efficiently, and the purification process can be simplified.
  • FIG. 1 (a) is a conceptual diagram showing a state in which the catalyst 3 is present in the entire cross-sectional direction of the reactor on the platform 2 on which the catalyst in the reactor 1 is placed.
  • FIG. 1 (b) is a conceptual diagram showing a state in which a mixture 4 of an object other than the catalyst and the catalyst 4 is present in the entire cross-sectional direction of the reactor on the platform 2 on which the catalyst in the reactor 1 is placed.
  • FIG. 1 (c) is a conceptual diagram showing a state in which the catalyst 5 sprayed from the upper part of the reactor 1 spreads in the whole reactor cross-sectional direction.
  • FIG. 2 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Example 1.
  • FIG. 3 is a high-resolution transmission electron micrograph of the carbon nanotube-containing composition obtained in Example 1.
  • FIG. 4 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Example 2.
  • FIG. 5 is a high-resolution transmission electron micrograph of the carbon nanotube-containing composition obtained in Example 3.
  • FIG. 6 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Example 3.
  • FIG. 7 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Example 4.
  • FIG. 8 Raman spectrum of the carbon nanotube-containing composition obtained in Example 5
  • FIG. 9 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Example 6.
  • FIG. 10 is a field emission scanning electron micrograph of the carbon nanotube-containing composition obtained in Example 6.
  • FIG. 11 is a high-resolution transmission electron micrograph of the carbon nanotube-containing composition obtained in Example 6.
  • FIG. 12 is a schematic view of a fluidized bed apparatus used in Example 10.
  • FIG. 13 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Comparative Example 1.
  • FIG. 14 is a high-resolution transmission electron micrograph of the carbon nanotube-containing composition obtained in Comparative Example 1.
  • FIG. 15 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Comparative Example 2.
  • FIG. 16 is a Raman spectrum diagram of the carbon nanotube-containing composition obtained in Comparative Example 3.
  • FIG. 17 is a Raman spectroscopic spectrum diagram of the carbon nanotube-containing composition obtained in Comparative Example 4.
  • the present invention relates to a carbon nanotube having a metal density supported on magnesia (hereinafter sometimes simply referred to as "catalyst") and having a strength density of 0.30 gZmL or more and 0.70 gZmL or less.
  • This is a method for producing carbon nanotubes, wherein the production catalyst is brought into contact with a carbon-containing compound at 500 to 1200 ° C. in a state where the production catalyst is present on the entire surface in the horizontal sectional direction of the reactor.
  • the carrier supporting the metal is magnesia.
  • magnesia is soluble in acidic aqueous solution, it is possible to remove both magnesia and metal simply by treating the resulting composition with acidic aqueous solution after synthesizing carbon nanotubes, thus simplifying the purification process. can do.
  • the vertical reactor has a reactor installed in the vertical direction (hereinafter sometimes referred to as "longitudinal direction"), from one end of the reactor to the other end.
  • the carbon-containing compound is circulated in the direction toward the surface, and the carbon-containing compound has a mechanism that can circulate in such a manner that it passes through the catalyst layer formed by the catalyst for producing carbon nanotubes.
  • a reactor having a tube shape can be preferably used.
  • the vertical direction includes a direction having a slight inclination angle with respect to the vertical direction (eg, 90 ° ⁇ 15 °, preferably 90 ° ⁇ 10 ° with respect to the horizontal plane). The vertical direction is preferable.
  • the carbon-containing compound need not necessarily be at the end of the reactor in the supply part and the discharge part of the carbon-containing compound, and the carbon-containing compound may pass through the catalyst layer in the flow direction.
  • the catalyst is in a state of being present on the entire surface in the horizontal sectional direction of the reactor in the vertical reactor. By doing so, the catalyst in which the metal is supported on magnesia can be effectively brought into contact with the carbon-containing compound.
  • it is necessary to sandwich the catalyst from the left and right due to gravity.
  • carbon nanotubes are produced on the catalyst as the reaction proceeds, and the volume of the catalyst increases.
  • the reactor is set to a vertical type, a stage through which gas can permeate is installed in the reactor, and the catalyst is placed thereon, so that the catalyst can be evenly distributed in the direction of the cross section of the reactor without sandwiching both side forces.
  • a catalyst can be present.
  • the state in which the catalyst is present in the entire horizontal cross-sectional direction of the vertical reactor means a state in which the catalyst is spread over the entire horizontal cross-sectional direction and the base of the catalyst bottom cannot be seen. Preferable state of such a state, for example, there are the following modes.
  • FIG. 1 (a) is a conceptual diagram showing a state in which a platform 2 on which a catalyst is placed is installed in the reactor 1, and the catalyst 3 exists on the entire horizontal cross-sectional direction of the reactor.
  • FIG. 1 (b) is a conceptual diagram showing a state in which a stand 2 on which a catalyst is placed is installed in the reactor 1, and a mixture 4 of an object other than the catalyst and the catalyst 4 is present in the entire cross-sectional direction of the reactor. It is.
  • FIG. 1 (c) is a conceptual diagram showing a catalyst state in which the sprayed catalyst 5 spreads over the entire reactor horizontal cross-sectional direction.
  • the vertical reactor may be a fluidized bed type or a fixed bed type.
  • the fluidized bed type include a mode in which a catalyst such as C described above is dropped by spraying on the top of the reactor or a mode in which a catalyst generally referred to as a boiling bed type flows.
  • the fixed bed type include the above-described aspects A and B.
  • the fluidized bed type continuous synthesis is possible by continuously supplying a catalyst and continuously removing the composition containing the catalyst and carbon nanotubes after the reaction. Preferable, you can get well.
  • a catalyst placed on a quartz plate is installed in a reactor installed in a horizontal direction (horizontal direction), and carbon is contained on the catalyst. It refers to a reactor in which a compound passes through and contacts and reacts. In this case, carbon nanotubes are formed on the catalyst surface, but hardly react because the carbon-containing compound does not reach the inside of the catalyst.
  • the vertical reactor since the raw material carbon-containing compound can come into contact with the entire catalyst, a large amount of carbon nanotubes can be synthesized efficiently.
  • the force density of the catalyst is 0.30 gZmL or more and 0.70 gZmL or less, the contact efficiency between the catalyst and the carbon-containing compound is improved, and high-quality carbon nanotubes are synthesized in a large amount more efficiently. Found that it would be possible. If the strength density of the catalyst is less than 0.30 gZmL, it is difficult to handle the catalyst. If the force density is too small, the catalyst may be greatly swollen in the vertical reactor when contacting with the carbon-containing compound, and the catalyst may deviate from the soaking zone of the reactor, resulting in high-quality carbon nanotubes. Becomes difficult.
  • the bulk density of the catalyst is 0.70 gZmL or more, it will be difficult to uniformly and efficiently contact the catalyst and the carbon-containing compound, and it will also be difficult to obtain high-quality carbon nanotubes. . If the force density of the catalyst is too large, when the catalyst is installed in the vertical reactor, the catalyst will be tightly packed, so it will not be able to contact the carbon-containing compound uniformly, and high quality carbon nanotubes will not be produced. It becomes difficult to generate. When the bulk density of the catalyst is within the above range, the contact efficiency between the carbon-containing compound and the catalytic metal increases, so that uniform and high-quality carbon nanotubes can be produced efficiently and in large quantities. It becomes.
  • the force density of the catalyst when the force density of the catalyst is too large, the catalyst is difficult to move, so that a so-called short-nosed problem that the carbon-containing compound passes only through the most easily passing portion of the catalyst layer occurs.
  • the strength density of the catalyst is within the above range, it is difficult to form a fixed short path due to the movement of the catalyst. Therefore, the force density of the catalyst needs to be 0.30 gZmL or more and 0.70 gZmL or less.
  • the bulk density of the catalyst is preferably 0.40 g / It is not less than mL and not more than 0.70 gZmL, and more preferably not less than 0.50 gZmL and not more than 0.70 g / mL.
  • the force density is a powder mass per unit force volume.
  • the method for measuring the force density is shown below.
  • the bulk density of the powder may be affected by the temperature and humidity at the time of measurement.
  • the bulk density mentioned here is a value measured at a temperature of 20 ⁇ 10 ° C and humidity of 60 ⁇ 10%.
  • Using a 50 mL graduated cylinder as a measuring container add powder to occupy a predetermined volume while tapping the bottom of the graduated cylinder. It is preferable to measure 10 mL or more of powder when measuring the bulk density. Then, after dropping the bottom of the graduated cylinder from the height of lcm on the floor 20 times, visually confirm that the change rate of the volume value occupied by the powder is within ⁇ 0.2 mL and pack it.
  • the bulk density of the catalyst has the greatest influence when the catalyst is brought into contact with the carbon-containing compound at the heating temperature. At this time, it is unclear how the state of the catalyst changes compared to when the catalyst was prepared (before the reaction). However, the force density of the catalyst does not change significantly before and after the reaction. Therefore, by setting the catalyst bulk density at the time of catalyst preparation (before reaction) within the above range, high-quality carbon nanotubes can be obtained.
  • magnesia a commercially available product may be used, or a synthesized product may be used.
  • a preferred method for producing magnesium magnesium magnesium is heated in air, magnesium hydroxide is heated to 850 ° C or more, magnesium carbonate 3MgCO -Mg (OH) ⁇ 3
  • magnesia is preferable.
  • Light magnesia is less force density It is a magnesia.
  • light magnesia means magnesia having a force density of 0.16 g / mL or less. Since the strength density of magnesia itself is small, it becomes possible to reduce the strength density of the entire catalyst carrying the metal.
  • magnesia having pores having a diameter of 1 to 50 nm is preferable! By having pores with a diameter of 1 to 50 nm in magnesia, a certain amount of space volume exists in the pores, so that it is possible to reduce the force density of the entire metal-supported catalyst.
  • the pore diameter of 1-50 nm means that the peak top is in this range when the pore distribution is measured as follows. More preferably, the diameter of the pore is from 1 to 30 nm, and more preferably from 1 to 20 nm.
  • a pore size distribution including a region having a pore size of lnm to 50nm is usually performed using a desorption isotherm.
  • the Dollimore-Heal method (hereinafter, abbreviated as DH method) is known.
  • the desorption isotherm force of nitrogen is also determined by the DH method.
  • the pore size distribution is obtained by taking the pore size on the horizontal axis and AVpZ ARp (Vp: volume when adsorbed nitrogen is liquefied, Rp: radius of the pore) on the vertical axis.
  • the pore volume can be determined from the area of this graph. It is preferable to have a pore volume of 0.1 LOmLZg or more, more preferably 0.15 mLZg or more.
  • the strength density of magnesia itself is preferably lower, but the strength density when catalyzed varies greatly depending on the type, amount, supporting method, etc. of the supported metal. As the amount of supported metal increases, the force density of the catalyst supporting the metal in magnesia tends to increase.
  • the type of metal used for the catalyst is not particularly limited, but preferably a Group 3-12 metal, particularly preferably a 5-: Group L1 metal. Of these, V, Mo, Mn, Fe, Co, Ni, Pd, Pt, Rh, W, Cu and the like are preferable. More preferred are Fe, Co and Ni, most preferred The best is Fe.
  • the metal is not necessarily a zero-valent state. Although it can be presumed that the metal is in a zero-valent state during the reaction, it may be a compound or metal species containing a wide variety of metals.
  • organic salts or inorganic salts such as formate, acetate, trifluoroacetate, ammonium citrate, nitrate, sulfate, and halide salts, complex salts such as ethylenediamine tetraacetate complex and acetylacetonate complex Is used.
  • the metal is preferably fine particles.
  • the particle diameter of the fine particles is preferably 0.5 to: LOnm. If the metal is fine, the outer diameter is small!
  • the method for supporting metal on magnesia is not particularly limited.
  • a non-aqueous solution for example, ethanol solution
  • an aqueous solution in which a supported metal salt is dissolved thoroughly dispersed and mixed by stirring or ultrasonic irradiation, and then dried.
  • air, oxygen, nitrogen, hydrogen, inert gas and their mixed gas power may be supported on magnesia by heating at high temperature (300-1000 ° C) in selected gas or vacuum. .
  • the optimum amount of metal supported is 0.1-20% by weight of metal with respect to magnesia, which varies depending on the pore volume, outer surface area, and loading method of magnesia. When two or more metals are used, the ratio is not limited.
  • magnesia supporting metal is charged into a vertical reactor.
  • the reactor is preferably heat resistant, and is preferably made of a heat resistant material such as quartz or alumina.
  • the lower or upper force of the catalyst layer installed in the reactor is also passed through the carbon-containing compound, brought into contact with the catalyst, and reacted to produce carbon nanotubes.
  • the temperature at which the catalyst and the carbon-containing compound are brought into contact is 500 to 1200 ° C.
  • the temperature is 60 0 to 950 ° C is more preferable, and 700 to 900 ° C is more preferable.
  • the temperature is lower than 600 ° C., the yield of carbon nanotubes is deteriorated.
  • the temperature is higher than 950 ° C, there are restrictions on the material of the reactor used, and bonding between the carbon nanotubes starts, making it difficult to control the shape of the carbon nanotubes.
  • the reactor may be brought to the reaction temperature while contacting the carbon-containing compound, or the supply of the carbon-containing compound may be started after the reactor is brought to the reaction temperature after completion of the heat pretreatment.
  • the catalyst Prior to the reaction for generating carbon nanotubes, the catalyst may be pretreated with heat.
  • the pretreatment time by heat is not particularly limited, but if it is too long, the metal agglomerates on magnesia, and carbon nanotubes with a large outer diameter may be formed accordingly, so it is preferably within 120 minutes.
  • the temperature of the pretreatment may be equal to or lower than the reaction temperature as long as the catalytic activity is exhibited, or may be equal to or higher than the reaction temperature. Pretreatment with heat may make the catalyst more active.
  • the pretreatment with heat and the reaction for generating carbon nanotubes are preferably performed under reduced pressure or atmospheric pressure.
  • the reaction system can be reduced with a vacuum pump or the like.
  • a mixture of carbon-containing compounds and diluent gas may be mixed with the catalyst as a mixed gas.
  • the dilution gas is not particularly limited, but a gas other than oxygen gas is preferably used.
  • Oxygen is not usually used because it may explode, but it can be used outside the explosion range.
  • Nitrogen, argon, hydrogen, helium, etc. are preferably used as the dilution gas. These gases are effective in controlling the linear velocity and concentration of carbon-containing compounds and as a carrier gas.
  • Hydrogen is preferable because it has an effect on the activity of the catalytic metal. Gases with a high molecular weight such as argon are preferred for annealing purposes with a high annealing effect. U, especially nitrogen and argon are preferred.
  • the carbon-containing compound is preferably brought into contact with a catalyst for producing carbon nanotubes with a thermal decomposition rate of 10% or less.
  • Thermal decomposition of carbon-containing compounds promotes by-products such as tar, soot, dimer, and oligomer, and lowers the degree of graphitization and purity of the produced carbon nanotubes.
  • the pyrolysis of carbon-containing compounds is greatly influenced by concentration and linear velocity, Thermal decomposition is suppressed as the concentration is lower and the linear velocity is higher.
  • the reactivity of the carbon-containing compound, that is, the yield of carbon nanotubes is inversely proportional to the concentration and the linear velocity, and the higher the concentration and the lower the linear velocity, the higher the yield.
  • the thermal decomposition rate is preferably 8% or less, most preferably 5% or less.
  • the thermal decomposition rate is preferably 0.1% or more, and more preferably 1% or more.
  • the thermal decomposition rate is the rate at which a carbon-containing compound is decomposed or reacted by thermal energy.
  • the thermal decomposition rate of the carbon-containing compound is measured by passing the carbon-containing compound through the reaction system under the same conditions except that the catalyst is not present, and determining the thermal decomposition rate of the carbon-containing compound. Specifically, it is obtained as follows. A raw material gas containing a carbon-containing compound is circulated in a specific temperature range, and a certain amount of gas is sampled before and after the specific temperature range. For each sampled gas, the amount of the carbon-containing compound is quantitatively determined by chromatography, and the amount of decrease in the carbon-containing compound before and after the specific temperature range is determined. For example, using the peak area of the carbon-containing compound detected by a gas chromatograph equipped with a flame ion detector, the thermal decomposition rate can be obtained from the following equation.
  • Thermal decomposition rate (%) [1— ⁇ (peak area after distribution (after thermal decomposition)) /
  • the linear velocity of the carbon-containing compound to be used is preferably 0.20 cmZ second or more. More preferably, it is 0.550 cmZ seconds or more, and more preferably 1. OOcmZ seconds or more. If the linear velocity is too slow, the thermal decomposition rate of the carbon-containing compound increases, side reactions other than the carbon nanotube synthesis reaction proceed, and there is a tendency for impurities such as amorphous carbon to increase. In addition, the generated amorphous carbon adheres to the surface of the catalyst metal, deactivates the catalyst, and prevents carbon nanotube synthesis. On the other hand, if the linear velocity is too high, the carbon-containing compound will not be used effectively and will be exhausted, so lOOcmZ seconds or less is preferred.
  • the linear speed is the speed at which the carbon-containing compound passes through the reactor.
  • the line speed is the cross-sectional area (cm 2 ) of the part where the carbon-containing compound flows, and the source gas (carbon It is obtained by dividing the flow rate (cm 3 / sec) of the compound (compound + carrier gas).
  • the carbon-containing compound is a carbon-containing compound having 2 or more carbon atoms, the above linear velocity range is preferable.
  • the carbon-containing compound is a mixture containing methane or methane linear velocity 9. is 5xlO _3 cm / sec or less. In this case, as described above, there is no problem even if the linear velocity is 0.2 OcmZ seconds or more. However, methane has high thermal stability and chemical stability. This produces high-quality carbon nanotubes that are less susceptible to side reactions.
  • the concentration of the carbon-containing compound can be controlled with a diluent gas.
  • concentration of the carbon-containing compound in the mixed gas increases, the carbon nanotubes tend to generate thick carbon nanotubes that improve the yield.
  • concentration of the carbon-containing compound in the mixed gas is preferably 2 vol% or less. Further, when the concentration of the carbon-containing compound in the mixed gas is lowered, fine carbon nanotubes are formed, but the yield tends to be lowered.
  • the concentration of the carbon-containing compound in the mixed gas is preferably 0.1 vol% or more. A more preferable carbon-containing compound concentration is 0.2 vol% or more and 1.5 vol% or less.
  • the carbon-containing compound to be used is not particularly limited, but preferably a hydrocarbon or an oxygen-containing carbon compound is used.
  • the hydrocarbon may be aromatic or non-aromatic.
  • aromatic hydrocarbon for example, benzene, toluene, xylene, tamen, ethylbenzene, jetylbenzene, trimethylbenzene, naphthalene, phenanthrene, anthracene, or a mixture thereof can be used.
  • non-aromatic hydrocarbons for example, methane, ethane, propane, butane, pentane, hexane, heptane, ethylene, propylene or acetylene, or a mixture thereof can be used.
  • oxygen-containing carbon compound examples include alcohols such as methanol or ethanol, propanol and butanol, ketones such as acetone, and aldehydes such as formaldehyde and acetoaldehyde, trioxane, dioxane, dimethyl ether, and jetyl ether.
  • Ethers, esters such as ethyl acetate, carbon monoxide, or a mixture thereof may be used.
  • methane, ethane, ethylene, acetylene, propane and propylene are most preferable. It is a carbon-containing compound. Since these are gases at room temperature and normal pressure, they are easily supplied to the reaction by specifying the supply amount as a gas. When other carbon-containing compounds are reacted at normal pressure, it is necessary to add a process such as vaporization.
  • the carbon nanotube-containing composition obtained by the production method of the present invention can be observed with a transmission electron microscope.
  • the carbon nanotube-containing composition is a yarn composition containing carbon nanotubes. Examples include those containing by-products such as catalyst metals and amorphous carbon immediately after carbon nanotube synthesis.
  • the main product is said to be a carbon nanotube having an inner diameter of 2 nm or less.
  • the inner diameter of the carbon nanotube is measured by observing the carbon nanotube-containing composition with a transmission electron microscope at a magnification of 1 million, and from a field of view in which 10% or more of the visual field area is carbon nanotubes in a 150 nm square field of view. Measure the inner diameter of 100 carbon nanotubes extracted arbitrarily. If you cannot measure 100 lines in one field of view, measure multiple field strengths until you reach 100. Evaluate the average of the above measurements at 10 locations.
  • a carbon nanotube-containing composition having an inner diameter of 2 nm or less as a main product is useful as an electron emission material, a conductive film material, a battery electrode material, and the like.
  • a carbon nanotube-containing composition is used as an electron source for field emission, since the inner diameter is as thin as 2 nm or less, charge concentration tends to occur, so the applied voltage can be kept low.
  • magnesia as a carrier
  • metal sintering is unlikely to occur at high temperatures even when the metal is present at high density. Therefore, it is possible to synthesize high-quality carbon tubes with an inner diameter of 2 nm or less.
  • the quality of the carbon nanotube-containing composition can be evaluated by Raman spectroscopy.
  • the laser wavelength used in Raman spectroscopy is 633 nm.
  • the Raman shift near 1590cm- 1 in the vector is called the G band derived from graphite, and the Raman shift near 1350cm- 1 is called the D band derived from defects in amorphous carbon and graphite.
  • the higher the GZD ratio the higher the quality of the graph eye toy. According to the production method of the present invention, it is possible to obtain a high-quality carbon nanotube having a GZD ratio higher than 10 at a wavelength of 633 nm when Raman spectroscopy is measured.
  • the carbon nanotube-containing composition of the present invention may be used as it is synthesized, but it is preferable to use it except for magnesia and metals.
  • magnesia and metal catalyst By contacting the carbon nanotube-containing composition with an acidic aqueous solution, magnesia and a metal catalyst can be removed.
  • the carbon nanotube-containing composition it is also preferable to treat the carbon nanotube-containing composition with oxygen and then treat it with an acidic aqueous solution because carbon nanotubes can be obtained with high purity and high yield.
  • the metal is covered with a carbon compound such as graphite, so it is difficult to dissolve in an acidic aqueous solution. Metals can be efficiently removed by contact with an aqueous solution.
  • the temperature at which the carbon nanotube-containing composition is brought into contact with oxygen may be any temperature that can remove the carbon covering the metal present in the composition. Since it can be recovered in a high yield without causing defects in the graphite layer of the carbon nanotube, preferably from 200 to 800. C, more preferably 300-600. C, more preferably 350-500. C temperature.
  • carbon impurities in amorphous carbon and nanoparticles start burning at a temperature lower than the temperature at which the carbon nanotubes burn, use this difference in combustion temperature to remove these carbon impurities at the above temperature. You can also.
  • the time of contact with oxygen can be arbitrarily selected within a range in which no defects occur in the graphite layer of the carbon nanotube.
  • aqueous solutions of hydrofluoric acid, sulfuric acid, hydrochloric acid, nitric acid and the like can be used, and these can be used alone or in combination of two or more. It doesn't matter.
  • the time, concentration, temperature and pressure with which the acidic aqueous solution is contacted are not particularly limited, and impurities can be efficiently removed, and can be arbitrarily set within a range in which no defects occur in the graphite layer of carbon nanotubes. As long as it is within the above range, it may be set to a state that can be set at a high temperature and a high pressure and can be in a supercritical state.
  • a carbon nanotube-containing composition is prepared by using an acidic aqueous solution (eg, hydrofluoric acid aqueous solution, hydrochloric acid aqueous solution, sulfuric acid aqueous solution, nitric acid aqueous solution) having a pH of 5 or less (preferably pH 4 or less, more preferably PH3 or less). Etc.) and stir for about 1 to 10 hours.
  • an acidic aqueous solution eg, hydrofluoric acid aqueous solution, hydrochloric acid aqueous solution, sulfuric acid aqueous solution, nitric acid aqueous solution
  • pH of 5 or less preferably pH 4 or less, more preferably PH3 or less
  • the carbon nanotube-containing composition of the present invention is useful as an electron emission material, a conductive film material, a battery electrode material, and the like.
  • the applied voltage can be kept low because charge concentration tends to occur with a small outer diameter.
  • thermogravimetric apparatus TGA-60, manufactured by Shimadzu Corporation
  • TGA-60 thermogravimetric apparatus
  • a powder sample was placed on a resonance Raman spectrometer (INF-300 manufactured by Horiba Joban Yvon), and measurement was performed using a laser wavelength of 633 nm.
  • a sample dispersed in ethanol was dropped on a grid and dried.
  • the grid thus coated with the sample was placed in a transmission electron microscope (H-9000UHR III manufactured by Hitachi, Ltd.), and measurement was performed.
  • Ammonium iron citrate (manufactured by Wako Pure Chemical Industries, Ltd.) 2. 46 g was dissolved in 125 mL of methanol (manufactured by Kanto Yigaku Co., Ltd.). To this solution, light magnesia (Wako Pure Chemical Industries, Ltd.) was treated with 25. Og, treated with an ultrasonic cleaner for 60 minutes, dried at 80 ° C to remove methanol, and the metal salt was added to the light magnesium powder. A solid catalyst on which was supported was obtained. The resulting catalyst had a bulk density of 0.68 gz mL and fc.
  • the carbon nanotube-containing composition obtained as described above was observed by the above-described method using a high-resolution transmission electron microscope. As a result, the carbon nanotube was composed of a clean graphite layer. Among them, there were 80 or more carbon nanotubes having an inner diameter of 2 nm or less. Carbon impurities other than carbon nanotubes (fullerene, nanoparticles, amorphous carbon, etc.) were hardly observed (Fig. 3).
  • Ammonium iron citrate (manufactured by Wako Pure Chemical Industries, Ltd.) 2. 95 g was dissolved in 150 ml of methanol (manufactured by Kanto Yigaku Co., Ltd.). To this solution, add 30. Og of Starmag HP10 (manufactured by Kamishima Chemical Co., Ltd., magnesia with a pore size of 3.6 nm and a pore volume of 0.20 mL / g) and treat it with an ultrasonic cleaner for 60 minutes. Then, it was dried at 80 ° C. to remove methanol, and a solid catalyst in which a metal salt was supported on mesoporous magnesia powder was obtained. The bulk density of the obtained catalyst is 0.50 gZmL.
  • the reaction was carried out under the same reaction system and conditions as in Example 1 except that the solid catalyst prepared above was used, and a composition containing the catalyst and carbon nanotubes was obtained.
  • Resonance Raman spectrometer comprising a composition containing carbon nanotubes obtained as described above
  • the GZD ratio was 12, and it was found to be a high-quality single-walled carbon nanotube (Fig. 4).
  • Carbon nanotubes with an outer diameter of around 2 nm and two-layers account for 70% of the total number of carbon nanotubes, and single-walled carbon nanotubes account for 10% of the total number It was. Therefore, the ratio of double-walled carbon nanotubes to single-walled and double-walled carbon nanotubes was 80% or more.
  • the composition containing carbon nanotubes obtained as described above was subjected to Raman spectroscopic measurement. As a result, 125 cm 1 or more, is detected one clear peak in the wave number region of less than 136cm 1, it was found to contain a thick double-walled carbon nanotubes than 1. 82 nm. Three peaks were also detected in the wave number region of 125 cm 1 or more and less than 170 cm 1 .
  • a resonance Raman spectrometer revealed that the GZD ratio was 20, a high-quality double-walled single-bonn nanotube with a high degree of graphite (Fig. 6).
  • a purification treatment was performed as follows. After firing in air at 400 ° C for 1 hour, it was added to a 6N aqueous hydrochloric acid solution and stirred in an 80 ° C water bath for 2 hours. The recovered material obtained by filtration was further added to a 6N aqueous hydrochloric acid solution and stirred in an 80 ° C. water bath for 1 hour. After filtering and washing with water several times, the filtrate was dried in an oven at 120 ° C to remove magnesia and metals, and the carbon nanotubes could be purified.
  • Resonance Raman spectroscopy of the composition containing carbon nanotubes obtained by the above synthesis Figure 9 shows the measurement results. Using a laser beam with a wavelength of 633 nm, it was found that the GZD ratio was 20, and it was a high-quality carbon nanotube with a high degree of graphite o
  • the carbon nanotube-containing composition obtained by the above synthesis was observed with a high-resolution transmission electron microscope, as shown in FIG. 11, the carbon nanotube was composed of a clean graphite layer and had an outer diameter of around lnm. Many were observed.
  • the ratio of single-walled carbon nanotubes was confirmed with the high-resolution transmission electron microscope, the number of single-walled carbon nanotubes accounted for 50% of the total number of carbon nanotubes. (Purification of carbon nanotubes)
  • a purification treatment was performed as follows.
  • the carbon nanotube-containing composition was calcined at 400 ° C for 1 hour in the presence of air, then added to a 6N aqueous hydrochloric acid solution, and stirred in an 80 ° C water bath for 2 hours.
  • the recovered product obtained by filtration was further added to a 6N aqueous hydrochloric acid solution, and stirred in an 80 ° C. water bath for 1 hour.
  • the toluene phase was collected with a separatory funnel and filtered, and then the filtrate was dried in an oven at 120 ° C. to remove magnets and metals and to obtain purified carbon nanotubes.
  • the amount of impurities such as amorphous carbon was estimated by oxidizing with oxygen.
  • Low-heat-resistant impurities such as amorphous carbon are selectively burned out by dilute oxygen, and carbon nanotubes with crystallinity and high heat-resistance remain, so the amount of impurities can be estimated.
  • ethylene gas was 5.4 mLZ and nitrogen gas was 671 mLZ (ethylene concentration 0.8%, linear velocity 0.35 cm Z Second), reaction pressure l X 10 5 Pa (l atm) for 60 minutes, then stop supplying ethylene gas, cool the temperature to room temperature under nitrogen flow, The thing was taken out. Under these reaction conditions, the thermal decomposition rate of ethylene is 9.5%.
  • the carbon nanotube-containing composition thus obtained was measured with a resonance Raman spectrometer, and as a result, it was found that the carbon nanotube had a high graphiteization degree with a GZD ratio of 17.
  • Example 9 Using the same reaction system and solid catalyst as in Example 6, a composition containing the catalyst and carbon nanotubes was synthesized under the same reaction conditions as in Example 6 except that the reaction temperature was 900 ° C. . Under these reaction conditions, the thermal decomposition rate of ethylene is 8.2%. The carbon nanotube-containing composition thus obtained was measured with a resonance Raman spectrometer, and as a result, it was found that the carbon nanotube had a high GZD ratio of 23 and a graph eye toy density.
  • Ammonium iron citrate manufactured by Wako Pure Chemical Industries, Ltd. 0.16 g was dissolved in 25 mL of methanol (manufactured by Kanto Chemical Co., Ltd.).
  • the above catalyst was reacted under the same reaction system and reaction conditions as in Example 6 to obtain a composition containing a catalyst and a strong bon nanotube.
  • the carbon nanotube-containing composition thus obtained was measured with a resonance Raman spectrometer, and as a result, it was found that it was a carbon nanotube with a high G / D ratio of 19 and a G / D ratio. Further, as a result of simultaneous differential thermal / thermogravimetric measurement of the above-mentioned carbon nanotube-containing composition, the weight loss was 9%.
  • Carbon nanotubes were synthesized in the vertical reactor shown in FIG.
  • the reactor 100 is a cylindrical quartz tube having an inner diameter of 32 mm and a length of 120 mm.
  • a quartz sintered plate 101 is provided in the central portion, an inert gas and source gas supply line 104 is provided in the lower portion of the quartz tube, and an exhaust gas line 105 and a catalyst charging line 103 are provided in the upper portion.
  • a heater 106 is provided around the circumference of the reactor so that the reactor can be maintained at an arbitrary temperature.
  • the heater 106 is provided with an inspection port 107 so that the flow state in the apparatus can be confirmed.
  • the temperature was maintained, and the argon flow rate of the gas supply line 104 was increased to 1980 mL / min to start fluidization of the solid catalyst on the quartz sintered plate.
  • the gas composition was switched to a gas adjusted to ethylene lvol% and argon 99vol%, and supply to the reactor was started at 20000mL / min. After supplying the mixed gas for 30 minutes, the flow was switched to a flow of only argon gas, and the synthesis was completed.
  • the obtained carbon nanotube-containing composition was subjected to thermal analysis measurement using a thermogravimetric apparatus (TGA), and as a result, the carbon weight was 8%. As a result of measuring with a resonance Raman spectrometer, it was found that the carbon nanotube was a graphitization degree having a high G / D ratio of 15. ⁇ Comparative Example 1>
  • Ammonium iron citrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.92 g was dissolved in 250 mL of methanol (manufactured by Kanto Yigaku Co., Ltd.). Add 50 g of heavy magnesia (manufactured by Wako Pure Chemical Industries, Ltd.) to this solution, treat with an ultrasonic cleaner for 60 minutes, dry at 80 ° C to remove methanol, and add metal to light magnesia powder. A solid catalyst carrying a salt was obtained. The bulk density of the catalyst obtained was 0.7 2 gZmL.
  • the reaction was carried out under the same reaction system and conditions as in Example 1 except that the solid catalyst prepared above was used, and a composition containing the catalyst and carbon nanotubes was obtained.
  • the reaction was carried out under the same reaction system and reaction conditions as in Example 1 except that the solid catalyst prepared above was used to obtain a composition containing carbon nanotubes.
  • the reaction was carried out under the same reaction system and reaction conditions as in Example 1 except that the solid catalyst prepared above was used to obtain a composition containing carbon nanotubes.

Abstract

 マグネシアに金属を担持した粉末状の触媒であって、かさ密度が0.30g/mL以上0.70g/mL以下であるカーボンナノチューブ製造用触媒を、縦型反応器中、反応器の水平断面方向全面に存在させた状態で、500~1200°Cで、反応器内を鉛直方向に流通させた炭素含有化合物と接触させるカーボンナノチューブの製造方法により、均一で高品質なカーボンナノチューブを効率よく、多量に合成する。

Description

カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触 媒
技術分野
[0001] 本発明は、カーボンナノチューブの製造方法に関する。さらに詳しくは、金属を担 体に担持した触媒と炭素含有化合物を縦型反応器で接触させてカーボンナノチュー ブを製造する方法に関する。
背景技術
[0002] カーボンナノチューブは、グラフアイトの 1枚面を巻いて筒状にした形状を有してお り、 1層に巻いたものを単層カーボンナノチューブ、 2層に巻いたものを 2層カーボン ナノチューブ、多層に巻いたものを多層カーボンナノチューブという。カーボンナノチ ユーブは、高い機械的強度および高い導電性を有することから、燃料電池やリチウム 2次電池用負極材として、また、榭脂、金属および有機半導体との複合材料からなる 高強度榭脂、導電性榭脂、透明導電フィルム、金属電解粉、セラミックス複合体およ び電磁波シールド材の材料として期待されている。さら〖こ、カーボンナノチューブは、 LZD (長さ Z外径の比)が大きぐ外径は数 nmであることから、走査型トンネル顕微 鏡用プローブ、電界電子放出源、太陽電池素子およびナノピンセットの材料として期 待されている。また、カーボンナノチューブは、ナノサイズの空間を有することから、水 素などの吸着材料、医療用ナノカプセルおよび MRI造影剤の材料として期待されて いる。いずれの用途の場合にも、高純度のカーボンナノチューブが要求されており、 外径の細い単層や 2層のカーボンナノチューブが有利である。また、グラフアイト層の 欠陥が少な 、カーボンナノチューブが特性的に優れて 、る。
[0003] カーボンナノチューブの製造方法として、アーク放電法、レーザー蒸発法、化学気 相成長法などが知られている。なかでも、グラフアイト層に欠陥の少ない高品質な力 一ボンナノチューブを安価に製造する方法として、触媒ィ匕学気相成長法が知られて V、る。触媒化学気相成長法では触媒を担体に担持して行う方法が知られて!/ヽる。
[0004] 非特許文献 1には担体としてメソポーラス細孔を有したマグネシアを用い、炭素源と してメタン、金属としてコバルトを用いた 2層 CNTの合成法が報告されている。しかし ながら反応器は横型を用いており、そのため効率的に多量のカーボンナノチューブ を合成することが困難である。
[0005] 本発明者らは、金属を担体に担時した触媒と炭素含有化合物を高温で接触させる 方法が、高品質カーボンナノチューブを、高収率で得る方法であることを見出してき た。また、従来、一般には横型の反応器に触媒を置くことによりカーボンナノチューブ が合成されていたが、本発明者らは縦型の反応器を用いることにより原料ガスを均一 に触媒に接触させることができ、効率的に反応できることを見出してきた (特許文献 1 )。縦型反応器を用いたカーボンナノチューブの合成は、特許文献 2にも開示されて いる。
非特許文献 1:ケミカル ·フィジックス ·レターズ(Chemical Physics Letters) 368(2003) , 299-306
特許文献 1:特開 2004-123505号公報
特許文献 2:特表 2006 - 511437号公報
発明の開示
発明が解決しょうとする課題
[0006] これまで金属を担体に担持した触媒と炭素含有化合物を縦型反応器で接触させて カーボンナノチューブを作る方法にお 、て、精製工程での担体の除去が煩雑になる 、また担体に金属を担持した触媒中を原料ガスが均一に通らずショートパスを起こす などの問題点があった。本発明は、上記のような事情に鑑みなされたものであり、均 一で高品質なカーボンナノチューブを効率よぐ多量に製造する方法を提供すること にある。
課題を解決するための手段
[0007] 上記課題を解決する本発明のカーボンナノチューブの製造方法は以下の構成を 有する。
[0008] マグネシアに金属を担持した粉末状の触媒であって、力さ密度が 0. 30gZmL以 上 0. 70gZmL以下であるカーボンナノチューブ製造用触媒を、縦型反応器中、反 応器の水平断面方向全面に存在させ、該反応器内に炭素含有化合物を鉛直方向 に流通させ、該炭素含有ィ匕合物と前記触媒を 500〜1200°Cで接触させるカーボン ナノチューブの製造方法。
[0009] マグネシアに金属を担持した触媒であって、力さ密度が 0. 30gZmL以上 0. 70g ZmL以下であるカーボンナノチューブ製造用触媒。
発明の効果
[0010] 本発明によれば、金属をマグネシアに担持した特定の触媒と炭素含有化合物を縦 型反応器を用いて特定の態様で接触させてカーボンナノチューブを製造する方法に よって、高品質なカーボンナノチューブを効率よぐ多量に合成することが可能となり 、さらに精製工程も簡便化することができる。
図面の簡単な説明
[0011] [図 1]図 1 (a)は反応器 1の中の触媒を置く台 2の上に触媒 3が反応器の断面方向全 体に存在している状態を示す概念図である。図 1 (b)は反応器 1の中の触媒を置く台 2の上に触媒以外の物体と触媒の混合物 4が反応器の断面方向全体に存在してい る状態を示す概念図である。図 1 (c)は反応器 1上部から噴霧した触媒 5が反応器断 面方向全体に広がった状態を示す概念図である。
[図 2]実施例 1で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 3]実施例 1で得られたカーボンナノチューブ含有組成物の高分解能透過型電子 顕微鏡写真図である。
[図 4]実施例 2で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 5]実施例 3で得られたカーボンナノチューブ含有組成物の高分解能透過型電子 顕微鏡写真図である。
[図 6]実施例 3で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 7]実施例 4で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 8]実施例 5で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 9]実施例 6で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 10]実施例 6で得られたカーボンナノチューブ含有組成物の電界放射型走査電子 顕微鏡写真図である。
[図 11]実施例 6で得られたカーボンナノチューブ含有組成物の高分解能透過型電子 顕微鏡写真図である。
[図 12]実施例 10で使用した流動床装置の概略図である。
[図 13]比較例 1で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 14]比較例 1で得られたカーボンナノチューブ含有組成物の高分解能透過型電子 顕微鏡写真図である。
[図 15]比較例 2で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 16]比較例 3で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
[図 17]比較例 4で得られたカーボンナノチューブ含有組成物のラマン分光スペクトル 図である。
符号の説明
1 :反応器
2 :台
3 :触媒
4:触媒以外の物体と触媒の混合物
5 :噴霧された触媒
100 :反応器
101 :石英焼結板
102 :密閉型触媒供給機
103 :触媒投入ライン 104 :原料ガス供給ライン
105 :廃ガスライン
106 :加熱器
107 :点検口
108 :触媒層
発明を実施するための最良の形態
[0013] 本発明は、マグネシアに金属を担持した粉末状の触媒 (以下単に「触媒」と称する 場合もある)であって、力さ密度が 0. 30gZmL以上 0. 70gZmL以下であるカーボ ンナノチューブ製造用触媒を、縦型反応器中、反応器の水平断面方向全面に存在 させた状態で、 500〜1200°Cで炭素含有ィ匕合物と接触させるカーボンナノチューブ の製造方法である。
[0014] 本発明にお 、ては、金属を担持する担体はマグネシアであることは必須である。触 媒である金属を、担体であるマグネシアに担持させることにより、金属の粒径をコント ロールしやすぐまた高密度で金属が存在しても高温下でシンタリングが起こりにくい 。そのため、高品質なカーボンチューブを効率よく多量に合成することができる。さら に、マグネシアは酸性水溶液に溶けるので、カーボンナノチューブを合成した後、得 られた組成物を酸性水溶液で処理するだけでマグネシアおよび金属の両者を取り除 くこともできるため、精製工程を簡便化することができる。
[0015] 本発明において、縦型反応器とは、鉛直方向(以下「縦方向」称する場合もある)に 設置された反応器を有し、該反応器の一方の端部から他方の端部に向けた方向に 炭素含有ィ匕合物が流通し、該炭素含有化合物が、カーボンナノチューブ製造用触 媒で形成される触媒層を通過する態様で流通し得る機構を備えたものである。反応 器は、例えば管形状を有する反応器を好ましく用いることができる。なお、上記にお いて、鉛直方向とは、鉛直方向に対して若干傾斜角度を有する方向をも含む (例え ば水平面に対し 90° ± 15° 、好ましくは 90° ± 10° )。なお、好ましいのは鉛直方 向である。なお、炭素含有ィ匕合物の供給部および排出部は、必ずしも反応器の端部 である必要はなぐ炭素含有化合物が前記方向に流通し、その流通過程で触媒層を 通過すればよい。 [0016] 本発明においては、触媒は、縦型反応器中、反応器の水平断面方向全面に存在 させた状態にある。このようにすることにより、金属をマグネシアに担持した触媒と炭 素含有ィ匕合物を有効に接触させることができる。横型反応器の場合、このような状態 にするには、重力がかかる関係上、触媒を左右から挟み込む必要がある。しかし、力 一ボンナノチューブの生成反応の場合、反応するに従って触媒上にカーボンナノチ ユーブが生成して、触媒の体積が増加するので、左右から触媒を挟みこむ方法は好 ましくない。本発明では反応器を縦型にし、反応器内にガスが透過できる台を設置し て、その上に触媒を置くことによって、触媒を両側力も挟みこむことなぐ反応器の断 面方向に均一に触媒を存在させることができる。本発明において、触媒を縦型反応 器の水平断面方向全面に存在させた状態とは、水平断面方向に全体に触媒が広が つて 、て触媒底部の台が見えな 、状態を言う。このような状態の好ま U、実施態様と しては、例えば、次のような態様がある。
[0017] A.反応器内にガスが透過できる触媒を置く台(セラミックスフィルターなど)を置き、 そこに所定の厚みで触媒を充填する。この触媒層の上下が多少凸凹しても力まわな い(図 l (a) )。図 1 (a)は、反応器 1の中に触媒を置く台 2が設置され、その上に触媒 3が反応器の水平断面方向全体に存在している状態を示す概念図である。
[0018] B. Aと同様の触媒を置く台上に、触媒以外の物体 (充填材)と触媒を混ぜて充填 する。この触媒層は均一であることが好ましいが、上下が多少凸凹しても力まわない( 図 l (b) )。図 1 (b)は反応器 1の中に触媒を置く台 2が設置され、その上に触媒以外 の物体と触媒の混合物 4が反応器の断面方向全体に存在している状態を示す概念 図である。
[0019] C.反応器上部カゝら触媒を噴霧などで落とし、触媒粉末がガスを介して反応器水平 断面方向に均一に存在して 、る状態(図 1 (c) )。図 1 (c)は反応器 1上部力 噴霧し た触媒 5が反応器水平断面方向全体に広がった触媒状態を示す概念図である。
[0020] 縦型反応器は流動床型であっても、固定床型であっても構わない。流動床型の一 例としては上述 Cのような触媒を反応器上部力 噴霧などによって落とす態様や、一 般に沸騰床型と言われる触媒が流動する態様が挙げられる。また固定床型の例とし ては上述 Aまたは Bのような態様が挙げられる。 [0021] 流動床型は、触媒を連続的に供給し、反応後の触媒とカーボンナノチューブを含 む組成物を連続的に取り出すことにより、連続的な合成が可能であり、カーボンナノ チューブを効率よく得ることができ好まし 、。
[0022] 縦型反応器とは対照的に、横型反応器は横方向 (水平方向)に設置された反応器 内に、石英板上に置かれた触媒が設置され、該触媒上を炭素含有化合物が通過し て接触、反応する態様の反応装置を指す。この場合、触媒表面ではカーボンナノチ ユーブが生成するが、触媒内部には炭素含有ィ匕合物が到達しないためにほとんど反 応しない。これに対して、縦型反応器では触媒全体に原料の炭素含有化合物が接 触することが可能となるため、効率的に、多量のカーボンナノチューブを合成すること が可能である。
[0023] 触媒の力さ密度が 0. 30gZmL以上 0. 70gZmL以下であることにより、触媒と炭 素含有化合物との接触効率が良くなり、高品質なカーボンナノチューブを効率よぐ 多量に合成することが可能となることを見出した。触媒の力さ密度が 0. 30gZmL未 満では、触媒を取り扱いづらいといった問題点がある。また力さ密度が小さすぎると、 炭素含有化合物と接触させる際に、縦型反応器中で触媒が大きく舞い上がり、触媒 が反応器の均熱帯を外れることがあり、高品質なカーボンナノチューブを得ることが 困難になる。また触媒のかさ密度が 0. 70gZmL以上であると、触媒と炭素含有化合 物とが均一に効率よく接触することが困難になり、やはり高品質なカーボンナノチュ ーブを得ることが困難になる。触媒の力さ密度が大きすぎる場合、縦型反応器に触 媒を設置した際、触媒が密に詰まってしまうため炭素含有ィ匕合物と均一に接触がで きず、高品質なカーボンナノチューブを生成することが困難になる。触媒のかさ密度 が上記の範囲であると、炭素含有ィ匕合物と触媒金属との接触効率が上がるため、均 一で高品質なカーボンナノチューブを効率よぐかつ、多量に製造することが可能と なる。また、触媒の力さ密度が大きすぎる場合、触媒が動きにくいために、炭素含有 化合物は、触媒層の最も通りやすい箇所だけを通ってしまうという、いわゆるショート ノ スの問題が生じる。触媒の力さ密度が上記の範囲であると、触媒が動くことによつ て、固定されたショートパスができにくい。よって触媒の力さ密度は 0. 30gZmL以上 0. 70gZmL以下であることが必要である。触媒のかさ密度は、好ましくは 0. 40g/ mL以上 0. 70gZmL以下であり、さらに好ましくは 0. 50gZmL以上 0. 70g/mL 以下である。
[0024] 力さ密度とは単位力さ体積あたりの粉体質量のことである。以下に力さ密度の測定 方法を示す。粉体のかさ密度は、測定時の温度、湿度に影響されることがある。ここ で言うかさ密度は、温度 20± 10°C、湿度 60 ± 10%で測定したときの値である。 50 mLメスシリンダーを測定容器として用い、メスシリンダーの底を軽く叩きながら、予め 定めた容積を占めるように粉末を加える。カゝさ密度の測定に際しては 10mL以上の 粉末をカ卩えることが好ましい。その後、メスシリンダーの底を床面 lcmの高さから落と すことを 20回繰り返した後、 目視にて粉末が占める容積値の変化率が ±0. 2mL以 内であることを確認し、詰める操作を終了する。もし容積値に目視にて ±0. 2mL以 上の変化があれば、メスシリンダーの底を軽く叩きながら粉末を追加し、再度メスシリ ンダ一の底を床面 lcmの高さから落とすことを 20回繰り返し、 目視にて粉末が占める 容積値に ±0. 2mL以上の変化がないことを確認して操作を終了する。上記の方法 で詰めた一定量の粉末の重量を求めることを 3回繰り返し、その平均重量を粉末が 占める容積で割った値 ( =重量 (g) Z体積 (mL) )を粉末の力さ密度とする。測定に 供するカーボンナノチューブ製造用触媒は、 20g± 5gとする。なお、カーボンナノチ ユーブ製造用触媒の量が前記量に満たな!/、場合は、評価可能な量で測定するもの とする。
[0025] 触媒のかさ密度が最も影響するのは、触媒を加熱温度下に炭素含有化合物と接触 させるときである。このとき触媒の状態は、触媒調製時 (反応前)と比較してどのように 変化しているか、詳細は不明である。しかし、反応前後で触媒の力さ密度は大きく変 ィ匕しない。そのため、触媒調製時 (反応前)の触媒かさ密度を上記範囲にすることで 、高品質なカーボンナノチューブを得ることができる。
[0026] マグネシアは、市販品を使用しても良 、し、合成したものを使用しても良 、。マグネ シァの好ましい製法としては、金属マグネシウムを空気中で加熱する、水酸化マグネ シゥムを 850°C以上に加熱する、炭酸水酸化マグネシウム 3MgCO -Mg (OH) · 3
3 2
Η Οを 950°C以上に加熱する等の方法がある。
2
[0027] マグネシアの中でも軽質マグネシアが好ましい。軽質マグネシアとは力さ密度が小 さいマグネシアである。本発明では、軽質マグネシアとは、力さ密度が 0. 16g/mL 以下のマグネシアのことを言うものとする。マグネシア自体の力さ密度が小さいので、 金属を担持した触媒全体としての力さ密度を小さくすることが可能となる。
[0028] また、直径 l〜50nmの細孔を有するマグネシアが好まし!/、。マグネシア中に直径 1 〜50nmの細孔を有することにより、細孔内に一定量の空間体積が存在するために、 金属を担持した触媒全体としての力さ密度を小さくすることが可能となる。ここで、細 孔の直径が l〜50nmとは、下記のようにして細孔分布を測定した際、ピークトップが この範囲にあることを意味する。より好ましくは細孔の直径が l〜30nmであり、さらに 好ましくは 1〜 20nmである。
[0029] 液体窒素温度での窒素の物理吸着から、マグネシアの表面積および細孔分布を 求めることができる。減圧下に置いたマグネシアに窒素を徐々に投入し、高真空から 大気圧の窒素の吸着等温線をとり、大気圧まで到達したら徐々に窒素を減らしてい き、窒素の脱着等温線をとるようにすればよい。
[0030] 細孔径が lnmから 50nmの領域を含む細孔径分布を求めるためには、通常脱着 等温線を使用して計算する。細孔径分布を求める理論式としては、 Dollimore-Heal法 (以下、 D— H法と略称)が知られている。本発明で定義する細孔径分布は窒素の脱 着等温線力も D— H法で求めたものである。一般に細孔径分布は、横軸に細孔径を とり、縦軸に AVpZ ARp (Vp :吸着した窒素を液ィ匕させた場合の体積、 Rp :細孔の 半径)をとることで求められる。また細孔容量は、このグラフの面積から求めることがで きる。細孔容量は 0. lOmLZg以上有することが好ましぐさらに好ましくは 0. 15mL Zg以上有することである。
[0031] マグネシア自体の力さ密度も低 、方が好ま 、が、担持する金属の種類、量、担持 方法などにより、触媒ィ匕したときの力さ密度は大きく異なってくる。担持する金属の量 が増加するに従って、マグネシアに金属を担持した触媒の力さ密度は増加する傾向 にある。
[0032] 触媒に用いる金属の種類は、特に限定されないが、好ましくは 3〜12族の金属、特 に好ましくは、 5〜: L 1族の金属が用いられる。中でも、 V、 Mo、 Mn、 Fe、 Co、 Ni、 P d、 Pt、 Rh、 W、 Cu等が好ましい。さらに好ましくは、 Fe、 Coおよび Niであり、最も好 ましいのは Feである。ここで金属とは、 0価の状態とは限らない。反応中は 0価の金属 状態になっていると推定できるが、広く金属を含む化合物または金属種でよい。例え ば、ギ酸塩、酢酸塩、トリフルォロ酢酸塩、クェン酸アンモ-ゥム塩、硝酸塩、硫酸塩 、ハロゲン化物塩などの有機塩または無機塩、エチレンジァミン 4酢酸錯体ゃァセチ ルァセトナート錯体のような錯塩などが用いられる。また金属は微粒子であることが好 ましい。微粒子の粒径は 0. 5〜: LOnmであることが好ましい。金属が微粒子であると 外径の細!、カーボンナノチューブが生成しやす!/、。
[0033] 金属は 1種類だけを担持させても、 2種類以上を担持させてもよい。 2種類以上の金 属を担持させる場合は、 Feを含むことが特に好ま ヽ。
[0034] マグネシアに金属を担持させる方法は、特に限定されな 、。例えば、担持した!/、金 属の塩を溶解させた非水溶液 (例えばエタノール溶液)中または水溶液中に、マグネ シァを含浸し、攪拌や超音波照射などにより充分に分散混合した後、乾燥させる (含 浸法)。さらに空気、酸素、窒素、水素、不活性ガスおよびそれらの混合ガス力 選ば れたガス中または真空中で高温(300〜1000°C)で加熱することにより、マグネシア に金属を担持させてもよい。
[0035] 金属担持量は、多いほどカーボンナノチューブの収量が上がる力 多すぎると金属 の粒子径が大きくなり、生成するカーボンナノチューブが太くなる。金属担持量が少 ないと、担持される金属の粒子径が小さくなり、外径の細いカーボンナノチューブが 得られるが、収率が低くなる傾向がある。最適な金属担持量は、マグネシアの細孔容 量や外表面積、担持方法によって異なる力 マグネシアに対して 0. 1〜20重量%の 金属を担持することが好ましい。 2種類以上の金属を使用する場合、その比率は限 定されない。
[0036] このようにして得られた、金属を担持したマグネシアを縦型反応器に充填する。
[0037] 反応器は耐熱性であることが好ましく、石英製、アルミナ製等の耐熱材質力 なるこ とが好ましい。
[0038] 反応器内に設置された触媒層の下部、もしくは上部力も炭素含有ィ匕合物を通過さ せて、触媒と接触させ、反応させることによりカーボンナノチューブを生成する。
[0039] 触媒と炭素含有化合物とを接触させる温度は、 500〜1200°Cである。温度は、 60 0〜950°Cがより好ましぐさらに好ましくは 700°C〜900°Cの範囲である。温度が 60 0°Cよりも低いと、カーボンナノチューブの収率が悪くなる。また温度が 950°Cよりも高 いと、使用する反応器の材質に制約があると共に、カーボンナノチューブ同士の接合 が始まり、カーボンナノチューブの形状のコントロールが困難になる。炭素含有化合 物を接触させながら反応器を反応温度にしてもよいし、熱による前処理終了後、反応 器を反応温度にしてから、炭素含有ィヒ合物の供給を開始しても良い。
[0040] カーボンナノチューブを生成させる反応の前に、触媒に熱による前処理を行っても よい。熱による前処理の時間は、特に限定しないが、長すぎるとマグネシア上で金属 の凝集が起こり、それに伴い外径の太いカーボンナノチューブが生成することがある ので、 120分以内が好ましい。前処理の温度は、触媒活性が発揮されれば反応温度 以下でも構わないし、反応温度と同じでも、反応温度以上でも構わない。熱による前 処理を行うことにより、触媒をより活性な状態にすることもある。
[0041] 熱による前処理、およびカーボンナノチューブを生成させる反応は、減圧もしくは大 気圧で行うことが好ましい。
[0042] 触媒と炭素含有化合物の接触を減圧で行う場合は、真空ポンプなどで反応系を減 圧にすることができる。また大気圧で前処理や反応を行う場合は、炭素含有化合物と 希釈ガスを混合した、混合ガスとして触媒と接触させてもょ 、。
[0043] 希釈ガスとしては、特に限定されないが、酸素ガス以外のものが好ましく使用される 。酸素は爆発の可能性があるので通常使用しないが、爆発範囲外であれば使用して も構わない。希釈ガスとしては、窒素、アルゴン、水素、ヘリウム等が好ましく使用され る。これらのガスは、炭素含有ィ匕合物の線速や濃度のコントロールおよびキヤリャガス として効果がある。水素は、触媒金属の活性ィ匕に効果があるので好ましい。アルゴン の如き分子量が大きいガスはアニーリング効果が大きぐアニーリングを目的とする場 合には好ま U、。特に窒素およびアルゴンが好ま U、。
[0044] 炭素含有化合物を、その熱分解率が 10%以下でカーボンナノチューブ製造用触 媒と接触させることが好ましい。炭素含有化合物の熱分解は、タール、煤、二量体、 オリゴマーなどの副生を促し、生成するカーボンナノチューブのグラフアイト化度およ び純度を低下させる。炭素含有化合物の熱分解は、濃度と線速に大きく影響され、 低濃度、かつ、高線速であるほど熱分解が抑制される。一方、炭素含有化合物の反 応性、即ちカーボンナノチューブの収量は、濃度と線速に反比例し、高濃度、かつ、 低線速であるほど収量が高くなる。従って、高グラフアイト化度、かつ、高純度のカー ボンナノチューブを比較的大量に得るためには、濃度と線速を制御し、熱分解と生成 収量のバランスが最も良い条件を選択することが好ましい。熱分解率は、好ましくは 8 %以下、最も好ましくは 5%以下である。熱分解率は 0. 1%以上であることが好ましく 、中でも 1%以上であることが好ましい。
熱分解率とは、熱エネルギーにより炭素含有化合物が分解または反応する割合の ことである。炭素含有化合物の熱分解率は、触媒の非存在下である以外は同様の条 件で反応系に炭素含有化合物を流通させ、炭素含有化合物の熱分解率を求めるこ とにより測定する。具体的には、次のように求める。特定の温度領域に炭素含有化合 物を含む原料ガスを流通させ、その特定の温度領域の前および後で一定量のガスを サンプリングする。サンプリングしたガスについて、それぞれクロマトグラフィーにより 炭素含有化合物の量を定量し、その特定の温度領域の前後での炭素含有化合物の 減少量を求める。例えば水素炎イオンィ匕検出器を備えたガスクロマトグラフにより検 出された炭素含有ィ匕合物のピーク面積を用いて、熱分解率を次式から求めることが できる。
熱分解率 (%) = [ 1— { (流通させた後 (熱分解後)のピーク面積) /
(流通させる前 (熱分解前)のピーク面積) }] X 100
本発明において、使用する炭素含有化合物の線速は 0. 20cmZ秒以上であること が好ましい。さらに好ましくは 0. 50cmZ秒以上であり、より好ましくは 1. OOcmZ秒 以上である。線速が遅すぎると、炭素含有化合物の熱分解率が高くなり、カーボンナ ノチューブ合成反応以外の副反応が進行し、アモルファスカーボン等の不純物が多 くなる傾向がある。また、生成したアモルファスカーボンが触媒金属表面に付着し、触 媒を不活性ィ匕しカーボンナノチューブ合成を妨げることになる。一方あまり線速が速 すぎると炭素含有化合物が有効に利用されず、排気されるので、 lOOcmZ秒以下 が好んで用いられる。線速とは炭素含有ィ匕合物が、前記反応器を通過する速度のこ とである。線速は炭素含有ィ匕合物が流通する部位の断面積 (cm2)で原料ガス (炭素 含有ィ匕合物 +キャリアガス)の流通速度 (cm3/秒)を除算することにより求められる。 特に、炭素含有ィ匕合物が炭素数 2以上の炭素含有ィ匕合物である場合は、上記の線 速の範囲が好ましい。
[0046] 一方、炭素含有化合物がメタンまたはメタンを含有する混合物である場合には線速 が 9. 5xlO_3cm/秒以下であることが好ましい。この場合、上述の様に線速が 0. 2 OcmZ秒以上でも問題はな 、が、メタンは熱的安定性および化学的安定性が高 ヽ ために、遅い線速であっても、熱分解による副反応が起こりにくぐ高品質なカーボン ナノチューブが生成する。
[0047] 炭素含有化合物が混合ガスとして流通する場合、炭素含有化合物の濃度は希釈 ガスで制御が可能である。混合ガス中の炭素含有ィ匕合物の濃度が高くなると、収量 は向上する力 太いカーボンナノチューブが生成する傾向がある。混合ガス中の炭 素含有ィ匕合物の濃度は、 2vol%以下が好ましい。また混合ガス中の炭素含有化合 物の濃度が低くなると、細いカーボンナノチューブができるが、収量が低くなる傾向が ある。混合ガス中の炭素含有ィ匕合物の濃度は、 0. lvol%以上が好ましい。より好ま しい炭素含有化合物濃度は 0. 2vol%以上、 1. 5vol%以下である。
[0048] 本発明において、使用する炭素含有ィ匕合物は、特に限定されないが、好ましくは炭 化水素または酸素含有炭素化合物を使うとよい。炭化水素は芳香族であっても、非 芳香族であってもよい。芳香族の炭化水素では、例えばベンゼン、トルエン、キシレ ン、タメン、ェチルベンゼン、ジェチルベンゼン、トリメチルベンゼン、ナフタレン、フエ ナントレン、アントラセンまたはこれらの混合物などを使用することができる。また、非 芳香族の炭化水素では、例えばメタン、ェタン、プロパン、ブタン、ペンタン、へキサ ン、ヘプタン、エチレン、プロピレンもしくはアセチレン、またはこれらの混合物等を使 用することができる。酸素含有炭素化合物としては、例えばメタノール若しくはェタノ ール、プロパノール、ブタノールのごときアルコール類、アセトンのごときケトン類、お よびホルムアルデヒドもしくはァセトアルデヒドのごときアルデヒド類、トリオキサン、ジ ォキサン、ジメチルエーテル、ジェチルエーテルのごときエーテル類、酢酸ェチルな どのエステル類、一酸ィ匕炭素またはこれらの混合物であってもよい。これらの中でも、 特にメタン、ェタン、エチレン、アセチレン、プロパンおよびプロピレンが最も好ましい 炭素含有ィ匕合物である。これらは常温、常圧中で気体であるため、ガスとして供給量 を規定して反応に供しやすい。他の炭素含有化合物は常圧で反応を行う場合、気化 などの工程を追加する必要がある。
[0049] 本発明の製造方法により得られるカーボンナノチューブ含有組成物は、透過型電 子顕微鏡で観察することが可能である。カーボンナノチューブ含有組成物とは、カー ボンナノチューブを含む糸且成物である。例えば、カーボンナノチューブ合成直後の触 媒金属やアモルファスカーボン等の副生物を含んだものなどが例示される。カーボン ナノチューブ含有組成物において、 100本のカーボンナノチューブ中、 50本以上が 内径が 2nm以下のカーボンナノチューブであることが好ましい。このように 100本の カーボンナノチューブ中、 50本以上が内径が 2nm以下のカーボンナノチューブであ るとき、主生成物が内径が 2nm以下のカーボンナノチューブであるという。カーボン ナノチューブの内径の測定方法は、カーボンナノチューブ含有組成物を、透過型電 子顕微鏡で 100万倍で観察し、 150nm四方の視野の中で視野面積の 10%以上が カーボンナノチューブである視野中から任意に抽出した 100本のカーボンナノチュー ブについて内径を測定する。一つの視野中で 100本の測定ができない場合は、 100 本になるまで複数の視野力も測定する。上記測定を 10箇所にっ 、て行った相加平 均値で評価する。
[0050] 主生成物が内径が 2nm以下のカーボンナノチューブ含有組成物は、電子放出材 料、導電フィルム材料、電池電極材料などとして有用である。例えば、カーボンナノチ ユーブ含有組成物をフィールドェミッションの電子源に用いた場合、内径が 2nm以下 と細いため、電荷の集中が起こりやすいので、印加電圧を低く抑えることができる。
[0051] 本発明においては、触媒である金属を、担体であるマグネシアに担持させることに より、金属の粒径をコントロールしゃすぐ微粒子として担持することが可能となった。 また、マグネシア担体を用いることで、高密度で金属が存在しても高温下で金属のシ ンタリングが起こりにくい。そのため、内径が 2nm以下の高品質なカーボンチューブ を合成することができる。
[0052] また、カーボンナノチューブ含有組成物の品質は、ラマン分光分析法により評価が 可能である。ラマン分光分析法で使用するレーザー波長は 633nmとする。ラマンス ベクトルにおいて 1590cm— 1付近に見られるラマンシフトは、グラフアイト由来の Gバン ドと呼ばれ、 1350cm— 1付近に見られるラマンシフトはアモルファスカーボンやグラフ アイトの欠陥に由来の Dバンドと呼ばれる。この GZD比が高いカーボンナノチューブ ほど、グラフアイトイ匕度が高ぐ高品質である。本発明の製造方法によれば、ラマン分 光測定したときに、 633nmの波長において GZD比が 10より高い高品質のカーボン ナノチューブを得ることが可能である。
[0053] 本発明のカーボンナノチューブ含有組成物は、合成したままの状態で利用してもよ いが、好ましくはマグネシアや金属を除いて使用した方がよい。カーボンナノチュー ブ含有組成物を酸性水溶液と接触させることで、マグネシアや金属触媒を取り除くこ とがでさる。
[0054] また、カーボンナノチューブ含有組成物を酸素と接触させてから、酸性水溶液で処 理すると、高純度かつ高収率でカーボンナノチューブを得られるので好ましい。それ は、カーボンナノチューブ含有糸且成物においては、金属はグラフアイトなどの炭素化 合物で覆われているため酸性水溶液に溶解しにくいが、一度金属の周りの炭素を焼 きとばして力 酸性水溶液と接触させることにより、金属を効率よく除去することができ るカゝらである。
[0055] カーボンナノチューブ含有組成物を酸素と接触させる際の温度は、組成物中に存 在する金属を覆っている炭素が除去できる温度であれば良い。カーボンナノチュー ブのグラフアイト層に欠陥が生じることなく高収率で回収できることから、好ましくは 20 0〜800。C、より好ましくは 300〜600。C、さらに好ましくは 350〜500。Cの温度であ る。また、アモルファスカーボンやナノパーティクルの炭素不純物は、カーボンナノチ ユーブが燃焼する温度より低い温度で燃焼が開始するため、この燃焼温度の差を利 用して、上記温度でこれら炭素不純物を除去することもできる。酸素と接触させる時 間は、カーボンナノチューブのグラフアイト層に欠陥が生じない範囲で任意に選ぶこ とがでさる。
[0056] カーボンナノチューブ含有組成物に接触させる酸性水溶液の種類としては、フッ化 水素酸、硫酸、塩酸、硝酸などの水溶液を用いることができ、これらを単独で用いて も、 2種類以上混合しても構わない。 [0057] また、酸性水溶液として pH5以下、より好ましくは pH4以下、さらに好ましくは pH3 以下の酸性水溶液を用いることが、不純物の除去効率の点から好ま 、。
酸性水溶液を接触させる時間、濃度、温度および圧力は特に限定されるものではな ぐ効率よく不純物が除去でき、カーボンナノチューブのグラフアイト層に欠陥が生じ ない範囲内で任意に設定することができる。上記範囲内であれば、高温かつ高圧に 設定してもよぐ超臨界状態となりうる状態に設定しても構わない。より具体的な操作 方法として、カーボンナノチューブ含有組成物を、 pH5以下 (好ましくは pH4以下、さ らに好ましくは PH3以下)の酸性水溶液 (例えばフッ化水素酸水溶液、塩酸水溶液、 硫酸水溶液、硝酸水溶液など)に投入し、 1〜 10時間程度攪拌する方法を挙げるこ とがでさる。
[0058] 本発明のカーボンナノチューブ含有組成物は、電子放出材料、導電フィルム材料、 電池電極材料などとして有用である。例えば、本発明のカーボンナノチューブ含有組 成物をフィールドェミッションの電子源に用いた場合、外径が細ぐ電荷の集中が起 こりやすいので、印加電圧を低く抑えることができる。
[0059] 以下、実施例により本発明を具体的に説明する。下記の実施例は例示のために示 すものであって、本発明を限定的に解釈するものとして使用してはならない。
実施例
[0060] 実施例中、各種物性評価は以下の方法で行った。
[0061] [かさ密度]
50mLメスシリンダーを測定容器として用い、メスシリンダーの底を軽く叩きながら、 粉末の占める容積が 20mLになるように粉末をカ卩える。その後、メスシリンダーの底を 床面 lcmの高さから落とすことを 20回繰り返した後、前記方法で容積値に変化がな いことを確認した。上記の方法で詰めた粉末の重量を求めることを 3回繰り返し、その 平均重量を 20mLで割り(=重量 (g)Z体積 (mL) )粉末のかさ密度を測定した。また 力さ密度の評価は温度 20± 10°C、湿度 60 ± 10%の範囲で行った。
[0062] [熱分析]
約 lOmgの試料を熱重量測定装置 (島津製作所製 TGA-60)に設置し、空気中、 10°CZ分の昇温速度にて室温から 900°Cまで昇温した。そのときの燃焼による重量 減少を%で表示した。
[0063] [ラマン分光分析]
共鳴ラマン分光計 (ホリバ ジョバンイボン製 INF-300)に粉末試料を設置し、 63 3nmのレーザー波長を用いて測定を行った。
[0064] [高分解能透過型電子顕微鏡写真]
エタノール中に分散した試料をグリッド上に滴下し、乾燥した。このように試料の塗 布されたグリッドを透過型電子顕微鏡(日立製作所製 H-9000UHR III)に設置し 、測定を行った。
[0065] <実施例 1 >
(軽質マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 2. 46gをメタノール (関東ィ匕学社製) 125mLに溶解した。この溶液に、軽質マグネシア (和光純薬工業社製)を 25. Ogカロ え、超音波洗浄機で 60分間処理し、 80°Cで乾燥してメタノールを除去し、軽質マグ ネシァ粉末に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 6 8gz mLで fcつた。
[0066] (カーボンナノチューブの合成)
シリカ/アルミナ製の不織布上に、上記で調製した固体触媒 4. Ogをとり、 800°Cに 加熱した、鉛直方向に設置した内径 135mmの石英製反応器の中央部に導入し、触 媒層を設置した。反応器中での固体触媒の存在の態様は図 1 (a)に示す通りである 。反応器底部力 反応器上部方向へ向けてアルゴンガスを 20LZ分で 5分間供給し 、触媒層を通過するように流通させた。その後、さらにアセチレンガスを 160mLZ分 で 4分間導入して触媒層を通過するように通気し、反応させた。このときのアセチレン ガスの線速は 2. 35cmZ秒、濃度は 0. 79vol%である。アセチレンガスの導入を止 め、アルゴンガスを 20LZ分で 1分間流した後に、触媒とカーボンナノチューブを含 有する組成物を取り出し、室温まで冷却した。
[0067] (カーボンナノチューブ含有組成物の熱分析)
上記のようにして得たカーボンナノチューブ含有組成物の熱分析を行ったところ、 重量減少は 11%であり、多量のカーボンナノチューブが生成していることが示唆され た。
[0068] (カーボンナノチューブ含有糸且成物の共鳴ラマン分光分析)
上記のようにして得たカーボンナノチューブ含有組成物を共鳴ラマン分光計で測定 した結果、 G/D比は 14と高品質カーボンナノチューブであることがわ力つた(図 2)。
[0069] (カーボンナノチューブ含有組成物の高分解能透過型電子顕微鏡分析)
上記のようにして得たカーボンナノチューブ含有組成物を高分解能透過型電子顕 微鏡を用い、前記した方法で観察したところ、カーボンナノチューブはきれいなグラフ アイト層で構成されており、 100本のカーボンナノチューブ中、内径 2nm以下のカー ボンナノチューブが 80本以上であった。カーボンナノチューブ以外の炭素不純物(フ ラーレン、ナノパーティクル、アモルファスカーボン等)はほとんど観察されなカゝつた( 図 3)。
[0070] <実施例 2 >
(メソポーラスマグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 2. 95gをメタノール (関東ィ匕学社製) 150mlに溶解した。この溶液に、スターマグ HP10 (神島化学社製、直径 3. 6nmの 細孔、 0. 20mL/gの細孔容量を有するマグネシア)を 30. Ogカ卩え、超音波洗浄機 で 60分間処理し、 80°Cで乾燥してメタノールを除去し、メソポーラスマグネシア粉末 に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 50gZmLで めつに。
[0071] (カーボンナノチューブの合成)
上記で調製した固体触媒を用いた以外は実施例 1と同様の反応系および反応条 件下で反応を行 、、触媒とカーボンナノチューブを含有する組成物を得た。
[0072] (カーボンナノチューブ含有組成物の熱分析)
上記のようにして得たカーボンナノチューブ含有組成物の熱分析を行ったところ、 重量減少は 14%であり、多量のカーボンナノチューブが生成していることが示唆され た。
[0073] (カーボンナノチューブ含有糸且成物の共鳴ラマン分光分析)
上記のようにして得たカーボンナノチューブを含有する組成物を共鳴ラマン分光計 で測定した結果、 GZD比は 12と高品質単層カーボンナノチューブであることがわか つた(図 4)。
[0074] (カーボンナノチューブを含有する組成物の高分解能透過型電子顕微鏡分析) 上記のようにして得たカーボンナノチューブ含有組成物を高分解能透過型電子顕 微鏡を用いて観察したところ、カーボンナノチューブはきれいなグラフアイト層で構成 されており、内径 2nm以下のカーボンナノチューブが 80本以上であった。カーボン ナノチューブ以外の炭素不純物(フラーレン、ナノパーティクル、アモルファスカーボ ン等)はほとんど観察されな力つた。
<実施例 3>
(軽質マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 5gをメタノール (関東ィ匕学社製) 2 5mLに溶解した。この溶液に、軽質マグネシア (和光純薬工業社製)を 5g加え、超音 波洗浄機で 60分間処理し、 40°Cカゝら 60°Cで攪拌しながら乾燥してメタノールを除去 し、軽質マグネシア粉末に金属塩が担持された固体触媒を得た。得られた触媒のか さ密度は 0. 61gZmLであった。
[0075] (2層カーボンナノチューブの合成)
内径 64mmの縦型石英管の中央部の石英ウール上に、上記で調製した固体触媒 1. Ogをとり、空気を 1600mLZ分で供給した。石英管を電気炉中に設置して、 120 分かけて中心温度を 900°Cにまで昇温した。 900°Cに到達した後、窒素ガスにて 10 OOmLZ分、 10分間パージした後、メタンガス(高圧ガス工業社製)を llmLZ分、 窒素ガスを 225mLZ分、反応圧力 lxl05Pa (l気圧)の条件で 60分供給した後、メ タンガスの供給をやめ、窒素流通下で温度を室温まで冷却し、触媒とカーボンナノチ ユーブを含有する組成物を取り出した。この反応条件におけるメタンの線速は、 5. 6 4 X 10—3cmZ秒、濃度は 4. 7vol%であった。反応管を流通させる全てのガスは、下 部から上部方向へ流通させた。
[0076] (カーボンナノチューブ含有組成物の高分解能透過型電子顕微鏡分析)
上記のようにして得たカーボンナノチューブ含有組成物を高分解能透過型電子顕 微鏡で観察したところ、図 5に示すように、カーボンナノチューブはきれいなグラフアイ ト層で構成されており、外径が 2nm前後、層数が 2層のカーボンナノチューブがカー ボンナノチューブ総本数の 70%を占めており、単層のカーボンナノチューブは総本 数の 10%を占めていた。従って、単層と 2層のカーボンナノチューブのうち、 2層カー ボンナノチューブの割合は、 80%以上となった。
[0077] (カーボンナノチューブ含有糸且成物の共鳴ラマン分光分析)
上記のようにして得たカーボンナノチューブを含有する組成物を、ラマン分光測定 した。その結果、 125cm 1以上、 136cm 1未満の波数領域に 1つの明確なピークが 検出され、 1. 82nmより太い 2層カーボンナノチューブが含まれていることがわかった 。また、 125cm 1以上、 170cm 1未満の波数領域にも 3つのピークが検出された。ま た、共鳴ラマン分光計により、 GZD比が 20と、グラフアイト化度の高い高品質 2層力 一ボンナノチューブであることがわかった(図 6)。
[0078] (カーボンナノチューブの精製)
さらに、上記のカーボンナノチューブから触媒を除去するため、次のように精製処理 を行った。 400°Cで 1時間空気下焼成をした後、 6Nの塩酸水溶液に添加し、 80°Cの ウォーターバス内で 2時間攪拌した。濾過して得られた回収物を、さらに 6Nの塩酸水 溶液に添加し、 80°Cのウォーターバス内で 1時間攪拌した。濾過し、数回水洗した後 、濾過物を 120°Cのオーブンでー晚乾燥することでマグネシアおよび金属を除去で き、カーボンナノチューブを精製することができた。
[0079] <実施例 4 >
実施例 3と同様の反応系および固体触媒を用いて、 900°Cに到達した後、メタンガ スを 9. 2mLZ分、窒素ガスを 188mLZ分 (メタン濃度 4. 7vol%)、反応圧力 lxlO5 Pa (1気圧)の条件で 60分供給した後、メタンガスの供給をやめ、窒素流通下で温度 を室温まで冷却し、触媒とカーボンナノチューブを含有する組成物を取り出した。こ の反応条件におけるメタンの線速は、 4. 7 X 10— 3cmZ秒である。このようにして得た カーボンナノチューブ含有糸且成物を共鳴ラマン分光計で測定した。その結果、 125c m 1以上、 136cm 1未満の波数領域に 1つの明確なピークが検出された。また、 GZ D比が 19と高いグラフアイト化度のカーボンナノチューブであることがわ力つた(図 7) [0080] <実施例 5 >
実施例 3と同様の反応系および固体触媒を用いて、 900°Cに到達した後、メタンガ スを 18mLZ分、窒素ガスを 376mLZ分 (メタン濃度 4. 7vol%)、反応圧力 1χ105Ρ a (1気圧)の条件で 60分供給した後、メタンガスの供給をやめ、窒素流通下で温度を 室温まで冷却し、触媒とカーボンナノチューブを含有する組成物を取り出した。この 反応条件におけるメタンの線速は、 9. 4 X 10— 3cmZ秒である。このようにして得た力 一ボンナノチューブを含有する糸且成物を共鳴ラマン分光計で測定した。その結果、 1 25cm 1以上、 136cm 1未満の波数領域に 1つの明確なピークが検出された。また、 GZD比が 20と高 、グラフアイト化度のカーボンナノチューブであることがわ力つた( 図 8)。
<実施例 6>
(軽質マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 5gをメタノール (関東ィ匕学社製) 2 5mLに溶解した。この溶液に、軽質マグネシア (和光純薬工業社製)を 5g加え、超音 波洗浄機で 60分間処理し、 40°Cで攪拌しながら乾燥してメタノールを除去し、軽質 マグネシア粉末に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 61gZmLであった。
[0081] (カーボンナノチューブの合成)
電気炉中に設置した内径 64mmの縦型石英管の中央部の石英ウール上に、上記 で調製した固体触媒 1. Ogをとり、窒素を 1600mLZ分で供給した。石英管内が窒 素で充分置換した後、 60分かけて中心温度を 800°Cにまで昇温した。 800°Cに到達 した後、エチレンガスを 36mLZ分、窒素ガスを 4500mLZ分(エチレン濃度 0. 8vo 1%、線速 2. 35cmZ秒)、反応圧力 1 X 105Pa (1気圧)の条件で 60分供給した後、 エチレンガスの供給をやめ、窒素流通下で温度を室温まで冷却し、カーボンナノチュ ーブを含有する組成物を取り出した。この反応条件におけるエチレンの熱分解率は 1 . 7%である。反応管を流通させる全てのガスは、下部から上部方向へ流通させた。
[0082] (カーボンナノチューブ含有糸且成物の共鳴ラマン分光分析)
上記合成により得られたカーボンナノチューブを含有する組成物を共鳴ラマン分光 計で測定した結果を図 9に示す。波長が 633nmのレーザー光を用いたところ GZD 比が 20であり、グラフアイト化度の高い高品質カーボンナノチューブであることがわか つた o
[0083]
(カーボンナノチューブ含有組成物の示差熱 '熱重量同時測定)
上記合成により得られたカーボンナノチューブ含有組成物の一部を採取して示差 熱 ·熱重量同時測定を行った結果、重量減少は 8%であった。
[0084] (カーボンナノチューブ含有組成物の電界放射型走査電子顕微鏡分析)
上記合成により得られたカーボンナノチューブ含有組成物を電界放射型走査電子 顕微鏡で観察したところ、図 10に示すように、数十 nmのバンドルを組んだ単層カー ボンナノチューブが観察された。
[0085] (カーボンナノチューブ含有組成物の高分解能透過型電子顕微鏡分析)
上記合成により得られたカーボンナノチューブ含有組成物を高分解能透過型電子 顕微鏡で観察したところ、図 11に示すように、カーボンナノチューブはきれいなグラフ アイト層で構成されており、外径が lnm前後のものが多く観察された。上記高分解能 透過型電子顕微鏡で単層カーボンナノチューブの割合を確認したところ、層数が単 層のカーボンナノチューブがカーボンナノチューブ総本数の 50%を占めていた。 (カーボンナノチューブの精製)
また、上記合成により得られたカーボンナノチューブ力 触媒を除去するため、次の ように精製処理を行った。カーボンナノチューブ含有組成物を 400°Cで 1時間空気の 存在下で焼成をした後、 6Nの塩酸水溶液に添加し、 80°Cのウォーターバス内で 2時 間攪拌した。濾過して得られた回収物を、さらに 6Nの塩酸水溶液に添加し、 80°Cの ウォーターバス内で 1時間攪拌した。濾過し、数回水洗した後、濾過物をトルエン Z 水( = 1Z1)の混合液に添加し、 30分超音波処理した後、 5分振った。トルエン相を 分液ロートで分取、濾過後、濾過物を 120°Cのオーブンでー晚乾燥することで、マグ ネシァおよび金属が除去され、精製されたカーボンナノチューブを得ることができた。
[0086] (カーボンナノチューブを含有する糸且成物の希薄酸素処理)
上記精製処理を施したカーボンナノチューブを含有する組成物について 5%濃度 の酸素により酸化処理を行い、アモルファスカーボンなどの不純物量を見積もった。 希薄濃度の酸素によりアモルファスカーボンなどの低耐熱性の不純物が選択的に焼 失し、結晶性を持ち耐熱性の高いカーボンナノチューブが残存するため、不純物の 混人量を見積ちることができる。
[0087] 電気炉中に設置した内径 64mmの縦型石英管の中央部の石英ウール上に、上記 で精製したカーボンナノチューブを含有する組成物を 0. lg秤量したるつぼを置き、 窒素を lOOOmLZ分で供給した。 60分かけて中心温度を 500°Cまで昇温した後、 5 %の酸素と 95%の窒素力も成る混合ガスを 2100mLZ分の条件で 30分供給した後 、酸素の供給をやめ、窒素流通下で温度を室温まで冷却し、触媒とカーボンナノチュ ーブを含有する組成物を取り出した。反応管を流通させる全てのガスは、上部から下 部方向へ流通させた。このときのカーボンナノチューブ含有組成物の重量減少度は 35%であり、即ち 65%がカーボンナノチューブであると考えられる。
[0088] <実施例 7 >
実施例 6と同様の反応系および固体触媒を用いて、 800°Cに到達した後、エチレン ガスを 5. 4mLZ分、窒素ガスを 671mLZ分(エチレン濃度 0. 8%、線速 0. 35cm Z秒)、反応圧力 l X 105Pa(l気圧)の条件で 60分供給した後、エチレンガスの供 給をやめ、窒素流通下で温度を室温まで冷却し、カーボンナノチューブを含有する 糸且成物を取り出した。この反応条件におけるエチレンの熱分解率は 9. 5%である。こ のようにして得たカーボンナノチューブ含有組成物にっ 、て、共鳴ラマン分光計で測 定した結果、 GZD比が 17と高いグラフアイト化度のカーボンナノチューブであること がわかった。
<実施例 8>
実施例 6と同様の反応系および固体触媒を用いて、反応温度が 900°Cであること 以外は実施例 6と同様の反応条件下で、触媒とカーボンナノチューブを含有する組 成物を合成した。この反応条件におけるエチレンの熱分解率は 8. 2%である。このよ うにして得たカーボンナノチューブ含有組成物にっ 、て、共鳴ラマン分光計で測定し た結果、 GZD比が 23と高 、グラフアイトイ匕度のカーボンナノチューブであることがわ かった。 [0089] <実施例 9> クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 16gをメタノール( 関東ィ匕学社製) 25mLに溶解した。この溶液に、軽質マグネシア (和光純薬工業社製 )を 5g加え、超音波洗浄機で 60分間処理し、 40°Cで攪拌しながら乾燥してメタノー ルを除去し、軽質マグネシア粉末に金属塩が担持された固体触媒を得た。得られた 触媒のかさ密度は 0. 60gZmLであった。
(カーボンナノチューブの合成)
実施例 6と同様の反応系および反応条件下で、上記触媒を反応させて、触媒と力 一ボンナノチューブを含有する組成物を得た。このようにして得たカーボンナノチュー ブ含有組成物について、共鳴ラマン分光計で測定した結果、 G/D比が 19と高いグ ラファイトイ匕度のカーボンナノチューブであることがわ力つた。また、上記のカーボン ナノチューブ含有組成物について示差熱 ·熱重量同時測定を行った結果、重量減少 は 9%であった。
[0090] また、実施例 6同様の希薄酸化処理を行った結果、カーボンナノチューブ含有組成 物の重量減少度は 19%であり、即ち 81%がカーボンナノチューブであった。
<実施例 10> (軽質マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 10gを 500mlナス型フラスコに取り、 エタノール (関東ィ匕学社製) 300mLをカ卩えて溶解させた。次に、軽質マグネシア (和光 純薬工業社製) 100gを加え、エタノール溶媒に分散させた後、超音波洗浄機で 30 分処理した。その後、 40°Cで、エバポレーターを用いてエタノールを除去し、マグネ シァに金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 60g/ mLであつ 7こ。
(カーボンナノチューブの合成)
図 12に示した縦型反応器でカーボンナノチューブを合成した。
[0091] 反応器 100は内径 32mm、長さは 120mmの円筒形石英管である。中央部に石英 焼結板 101を具備し、石英管下方部には、不活性ガスおよび原料ガスの供給ライン 104、上部には排ガスライン 105および、触媒投入ライン 103を具備する。さらに、反 応器を任意温度に保持できるように、反応器の円周を取り囲む加熱器 106を具備す る。加熱器 106には装置内の流動状態が確認できるよう点検口 107が設けられてい る。
[0092] 固体混合触媒 8gを取り、触媒投入ライン 103を通して、石英焼結板 101上に触媒 をセットした。次いで、ガス供給ライン 104からアルゴンガスを lOOOmL/分で供給開 始した。反応器内をアルゴンガス雰囲気下とした後、温度を 800°Cに加熱した (昇温 時間 30分)。
[0093] 800°Cに到達した後、温度を保持し、ガス供給ライン 104のアルゴン流量を 1980m L/分に上げ、石英焼結板上の固体触媒の流動化を開始させた。加熱炉点検口 107 力も流動化を確認した後、ガス組成をエチレン lvol%、アルゴン 99vol%に調整した ガスに切り替え、 20000mL/分で反応器に供給開始した。該混合ガスを 30分供給し た後、アルゴンガスのみの流通に切り替え、合成を終了させた。
[0094] 加熱を停止させ室温まで放置し、室温になって力 反応器力 触媒とカーボンナノ チューブを含有する組成物を取り出した。一部廃ガスと共に反応器からリークした触 媒もあり、カーボンナノチューブ含有組成物の量は 6. 5gであった。
[0095] 得られたカーボンナノチューブ含有組成物を熱重量測定装置 (TGA)により熱分析 測定をした結果、炭素重量は 8%であった。共鳴ラマン分光計で測定した結果、 G/ D比が 15と高いグラフアイト化度のカーボンナノチューブであることがわ力つた。 <比較例 1 >
(重質マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 4. 92gをメタノール (関東ィ匕学社製) 250mLに溶解した。この溶液に、重質マグネシア (和光純薬工業社製)を 50. Ogカロ え、超音波洗浄機で 60分間処理し、 80°Cで乾燥してメタノールを除去し、軽質マグ ネシァ粉末に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 7 2gZmLであった。
[0096] (カーボンナノチューブの合成)
上記で調製した固体触媒を用いた以外は実施例 1と同様の反応系および反応条 件下で反応を行 、、触媒とカーボンナノチューブを含有する組成物を得た。
[0097] (カーボンナノチューブ含有組成物の熱分析)
上記のようにして得たカーボンナノチューブ含有組成物の熱分析を行ったところ、 その重量減少は 9%であった。
[0098] (カーボンナノチューブ含有糸且成物の共鳴ラマン分光分析)
上記のようにして得たカーボンナノチューブ含有組成物を共鳴ラマン分光計で測定 した結果、 G/D比は 8であることがわかった(図 13)。 Dバンドが高いことで、ァモル ファスカーボンや CNTの欠陥が多いことがわかった。
[0099] (カーボンナノチューブ含有組成物の高分解能透過型電子顕微鏡分析)
上記のようにして得たカーボンナノチューブ含有組成物を高分解能透過型電子顕 微鏡を用いて、観察したところ、内径 2nm以下のカーボンナノチューブはほとんど観 察されず(20本以下)、外径の太 ヽ(3nm以上)カーボンナノチューブが観察された( 図 14)。
<比較例 2>
(マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 5gをメタノール (関東ィ匕学社製) 2 5mLに溶解した。この溶液に、マグネシア (赤穂化成社製)を 5g加え、超音波洗浄機 で 60分間処理し、 40°Cで攪拌しながら乾燥してメタノールを除去し、軽質マグネシア 粉末に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 94g/ mLであつ 7こ。
[0100] (カーボンナノチューブの合成)
電気炉中に設置した内径 64mmの縦型石英管の中央部の石英ウール上に、上記 で調製した固体触媒 1. Ogをとり、窒素を 1600mLZ分で供給した。石英管内が窒 素で充分置換した後、 60分かけて中心温度を 800°Cにまで昇温加熱した。 800°Cに 到達した後、アセチレンガスを 36mLZ分、窒素ガスを 4500mLZ分 (アセチレン濃 度 0. 79%、線速 2. 35cmZ秒)、反応圧力 l X 105Pa (l気圧)の条件で 60分供給 した後、アセチレンガスの供給をやめ、窒素流通下で温度を室温まで冷却し、触媒と カーボンナノチューブを含有する組成物を取り出した。反応管を流通させる全てのガ スは、下部から上部方向へ流通させた。
[0101] (カーボンナノチューブ含有組成物の共鳴ラマン分光分析) 上記合成により得ら れたカーボンナノチューブ含有組成物を共鳴ラマン分光計で測定した結果を図 15 に示す。波長が 633nmのレーザー光を用いたところ GZD比が 10であることがわか つた o
<比較例 3>
(金属担持マグネシアの調製)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 07gをメタノール (関東ィ匕学社製) 50mLに溶解した。この溶液に、水酸ィ匕マグネシウム (和光純薬工業社製)を 14. 6g 加え、 5分間攪拌した後、 40°Cで攪拌しながら乾燥してメタノールを除去した。その 後、大気下、 550°Cで 3時間焼成することでマグネシア粉末に金属塩が担持された 固体触媒を得た。得られた触媒の力さ密度は 0. 26gZmLであった。
[0102] (カーボンナノチューブの合成)
電気炉中に設置した内径 64mmの縦型石英管の中央部の石英ウール上に、上記 で調製した固体触媒 1. Ogをとり、窒素を 1600mLZ分で供給した。石英管内が窒 素で充分置換した後、 60分かけて中心温度を 800°Cにまで昇温した。 800°Cに到達 した後、アセチレンガスを 36mLZ分、窒素ガスを 4500mLZ分(アセチレン濃度 0. 79vol%、線速 2. 35cm/秒)、反応圧力 1 X 105Pa (1気圧)の条件で 60分供給し た後、アセチレンガスの供給をやめ、窒素流通下で温度を室温まで冷却した。反応 管内の触媒装填位置より高い位置まで黒くなつており、触媒が飛散したと考えられる 。反応管を流通させる全てのガスは、下部から上部方向へ流通させた。
[0103] (カーボンナノチューブ含有組成物の共鳴ラマン分光分析) 上記合成により得ら れたカーボンナノチューブを含有する糸且成物を共鳴ラマン分光計で測定したころ G ZD比が 1. 0であり、アモルファスカーボンや CNTの欠陥が多いことがわかった。 <比較例 4>
(シリカへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 5gをメタノール (関東ィ匕学社製) 2 5mLに溶解した。この溶液に、シリカ(触媒学会参照触組 RC— SIO— 5)を 5. Ogカロ え、超音波洗浄機で 60分間処理し、 80°Cで乾燥してメタノールを除去し、アルミナ粉 末に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 29g/mL であった。 [0104] (カーボンナノチューブの合成)
上記で調製した固体触媒を用いた以外は実施例 1と同様の反応系および反応条 件下で反応を行 ヽ、カーボンナノチューブを含有する組成物を得た。
[0105] (カーボンナノチューブ含有組成物の熱分析)
上記のようにして得たカーボンナノチューブ含有組成物の熱分析を行ったところ、 その重量減少は 30%であった。
[0106] (カーボンナノチューブを含有する糸且成物の共鳴ラマン分光分析)
上記のようにして得たカーボンナノチューブ含有組成物を共鳴ラマン分光計で測定 した結果、 GZD比は 2. 0であることがわかった(図 16)。 Dバンドが高いことで、ァモ ルファスカーボンや CNTの欠陥が多いことがわかつた。
<比較例 5 >
(アルミナへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (和光純薬工業社製) 0. 5gをメタノール (関東ィ匕学社製) 2 5mLに溶解した。この溶液に、アルミナ (触媒学会参照触^ [RC— ALO— 4)を 5. 0 gカロえ、超音波洗浄機で 60分間処理し、 80°Cで乾燥してメタノールを除去し、アルミ ナ粉末に金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 0. 71g Z mLであつ 7こ。
[0107] (カーボンナノチューブの合成)
上記で調製した固体触媒を用いた以外は実施例 1と同様の反応系および反応条 件下で反応を行 ヽ、カーボンナノチューブを含有する組成物を得た。
[0108] (カーボンナノチューブ含有組成物の熱分析)
上記のようにして得たカーボンナノチューブ含有組成物の熱分析を行ったところ、 その重量減少は 21. 4%であった。
[0109] (カーボンナノチューブ含有糸且成物の共鳴ラマン分光分析)
上記のようにして得たカーボンナノチューブを含有する組成物を共鳴ラマン分光計 で測定した結果、 G/D比は 1. 7であることがわ力つた(図 17)。 Dバンドが高いこと で、アモルファスカーボンや CNTの欠陥が多!、ことがわかった。
<比較例 6 > (マグネシアへの金属塩の担持)
クェン酸アンモ-ゥム鉄 (関東ィ匕学社製) 10gを 500mlナス型フラスコに取り、ェタノ ール (関東ィ匕学社製) 300mLを加えて溶解させた。次に、マグネシア UBE95(宇部マ テリアルズ社製) 100gを加え、エタノール溶媒に分散させた後、超音波洗浄機で 30 分処理した。その後、 40°Cで、エバポレーターを用いてエタノールを除去し、マグネ シァに金属塩が担持された固体触媒を得た。得られた触媒のかさ密度は 1. 44g/ mLであつ 7こ。
(カーボンナノチューブの合成)
上記で調製した固体触媒を用いた以外は実施例 10と同様の反応系および反応条 件下で反応を行った力、カーボンナノチューブはほとんど得ることができな力つた。
[0110] [表 1]
表 1
Figure imgf000031_0001
産業上の利用可能性
[0111] 本発明によれば、均一で高品質のカーボンナノチューブを多量に、効率よく合成す ることがでさる。

Claims

請求の範囲
[1] マグネシアに金属を担持した粉末状の触媒であって、力さ密度が 0. 30gZmL以上 0. 70gZmL以下であるカーボンナノチューブ製造用触媒を、縦型反応器中、反応 器の水平断面方向全面に存在させ、該反応器内に炭素含有化合物を鉛直方向に 流通させ、該炭素含有ィ匕合物と前記触媒を 500〜1200°Cで接触させるカーボンナ ノチューブの製造方法。
[2] 縦型反応器が、鉛直方向に設置された反応器を有するものであって、該縦型反応器 の一方の端部から他方の端部に向けた方向に炭素含有ィ匕合物が流通し、該炭素含 有化合物が、カーボンナノチューブ製造用触媒で形成される触媒層中を通過する態 様で流通する機構を備えた請求項 1に記載のカーボンナノチューブの製造方法。
[3] 前記縦型反応器が、流動床型反応器である請求項 1または 2に記載のカーボンナノ チューブの製造方法。
[4] 前記マグネシアが軽質マグネシアである請求項 1〜3の 、ずれかに記載のカーボン ナノチューブの製造方法。
[5] 前記マグネシアが直径 l〜50nmの細孔を有する請求項 1〜4のいずれかに記載の カーボンナノチューブの製造方法。
[6] 前記マグネシアの細孔容量が 0. lOmLZg以上である請求項 5に記載のカーボンナ ノチューブの製造方法。
[7] 前記金属が少なくとも Feを含む金属である請求項 1〜6のいずれかに記載のカーボ ンナノチューブの製造方法。
[8] 前記炭素含有ィ匕合物が混合ガスとして流通するものであって、その混合ガス中の炭 素含有ィ匕合物の濃度が 2vol%以下である請求項 1〜7のいずれかに記載のカーボ ンナノチューブの製造方法。
[9] 前記炭素含有化合物がメタン、ェタン、エチレン、アセチレン、プロパン、プロピレン のうち少なくとも 1つを含む請求項 1〜8のいずれかに記載のカーボンナノチューブの 製造方法。
[10] 前記カーボンナノチューブが、内径が 2nm以下のカーボンナノチューブが主生成物 である請求項 1〜9のいずれかに記載のカーボンナノチューブの製造方法。
[11] 前記炭素含有化合物をその熱分解率が 10%以下でカーボンナノチューブ製造用触 媒と接触させる請求項 1〜: LOのいずれかに記載のカーボンナノチューブの製造方法
[12] 流通させる前記炭素含有化合物の線速が 0. 20cmZ秒以上である請求項 1〜11の
V、ずれかに記載のカーボンナノチューブの製造方法。
[13] 前記炭素含有化合物が炭素数 2以上の炭素含有化合物である請求項 1〜12のいず れかに記載のカーボンナノチューブの製造方法。
[14] 前記炭素含有ィ匕合物がメタンまたはメタンを含有する混合物であり、その線速が 9. 5
X 10_3cmZ秒以下の線速でカーボンナノチューブ製造用触媒と接触させる請求項
1〜: L 1のいずれかにカーボンナノチューブの製造方法。
[15] マグネシアに金属を担持した触媒であって、力さ密度が 0. 30gZmL以上 0. 70g/ mL以下であるカーボンナノチューブ製造用触媒。
PCT/JP2006/324653 2005-12-29 2006-12-11 カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触媒 WO2007074629A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/087,125 US7704482B2 (en) 2005-12-29 2006-12-11 Process for producing carbon nanotube and catalyst for carbon nanotube production
EP06834408.4A EP1977997A4 (en) 2005-12-29 2006-12-11 PROCESS FOR PRODUCING CARBON NANOTUBES AND CATALYST FOR THE PRODUCTION OF CARBON NANOTUBES
KR1020087018499A KR101328294B1 (ko) 2005-12-29 2006-12-11 카본 나노 튜브의 제조 방법 및 카본 나노 튜브 제조용촉매
CN2006800501598A CN101351404B (zh) 2005-12-29 2006-12-11 碳纳米管的制造方法和碳纳米管制造用催化剂
JP2007507612A JP5223335B2 (ja) 2005-12-29 2006-12-11 カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触媒

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-380679 2005-12-29
JP2005380679 2005-12-29
JP2006-088344 2006-03-28
JP2006088344 2006-03-28
JP2006181440 2006-06-30
JP2006-181440 2006-06-30

Publications (1)

Publication Number Publication Date
WO2007074629A1 true WO2007074629A1 (ja) 2007-07-05

Family

ID=38217850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324653 WO2007074629A1 (ja) 2005-12-29 2006-12-11 カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触媒

Country Status (6)

Country Link
US (1) US7704482B2 (ja)
EP (1) EP1977997A4 (ja)
JP (1) JP5223335B2 (ja)
KR (1) KR101328294B1 (ja)
CN (1) CN101351404B (ja)
WO (1) WO2007074629A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230947A (ja) * 2007-02-20 2008-10-02 Toray Ind Inc 単層および2層カーボンナノチューブ混合組成物
EP2117012A1 (en) * 2007-02-20 2009-11-11 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
US20100193731A1 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
EP2218682A1 (en) * 2007-11-30 2010-08-18 Toray Industries, Inc. Carbon nanotube assembly and process for producing the same
WO2011108269A1 (ja) 2010-03-02 2011-09-09 昭和電工株式会社 炭素繊維の製造方法
CN101440010B (zh) * 2007-11-23 2013-01-16 深圳大学 一种铅/碳纳米管复合粉体及其制备方法
JP2013108201A (ja) * 2011-10-27 2013-06-06 Showa Denko Kk 炭素繊維の製造方法
JP2016164122A (ja) * 2008-05-01 2016-09-08 本田技研工業株式会社 高品質なカーボン単層ナノチューブの合成
CN107245351A (zh) * 2017-08-01 2017-10-13 东北大学 固体燃料热解气化制备合成气和热解气的方法及***

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266907B2 (ja) * 2007-06-29 2013-08-21 東レ株式会社 カーボンナノチューブ集合体、分散体および導電性フィルム
TWI519471B (zh) 2009-03-04 2016-02-01 東麗股份有限公司 含有奈米管之組成物、奈米碳管製造用觸媒體及奈米碳管水性分散液
WO2013191253A1 (ja) * 2012-06-22 2013-12-27 国立大学法人東京大学 カーボンナノチューブ及びその製造方法
CN105008276B (zh) 2013-02-28 2017-11-21 东丽株式会社 碳纳米管聚集体及其制造方法
EP3129321B1 (en) 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
WO2014151138A1 (en) * 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
WO2014151898A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
KR101746260B1 (ko) * 2014-06-12 2017-06-12 주식회사 엘지화학 담지 촉매, 이로부터 얻어진 탄소나노튜브 응집체 및 이들의 제조방법
WO2016044749A1 (en) 2014-09-19 2016-03-24 Nanosynthesis Plus. Ltd. Methods and apparatuses for producing dispersed nanostructures
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CN111485225B (zh) * 2020-04-13 2021-11-26 合肥科晶材料技术有限公司 一种超声雾化流化床装置
CN111986834B (zh) * 2020-07-29 2022-03-22 北海惠科光电技术有限公司 一种碳纳米管导电薄膜的制作方法、显示面板和显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532180A (ja) * 2001-06-28 2004-10-21 アンスティテュ ナシオナル ポリテクニク ドゥ トゥールーズ 整然としたカーボンナノチューブを流動床で選択的に製造する方法
JP2006298713A (ja) * 2005-04-22 2006-11-02 Univ Nagoya 3層カーボンナノチューブの製造方法および3層カーボンナノチューブ含有組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US215405A (en) * 1879-05-13 Improvement in scythes
US3839193A (en) * 1970-04-10 1974-10-01 Universal Oil Prod Co Hydrocarbon conversion with a trimetallic catalytic composite
DE69314819T2 (de) * 1992-02-05 1998-06-10 Grace W R & Co Metallpassivierung/SOx-Kontrollzusammensetzungen für katalytisches Fluidkracken
CN100439240C (zh) * 2001-11-28 2008-12-03 国立大学法人名古屋大学 中空纳米纤维的制备方法、中空纳米纤维以及用于制备中空纳米纤维的催化剂组合物
JP3812944B2 (ja) 2001-11-28 2006-08-23 国立大学法人名古屋大学 中空状ナノファイバーの製造法、中空状ナノファイバー、中空状ナノファイバー含有組成物、触媒組成物、および電子放出材料
US7250148B2 (en) 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
AU2003291133A1 (en) * 2002-11-26 2004-06-18 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532180A (ja) * 2001-06-28 2004-10-21 アンスティテュ ナシオナル ポリテクニク ドゥ トゥールーズ 整然としたカーボンナノチューブを流動床で選択的に製造する方法
JP2006298713A (ja) * 2005-04-22 2006-11-02 Univ Nagoya 3層カーボンナノチューブの製造方法および3層カーボンナノチューブ含有組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI W.X.: "Clean double-walled carbon nanotubes synthesized by CVD", CHEMICAL PHYSICS LETTERS, vol. 368, 2003, pages 299 - 306, XP003014180 *
See also references of EP1977997A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028790B2 (en) 2007-02-20 2015-05-12 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
JP2008230947A (ja) * 2007-02-20 2008-10-02 Toray Ind Inc 単層および2層カーボンナノチューブ混合組成物
EP2117012A4 (en) * 2007-02-20 2011-03-16 Toray Industries CARBON NANOE ASSEMBLY AND ELECTRICALLY CONDUCTIVE FILM
EP2117012A1 (en) * 2007-02-20 2009-11-11 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
CN101440010B (zh) * 2007-11-23 2013-01-16 深圳大学 一种铅/碳纳米管复合粉体及其制备方法
KR101132498B1 (ko) * 2007-11-30 2012-04-02 도레이 카부시키가이샤 카본 나노튜브 집합체 및 그의 제조 방법
EP2218682A1 (en) * 2007-11-30 2010-08-18 Toray Industries, Inc. Carbon nanotube assembly and process for producing the same
EP2218682A4 (en) * 2007-11-30 2011-08-24 Toray Industries CARBON FIBROUS TUBE ASSEMBLY AND METHOD FOR THE PRODUCTION THEREOF
US8038908B2 (en) 2007-11-30 2011-10-18 Toray Industries, Inc. Carbon nanotube assembly and process for producing the same
US10850984B2 (en) 2008-05-01 2020-12-01 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
JP2017222565A (ja) * 2008-05-01 2017-12-21 本田技研工業株式会社 高品質なカーボン単層ナノチューブの合成
JP2016164122A (ja) * 2008-05-01 2016-09-08 本田技研工業株式会社 高品質なカーボン単層ナノチューブの合成
US9178212B2 (en) 2009-01-30 2015-11-03 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
US8608983B2 (en) * 2009-01-30 2013-12-17 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
US20100193731A1 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
WO2011108269A1 (ja) 2010-03-02 2011-09-09 昭和電工株式会社 炭素繊維の製造方法
JP2013108201A (ja) * 2011-10-27 2013-06-06 Showa Denko Kk 炭素繊維の製造方法
CN107245351A (zh) * 2017-08-01 2017-10-13 东北大学 固体燃料热解气化制备合成气和热解气的方法及***
CN107245351B (zh) * 2017-08-01 2023-04-18 东北大学 固体燃料热解气化制备合成气和热解气的方法及***

Also Published As

Publication number Publication date
JPWO2007074629A1 (ja) 2009-06-04
EP1977997A1 (en) 2008-10-08
KR20080083027A (ko) 2008-09-12
CN101351404B (zh) 2011-11-02
CN101351404A (zh) 2009-01-21
KR101328294B1 (ko) 2013-11-14
JP5223335B2 (ja) 2013-06-26
US7704482B2 (en) 2010-04-27
US20090022652A1 (en) 2009-01-22
EP1977997A4 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5223335B2 (ja) カーボンナノチューブの製造方法およびカーボンナノチューブ製造用触媒
JP5102633B2 (ja) 長いカーボン単層ナノチューブを成長させるための方法
US9409779B2 (en) Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst
JP4849437B2 (ja) 3層カーボンナノチューブの製造方法および3層カーボンナノチューブ含有組成物
JP2006188389A (ja) 高純度2層〜5層カーボンナノチューブの製造方法、および高純度2層〜5層カーボンナノチューブ含有組成物
Sarno et al. Evaluating the effects of operating conditions on the quantity, quality and catalyzed growth mechanisms of CNTs
JP2010201351A (ja) カーボンナノチューブ製造用触媒体、その製造方法およびカーボンナノチューブ含有組成物の製造方法およびカーボンナノチューブ含有組成物
KR20170011779A (ko) 열안정성이 개선된 카본나노튜브
JP3812944B2 (ja) 中空状ナノファイバーの製造法、中空状ナノファイバー、中空状ナノファイバー含有組成物、触媒組成物、および電子放出材料
JP5585275B2 (ja) カーボンナノチューブ製造法
JP4296328B2 (ja) 中空状ナノファイバー含有組成物及び中空状ナノファイバーの製造法
JP2008031024A (ja) カーボンナノチューブの製造方法
JP2007197304A (ja) カーボンナノチューブの製造方法及びカーボンナノチューブ含有組成物
Rajesh et al. Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition
KR20170032566A (ko) 결정성이 개선된 카본나노튜브
JP2007015914A (ja) カーボンナノチューブの製造方法
JP2003238130A (ja) カーボンナノチューブの製造方法および触媒組成物
Ratković et al. Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts
JP2005314206A (ja) カーボンナノチューブの製造方法及びカーボンナノチューブ含有組成物
EP1848531A1 (en) Catalysts for the large scale production of high purity carbon nanotubes with chemical vapor deposition
Pooperasupong et al. Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3
US11826732B2 (en) Catalyst for MWCNT production
Sápi et al. Synthesis and characterization of nickel catalysts supported on different carbon materials
JP2012051765A (ja) カーボンナノチューブ集合体および製造法
CN115666782B (zh) 用于mwcnt生产的改进催化剂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680050159.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007507612

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087018499

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12087125

Country of ref document: US