WO2004067169A1 - Catalyst for producing carbon nanocoil and method for preparation thereof, and method for producing carbon nanocoil - Google Patents

Catalyst for producing carbon nanocoil and method for preparation thereof, and method for producing carbon nanocoil Download PDF

Info

Publication number
WO2004067169A1
WO2004067169A1 PCT/JP2004/000722 JP2004000722W WO2004067169A1 WO 2004067169 A1 WO2004067169 A1 WO 2004067169A1 JP 2004000722 W JP2004000722 W JP 2004000722W WO 2004067169 A1 WO2004067169 A1 WO 2004067169A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
tin
indium
fine particles
iron
Prior art date
Application number
PCT/JP2004/000722
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Nakayama
Lujun Pan
Toshikazu Nosaka
Osamu Suekane
Xu Li
Takashi Okawa
Shoji Hosokawa
Toshiki Goto
Takeshi Nagasaka
Hiroyuki Tsuchiya
Original Assignee
Japan Science And Technology Agency
Osaka Prefecture
Daiken Chemical Co., Ltd.
Otsuka Chemical Co., Ltd.
Taiyo Nippon Sanso Corporation
Nissin Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Osaka Prefecture, Daiken Chemical Co., Ltd., Otsuka Chemical Co., Ltd., Taiyo Nippon Sanso Corporation, Nissin Electric Co., Ltd. filed Critical Japan Science And Technology Agency
Publication of WO2004067169A1 publication Critical patent/WO2004067169A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • B01J35/393

Definitions

  • the present invention relates to an indium-tin-iron-based catalyst used in the production of carbon nanocoils, and more particularly, to catalyst fine particles in which an indium-tin-aluminum-iron catalyst is formed into fine particles and a method for producing the same.
  • the present invention relates to a method for manufacturing a carbon nanocoil that efficiently forms a carbon nanocoil using the catalyst fine particles as a core.
  • Carbon nanocoils in which carbon nanotubes are wound in a coil shape have been manufactured. Carbon nanocoils have the same properties as carbon nanotubes, and have remarkable electromagnetic inductive properties, and are useful as materials for hard disk heads and electromagnetic wave absorbers. In addition, it has a spring property that returns to its original state even when it is stretched to twice its length, so it is attracting attention as a material for micromachine spring actuators.
  • Carbon nanocoils were first synthesized by Amelinks et al. (Amelinckx, X. B. Zhang, D. Bernaerts, X.F. It was also clarified that carbon microcoils have an amorphous structure, whereas carbon nanocoils have a graphite structure.
  • Their manufacturing method is to form metal catalysts such as Co, Fe, and Ni into fine powder, heat the vicinity of the catalyst to 600 to 700 ° C, and contact acetylene to contact the catalyst.
  • This is a method in which an organic gas such as benzene or benzene is circulated to decompose these organic molecules.
  • an organic gas such as benzene or benzene is circulated to decompose these organic molecules.
  • the shapes of the carbon nanocoils produced were varied, and the yields were low and produced only by chance. In other words, it was not industrially usable and a more efficient manufacturing method was required.
  • This indium-tin-iron-based catalyst has the advantage that carbon nanocoils can be efficiently produced.
  • the outer diameter of the carbon nanocoil and the cross-sectional diameter of the tubule, which is the fiber of the carbon nanocoil were distributed over a wide range. It has proven difficult to manufacture. This point will be described in detail with reference to FIGS. 21 and 22.
  • FIG. 21 is a schematic configuration diagram of a carbon nanocoil production apparatus 2 using a conventional catalyst.
  • a heating device 6 is wound around the outer periphery of the reaction tank 4, and a reaction chamber 8 serving as an isothermal region is formed in the reaction tank 4.
  • a substrate 41 on which a conventional catalyst 40 for producing carbon nanocoils is formed is arranged.
  • the carbon nanocoil production catalyst 40 is formed by depositing the iron thin film 44 on the surface of the indium tin thin film 42.
  • Source gases such as hydrocarbons are supplied along with the carrier gas in the direction of arrow a.
  • the substrate 41 is arranged so that the gas contacts the surface of the catalyst.
  • the raw material gas is decomposed in the process of contacting with the catalyst, and the carbon atoms generated by the decomposition are selectively deposited on the catalyst surface to form carbon nanocoils 1.
  • Innumerable carbon nanocoils 1 are generated on the catalyst surface. Based on the amount of carbon in the source gas and the amount of carbon nanocoils produced, the yield was determined to be about 90%, indicating a highly efficient carbon nanocoin production process.
  • This cross-sectional diameter is also called the outer coil diameter or coil diameter.
  • Figure 22 is an electron micrograph of carbon nanocoils 1 produced using a conventional catalyst. Although many carbon nanocoils 1 are photographed, not only the coil diameters vary, but also the coil pitch varies, and the cross-sectional diameter (called the tube diameter) of the tuple, which is the fiber that forms the coil, varies. Can be recognized. Thus, it can be seen that the conventional catalysts are excellent in production efficiency, but are produced by mixing carbon nanocoils 1 of various shapes. In other words, the conventional catalyst has a disadvantage that it cannot produce a carbon nanocoil having a uniform shape. If the shape of the carbon nanocoil is different, the physical properties of the coil are naturally different.
  • the physical properties of the coil include mechanical properties such as elastic modulus of the coil against expansion and contraction, flexibility of the coil against radius, electronic properties such as electron emission characteristics and electromagnetic wave absorption characteristics, hydrogen atom occlusion properties and functional group modification properties. Such as physicochemical properties.
  • the present invention has developed a catalyst for producing carbon nanocoils capable of selectively producing carbon nanocoils having a uniform shape, provided a method for mass-producing this catalyst,
  • An object of the present invention is to provide a method for mass-producing carbon nanocoils having a uniform shape by using the method.
  • a first invention is a method for producing carbon nanocoils having an outer diameter of 100 nm or less by a chemical vapor deposition method.
  • An iron-based catalyst which is a catalyst for the production of carbon nanocoils composed of catalyst fine particles.
  • the present inventors have noted the fact that a catalyst nucleus is attached to the tip of the tubule of the carbon nanocoil to be generated. The smaller the diameter of the nucleus, the smaller the tubule diameter, and the smaller the tubule diameter, the smaller the coil diameter.
  • the present invention has been completed by discovering a correlation of decreasing the size.
  • the present invention was completed based on the idea that an indium-tin-iron-based catalyst, which had been formed in a conventional planar shape, was formed into fine particles, and the fine particles of the catalyst became a catalyst core at the tip of the tube to form a carbon nanocoil. Things. Therefore, the diameter of the catalyst particles can be freely varied to vary the diameter of the tubule, and as a result, the diameter of the coil has been successfully varied. By making the diameter of the catalyst fine particles uniform, it becomes possible to efficiently produce carbon nanocoils having a uniform coil shape.
  • a second invention is a catalyst for producing carbon nanocoils, wherein the diameter of the catalyst fine particles is 1 nm to 10 ⁇ .
  • the catalyst fine particles serve as catalyst nuclei to grow carbon nanocoils, and therefore, the diameter of the catalyst fine particles and the tubule diameter have a high degree of correlation. Therefore, by freely controlling the diameter of the catalyst fine particles in the range of 1 nm to 10 ⁇ , it is possible to provide a carbon nanocoil having an arbitrary tubular diameter and coil diameter.
  • the third invention is a catalyst for producing carbon nanocoils, wherein iron is added in a range of 10 to 99.99% of indium and tin is added in a range of 0 to 30% by mole of indium.
  • the molar ratio of indium, tin and iron constituting the indium-tin-iron catalyst can be adjusted arbitrarily, but the yield of carbon nanocoils depends on the molar ratio of these three elements. The molar ratio can be freely adjusted to improve the production yield of carbon nanocoils.
  • the fourth invention forms a thin film of indium 'tin' iron-based compound on a substrate, and this thin film
  • This is a method for producing a catalyst for producing a carbon nanocoil, in which a thin film is formed into fine particles by heating the formed substrate to form fine catalyst particles on the substrate.
  • a thin-film planar catalyst of an indium tin-iron compound is formed, and in the second step, the substrate is heated to change the thin-film planar catalyst into fine particles, and countless counts are formed on the substrate.
  • Form catalyst fine particles A carbon nanocoil having a shape corresponding to the diameter of the formed catalyst fine particles can be manufactured.
  • the present invention has been completed based on the finding that fine particles are generated by heating.
  • the fifth invention is a method for producing a catalyst for producing a carbon nanocoil, in which a substrate on which a thin film is formed is annealed at a temperature of 100 ° C. to 1200 ° C. to make the thin film fine.
  • the diameter of the catalyst particles can be varied by the heating temperature, and by forming the catalyst particles having a uniform diameter, mass production of carbon nanocoils having a uniform shape becomes possible.
  • a catalyst for producing a carbon nanocoil which forms a thin film of an indium / tin / iron-based compound on a heated substrate and simultaneously forms the thin film into fine particles by the heating to form fine catalyst particles on the substrate. It is a manufacturing method. Since a thin film is formed on a substrate in a heated state, the thin film to be formed is finely divided at the same time, and the thin film formation and the fine particle formation can be performed at the same time.
  • the seventh invention is to form a solution in which an indium compound, a tin compound, and an iron compound are added to a solvent, separate a solid from the solution, and calcine the separated solid to form an indium, tin, iron-based compound.
  • This is a method for producing a catalyst for producing carbon nanocoils for producing the above-mentioned catalyst fine particles. Since the indimidi conjugate, the tin compound and the iron compound are uniformly mixed in the solution, for example, the pH of the solution is adjusted to form a suspension, and the suspension is filtered to remove the indium • tin ⁇ A solid having a uniform composition ratio of iron is separated. Since this solid is fired to form a solid solution and can be made into fine particles, catalyst fine particles having a uniform composition ratio and a uniform particle diameter can be produced. By combining the solution method and the firing method, mass production of catalyst fine particles becomes possible.
  • the eighth invention is a method for producing a carbon nanocoil production catalyst in which an indium compound, a Suzughi compound, and an Feihi compound form a colloid in a solution, and the colloid particles form catalyst fine particles. Since the indimidi conjugate, the tin compound and the iron compound are mixed in the solution to form a colloid, a solid formed of the colloid is separated and fired. In other words, since the colloid becomes the catalyst fine particles by firing, the diameter of the catalyst fine particles can be variably controlled by controlling the colloid diameter.
  • catalyst fine particles of an indium-tin-iron catalyst are arranged on a substrate, and the substrate is placed in a reaction vessel through which a raw material gas flows.
  • the catalyst fine particles decompose the raw material gas to form a tubule while adsorbing carbon atoms, and the tubule is wound by the catalyst fine particles to form a carbon nanocoil. Therefore, the catalyst fine particles can be positively utilized as the catalyst nucleus at the tip of the tube, and the carbon nanocoils having a uniform size corresponding to the diameter of the catalyst fine particles can be mass-produced on the substrate.
  • FIG. 1 is a schematic perspective view of the carbon nanocoil 1.
  • FIG. 2 is a schematic configuration diagram of an emission device using a carbon nanocoil as an electron source.
  • FIG. 3 is a relationship curve diagram of an emission start voltage Ve and a coil diameter D with respect to a tubular diameter d.
  • FIG. 4 is a process diagram of the first method of the present invention for forming catalyst fine particles 24 from an indium tin tin-based catalyst thin film 20.
  • FIG. 5 is a process diagram of a second method of the present invention for forming catalyst fine particles 24 from an indium tin tin-based catalyst thin film 20.
  • FIG. 6 is a schematic configuration diagram of an ion beam sputtering apparatus as an example of an apparatus for forming an indium 'tin' iron-based catalyst thin film 20.
  • FIG. 7 is a process chart of a third method of the present invention for forming an indium-tin-iron-based catalyst fine particle 24 by using a solution method.
  • FIG. 8 is a process diagram of a substrate growth method for producing carbon nanocoinole 1 by dispersing catalyst fine particles 24.
  • FIG. 9 is a schematic explanatory view of a horizontal flow production method for producing carbon nanocoils 1 by suspending catalyst fine particles 24.
  • FIG. 10 is a schematic explanatory view of a vertical flow production method for producing carbon nanocoils 1 while suspending catalyst fine particles 24.
  • Fig. 11 is an AFM image of a catalyst thin film that is not micronized because it is a substrate that has not been annealed.
  • FIG. 12 is an AFM image of the catalyst fine particle film subjected to the annealing treatment at 700 ° C.
  • FIG. 13 is an AFM image of the catalyst fine particle film subjected to the annealing treatment at 900 ° C.
  • Figure 14 is an SEM image of carbon nanocoils synthesized on a substrate that has not been annealed.
  • FIG. 15 is an SEM image of carbon nanocoinole synthesized by a catalyst fine particle film subjected to an annealing treatment at 700 ° C.
  • FIG. 16 is an SEM image of a carbon nanocoil synthesized by a catalyst fine-particle film subjected to annealing at 900 ° C.
  • FIG. 17 is an SEM image of a carbon nanocoil synthesized by a substrate heated at 100 ° C.
  • FIG. 18 is a SEM image of a carbon nanocoil synthesized by a substrate heated at 200 ° C.
  • FIG. 19 is an SEM image of a carbon nanocoil synthesized by a substrate heated at 300 ° C.
  • FIG. 20 is an SEM image of a carbon nanocoil synthesized by a substrate heated at 400 ° C.
  • FIG. 21 is a schematic configuration diagram of a conventional carbon nanocoil manufacturing apparatus 2 using a catalyst.
  • Figure 22 is an electron micrograph of a carbon nanocoil 1 produced using a conventional catalyst.
  • the present inventors have found that the catalyst nucleus decomposes the raw material gas to generate carbon atoms, and the catalyst nucleus adsorbs the carbon atoms, and in the process of depositing the carbon atoms, the tubule elongates while winding and the carbon nuclei expand. He thought that the nanocoils would grow.
  • FIG. 1 is a schematic perspective view of the carbon nanocoil 1.
  • FIG. This carbon nanocoin 1 is formed by winding a cable 3, and has a coil diameter D, a coil length L, and a coil pitch P.
  • Tubule means carbon fiber. The important thing is that the catalyst core 5 is attached to the tuple tip 3a.
  • the diameter of the catalyst core 5 is g. It is considered that the catalyst core 5 becomes a nucleus, the raw material gas is decomposed, carbon atoms are adsorbed, and the tuples 3 having a cross-sectional diameter of d extend. Tuple 3 has been observed to be a carbon nanotube.
  • the shape of the catalyst core 5 is various such as a spherical shape, a square shape, and a plug shape, and the diameter of a typical portion thereof is g.
  • Tubular diameter d and catalyst core diameter g are not necessarily equal, but it is considered that there is a correlation between the two sizes.
  • the tuple diameter d was small when the catalyst core diameter g was small, and the tuple diameter d was large when the catalyst core diameter g was large. If this finding is correct, the smaller the catalyst core diameter g, the smaller the tubular diameter d should be.
  • the present inventors discovered that there is also a certain correlation between the tuple diameter d and the coil diameter D. In other words, if the tubule diameter d is small, the coil diameter D is small, and if the tubule diameter d is large, the coil diameter D is large. Tend to be.
  • indium, tin, and iron-based catalysts are catalysts that can mass-produce carbon nanocoils, if these indium, tin and iron-based catalyst fine particles can be formed, these catalyst fine particles will be used as catalyst cores 5 to mass-produce carbon nanocoils 1. Should be possible. In addition, if a large amount of catalyst fine particles having a uniform diameter can be produced, it is possible to mass-produce carbon nanocoils 1 having a uniform shape corresponding to this diameter. In other words, the mass production of the carbon nanocoils 1 having a uniform size can be realized by using the catalyst fine particles made of an alloy of tin, tin and iron.
  • FIG. 2 is a schematic configuration diagram of an emission device using a carbon nanocoil as an electron source.
  • a carbon nanocoil 1 is fixed as an electron source on the electrode 10, and a DC power supply 14 is arranged on the electrodes 12 and 10.
  • the electrode 10 is a negative electrode.
  • the carbon nanocoil 1 Since the tip of the carbon nanocoil 1 is on the nanoscale, the lines of electric force concentrate on the tip and a high electric field acts.
  • the carbon nanocoil 1 has a field emission function, and emits electrons 16 by this high electric field, and a current flows in the direction of arrow b. This current begins to flow.
  • the voltage of DC power supply 14 is changed to the emission start voltage V e (Emission Turn-on
  • the present inventors have conducted research on the assumption that the emission starting voltage Ve may have a close correlation with the shape of the carbon nanocoil.
  • a coil diameter D (Coil Diameter), a tuple diameter d (Tubule Diameter) and a coil pitch P which give a coil shape are called coil parameters.
  • Carbon nanocoils 1 having three different sizes were selected, and these were named coil A, coil B and coil C.
  • FIG. 3 is a graph showing the relationship between the emission start voltage Ve and the coil diameter D with respect to the tuple diameter d. These relationship curves are obtained by graphing the data shown in Table 1. An almost linear relationship holds between the emission start voltage Ve (V) and the tubular diameter d (nm). There is no linear relationship between Koinole diameter D (nm) and tuple diameter d (nm), but there is a correlation in the sense that if one increases, the other increases.
  • FIG. 4 is a process chart of the first method of the present invention for forming the catalyst fine particles 24 from the indium / tin / iron-based catalyst thin film 20.
  • (4A) an indium-tin-based catalyst thin film 20 is formed on the surface of the substrate.
  • the film thickness t of the alloy 'tin' iron-based catalyst thin film 20 is suitably in the range of 10 nm to several ⁇ , but is not limited to this value.
  • the indium 'tin' iron-based catalyst thin film 20 may be a thin film containing at least ternary elements of indium, tin and iron.
  • indium oxide is composed of a mixture a compound of tin oxide and iron oxide, in the composition formula for example, F e 5 I n S n 0., ⁇ ⁇ , there are compounds such as F e I n S n 0. I_ ⁇ x.
  • Oxides obtained by firing in an oxygen atmosphere such as air are most suitable, but nitrides and carbides can also be used. Of course, other compounds may be used, or an alloy of indium 'tin' and iron may be used.
  • vapor phase method There are a vapor phase method, a liquid phase method, and a solid phase method as a method for producing the indium / tin / iron-based catalyst thin film 20.
  • Physical vapor deposition PVD, Physical Vapor Deposition
  • CVD chemical vapor deposition
  • PVD methods include vacuum evaporation, electron beam evaporation, laser ablation, molecular beam epitaxy (MBE), reactive evaporation, ion plating, cluster ion beam, glow discharge sputtering, and ion beam sputtering. And reactive sputtering.
  • MBE molecular beam epitaxy
  • MOMBE using organic metal raw materials (MO, Metal Organic), chemical beam epitaxy (CBE), and gas source epitaxy (GSE) can be used.
  • CVD methods include thermal CVD, metal-organic chemical vapor deposition (MOCVD), RF plasma CVD, £ 1 plasma, and optical CVD, laser CVD, and mercury sensitization.
  • the liquid phase method includes liquid phase epitaxy, electric plating, electroless plating, and coating method.
  • solid-phase methods include solid-phase epitaxy, recrystallization method, grapheepitaxy, laser beam method, and sol-gel method.
  • (4B) shows a step of making the indium-tin-iron-based catalyst thin film 20 into fine particles.
  • the aluminum / tin / iron-based catalyst thin film 20 is subjected to fine particle treatment to form an aluminum / tin / iron-based catalyst fine particle film 22.
  • the indium-tin-iron-based catalyst fine particle film 22 is composed of countless catalyst fine particles 24.
  • Heat treatment is performed as a method of the micronization treatment.
  • the substrate 18 on which the indium-tin-iron-based catalyst thin film 20 is formed is placed in a heating furnace and subjected to a heat treatment, the material forming the thin film is sintered, and the sintered particles become a unit to form catalyst fine particles 24. You.
  • the heating temperature is preferably from 100 to 1200 ° C, most preferably from 400 to 1000 ° C. If the heating temperature is low, sintering is not sufficient, and if the heating temperature is too high, the material becomes brittle due to oversintering.
  • the diameter s of the catalyst fine particles 24 decreases, and the heating temperature increases. As the diameter increases, the diameter s tends to increase. Therefore, the diameter s of the catalyst fine particles 24 can be freely controlled by controlling the heating temperature. As described above, the tubular diameter d of the carbon nanocoil 1 is determined by the diameter s of the catalyst fine particles 24.
  • (4C) shows a step of producing the carbon nanocoil 1 using the platinum-tin-iron-based catalyst fine particle membrane 22.
  • the raw material gas is passed in the direction of arrow c, the raw material gas is decomposed by the catalyst fine particles 24 serving as the catalyst nucleus 5, and the carbon nanocoil 1 to which the catalyst nucleus 5 is attached is produced. Since the catalyst fine particles 24 have a uniform diameter s, the diameter g of the catalyst core 5 is also uniform, and carbon nanocoils 1 having a uniform tubular diameter d and uniform coil diameter D can be mass-produced.
  • the powder of the catalyst fine particles 24 can be collected.
  • the substrate method in this way, not only can the carbon nanocoils 1 be produced on the substrate 18, but also the catalyst fine particles 24 can be recovered from the substrate 18.
  • FIG. 5 is a process chart of the second method of the present invention for forming catalyst fine particles 24 from an aluminum / tin / iron-based catalyst thin film 20.
  • the feature of this second method is that when the indium tin-iron catalyst thin film 20 is formed while heating the substrate, the formed indium tin-iron catalyst thin film 20 is immediately atomized to form fine particles of tin and iron. ⁇ Changes to iron-based catalyst fine particle film 22 That is.
  • an indium tin-iron based catalyst thin film 20 is formed on the surface of the substrate 18 while heating the substrate 18 by the heating device 26.
  • the method for forming the catalyst thin film 20 has been described with reference to FIG.
  • the indium 'tin' iron-based catalyst thin film 20 formed on the substrate 18 is sintered into fine particles, which are changed to indium 'tin' iron-based catalyst fine particle films 22 I do.
  • the film “tin” iron-based catalyst fine particles 22 is composed of countless catalyst fine particles 24.
  • the heating temperature of the heating device 26 is preferably 100 to 1200 ° C., and a temperature range of 200 to 700 ° C. is effective for reducing the diameter s of the catalyst fine particles 24. is there.
  • the temperature is not limited to these temperature ranges, as long as the thin film is finely divided. Also, the point that the smaller the thickness t of the thin film is, the smaller the diameter s of the fine particles is, which is almost the same as FIG.
  • the carbon nanocoils 1 are manufactured using the catalyst fine particles 24 as the catalyst nuclei 5.
  • the catalyst fine particles 24 can be removed from the substrate 18 and the powder of the catalyst fine particles 24 can be collected.
  • FIG. 6 is a schematic configuration diagram of an ion beam sputtering apparatus as an example of an apparatus for forming an indium / tin / iron-based catalyst thin film 20.
  • a sputtering method will be described as an example.
  • argon ions (A r +) are formed in the ion source 28, and a DC power supply 29 is interposed between the target 30 and the ion source 28.
  • the target 30 for example, a sintered body of an aluminum-tin-iron-based oxide material is used. Since the target 30 is disposed on the negative electrode side, argon ions collide with the surface of the target 30 and strike out the target fine particles 31 from the target 30. The target fine particles 31 are deposited on the surface of the substrate 18 to form an aluminum-tin-based catalyst thin film 20.
  • This ion beam sputtering method is a method applied to the step (4A) in FIG. 4 and the step (5A) in FIG.
  • other thin film forming methods can be used instead of the sputtering method.
  • it may be used.
  • FIG. 7 is a process chart of a third method of the present invention for forming an indium-tin-iron-based catalyst fine particle 24 by using a solution method.
  • This solution method is characterized in that a larger amount of catalyst fine particles 24 can be produced than in the substrate method.
  • the solvent 33 is stored in the container 32, and the indium compound, the tin compound, and the iron oxide are added to the solvent 33.
  • these three kinds of compounds are colloided, and countless colloid particles 34 are formed in the solution.
  • the three compounds form an intermediate by a physical reaction or a chemical reaction, and the intermediate forms the colloid particles 34.
  • the particle size of the colloid particles 34 can be freely controlled by adjusting the concentration of the conjugate. Excess colloid particles 34 may settle to the bottom of vessel 32.
  • the sintering converts the colloid particles 34 into catalyst fine particles 24. Therefore, the diameter s of the catalyst fine particles 24 can be controlled by controlling the particle size of the colloid particles 34.
  • a solid 35 is separated from the solvent 33.
  • the solid 35 When formed into a colloid, the solid 35 becomes an aggregate of colloid particles 34, but when not formed into a colloid, a solid 35 in which three kinds of compounds are uniformly mixed is obtained.
  • the separated solid 35 is fired by the heating device 36.
  • the firing temperature is preferably from 300 to 150 ° C., and in order to set the particle size small, from 400 to 100 is more preferable! / ,.
  • the firing time is from 10 minutes to 100 hours, preferably from 30 minutes to 50 hours.
  • the diameter s of the catalyst fine particles 24 depends on the particle size of the colloid particles 34 and is in the range of 1 nm to 100 ⁇ . As the diameter s is smaller, the tubule diameter d of the carbon nanocoil 1 is smaller, and a carbon nanocoinole 1 having a smaller size can be manufactured.
  • indium compound, tin compound, and iron compound used in the present invention known inorganic compounds and organic compounds are used.
  • iron chloride, iron sulfate, iron nitrate, iron bromide, iron Cal Bonil and the like Other known various compounds may also be used.
  • one iron salt can be used alone, or two or more iron salts can be used as needed. The same applies to indium salts and tin salts.
  • the solutions of the indium compound, the tin compound and the iron compound can be used alone or as a mixture of two or three of indium, tin and iron.
  • concentration of the total metal ions in the solution is not particularly limited as long as the reaction proceeds smoothly. Usually, 0. 0 1-5 0 weight 0/0, preferably from 0.1 to 2 0 may be weight percent.
  • the specific steps from solution formation to baking are as follows. For example, after preparing an alkaline mixed aqueous solution of an indium salt, a tin salt, and an iron salt, a solid substance is separated, the solid substance is dried, a powder frame is formed as necessary, and finally calcined, and the catalyst fine particles are formed. Is manufactured.
  • organic compounds of indium, tin, and iron are dispersed in a solvent, and a precursor of an indium-tin-iron-based compound is formed by a chemical reaction such as a hydrolysis reaction.
  • the precursor is separated, dried, pulverized if necessary, and finally calcined to produce fine catalyst particles.
  • All known separation methods can be used to separate the solid from the solution. Drying is usually performed at room temperature to 300 ° C., preferably at 50 to 200 ° C., and pulverization can be performed by a known inorganic substance pulverization method.
  • the composition ratio of iron / indium is usually 1 0-9 9.9 9 (mol 0/0), preferably 2 0-9 9 (mol 0/0) It is.
  • the composition ratio of tin / indium is 0 to 3 0 (mol 0/0), preferably 0.1 to 1 0 (mol 0/0).
  • the diameter of the catalyst particles is 1 ⁇ ⁇ ! ⁇ 100 ⁇ , depending on solution parameters such as colloid particle size.
  • FIG. 8 is a process diagram of a substrate growth method for producing carbon nanocoils 1 by dispersing catalyst fine particles 24.
  • the catalyst fine particles 24 are recovered as powder, the catalyst fine particles 24 are sprayed on the substrate 18 in (8).
  • the catalyst nanoparticle 24 becomes the catalyst core 5, and the carbon nanocoils 1 grow innumerably.
  • the carbon nanocoils 1 are collected and collected.
  • FIG. 9 is a schematic explanatory view of a horizontal flow production method for producing carbon nanocoils 1 by suspending catalyst fine particles 24.
  • the carbon nanocoil manufacturing apparatus 2 is attached to the outer periphery of the reaction tank 4.
  • a reaction chamber 8 is defined by disposing a heating device 6.
  • a spray nozzle 37 is disposed at the left end of the reaction tank 4.
  • the raw material gas flows in the direction of arrow a together with the carrier gas.
  • a powder consisting of 37 particles of catalyst particles and 24 particles of catalyst particles is sprayed in the direction of arrow e.
  • the catalyst fine particles 24 dispersed in the space serve as catalyst nuclei, and the carbon nanocoils 1 grow.
  • the catalyst fine particles flow along with the flow of the raw material gas, and the carbon nanocoil 1 grows in the flow process, and the carbon nanocoil 1 is recovered by a recovery device (not shown).
  • FIG. 10 is a schematic explanatory view of a vertical fluid production method for producing carbon nanocoils 1 while suspending catalyst fine particles 24.
  • a heating device 6 is arranged on the outer periphery of the reaction tank 4 and a reaction chamber 8 in an isothermal region is defined inside.
  • a spray nozzle 37 is provided at the upper end of the reaction tank 4, and an exhaust window 38 is provided at the lower end of the reaction tank 4.
  • the source gas flows down in the direction of arrow a together with the carrier gas.
  • a powder composed of the catalyst fine particles 24 from the spray nozzle 37 is sprayed in the direction of arrow e.
  • the catalyst fine particles 24 diffuse in the reaction chamber 8, and the catalyst fine particles 24 serve as catalyst nuclei to grow the carbon nanocoils 1.
  • the catalyst fine particles flow down together with the raw material gas, and the carbon nanocoils 1 grow in this flow process, and the carbon nanocoils 1 are deposited and collected on the bottom 4 a of the reaction tank 4.
  • the exhaust gas is exhausted from the exhaust window 38 in the direction of arrow f.
  • Composition formula was prepared F ea I n S n 0. O targets 3 0 for sputtering by sintering a composition of x.
  • a 200 nm-thick indium-tin-iron-based catalyst thin film 20 was formed on a substrate 18 by an ion beam sputtering method.
  • This substrate 18 was heated to 700 or 900 ° C. in an atmospheric furnace to perform an annealing treatment. The heating time was 10 hours, and the natural cooling time in the atmospheric furnace was 5 hours. For comparison, the case where no annealing treatment is performed is referred to as room temperature.
  • Atomic temperature microscopy was performed on the catalyst-particle film 22 formed on the substrate 18 with an annealing temperature of room temperature, 700 ° C, and 900 ° C. It was measured using In this AFM measurement, a carbon nanotube was fixed to a cantilever with a carbon film. A nanotube cantilever was used. The average catalyst particle diameter s was measured and the results are summarized in Table 2.
  • the coil diameter D increased to 200 nm. It is difficult to form catalyst fine particles! / I understand. According to the density of the carbon nanocoil 1, the density becomes maximum at 900 ° C, and the density becomes slightly lower at 700 ° C, but the size uniformity becomes the highest at 700 ° C. At room temperature, the coil density was lowest. A test at 1200 ° C. was also performed, but it was confirmed that the catalyst could be used.
  • the size of the carbon nanocoil can be made uniform, and a carbon nanocoil with a smaller coil diameter than conventional catalyst thin films can be manufactured.
  • the annealing temperature we succeeded in changing the coil diameter.
  • Example 2 Particle formation by substrate heat treatment at 100 to 400 ° C]
  • Example 2 While heating the substrate 18, the other sputtering conditions were exactly the same as those in Example 1, and an indium-tin-iron-based catalyst fine particle film 22 was formed on the substrate 18 using the ion beam sputtering method. did.
  • This is a method of forming a thin film into fine particles by simultaneously performing thin film formation and substrate heating.
  • the heating temperature of the substrate 18 is four types: 100 ° C., 200 ° C., 300 ° C., and 400 ° C.
  • an indium-tin-iron-based catalyst fine particle film 22 in which catalyst fine particles 24 are gathered in a thin film shape is formed.
  • carbon nanocoils 1 were produced by the CVD method in the same manner as in Example 1.
  • the grown carbon nanocoil 1 was photographed with a scanning electron microscope (SEM).
  • Table 4 shows the correlation between the substrate heating temperature and the average coil diameter D and coil density of the carbon nanocoil 1.
  • the catalyst lO Omg obtained in Example 1 was dispersed in ethanol lg, and the dispersion solution was dropped on a quartz plate (4 cmxl. 5 cm). After the ethanol had dried, there was about 3 mg of catalyst on the quartz plate. This quartz plate was arranged at the center of the reaction chamber 8.
  • He gas was introduced into the reaction chamber 8 at a flow rate of 260 sccm. Thereafter, the temperature inside the reaction chamber was increased from room temperature to 700 ° C at a rate of 15 ° C / min while introducing He gas. After the temperature reached 700 ° C, 1 to 3 of He gas was replaced with C 2 H 2 , and the mixed gas was allowed to flow for 30 minutes. Thereafter, C 2 H 2 gas was cut off, He gas alone was allowed to flow, and the mixture was cooled to room temperature.
  • the total amount of black product deposited on the quartz plate was 23 mg, which was more than several times the amount of the original catalyst.
  • SEM scanning electron microscope
  • Example 4 In the same manner as in Example 4, the catalyst was arranged on a quartz plate to synthesize carbon nanocoils. When the black product was observed with a scanning electron microscope (SEM), countless carbon nanocoils were observed.
  • SEM scanning electron microscope
  • catalyst fine particles of an indium-tin-iron catalyst are provided, and the catalyst fine particles can serve as a catalyst nucleus at the tip of a tube to strongly grow carbon nanocoils.
  • the diameter of the tuple can be changed, and as a result, the diameter of the manufactured coil can be freely adjusted.
  • carbon nanocoils having a uniform coil shape can be efficiently mass-produced.
  • catalyst fine particles having a diameter of 1 nm to 100 ⁇ for producing carbon nanocoils are provided. Since the catalyst fine particles serve as the catalyst nuclei to grow the carbon nanocoils, the diameter of the catalyst fine particles and the diameter of the tubule have a close correlation. By freely controlling the diameter of the catalyst particles in the range of 1 nm to 10 ⁇ , it is possible to selectively and inexpensively provide a large amount of carbon nanocoils with arbitrary tuple diameter and coil diameter. Can be.
  • iron is in a range of 10 to 99.9 mol 0 / indium.
  • Moles of indium and tin and iron tin constituting 0-3 0 mole 0/0 S indium-tin 'iron-based catalyst for synthesizing carbon nanocoils catalyst added in the range is provision of relative in Jiumu
  • a carbon nanocoil of uniform size can be manufactured with high efficiency by adjusting the ratio arbitrarily.
  • an indium-tin-iron-based catalyst thin film is formed on a substrate, and this thin film is formed. By heating the heated substrate, the thin film can be made finer to form fine catalyst particles on the substrate.
  • a thin-film planar catalyst of indium-tin-iron-based compound is formed.
  • the thin-film planar catalyst is changed into fine particles by heating the substrate, and countless catalyst particles are formed on the substrate.
  • a carbon nanocoil having a shape corresponding to the diameter of the generated catalyst fine particles can be produced.
  • the substrate on which the thin film is formed can be annealed at a temperature of 100 ° C. to 1200 ° C. to make the thin film fine.
  • the diameter of the catalyst particles can be varied according to the heating temperature, and by forming the catalyst particles having a uniform diameter, mass production of carbon nanocoils having a uniform shape can be realized.
  • a thin film is formed on a substrate in a heated state, and the formed thin film is finely divided at the same time, so that the thin film formation and the fine particle formation can be realized in parallel. Therefore, the production process of the fine particle catalyst can be shortened, and the production cost can be reduced.
  • the indium compound, the tin compound, and the iron compound are uniformly mixed in the solution, a solid material having a uniform indium-tin-iron composition ratio is generated. Since the solid is fired to form a solid solution and can be made into fine particles, catalyst fine particles having a uniform composition ratio and particle diameter can be produced.
  • the combination of the solution method and the firing method enables mass production of catalyst fine particles.
  • the indium compound, the tin compound and the iron compound are mixed in a solution to form a colloid, a solid formed of the colloid is separated and fired.
  • the colloid becomes the catalyst fine particles by firing, the diameter of the catalyst fine particles can be variably controlled by controlling the colloid diameter.
  • the catalyst fine particles decompose the raw material gas and adsorb carbon atoms to form a catalyst.
  • a tuple is formed, and the tuple is wound by the catalyst fine particles to form a carbon nanocoil.
  • the catalyst fine particles are suspended in the space by spraying or the like, and the carbon nanocoils are grown by reacting with the raw material gas during the suspension. Mass production becomes possible.

Abstract

A catalyst for producing carbon nanocoils, characterized in that it is an indium-tin-iron based catalyst for producing carbon nanocoils (1) having a diameter of 1000 nm or less by the chemical vapor-phase deposition method and the indium-tin-iron based catalyst comprises fine catalyst particles (24), preferably having a diameter in the range of 1 nm to 100 μm; a method for preparing the catalyst which comprises forming a thin catalyst film (20) on a substrate (18) and then annealing the substrate (18), to thereby convert the thin catalyst film (20) to fine particles, or comprises forming a thin catalyst film on the substrate (18), while heating the substrate (18), to simultaneously effect the formation of a thin catalyst film and the conversion to fine particles; and a solution method for preparing the catalyst which comprises dispersing an indium compound, a tin compound and an iron compound in a solvent to form colloidal particles, separating the solid particles and firing the particles, to form fine catalyst particles. The catalyst allows the production of carbon nanocoils having a uniform shape with good selectivity, and the methods allow the preparation of the catalyst on a large scale.

Description

カーボンナノコイル製造用触媒及びその製造方法並びに  Catalyst for producing carbon nanocoil, method for producing the same, and
カーボンナノコイル製造方法  Carbon nanocoil manufacturing method
(技術分野) (Technical field)
本発明はカーボンナノコイルの製造に使用されるインジウム ·スズ '鉄系触媒に関 し、 更に詳細にはインジウム ·スズ明 ·鉄系触媒を微粒子状に形成した触媒微粒子及び その製造方法に関し、 またこの触媒微粒子を核にしてカーボンナノコイルを効率的に 形成するカーボンナノコイル製造方法に関田する。  The present invention relates to an indium-tin-iron-based catalyst used in the production of carbon nanocoils, and more particularly, to catalyst fine particles in which an indium-tin-aluminum-iron catalyst is formed into fine particles and a method for producing the same. The present invention relates to a method for manufacturing a carbon nanocoil that efficiently forms a carbon nanocoil using the catalyst fine particles as a core.
(背景技術) (Background technology)
カーボンナノチューブをコイル状に卷回したカーボンナノコイルが製造されている 。 カーボンナノコイルは、 カーボンナノチューブと同様の特性を有すると共に、 電磁 誘導性が顕著であり、 ハードディスク用へッドの材料、 電磁波の吸収材としても有用 である。 また、 2倍の長さに伸ばしても元に戻るバネ特性を有しているので、 マイク ロマシンのスプリングゃァクチユエータの材料としても注目を集めている。  Carbon nanocoils in which carbon nanotubes are wound in a coil shape have been manufactured. Carbon nanocoils have the same properties as carbon nanotubes, and have remarkable electromagnetic inductive properties, and are useful as materials for hard disk heads and electromagnetic wave absorbers. In addition, it has a spring property that returns to its original state even when it is stretched to twice its length, so it is attracting attention as a material for micromachine spring actuators.
カーボンナノコイルは、 1 9 9 4年にァメリンクス等 (Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635 ) によって初めて合成された。 カーボンマイクロコイルがアモルファス構造であるの に対し、 カーボンナノコイルはグラフアイ ト構造であることも解明された。  Carbon nanocoils were first synthesized by Amelinks et al. (Amelinckx, X. B. Zhang, D. Bernaerts, X.F. It was also clarified that carbon microcoils have an amorphous structure, whereas carbon nanocoils have a graphite structure.
彼らの製造方法は C o 、 F e 、 N iのような金属触媒を微小粉に成形し、 この触媒 近傍を 6 0 0〜 7 0 0 °Cに加熱し、 この触媒に接触するようにアセチレンやベンゼン のような有機ガスを流通させ、 これらの有機分子を分解させる方法である。 し力 し、 生成されたカーボンナノコイルの形状は様々であり、 その収率も低くて偶然的に生成 されたに過ぎないものであった。 つまり、 工業的に利用できるものではなく、 より効 率的な製造法が求められた。  Their manufacturing method is to form metal catalysts such as Co, Fe, and Ni into fine powder, heat the vicinity of the catalyst to 600 to 700 ° C, and contact acetylene to contact the catalyst. This is a method in which an organic gas such as benzene or benzene is circulated to decompose these organic molecules. However, the shapes of the carbon nanocoils produced were varied, and the yields were low and produced only by chance. In other words, it was not industrially usable and a more efficient manufacturing method was required.
1 9 9 9年にリー等 (W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci. , 34 (1999) 2745) 力 新たにカーボンナノコイルの生 成に成功した。 彼らの製造方法は、 グラフアイトシートの外周に鉄粒子を被覆した触 媒を中央に置き、 この触媒近傍を-ク口ム線で 7 0 0 °Cに加熱し、 この触媒に接触す るように体積で 1 0 %のアセチレンと 9 0 %の窒素ガスの混合ガスを反応させる方式 である。 し力、し、 この製造方法もコイル収率が小さく、 工業的量産法としては不十分 なものであった。 In 1999, Lee et al. (W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci., 34 (1999) 2745) New carbon nanocoils Succeeded. In their manufacturing method, a catalyst in which iron particles are coated on the outer periphery of a graphite sheet is placed at the center, and the vicinity of the catalyst is heated to 700 ° C. with a dashed line so that it comes into contact with the catalyst. In this method, a mixed gas of 10% acetylene and 90% nitrogen gas by volume is reacted. However, this production method also had a low coil yield, and was insufficient as an industrial mass production method.
カーボンナノコイルの収率を増大させる鍵は適切な触媒の開発である。 この観点か ら、 本発明者等の一部は、 インジウム 'スズ.鉄系触媒を開発して 9 0 %以上の収率 を得る事に成功し、 その成果を特開 2 0 0 1— 1 9 2 2 0 4として公開した。 この触 媒は、 インジウム酸化物とスズ酸化物の混合薄膜を形成した I T O基板の上に鉄薄膜 を蒸着形成したものである。 I T〇とは Indium-Tin - Oxideの略称である。  The key to increasing the yield of carbon nanocoils is the development of suitable catalysts. From this point of view, some of the present inventors have succeeded in developing an indium-tin-iron-based catalyst to obtain a yield of 90% or more, and disclosed the results in Japanese Patent Application Publication No. Published as 9 22 04. This catalyst is formed by depositing an iron thin film on an ITO substrate on which a mixed thin film of indium oxide and tin oxide is formed. I T〇 is an abbreviation for Indium-Tin-Oxide.
また、 本発明者等の一部は、 インジウム 'スズ '鉄系触媒を別の方法で形成して、 カーボンナノコイルを大量に製造することに成功し、 その成果を特開 2 0 0 1— 3 1 0 1 3 0として公開した。 この触媒は、 インジウム有機化合物とスズ有機ィ匕合物を有 機溶媒に混合して有機液を形成し、 この有機液を基板に塗布して有機膜を形成し、 こ の有機膜を焼成してインジウム ·スズ膜を形成し、 このインジウム ·スズ膜の上に鉄 薄膜を形成して構成される。 インジウム ·スズ膜は前述した I T O膜 (混合薄膜) に 相当する。  In addition, some of the present inventors have succeeded in producing a large amount of carbon nanocoils by forming an indium 'tin' iron-based catalyst by another method, and disclosed the results in Japanese Patent Application Laid-Open Published as 3 1 0 1 3 0 This catalyst is prepared by mixing an indium organic compound and a tin organic compound in an organic solvent to form an organic liquid, applying the organic liquid to a substrate to form an organic film, and firing the organic film. To form an indium-tin film, and form an iron thin film on the indium-tin film. The indium-tin film corresponds to the above-mentioned ITO film (mixed thin film).
このィンジゥム .スズ .鉄系触媒は、 カーボンナノコイルを効率的に生成できる利 点を有する。 し力、し、 この研究を進めてゆく中で、 カーボンナノコイルの外直径や力 一ボンナノコイルのファイバ一となるチューブルの断面直径が広範囲に分布すること 分かり、 寸法形状の揃ったカーボンナノコイルを製造することが困難であることが分 かってきた。 この点を図 2 1及び図 2 2を用いて詳細に説明する。  This indium-tin-iron-based catalyst has the advantage that carbon nanocoils can be efficiently produced. As we proceeded with this research, we found that the outer diameter of the carbon nanocoil and the cross-sectional diameter of the tubule, which is the fiber of the carbon nanocoil, were distributed over a wide range. It has proven difficult to manufacture. This point will be described in detail with reference to FIGS. 21 and 22.
図 2 1は従来触媒を用いたカーボンナノコイル製造装置 2の概略構成図である。 こ のカーボンナノコイル製造装置 2では、 反応槽 4の外周に加熱装置 6を卷回して、 反 応槽 4の中に等温領域となる反応室 8が形成される。  FIG. 21 is a schematic configuration diagram of a carbon nanocoil production apparatus 2 using a conventional catalyst. In the carbon nanocoil manufacturing apparatus 2, a heating device 6 is wound around the outer periphery of the reaction tank 4, and a reaction chamber 8 serving as an isothermal region is formed in the reaction tank 4.
反応室 8の所要位置に、 従来型のカーボンナノコィル製造用触媒 4 0を形成した基 板 4 1が配置されている。 このカーボンナノコイル製造用触媒 4 0は、 インジウム · スズ薄膜 4 2の表面に鉄薄膜 4 4を蒸着して形成される。  At a required position in the reaction chamber 8, a substrate 41 on which a conventional catalyst 40 for producing carbon nanocoils is formed is arranged. The carbon nanocoil production catalyst 40 is formed by depositing the iron thin film 44 on the surface of the indium tin thin film 42.
炭化水素などの原料ガスはキヤリァガスとともに矢印 a方向に供給され、 この'原料 ガスが触媒の表面に接触するように基板 4 1が配置されている。 原料ガスは触媒との 接触過程で分解され、 分解生成された炭素原子が選択的に触媒表面に堆積してカーボ ンナノコイル 1が形成されて行く。 Source gases such as hydrocarbons are supplied along with the carrier gas in the direction of arrow a. The substrate 41 is arranged so that the gas contacts the surface of the catalyst. The raw material gas is decomposed in the process of contacting with the catalyst, and the carbon atoms generated by the decomposition are selectively deposited on the catalyst surface to form carbon nanocoils 1.
触媒表面にはカーボンナノコイル 1が無数に生成されている。 原料ガスの炭素量と カーボンナノコイルの生成量から、 収率が約 9 0 %と判断され、 高効率のカーボンナ ノコイノレ製造方法であることが分かる。  Innumerable carbon nanocoils 1 are generated on the catalyst surface. Based on the amount of carbon in the source gas and the amount of carbon nanocoils produced, the yield was determined to be about 90%, indicating a highly efficient carbon nanocoin production process.
し力 し、 生成されたカーボンナノコイル 1の断面直径から判断されるように、 様々 なサイズのカーボンナノコイル 1が生成されていることが分かる。 この断面直径はコ ィル外直径又はコイル直径とも呼ばれている。  As can be seen from the cross-sectional diameter of the generated carbon nanocoil 1, it can be seen that carbon nanocoils 1 of various sizes are generated. This cross-sectional diameter is also called the outer coil diameter or coil diameter.
図 2 2は従来触媒を用いて生成されたカーボンナノコイル 1の電子顕微鏡写真であ る。 多数のカーボンナノコイル 1が撮影されているが、 コイル直径がバラバラである だけでなく、 コイルピッチもさまざまであり、 コイルを形成するファイバーであるチ ユープルの断面直径 (チューブル直径と呼ぶ) も様々であることが認識できる。 このように、 従来触媒では生成効率が優れているものの、 様々な形状のカーボンナ ノコイル 1が混在して生成されることが分かる。 換言すると、 従来触媒は均一な形状 のカーボンナノコイルを製造できないという弱点を有している。 カーボンナノコイル の形状が異なると、 当然にしてそのコイル物性が異なる。  Figure 22 is an electron micrograph of carbon nanocoils 1 produced using a conventional catalyst. Although many carbon nanocoils 1 are photographed, not only the coil diameters vary, but also the coil pitch varies, and the cross-sectional diameter (called the tube diameter) of the tuple, which is the fiber that forms the coil, varies. Can be recognized. Thus, it can be seen that the conventional catalysts are excellent in production efficiency, but are produced by mixing carbon nanocoils 1 of various shapes. In other words, the conventional catalyst has a disadvantage that it cannot produce a carbon nanocoil having a uniform shape. If the shape of the carbon nanocoil is different, the physical properties of the coil are naturally different.
コイルの物性には、 伸縮に対するコイルの弾性率、 橈みに対するコイルの柔軟性な どの機械的物性、 電子放出特性や電磁波吸収特性などの電子的物性、 水素原子の吸蔵 性や官能基の修飾性などの物理化学的物性などがある。  The physical properties of the coil include mechanical properties such as elastic modulus of the coil against expansion and contraction, flexibility of the coil against radius, electronic properties such as electron emission characteristics and electromagnetic wave absorption characteristics, hydrogen atom occlusion properties and functional group modification properties. Such as physicochemical properties.
従来触媒では様々な形状のカーボンナノコイルが混在した状態で得られるから、 特 定形状のカーボンナノコイルを選択的に取り出すことが不可能である。 従って、 この ようなカーボンナノコイルを使用する場合には、 コイルの平均的物性だけに着目して 、 カーボンナノコイルの使用目的を満足させるように設計せざる得なくなる。  With conventional catalysts, carbon nanocoils of various shapes are obtained in a mixed state, and it is impossible to selectively remove carbon nanocoils of a specific shape. Therefore, when such a carbon nanocoil is used, it must be designed to satisfy the intended use of the carbon nanocoil by focusing only on the average physical properties of the coil.
このように多形状が混在したカーボンナノコイルでは、 カーボンナノコイルの使用 目的に制限が出現し、 カーボンナノコィルの多様な使用目的に広範囲に対応すること が困難になる。  In such a carbon nanocoil having a mixture of multiple shapes, there are restrictions on the intended use of the carbon nanocoil, and it is difficult to widely cover various intended uses of the carbon nanocoil.
従って、 本発明は、 均一な形状のカーボンナノコイルを選択的に製造できるカーボ ンナノコイル製造用触媒を開発し、 この触媒の量産方法を提供し、 しかも、 この触媒 を用いて均一な形状のカーボンナノコイルを量産する方法を提供することを目的とす る。 Accordingly, the present invention has developed a catalyst for producing carbon nanocoils capable of selectively producing carbon nanocoils having a uniform shape, provided a method for mass-producing this catalyst, An object of the present invention is to provide a method for mass-producing carbon nanocoils having a uniform shape by using the method.
(発明の開示) (Disclosure of the Invention)
本発明は上記課題を解決するために為されたものであり、 第 1の発明は、 外直径が 1 0 0 0 n m以下のカーボンナノコイルを化学的気相成長法により製造するィンジゥ ム .スズ .鉄系触媒であり、 このィンジゥム ·スズ ·鉄系触媒が触媒微粒子から構成 されるカーボンナノコイル製造用触媒である。 本発明者等は、 生成されるカーボンナ ノコイルのチューブル先端に触媒核が付着している事実に注目し、 この触媒核の直径 が小さいほどチューブル直径も小さくなり、 またチューブル直径が小さいほどコイル 直径も小さくなるという相関関係を発見して本発明を完成したものである。 従来から 平面状に形成されていたィンジゥム ·スズ ·鉄系触媒を微粒子状に形成し、 この触媒 微粒子がチューブル先端の触媒核となってカーボンナノコイルを形成するという着想 により、 本発明を完成したものである。 従って、 触媒微粒子の直径を自在に可変する ことによりチューブル直径を可変し、 その結果、 コイル直径を可変することに成功し たものである。 触媒微粒子の直径を均一化することにより、 均一なコイル形状を有し たカーボンナノコイルを効率的に製造することが可能になる。  The present invention has been made to solve the above problems, and a first invention is a method for producing carbon nanocoils having an outer diameter of 100 nm or less by a chemical vapor deposition method. An iron-based catalyst, which is a catalyst for the production of carbon nanocoils composed of catalyst fine particles. The present inventors have noted the fact that a catalyst nucleus is attached to the tip of the tubule of the carbon nanocoil to be generated.The smaller the diameter of the nucleus, the smaller the tubule diameter, and the smaller the tubule diameter, the smaller the coil diameter. The present invention has been completed by discovering a correlation of decreasing the size. The present invention was completed based on the idea that an indium-tin-iron-based catalyst, which had been formed in a conventional planar shape, was formed into fine particles, and the fine particles of the catalyst became a catalyst core at the tip of the tube to form a carbon nanocoil. Things. Therefore, the diameter of the catalyst particles can be freely varied to vary the diameter of the tubule, and as a result, the diameter of the coil has been successfully varied. By making the diameter of the catalyst fine particles uniform, it becomes possible to efficiently produce carbon nanocoils having a uniform coil shape.
第 2の発明は、 触媒微粒子の直径が 1 n m〜l 0 Ο μηιであるカーボンナノコイル 製造用触媒である。 本発明者等の発見によれば触媒微粒子が触媒核となってカーボン ナノコイルを成長させるから、 触媒微粒子の直径とチューブル直径とは高度の相関性 を有している。 従って、 触媒微粒子の直径を 1 n m〜l 0 Ο μιηの範囲で自在に制御 することにより、 自在なチューブル直径及びコイル直径を有したカーボンナノコイル を提供することが可能になる。  A second invention is a catalyst for producing carbon nanocoils, wherein the diameter of the catalyst fine particles is 1 nm to 10 μηι. According to the findings of the present inventors, the catalyst fine particles serve as catalyst nuclei to grow carbon nanocoils, and therefore, the diameter of the catalyst fine particles and the tubule diameter have a high degree of correlation. Therefore, by freely controlling the diameter of the catalyst fine particles in the range of 1 nm to 10 μιη, it is possible to provide a carbon nanocoil having an arbitrary tubular diameter and coil diameter.
第 3の発明は、 鉄はインジウムに対し 1 0〜9 9 . 9 9モノレ%、 スズはインジウム に対し 0〜3 0モル%の範囲で添カ卩されたカーボンナノコイル製造用触媒である。 ィ ンジゥム ·スズ ·鉄系触媒を構成するインジウムとスズと鉄のモル比は任意に調整で きるが、 カーボンナノコイルの収率はこれら 3元素のモル比に依存している。 上記モ ル比を自在に調整してカーボンナノコイルの製造収率を向上させることができる。 第 4の発明は、 基板にインジウム 'スズ '鉄系化合物の薄膜を形成し、 この薄膜が 形成された基板を加熱することにより薄膜を微粒子化して基板上に触媒微粒子を形成 するカーボンナノコイル製造用触媒の製造方法である。 'この発明では、 1段目でイン ジゥム 'スズ ·鉄系化合物の薄膜平面触媒を形成し、 2段目で基板を加熱して薄膜平 面触媒を微粒子状に変化させ、 基板上に無数の触媒微粒子を形成する。 形成された触 媒微粒子の直径に応じた形状のカーボンナノコイルを製造することができる。 加熱に よつて微粒子化が生起するという発見に基づいて本発明が完成された。 The third invention is a catalyst for producing carbon nanocoils, wherein iron is added in a range of 10 to 99.99% of indium and tin is added in a range of 0 to 30% by mole of indium. The molar ratio of indium, tin and iron constituting the indium-tin-iron catalyst can be adjusted arbitrarily, but the yield of carbon nanocoils depends on the molar ratio of these three elements. The molar ratio can be freely adjusted to improve the production yield of carbon nanocoils. The fourth invention forms a thin film of indium 'tin' iron-based compound on a substrate, and this thin film This is a method for producing a catalyst for producing a carbon nanocoil, in which a thin film is formed into fine particles by heating the formed substrate to form fine catalyst particles on the substrate. 'In the present invention, in the first step, a thin-film planar catalyst of an indium tin-iron compound is formed, and in the second step, the substrate is heated to change the thin-film planar catalyst into fine particles, and countless counts are formed on the substrate. Form catalyst fine particles. A carbon nanocoil having a shape corresponding to the diameter of the formed catalyst fine particles can be manufactured. The present invention has been completed based on the finding that fine particles are generated by heating.
第 5の発明は、 薄膜が形成された基板を 1 0 0°C〜1 2 0 0°Cの温度でァニールし て薄膜を微粒子化するカーボンナノコイル製造用触媒の製造方法である。 加熱温度に よって触媒微粒子の直径を可変でき、 均一な直径を有した触媒微粒子を形成すること により、 形状が揃ったカーボンナノコイルの大量生産が可能になる。  The fifth invention is a method for producing a catalyst for producing a carbon nanocoil, in which a substrate on which a thin film is formed is annealed at a temperature of 100 ° C. to 1200 ° C. to make the thin film fine. The diameter of the catalyst particles can be varied by the heating temperature, and by forming the catalyst particles having a uniform diameter, mass production of carbon nanocoils having a uniform shape becomes possible.
第 6の発明は、 加熱されている基板にインジウム ·スズ ·鉄系化合物の薄膜を形成 し、 この薄膜を前記加熱により同時に微粒子化して基板上に触媒微粒子を形成する力 一ボンナノコイル製造用触媒の製造方法である。 加熱状態にある基板に薄膜を形成す るから、 形成される薄膜は同時に微粒子化し、 薄膜形成と微粒子化が同時にでき、 触 媒微粒子を効率的に製造することが可能になる。  According to a sixth aspect of the present invention, there is provided a catalyst for producing a carbon nanocoil which forms a thin film of an indium / tin / iron-based compound on a heated substrate and simultaneously forms the thin film into fine particles by the heating to form fine catalyst particles on the substrate. It is a manufacturing method. Since a thin film is formed on a substrate in a heated state, the thin film to be formed is finely divided at the same time, and the thin film formation and the fine particle formation can be performed at the same time.
第 7の発明は、 ィンジゥム化合物とスズ化合物と鉄化合物を溶媒に添加した溶液を 形成し、 この溶液から固形物を分離し、 分離された固形物を焼成してインジウム .ス ズ ·鉄系化合物の触媒微粒子を製造するカーボンナノコイル製造用触媒の製造方法で ある。 ィンジゥムィ匕合物とスズ化合物と鉄化合物は溶液内で均一に混合されるから、 例えばこの溶液の p Hを調整して懸濁液を生成し、 この懸濁液をろ過してィンジゥム •スズ ·鉄の組成比が均一な固形物を分離する。 この固形物を焼成して固溶体を形成 し、 しかも微粒子化できるから、 組成比と粒径が均一な触媒微粒子を製造できる。 溶 液法と焼成法を組み合わせて触媒微粒子の量産が可能になる。  The seventh invention is to form a solution in which an indium compound, a tin compound, and an iron compound are added to a solvent, separate a solid from the solution, and calcine the separated solid to form an indium, tin, iron-based compound. This is a method for producing a catalyst for producing carbon nanocoils for producing the above-mentioned catalyst fine particles. Since the indimidi conjugate, the tin compound and the iron compound are uniformly mixed in the solution, for example, the pH of the solution is adjusted to form a suspension, and the suspension is filtered to remove the indium • tin · A solid having a uniform composition ratio of iron is separated. Since this solid is fired to form a solid solution and can be made into fine particles, catalyst fine particles having a uniform composition ratio and a uniform particle diameter can be produced. By combining the solution method and the firing method, mass production of catalyst fine particles becomes possible.
第 8の発明は、 インジウム化合物とスズィヒ合物と鉄ィヒ合物が溶液内でコロイドを形 成し、 このコロイド粒子により触媒微粒子を形成するカーボンナノコイル製造用触媒 の製造方法である。 溶液中でィンジゥムィ匕合物とスズ化合物と鉄化合物が混合してコ ロイドを形成するから、 このコロイドからなる固形物が分離されて焼成される。 つま り、 コロイドが焼成により触媒微粒子となるから、 コロイド直径を制御することによ り、 触媒微粒子の直径を可変制御することが可能になる。 第 9の発明は、 インジウム ·スズ '鉄系触媒の触媒微粒子を基板上に配置し、 原料 ガスが流通する反応槽の中に前記基板を設置して、 この触媒微粒子を核にして前記原 料ガスを分解しながらカーボンナノコイルを成長させるカーボンナノコイル製造方法 である。 触媒微粒子が原料ガスを分解して炭素原子を吸着しながらチューブルを形成 し、 このチューブルが触媒微粒子により卷回してカーボンナノコイルが形成される。 従って、 触媒微粒子をチューブル先端の触媒核として積極的に活用し、 触媒微粒子の 直径に応じた均一サイズのカーボンナノコイルを基板上に大量生産することができる 第 1 0の発明は、 原料ガスが流通する反応槽の中にインジウム ·スズ '鉄系触媒の 触媒微粒子を浮遊させ、 この触媒微粒子を核にして前記原料ガスを分解しながらカー ボンナノコイルを成長させるカーボンナノコイル製造方法である。 触媒微粒子を噴霧 などにより空間中に浮遊させ、 浮遊中に原料ガスと反応してカーボンナノコイルを成 長させるから、 基板などが不用となり、 カーボンナノコイルを連続的に大量生産する ことが可能になる。 The eighth invention is a method for producing a carbon nanocoil production catalyst in which an indium compound, a Suzughi compound, and an Feihi compound form a colloid in a solution, and the colloid particles form catalyst fine particles. Since the indimidi conjugate, the tin compound and the iron compound are mixed in the solution to form a colloid, a solid formed of the colloid is separated and fired. In other words, since the colloid becomes the catalyst fine particles by firing, the diameter of the catalyst fine particles can be variably controlled by controlling the colloid diameter. According to a ninth invention, catalyst fine particles of an indium-tin-iron catalyst are arranged on a substrate, and the substrate is placed in a reaction vessel through which a raw material gas flows. This is a carbon nanocoil manufacturing method for growing carbon nanocoils while decomposing gas. The catalyst fine particles decompose the raw material gas to form a tubule while adsorbing carbon atoms, and the tubule is wound by the catalyst fine particles to form a carbon nanocoil. Therefore, the catalyst fine particles can be positively utilized as the catalyst nucleus at the tip of the tube, and the carbon nanocoils having a uniform size corresponding to the diameter of the catalyst fine particles can be mass-produced on the substrate. This is a method for producing carbon nanocoils in which catalyst fine particles of an indium-tin-iron-based catalyst are suspended in a flowing reaction tank, and carbon nanocoils are grown while decomposing the raw material gas using the catalyst fine particles as nuclei. The catalyst fine particles are suspended in the space by spraying, and react with the raw material gas during the suspension to grow the carbon nanocoils, thus eliminating the need for substrates and the like, enabling continuous mass production of carbon nanocoils Become.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 カーボンナノコイル 1の概略斜視図である。  FIG. 1 is a schematic perspective view of the carbon nanocoil 1.
図 2は、 カーボンナノコイルを電子源としたエミッシヨン装置の概略構成図である 図 3は、 チューブル直径 dに対するエミッション開始電圧 V eとコイル直径 Dの関 係曲線図である。  FIG. 2 is a schematic configuration diagram of an emission device using a carbon nanocoil as an electron source. FIG. 3 is a relationship curve diagram of an emission start voltage Ve and a coil diameter D with respect to a tubular diameter d.
図 4は、 インジウム ·スズ '鉄系触媒薄膜 2 0から触媒微粒子 2 4を形成する本発 明の第 1方法の工程図である。  FIG. 4 is a process diagram of the first method of the present invention for forming catalyst fine particles 24 from an indium tin tin-based catalyst thin film 20.
図 5は、 インジウム ·スズ '鉄系触媒薄膜 2 0から触媒微粒子 2 4を形成する本発 明の第 2方法の工程図である。  FIG. 5 is a process diagram of a second method of the present invention for forming catalyst fine particles 24 from an indium tin tin-based catalyst thin film 20.
図 6は、 インジウム 'スズ '鉄系触媒薄膜 2 0を形成する装置の一例としてイオン ビームスパッタリング装置の概略構成図である。  FIG. 6 is a schematic configuration diagram of an ion beam sputtering apparatus as an example of an apparatus for forming an indium 'tin' iron-based catalyst thin film 20.
図 7は、 溶液法を用いてィンジゥム ·スズ ·鉄系触媒微粒子 2 4を形成する本発明 の第 3方法の工程図である。 図 8は、 触媒微粒子 2 4を散布してカーボンナノコィノレ 1を製造する基板成長法の 工程図である。 FIG. 7 is a process chart of a third method of the present invention for forming an indium-tin-iron-based catalyst fine particle 24 by using a solution method. FIG. 8 is a process diagram of a substrate growth method for producing carbon nanocoinole 1 by dispersing catalyst fine particles 24.
図 9は、 触媒微粒子 2 4を浮遊させてカーボンナノコイル 1を製造する横型流動製 造法の概略説明図である。  FIG. 9 is a schematic explanatory view of a horizontal flow production method for producing carbon nanocoils 1 by suspending catalyst fine particles 24.
図 1 0は、 触媒微粒子 2 4を浮遊させながらカーボンナノコイル 1を製造する縦型 流動製造法の概略説明図である。  FIG. 10 is a schematic explanatory view of a vertical flow production method for producing carbon nanocoils 1 while suspending catalyst fine particles 24.
図 1 1は、 ァニール処理がされない基板であるため微粒子化していない触媒薄膜の A FM像である。  Fig. 11 is an AFM image of a catalyst thin film that is not micronized because it is a substrate that has not been annealed.
図 1 2は、 7 0 0 °Cでァニール処理が施された触媒微粒子膜の A FM像である。 図 1 3は、 9 0 0 °Cでァニール処理が施された触媒微粒子膜の A FM像である。 図 1 4は、 ァニール処理がされない基板により合成されたカーボンナノコイルの S EM像である。  FIG. 12 is an AFM image of the catalyst fine particle film subjected to the annealing treatment at 700 ° C. FIG. 13 is an AFM image of the catalyst fine particle film subjected to the annealing treatment at 900 ° C. Figure 14 is an SEM image of carbon nanocoils synthesized on a substrate that has not been annealed.
図 1 5は、 7 0 0 °Cでァニール処理が施された触媒微粒子膜により合成されたカー ボンナノコィノレの S EM像である。  FIG. 15 is an SEM image of carbon nanocoinole synthesized by a catalyst fine particle film subjected to an annealing treatment at 700 ° C.
図 1 6は、 9 0 0 °Cでァニール処理が施された触媒微粒子膜により合成されたカー ボンナノコイルの S EM像である。  FIG. 16 is an SEM image of a carbon nanocoil synthesized by a catalyst fine-particle film subjected to annealing at 900 ° C.
図 1 7は、 1 0 0 °Cで加熱された基板により合成されたカーボンナノコイルの S E M像である。  FIG. 17 is an SEM image of a carbon nanocoil synthesized by a substrate heated at 100 ° C.
図 1 8は、 2 0 0 °Cで加熱された基板により合成されたカーボンナノコイルの S E M像である。  FIG. 18 is a SEM image of a carbon nanocoil synthesized by a substrate heated at 200 ° C.
図 1 9は、 3 0 0 °Cで加熱された基板により合成されたカーボンナノコイルの S E M像である。  FIG. 19 is an SEM image of a carbon nanocoil synthesized by a substrate heated at 300 ° C.
図 2 0は、 4 0 0 °Cで加熱された基板により合成されたカーボンナノコイルの S E M像である。  FIG. 20 is an SEM image of a carbon nanocoil synthesized by a substrate heated at 400 ° C.
図 2 1は、 従来触媒を用いたカーボンナノコイル製造装置 2の概略構成図である。 図 2 2は、 従来触媒を用いて生成されたカーボンナノコイル 1の電子顕微鏡写真で ある。  FIG. 21 is a schematic configuration diagram of a conventional carbon nanocoil manufacturing apparatus 2 using a catalyst. Figure 22 is an electron micrograph of a carbon nanocoil 1 produced using a conventional catalyst.
(発明を実施するための最良の形態) 本発明者等は均一形状のカーボンナノコィルを大量合成するために鋭意研究した結 果、 大量合成が可能なインジウム ·スズ ·鉄系触媒の微粒子をできるだけ均一に形成 し、 この触媒微粒子を核にしてカーボンナノコイルを成長させると、 触媒微粒子の直 径に依存するサイズのカーボンナノコイルを合成できることを発見して本発明を完成 させたものである。 (Best mode for carrying out the invention) The present inventors have conducted intensive studies to synthesize carbon nanocoils of uniform shape in large quantities, and as a result, formed indium, tin, and iron-based catalyst particles capable of mass synthesis as uniformly as possible, The present invention was completed by discovering that a carbon nanocoil having a size depending on the diameter of catalyst fine particles can be synthesized by growing a carbon nanocoil.
化学的気相成長法によりカーボンナノコイルを成長させると、 その電子顕微鏡像か らカーボンナノコイルのチュープル先端に触媒核が付着しているのが見られる。 本発 明者等はこの触媒核がカーボンナノコイルを成長させる原因物質であると考えるに至 つた。  When carbon nanocoils are grown by chemical vapor deposition, electron microscopic images show that catalyst nuclei are attached to the tip of the tuple of the carbon nanocoils. The present inventors have come to believe that this catalyst nucleus is a causative substance for growing carbon nanocoils.
即ち、 本発明者等は、 触媒核が原料ガスを分解して炭素原子を生成し、 この炭素原 子を触媒核が吸着し、 炭素原子を堆積する過程でチューブルが卷回しながら伸長して カーボンナノコイルが成長すると考えたのである。  That is, the present inventors have found that the catalyst nucleus decomposes the raw material gas to generate carbon atoms, and the catalyst nucleus adsorbs the carbon atoms, and in the process of depositing the carbon atoms, the tubule elongates while winding and the carbon nuclei expand. He thought that the nanocoils would grow.
図 1はカーボンナノコイル 1の概略斜視図である。 このカーボンナノコィノレ 1はチ ユーブル 3が卷回して形成されており、 コイル直径 D、 コイル長 L及びコイルピッチ Pを有している。 チューブルとはカーボンファイバーを意味している。 重要なことは 、 チュープル先端 3 aに触媒核 5が付着していることである。  FIG. 1 is a schematic perspective view of the carbon nanocoil 1. FIG. This carbon nanocoin 1 is formed by winding a cable 3, and has a coil diameter D, a coil length L, and a coil pitch P. Tubule means carbon fiber. The important thing is that the catalyst core 5 is attached to the tuple tip 3a.
この触媒核 5の直径を gとする。 この触媒核 5が核となり、 原料ガスが分解されて 炭素原子が吸着され、 断面直径が dのチュープル 3が伸長すると考えられる。 チュー プル 3はカーボンナノチューブであることが観察されている。  The diameter of the catalyst core 5 is g. It is considered that the catalyst core 5 becomes a nucleus, the raw material gas is decomposed, carbon atoms are adsorbed, and the tuples 3 having a cross-sectional diameter of d extend. Tuple 3 has been observed to be a carbon nanotube.
触媒核 5の形状には球型、 角型、 栓型など様々であるが、 その代表的な部分の直径 を gとする。 チューブル直径 dと触媒核直径 gは等しいとは限らないが、 両者の大き さには相関関係があると考えられる。  The shape of the catalyst core 5 is various such as a spherical shape, a square shape, and a plug shape, and the diameter of a typical portion thereof is g. Tubular diameter d and catalyst core diameter g are not necessarily equal, but it is considered that there is a correlation between the two sizes.
本発明者等の観察によれば、 触媒核直径 gが小さいとチュー'プル直径 dは小さくな り、 触媒核直径 gが大きいとチュープル直径 dも大きくなることが分かった。 この発 見が正しいとすると、 触媒核直径 gが小さくなるほど、 チューブル直径 dが小さな力 一ボンナノコイル 1を形成することができるはずである。  According to observations made by the present inventors, it was found that the tuple diameter d was small when the catalyst core diameter g was small, and the tuple diameter d was large when the catalyst core diameter g was large. If this finding is correct, the smaller the catalyst core diameter g, the smaller the tubular diameter d should be.
この点を追求する中で、 チュープル直径 dとコイル直径 Dとの間にも一定の相関関 係があることが本発明者等によって発見された。 つまり、 チューブル直径 dが小さい とコイル直径 Dも小さくなり、 チューブル直径 dが大きくなるとコィル直径 Dも大き くなる傾向がある。 In pursuit of this point, the present inventors discovered that there is also a certain correlation between the tuple diameter d and the coil diameter D. In other words, if the tubule diameter d is small, the coil diameter D is small, and if the tubule diameter d is large, the coil diameter D is large. Tend to be.
これら二つの相関関係の発見により、 次のような結論が得られる。 触媒核直径 gが 小さいほど、 チューブル直径 d及びコイル直径 Dが小さくなり、 逆に触媒核直径 gが 大きいほど、 チュ一プル直径 d及ぴコィル直径 Dが大きなカーボンナノコイル 1が得 られる傾向がある。  The discovery of these two correlations leads to the following conclusions. As the catalyst core diameter g is smaller, the tubule diameter d and the coil diameter D are smaller. Conversely, as the catalyst core diameter g is larger, the carbon nanocoil 1 having a larger tubule diameter d and a larger coil diameter D tends to be obtained. is there.
インジウム ·スズ ·鉄系触媒はカーボンナノコイルを大量生産できる触媒であるか ら、 このインジウム .スズ '鉄系触媒の触媒微粒子を形成できれば、 この触媒微粒子 を触媒核 5としてカーボンナノコイル 1を量産することが可能になるはずである。 し力 も、 均一な直径を有した触媒微粒子を大量に製造できれば、 この直径に相当し た均一な形状のカーボンナノコイル 1を大量生産することが可能になる。 つまり、 ィ ンジゥム ·スズ ·鉄系触媒からなる触媒微粒子によって、 均一サイズのカーボンナノ コイル 1の量産が実現できる。  Since indium, tin, and iron-based catalysts are catalysts that can mass-produce carbon nanocoils, if these indium, tin and iron-based catalyst fine particles can be formed, these catalyst fine particles will be used as catalyst cores 5 to mass-produce carbon nanocoils 1. Should be possible. In addition, if a large amount of catalyst fine particles having a uniform diameter can be produced, it is possible to mass-produce carbon nanocoils 1 having a uniform shape corresponding to this diameter. In other words, the mass production of the carbon nanocoils 1 having a uniform size can be realized by using the catalyst fine particles made of an alloy of tin, tin and iron.
図 2はカーボンナノコイルを電子源としたェミッション装置の概略構成図である。 電極 1 0にはカーボンナノコイル 1が電子源として固定され、 電極 1 2と電極 1 0に は直流電源 1 4が配列されている。 電極 1 0は負極になっている。  FIG. 2 is a schematic configuration diagram of an emission device using a carbon nanocoil as an electron source. A carbon nanocoil 1 is fixed as an electron source on the electrode 10, and a DC power supply 14 is arranged on the electrodes 12 and 10. The electrode 10 is a negative electrode.
カーボンナノコイル 1の先端はナノスケールであるから、 その先端には電気力線が 集中して高電界が作用する。 カーボンナノコイル 1は電界放出作用を有し、 この高電 界によって電子 1 6を射出し、 矢印 b方向に電流が流れる。 この電流が流れ始める直 流電源 1 4の電圧をェミツション開始電圧 V e (Emission Turn-on  Since the tip of the carbon nanocoil 1 is on the nanoscale, the lines of electric force concentrate on the tip and a high electric field acts. The carbon nanocoil 1 has a field emission function, and emits electrons 16 by this high electric field, and a current flows in the direction of arrow b. This current begins to flow.The voltage of DC power supply 14 is changed to the emission start voltage V e (Emission Turn-on
Voltage) と云う。 Voltage).
本発明者等は、 エミッション開始電圧 V eがカーボンナノコイルの形状と緊密な相 関関係を有するのではないかと推測して研究を行った。 コイルの形状を与えるコイル 直径 D (Coil Diameter) 、 チュープル直径 d (Tubule Diameter) 及びコィノレピッチ Pをコイルパラメータと称している。 3種類のサイズを有したカーボンナノコイル 1 を選択し、 これらをコイル A、 コイル B及びコイル Cと名づけた。  The present inventors have conducted research on the assumption that the emission starting voltage Ve may have a close correlation with the shape of the carbon nanocoil. A coil diameter D (Coil Diameter), a tuple diameter d (Tubule Diameter) and a coil pitch P which give a coil shape are called coil parameters. Carbon nanocoils 1 having three different sizes were selected, and these were named coil A, coil B and coil C.
コイル A、 コイル B及びコイル Cに関し、 コイル直径 D ( n m) 、 チューブル直径 d ( n m) ¾ぴェミッション開始電圧 V e (V) が測定された。 これらのデータは表 1に纏められている。  For coil A, coil B and coil C, coil diameter D (nm), tubular diameter d (nm), and emission start voltage Ve (V) were measured. These data are summarized in Table 1.
く表 1 >コイルパラメータとェミッション開始電圧の関係 <コィノレ A〉 <コイル B〉 くコイル C> Table 1> Relationship between coil parameters and emission starting voltage <Coin A><CoilB> C coil C>
D (nm) 300 450 500  D (nm) 300 450 500
d (nm) 50 130 250  d (nm) 50 130 250
Ve (V) 90 180 300  Ve (V) 90 180 300
表 1から分かるように、 チューブル直径 dが小さくなるほど、 コイル直径 Dは小さ くなり、 ェミッション開始電圧 Veも小さくなる傾向がある。 従って、 より小さな力 一ボンナノコイルを使用することによって、 エミッション開始電圧 V eを小さくでき る利点がある。  As can be seen from Table 1, the smaller the tubular diameter d, the smaller the coil diameter D and the lower the emission start voltage Ve. Therefore, there is an advantage that the emission starting voltage V e can be reduced by using a smaller force coil.
図 3はチュープル直径 dに対するエミッション開始電圧 V eとコイル直径 Dの関係 曲線図である。 これらの関係曲線は表 1に示されるデータをグラフ化して得られる。 ェミッション開始電圧 Ve (V) とチューブル直径 d (nm) との間にはほぼ直線 関係が成立している。 コィノレ直径 D (nm) とチュープル直径 d (nm) との間には 直線関係はないが、 一方が増加すれば他方が増加するという意味での相関関係が成立 している。  FIG. 3 is a graph showing the relationship between the emission start voltage Ve and the coil diameter D with respect to the tuple diameter d. These relationship curves are obtained by graphing the data shown in Table 1. An almost linear relationship holds between the emission start voltage Ve (V) and the tubular diameter d (nm). There is no linear relationship between Koinole diameter D (nm) and tuple diameter d (nm), but there is a correlation in the sense that if one increases, the other increases.
これらの関係は厳密に成立するとは云えないが、 このような傾向が存在すると云う 意味において重要である。 従って、 チュープル直径 dが小さなカーボンナノコイルを 用いれば、 ェミッション開始電圧 Veは小さくなり、 またコイル直径 Dも小さくなる と考えることができる。  Although these relationships are not strictly true, they are important in the sense that such a tendency exists. Therefore, when a carbon nanocoil having a small tuple diameter d is used, it can be considered that the emission start voltage Ve becomes small and the coil diameter D becomes small.
チューブル直径 dを小さくするには、 直径 gが小さな触媒核 5がカーボンナノコィ ルに付着しておればよレ、。 本発明では、 触媒微粒子がカーボンナノコイル 1の触媒核 5になると考えているから、 直径が小さな触媒微粒子を用いれば、 コイル直径 Dゃェ ミツション開始電圧 V eが小さなカーボンナノコイルを製造することが可能になる。 図 4はインジウム .スズ ·鉄系触媒薄膜 20から触媒微粒子 24を形成する本発明 の第 1方法の工程図である。 (4A) では、 基板 18の表面にインジウム 'スズ '鉄 系触媒薄膜 20が形成される。 このィンジゥム 'スズ'鉄系触媒薄膜 20の膜厚 tは 10 nm〜数 μπιの範囲が適当であるが、 この数値に限定され'るものではない。 インジウム 'スズ '鉄系触媒薄膜 20は、 少なくともインジウム、 スズ、 鉄の 3元 素が含まれている薄膜であればよい。 例えば、 酸化物の場合には、 インジウム酸化物 、 スズ酸化物及び鉄酸化物の混合化合物から構成され、 組成式では例えば、 F e 5 I n S n0. ,Οχ, F e I n S n0. i〇x等の化合物がある。 大気などの酸素雰囲気中で の焼成によって得られる酸化物が最も好適であるが、 窒化物や炭化物なども利用でき る。 勿論、 これ以外の化合物でもよいし、 インジウム 'スズ'鉄の合金であってもよ レ、。 To reduce the tubule diameter d, the catalyst core 5 having a small diameter g should be attached to the carbon nanocoil. In the present invention, since the catalyst fine particles are considered to be the catalyst nucleus 5 of the carbon nanocoil 1, if the catalyst fine particles having a small diameter are used, it is possible to produce a carbon nanocoil having a small coil diameter D emission start voltage Ve. Becomes possible. FIG. 4 is a process chart of the first method of the present invention for forming the catalyst fine particles 24 from the indium / tin / iron-based catalyst thin film 20. In (4A), an indium-tin-based catalyst thin film 20 is formed on the surface of the substrate. The film thickness t of the alloy 'tin' iron-based catalyst thin film 20 is suitably in the range of 10 nm to several μπι, but is not limited to this value. The indium 'tin' iron-based catalyst thin film 20 may be a thin film containing at least ternary elements of indium, tin and iron. For example, in the case of the oxide, indium oxide, is composed of a mixture a compound of tin oxide and iron oxide, in the composition formula for example, F e 5 I n S n 0., Ο χ , there are compounds such as F e I n S n 0. I_〇 x. Oxides obtained by firing in an oxygen atmosphere such as air are most suitable, but nitrides and carbides can also be used. Of course, other compounds may be used, or an alloy of indium 'tin' and iron may be used.
インジウム .スズ .鉄系触媒薄膜 20の作製方法には気相法、 液相法、 固相法があ る。 気相法には、 物理的蒸着法 (PVD法、 Physical Vapor Deposition) と化学的 気相蒸着法 (CVD法、 Chemical Vapor Deposition) が利用できる。  There are a vapor phase method, a liquid phase method, and a solid phase method as a method for producing the indium / tin / iron-based catalyst thin film 20. Physical vapor deposition (PVD, Physical Vapor Deposition) and chemical vapor deposition (CVD, Chemical Vapor Deposition) can be used for the vapor phase.
PVD法としては、 真空蒸着、 電子ビーム蒸着、 レーザーアブレーシヨン、 分子線 ェピタキシ (MBE、 Molecular Beam Epitaxy) 、 反応性蒸着、 イオンプレーティン グ、 クラスタイオンビーム、 グロ一放電スパッタリング、 イオンビームスパッタリン グ、 反応性スパッタリングなどがある。 MB E法でも、 有機金属原料 (MO、 Metal Organic) を用いた MOMB Eや、 化学線ェピタキシ (CB E、 Chemical Beam Epitaxy) 、 ガスソースェピタキシ (GSE、 Gas Source Epitaxy) が利用できる。  PVD methods include vacuum evaporation, electron beam evaporation, laser ablation, molecular beam epitaxy (MBE), reactive evaporation, ion plating, cluster ion beam, glow discharge sputtering, and ion beam sputtering. And reactive sputtering. In the MBE method, MOMBE using organic metal raw materials (MO, Metal Organic), chemical beam epitaxy (CBE), and gas source epitaxy (GSE) can be used.
CVD法としては、 熱 CVD、 有機金属 CVD (MOCVD) 、 RFプラズマ CV D、 £ 1 プラズマ〇¥0、 光 CVD、 レーザー CVD、 水銀増感法などがある。 液相法には、 液相ェピタキシ、 電気メツキ、 無電解メツキ、 塗布法がある。 また、 固相法には、 固相ェピタキシ、 再結晶法、 グラフォェピタキシ、 レーザービーム法、 ゾルゲル法などがある。  CVD methods include thermal CVD, metal-organic chemical vapor deposition (MOCVD), RF plasma CVD, £ 1 plasma, and optical CVD, laser CVD, and mercury sensitization. The liquid phase method includes liquid phase epitaxy, electric plating, electroless plating, and coating method. In addition, solid-phase methods include solid-phase epitaxy, recrystallization method, grapheepitaxy, laser beam method, and sol-gel method.
(4 B) はインジウム ·スズ ·鉄系触媒薄膜 20を微粒子化する工程を示している 。 ィンジゥム ·スズ ·鉄系触媒薄膜 20は微粒子化処理されてィンジゥム 'スズ '鉄 系触媒微粒子膜 22が形成される。 このィンジゥム ·スズ ·鉄系触媒微粒子膜 22は 無数の触媒微粒子 24から構成されている。  (4B) shows a step of making the indium-tin-iron-based catalyst thin film 20 into fine particles. The aluminum / tin / iron-based catalyst thin film 20 is subjected to fine particle treatment to form an aluminum / tin / iron-based catalyst fine particle film 22. The indium-tin-iron-based catalyst fine particle film 22 is composed of countless catalyst fine particles 24.
微粒子化処理の方法として加熱処理が施される。 ィンジゥム ·スズ ·鉄系触媒薄膜 20を形成した基板 18を加熱炉に配置して加熱処理すると、 薄膜を形成する材料が 焼結し、 この焼結粒子が単位となって触媒微粒子 24が形成される。  Heat treatment is performed as a method of the micronization treatment. When the substrate 18 on which the indium-tin-iron-based catalyst thin film 20 is formed is placed in a heating furnace and subjected to a heat treatment, the material forming the thin film is sintered, and the sintered particles become a unit to form catalyst fine particles 24. You.
加熱温度は 100〜1200°Cが好ましく、 400〜1000°Cが最も好ましい。 加熱温度が低レ、と焼結が十分でなく、 加熱温度が高くなりすぎると過焼結によつて材 料的に脆弱になる。  The heating temperature is preferably from 100 to 1200 ° C, most preferably from 400 to 1000 ° C. If the heating temperature is low, sintering is not sufficient, and if the heating temperature is too high, the material becomes brittle due to oversintering.
また、 加熱温度が低いと触媒微粒子 24の直径 sが小さくなり、 加熱温度が高くな るに連れて直径 sが大きくなる傾向がある。 従って、 加熱温度を制御することによつ て触媒微粒子 2 4の直径 sを自在に制御することが可能になる。 触媒微粒子 2 4の直 径 sによりカーボンナノコイル 1のチューブル直径 dが決まることは上述した通りで ある。 Also, when the heating temperature is low, the diameter s of the catalyst fine particles 24 decreases, and the heating temperature increases. As the diameter increases, the diameter s tends to increase. Therefore, the diameter s of the catalyst fine particles 24 can be freely controlled by controlling the heating temperature. As described above, the tubular diameter d of the carbon nanocoil 1 is determined by the diameter s of the catalyst fine particles 24.
加熱処理としてァニール処理が利用できる。 ィンジゥム ·スズ ·鉄系触媒が酸化物 である場合には、 加熱炉として大気炉が利用でき、 大気に開放された状態で加熱され 、 また大気開放状態で自然冷却される。 酸化物以外の化合物の場合には、 酸化を防止 するため不活性ガス雰囲気中で加熱され、 また冷却処理が行われる。 加熱時間は:!〜 1 5時間が好ましく、 自然冷却時間は 1〜 1 0時間が適当である。 しかし、 加熱時間 や冷却時間はこれらの数値に限定されない。  An annealing treatment can be used as the heating treatment. In the case where the alloy of tin, iron, and iron is an oxide, an atmospheric furnace can be used as a heating furnace, and is heated in a state of being opened to the atmosphere and naturally cooled in a state of being opened to the atmosphere. In the case of compounds other than oxides, heating is performed in an inert gas atmosphere to prevent oxidation, and cooling treatment is performed. Heating time is :! It is preferable that the natural cooling time is 1 to 10 hours. However, heating time and cooling time are not limited to these values.
加熱温度が一定の場合でも、 インジウム ·スズ'鉄系触媒薄膜 2 0の膜厚 tが小さ いほど、 触媒微粒子 2 4の直径 sは小さくなり、 膜厚 tが大きいほど直径 sは大きく なる。 従って、 触媒微粒子 2 4の直径 sを決めるパラメータは加熱温度と膜厚 tであ る。 この二つのパラメータを調整することにより、 触媒微粒子 2 4の直径 sを自在に 調節することができる。  Even when the heating temperature is constant, the smaller the thickness t of the indium-tin-iron-based catalyst thin film 20 is, the smaller the diameter s of the catalyst fine particles 24 is, and the larger the thickness t is, the larger the diameter s is. Therefore, parameters that determine the diameter s of the catalyst fine particles 24 are the heating temperature and the film thickness t. By adjusting these two parameters, the diameter s of the catalyst fine particles 24 can be freely adjusted.
( 4 C) は、 ィンジゥム ·スズ ·鉄系触媒微粒子膜 2 2を用いて、 カーボンナノコ ィル 1を製造する工程を示している。 矢印 c方向に原料ガスを流通させると、 触媒微 粒子 2 4が触媒核 5となって原料ガスが分解され、 触媒核 5が付着したカーボンナノ コイル 1が製造される。 触媒微粒子 2 4が均一な直径 sを有しているから触媒核 5の 直径 gも均一になり、 チューブル直径 dやコイル直径 Dが均一なカーボンナノコイル 1が大量生産できる。  (4C) shows a step of producing the carbon nanocoil 1 using the platinum-tin-iron-based catalyst fine particle membrane 22. When the raw material gas is passed in the direction of arrow c, the raw material gas is decomposed by the catalyst fine particles 24 serving as the catalyst nucleus 5, and the carbon nanocoil 1 to which the catalyst nucleus 5 is attached is produced. Since the catalyst fine particles 24 have a uniform diameter s, the diameter g of the catalyst core 5 is also uniform, and carbon nanocoils 1 having a uniform tubular diameter d and uniform coil diameter D can be mass-produced.
基板 1 8から触媒微粒子 2 4をスクレーパーなどで搔き落とせば、 触媒微粒子 2 4 の粉体を回収することができる。 このように基板法を用いれば、 基板 1 8にカーボン ナノコイル 1を製造できるだけでなく、 基板 1 8から触媒微粒子 2 4を回収すること もできる。  If the catalyst fine particles 24 are scraped off from the substrate 18 with a scraper or the like, the powder of the catalyst fine particles 24 can be collected. By using the substrate method in this way, not only can the carbon nanocoils 1 be produced on the substrate 18, but also the catalyst fine particles 24 can be recovered from the substrate 18.
図 5はィンジゥム ·スズ ·鉄系触媒薄膜 2 0から触媒微粒子 2 4を形成する本発明 の第 2方法の工程図である。 この第 2方法の特徴は、 基板を加熱しながらインジウム •スズ ·鉄系触媒薄膜 2 0を形成すると、 形成されたィンジゥム ·スズ ·鉄系触媒薄 膜 2 0が直ちに微粒子化されてィンジゥム ·スズ ·鉄系触媒微粒子膜 2 2に変化する ことである。 FIG. 5 is a process chart of the second method of the present invention for forming catalyst fine particles 24 from an aluminum / tin / iron-based catalyst thin film 20. The feature of this second method is that when the indium tin-iron catalyst thin film 20 is formed while heating the substrate, the formed indium tin-iron catalyst thin film 20 is immediately atomized to form fine particles of tin and iron. · Changes to iron-based catalyst fine particle film 22 That is.
( 5 A) では、 加熱装置 2 6により基板 1 8を加熱しながら、 基板 1 8の表面にィ ンジゥム 'スズ ·鉄系触媒薄膜 2 0力形成される。 触媒薄膜 2 0の形成方法について は図 4で説明しているからここでは省略する。  In (5A), an indium tin-iron based catalyst thin film 20 is formed on the surface of the substrate 18 while heating the substrate 18 by the heating device 26. The method for forming the catalyst thin film 20 has been described with reference to FIG.
( 5 B ) では、 加熱が進行すると、 基板 1 8に形成されたィンジゥム 'スズ'鉄系 触媒薄膜 2 0が焼結して微粒子化され、 インジウム 'スズ'鉄系触媒微粒子膜 2 2に 変化する。 このィンジゥム 'スズ'鉄系触媒微粒子膜 2 2は無数の触媒微粒子 2 4か ら構成されている。  In (5B), as heating progresses, the indium 'tin' iron-based catalyst thin film 20 formed on the substrate 18 is sintered into fine particles, which are changed to indium 'tin' iron-based catalyst fine particle films 22 I do. The film “tin” iron-based catalyst fine particles 22 is composed of countless catalyst fine particles 24.
加熱装置 2 6による加熱温度は 1 0 0〜1 2 0 0 °Cが好ましく、 更に 2 0 0〜7 0 0 °Cの温度範囲が触媒微粒子 2 4の直径 sを小さくするのに効果的である。 し力、し、 薄膜が微粒子化されればよいから、 これらの温度範囲に限定されるものではない。 ま た、 薄膜の膜厚 tが小さいほど、 微粒子の直径 sが小さくなる点も図 4とほぼ同一で ある。  The heating temperature of the heating device 26 is preferably 100 to 1200 ° C., and a temperature range of 200 to 700 ° C. is effective for reducing the diameter s of the catalyst fine particles 24. is there. The temperature is not limited to these temperature ranges, as long as the thin film is finely divided. Also, the point that the smaller the thickness t of the thin film is, the smaller the diameter s of the fine particles is, which is almost the same as FIG.
( 5 C) では、 反応槽に基板 1 8を配置して原料ガスを矢印 c方向に流通させると 、 触媒微粒子 2 4を触媒核 5としてカーボンナノコイル 1が製造される。 カーボンナ ノコイル 1を製造せずに、 基板 1 8から触媒微粒子 2 4を搔き落として触媒微粒子 2 4の粉体を回収することもできる。  In (5C), when the substrate 18 is placed in the reaction tank and the raw material gas is caused to flow in the direction of arrow c, the carbon nanocoils 1 are manufactured using the catalyst fine particles 24 as the catalyst nuclei 5. Instead of manufacturing the carbon nanocoil 1, the catalyst fine particles 24 can be removed from the substrate 18 and the powder of the catalyst fine particles 24 can be collected.
図 6はインジウム .スズ .鉄系触媒薄膜 2 0を形成する装置の一例としてイオンビ 一ムスパッタリング装置の概略構成図である。 薄膜の形成方法は上述したように多数 存在するが、 ここではスパッタリング法がその一例として説明される。 イオン源 2 8 では例えばアルゴンイオン (A r +) が形成され、 ターゲット 3 0とイオン源 2 8の 間には直流電源 2 9が介装されている。  FIG. 6 is a schematic configuration diagram of an ion beam sputtering apparatus as an example of an apparatus for forming an indium / tin / iron-based catalyst thin film 20. As described above, there are many methods for forming a thin film. Here, a sputtering method will be described as an example. For example, argon ions (A r +) are formed in the ion source 28, and a DC power supply 29 is interposed between the target 30 and the ion source 28.
ターゲット 3 0としては、 例えばィンジゥム ·スズ ·鉄系酸化物材料の焼結体が使 用される。 ターゲット 3 0は負極側に配置されるから、 アルゴンイオンはターゲット 3 0の表面に衝突し、 ターゲット 3 0からターゲット微粒子 3 1を叩き出す。 このタ ーゲット微粒子 3 1が基板 1 8の表面に堆積してィンジゥム 'スズ '鉄系触媒薄膜 2 0が形成される。  As the target 30, for example, a sintered body of an aluminum-tin-iron-based oxide material is used. Since the target 30 is disposed on the negative electrode side, argon ions collide with the surface of the target 30 and strike out the target fine particles 31 from the target 30. The target fine particles 31 are deposited on the surface of the substrate 18 to form an aluminum-tin-based catalyst thin film 20.
このイオンビームスパッタリング法は、 図 4の工程 (4 A) 及び図 5の工程 ( 5 A ) に適用される方法である。 勿論、 スパッタリング法に替えて他の薄膜形成方法が利 用されても良いことは当然である。 This ion beam sputtering method is a method applied to the step (4A) in FIG. 4 and the step (5A) in FIG. Of course, other thin film forming methods can be used instead of the sputtering method. Of course, it may be used.
図 7は溶液法を用いてィンジゥム · スズ ·鉄系触媒微粒子 2 4を形成する本発明の 第 3方法の工程図である。 この溶液法は、 基板法よりも大量に触媒微粒子 2 4の粉体 を製造できる点に特徴を有している。  FIG. 7 is a process chart of a third method of the present invention for forming an indium-tin-iron-based catalyst fine particle 24 by using a solution method. This solution method is characterized in that a larger amount of catalyst fine particles 24 can be produced than in the substrate method.
( 7 A) では、 容器 3 2の中に溶媒 3 3が貯留され、 この溶媒 3 3の中にインジゥ ム化合物とスズ化合物と鉄ィ匕合物が添加される。 溶液を混合攪拌すると、 これらの 3 種の化合物がコロイド化し、 無数のコロイド粒子 3 4が溶液中に形成される。  In (7A), the solvent 33 is stored in the container 32, and the indium compound, the tin compound, and the iron oxide are added to the solvent 33. When the solution is mixed and stirred, these three kinds of compounds are colloided, and countless colloid particles 34 are formed in the solution.
前記 3種の化合物が物理反応又は化学反応により中間体を形成し、 この中間体がコ ロイド粒子 3 4を形成する。 ィ匕合物の添加濃度を調整することにより、 コロイド粒子 3 4の粒径は自在に制御される。 過剰なコロイド粒子 3 4が容器 3 2の底に沈殿する 場合もある。  The three compounds form an intermediate by a physical reaction or a chemical reaction, and the intermediate forms the colloid particles 34. The particle size of the colloid particles 34 can be freely controlled by adjusting the concentration of the conjugate. Excess colloid particles 34 may settle to the bottom of vessel 32.
コロイド粒子 3 4が形成されると、 焼成によってコロイド粒子 3 4が触媒微粒子 2 4に転化する。 従って、 コロイド粒子 3 4の粒径を制御することによつて触媒微粒子 2 4の直径 sを制御することが可能になる。  When the colloid particles 34 are formed, the sintering converts the colloid particles 34 into catalyst fine particles 24. Therefore, the diameter s of the catalyst fine particles 24 can be controlled by controlling the particle size of the colloid particles 34.
( 7 B ) では、 溶媒 3 3から固形物 3 5が分離される。 コロイド化する場合には、 この固形物 3 5はコロイ ド粒子 3 4の集合体になるが、 コロイ ド化しない場合には、 3種類の化合物が均一に混合した固形物 3 5が得られる。  In (7B), a solid 35 is separated from the solvent 33. When formed into a colloid, the solid 35 becomes an aggregate of colloid particles 34, but when not formed into a colloid, a solid 35 in which three kinds of compounds are uniformly mixed is obtained.
( 7 C) では、 分離された固形物 3 5が加熱装置 3 6により焼成される。 焼成温度 は 3 0 0〜: 1 5 0 0 °Cが好ましく、 粒径を小さく設定するためには 4 0 0〜: 1 0 0 0 でがより好まし!/、。 焼成時間は 1 0分間〜 1 0 0時間、 好ましくは 3 0分〜 5 0時間 である。  In (7C), the separated solid 35 is fired by the heating device 36. The firing temperature is preferably from 300 to 150 ° C., and in order to set the particle size small, from 400 to 100 is more preferable! / ,. The firing time is from 10 minutes to 100 hours, preferably from 30 minutes to 50 hours.
( 7 D) では、 焼成により形成された触媒微粒子 2 4の粉体が製造される。 この触 媒微粒子 2 4の直径 sは、 コロイド粒子 3 4の粒径に依存し、 1 n m〜 1 0 0 μπιの 範囲になる。 直径 sが小さいほど、 カーボンナノコイル 1のチューブル直径 dも小さ くなり、 小さなサイズのカーボンナノコィノレ 1が製造できる。  In (7D), powder of catalyst fine particles 24 formed by firing is produced. The diameter s of the catalyst fine particles 24 depends on the particle size of the colloid particles 34 and is in the range of 1 nm to 100 μπι. As the diameter s is smaller, the tubule diameter d of the carbon nanocoil 1 is smaller, and a carbon nanocoinole 1 having a smaller size can be manufactured.
本発明で使用されるインジウム化合物、 スズ化合物、 鉄化合物としては、 公知の無 機化合物 '有機化合物が利用される。 例えば、 塩化インジウム、 硫酸インジウム、 硝 酸インジウム、 カルボン酸インジウム、 インジウムァセチルァセトナート、 塩化スズ 、 硫酸スズ、 硝酸スズ、 カルボン酸スズ、 塩化鉄、 硫酸鉄、 硝酸鉄、 臭化鉄、 鉄カル ボニルなどがある。 これら以外の公知の各種ィヒ合物も用いられる。 また、 鉄塩は 1種 を単独で使用でき、 又は必要に応じて 2種以上を併用できる。 この事情はインジウム 塩、 スズ塩にも同様である。 As the indium compound, tin compound, and iron compound used in the present invention, known inorganic compounds and organic compounds are used. For example, indium chloride, indium sulfate, indium nitrate, indium carboxylate, indium acetyl acetate, tin chloride, tin sulfate, tin nitrate, tin carboxylate, iron chloride, iron sulfate, iron nitrate, iron bromide, iron Cal Bonil and the like. Other known various compounds may also be used. In addition, one iron salt can be used alone, or two or more iron salts can be used as needed. The same applies to indium salts and tin salts.
インジウム化合物、 スズ化合物、 鉄化合物の溶液は夫々単独で使用しても、 又イン ジゥム ·スズ ·鉄の 2種類或いは 3種類の混合溶液にすることもできる。 溶液中にお ける総金属イオンの濃度は特に制限されず、 反応が円滑に進行する濃度であればよい 。 通常、 0 . 0 1〜5 0重量0 /0、 好ましくは 0 . 1〜2 0重量%とすればよい。 溶液形成から焼成までの具体的工程は次のようである。 例えば、 インジウム塩、 ス ズ塩、 鉄塩のアルカリ性混合水溶液を調製した後、 固形物を分離し、 この固形物を乾 燥し、 必要に応じて粉枠し、 最終的に焼成して触媒微粒子が製造される。 また、 イン ジゥム、 スズ、 鉄の有機化合物を溶媒に分散し、 加水分解反応などの化学反応により インジウム ·スズ ·鉄系化合物の前駆体を形成する。 この前駆体を分離し、 乾燥し、 必要に応じて粉碎し、 最終的に焼成して触媒微粒子が製造される。 The solutions of the indium compound, the tin compound and the iron compound can be used alone or as a mixture of two or three of indium, tin and iron. The concentration of the total metal ions in the solution is not particularly limited as long as the reaction proceeds smoothly. Usually, 0. 0 1-5 0 weight 0/0, preferably from 0.1 to 2 0 may be weight percent. The specific steps from solution formation to baking are as follows. For example, after preparing an alkaline mixed aqueous solution of an indium salt, a tin salt, and an iron salt, a solid substance is separated, the solid substance is dried, a powder frame is formed as necessary, and finally calcined, and the catalyst fine particles are formed. Is manufactured. In addition, organic compounds of indium, tin, and iron are dispersed in a solvent, and a precursor of an indium-tin-iron-based compound is formed by a chemical reaction such as a hydrolysis reaction. The precursor is separated, dried, pulverized if necessary, and finally calcined to produce fine catalyst particles.
溶液からの固形物の分離は公知の分離方法の全てが利用できる。 乾燥は、 通常、 室 温〜 3 0 0 °C、 好ましくは 5 0〜 2 0 0 °Cの範囲で行われ、 粉砕は公知の無機物質粉 碎方法が採用できる。  All known separation methods can be used to separate the solid from the solution. Drying is usually performed at room temperature to 300 ° C., preferably at 50 to 200 ° C., and pulverization can be performed by a known inorganic substance pulverization method.
溶液法により得られる触媒は、 鉄/インジウムの組成比 (モル0 /0) が通常 1 0〜9 9 . 9 9 (モル0 /0) 、 好ましくは 2 0〜 9 9 (モル0 /0) である。 スズ /インジウムの 組成比は 0〜3 0 (モル0 /0) であり、 好ましくは 0 . 1〜1 0 (モル0 /0) である。 触 媒微粒子の直径は 1 η π!〜 1 0 0 μηιであり、 コロイド粒子径などの溶液パラメータ に依存する。 Catalyst obtained by the solution method, the composition ratio of iron / indium (mol 0/0) is usually 1 0-9 9.9 9 (mol 0/0), preferably 2 0-9 9 (mol 0/0) It is. The composition ratio of tin / indium is 0 to 3 0 (mol 0/0), preferably 0.1 to 1 0 (mol 0/0). The diameter of the catalyst particles is 1 η π! ~ 100 μηι, depending on solution parameters such as colloid particle size.
図 8は触媒微粒子 2 4を散布してカーボンナノコイル 1を製造する基板成長法のェ 程図である。 触媒微粒子 2 4が粉体として回収された場合には、 ( 8 Α) で基板 1 8 に触媒微粒子 2 4を散布する。 ( 8 Β ) で、 この基板 1 8に接触するように原料ガス を流通させると、 触媒微粒子 2 4が触媒核 5となってカーボンナノコイル 1が無数に 成長する。 このカーボンナノコイル 1を搔き落としてカーボンナノコイル 1を回収す る。  FIG. 8 is a process diagram of a substrate growth method for producing carbon nanocoils 1 by dispersing catalyst fine particles 24. When the catalyst fine particles 24 are recovered as powder, the catalyst fine particles 24 are sprayed on the substrate 18 in (8). In (8), when the raw material gas is passed so as to come into contact with the substrate 18, the catalyst nanoparticle 24 becomes the catalyst core 5, and the carbon nanocoils 1 grow innumerably. The carbon nanocoils 1 are collected and collected.
図 9は触媒微粒子 2 4を浮遊させてカーボンナノコイル 1を製造する横型流動製造 法の概略説明図である。 このカーボンナノコイル製造装置 2は、 反応槽 4の外周に加 熱装置 6を配置して、 反応室 8が画成されている。 反応槽 4の左端には噴霧ノズル 3 7が配置されている。 FIG. 9 is a schematic explanatory view of a horizontal flow production method for producing carbon nanocoils 1 by suspending catalyst fine particles 24. The carbon nanocoil manufacturing apparatus 2 is attached to the outer periphery of the reaction tank 4. A reaction chamber 8 is defined by disposing a heating device 6. A spray nozzle 37 is disposed at the left end of the reaction tank 4.
原料ガスがキャリアガスと共に矢印 a方向に流通している。 この原料ガスの中に嘖 霧ノズル 3 7カゝら触媒微粒子 2 4カゝらなる粉体を矢印 e方向に噴霧する。 空間中に拡 散した触媒微粒子 2 4が触媒核となってカーボンナノコイル 1が成長する。 原料ガス の流れに乗って触媒微粒子が流動し、 この流動過程でカーボンナノコイル 1が成長し 、 図示しない回収装置でカーボンナノコイル 1は回収される。  The raw material gas flows in the direction of arrow a together with the carrier gas. Into this raw material gas, a powder consisting of 37 particles of catalyst particles and 24 particles of catalyst particles is sprayed in the direction of arrow e. The catalyst fine particles 24 dispersed in the space serve as catalyst nuclei, and the carbon nanocoils 1 grow. The catalyst fine particles flow along with the flow of the raw material gas, and the carbon nanocoil 1 grows in the flow process, and the carbon nanocoil 1 is recovered by a recovery device (not shown).
図 1 0は触媒微粒子 2 4を浮遊させながらカーボンナノコイル 1を製造する縦型流 動製造法の概略説明図である。 このカーボンナノコイル製造装置 2も、 反応槽 4の外 周に加熱装置 6を配置して、 内部に等温領域の反応室 8が画成されている。 反応槽 4 の上端には噴霧ノズル 3 7が配置され、 反応槽 4の下端には排気窓 3 8が設けられて いる。  FIG. 10 is a schematic explanatory view of a vertical fluid production method for producing carbon nanocoils 1 while suspending catalyst fine particles 24. In the carbon nanocoil production apparatus 2 as well, a heating device 6 is arranged on the outer periphery of the reaction tank 4 and a reaction chamber 8 in an isothermal region is defined inside. A spray nozzle 37 is provided at the upper end of the reaction tank 4, and an exhaust window 38 is provided at the lower end of the reaction tank 4.
原料ガスがキヤリァガスと共に矢印 a方向に流下される。 反応室 8の中に噴霧ノズ ル 3 7から触媒微粒子 2 4からなる粉体を矢印 e方向に噴霧する。 触媒微粒子 2 4は 反応室 8の中を拡散し、 この触媒微粒子 2 4が触媒核となってカーボンナノコイル 1 が成長する。 原料ガスと共に触媒微粒子が流下し、 この流動過程でカーボンナノコィ ル 1が成長し、 反応槽 4の底部 4 aにカーボンナノコイル 1が堆積して回収される。 排ガスは排気窓 3 8から矢印 f方向に排出される。  The source gas flows down in the direction of arrow a together with the carrier gas. In the reaction chamber 8, a powder composed of the catalyst fine particles 24 from the spray nozzle 37 is sprayed in the direction of arrow e. The catalyst fine particles 24 diffuse in the reaction chamber 8, and the catalyst fine particles 24 serve as catalyst nuclei to grow the carbon nanocoils 1. The catalyst fine particles flow down together with the raw material gas, and the carbon nanocoils 1 grow in this flow process, and the carbon nanocoils 1 are deposited and collected on the bottom 4 a of the reaction tank 4. The exhaust gas is exhausted from the exhaust window 38 in the direction of arrow f.
【実施例】  【Example】
[実施例 1 :触媒薄膜のァニール処理による微粒子化]  [Example 1: Fine treatment of catalyst thin film by annealing treatment]
組成式が F e a I n S n 0. O xの組成物を焼結させてスパッタリング用のターゲッ ト 3 0を作製した。 このターゲット 3 0を用いて基板 1 8にイオンビームスパッタリ ング法により、 膜厚 2 0 0 n mのィンジゥム'スズ '鉄系触媒薄膜 2 0を形成した。 この基板 1 8を大気炉を用いて 7 0 0又は 9 0 0 °Cに加熱してァニール処理を行った 。 加熱時間は 1 0時間で、 大気炉中での自然冷却時間は 5時間であった。 比較のため 、 ァニール処理を行わない場合を室温と表記する。 Composition formula was prepared F ea I n S n 0. O targets 3 0 for sputtering by sintering a composition of x. Using this target 30, a 200 nm-thick indium-tin-iron-based catalyst thin film 20 was formed on a substrate 18 by an ion beam sputtering method. This substrate 18 was heated to 700 or 900 ° C. in an atmospheric furnace to perform an annealing treatment. The heating time was 10 hours, and the natural cooling time in the atmospheric furnace was 5 hours. For comparison, the case where no annealing treatment is performed is referred to as room temperature.
ァニール温度が室温、 7 0 0 °C、 9 0 0 °Cの 3例について、 基板 1 8上に形成され たィンジゥム ·スズ ·鉄系触媒微粒子膜 2 2を原子間力顕微鏡 (A FM) を用いて測 定した。 この A FM測定はカンチレバーにカーボンナノチューブを炭素膜で固定した ナノチューブカンチレバーが使用された。 平均の触媒微粒子直径 sを測定し、 結果は 表 2に纏められている。 Atomic temperature microscopy (AFM) was performed on the catalyst-particle film 22 formed on the substrate 18 with an annealing temperature of room temperature, 700 ° C, and 900 ° C. It was measured using In this AFM measurement, a carbon nanotube was fixed to a cantilever with a carbon film. A nanotube cantilever was used. The average catalyst particle diameter s was measured and the results are summarized in Table 2.
く表 2 >ァニール温度と触媒微粒子直径の関係  Table 2> Relationship between anneal temperature and catalyst particle diameter
くァニール温度 > く触媒微粒子直径 > く A F M写真 >  Kneail temperature> K catalyst fine particle diameter> K A F M photo>
室 温 未粒子 図 11  Room temperature unparticle Figure 11
700°C 60 nm 図 12  700 ° C 60 nm Figure 12
900 °C 400 nm 図 13  900 ° C 400 nm Figure 13
ァニール処理を行わない場合 (室温) には、 スズ ·鉄系触媒薄膜 20 は微粒子ィ匕しないことが分かった。 他方、 ァニール温度が 700°Cでは、 平均の触媒 微粒子直径は 60 nmとなり、 900°Cでは 400 nmということが分かった。 ァニ ール温度を上げると、 触媒微粒子直径が急激に大きくなることが実証された。 夫々の AFM写真が図 11〜図 13に示されている。  When the annealing treatment was not performed (at room temperature), it was found that the tin / iron-based catalyst thin film 20 did not have fine particles. On the other hand, at an annealing temperature of 700 ° C, the average catalyst particle diameter was 60 nm, and at 900 ° C it was found to be 400 nm. When the annealing temperature was increased, it was demonstrated that the diameter of the catalyst fine particles increased rapidly. The AFM photographs of each are shown in Figs.
これらの基板 18を反応槽 4の中に配置してカーボンナノコイル 1が CVD法によ り製造された。 CVD成長は、 キャリアガスとして Heガスを 200 s c cm、 原料 ガスとして C2H2ガスを 60 s c cm流し、 700 °Cで 30分間行われた。 基板 1 8に成長したカーボンナノコイル 1は走査型電子顕微鏡 (SEM) により撮影された 。 ァニール温度とカーボンナノコイル 1の平均コイル直径 D These substrates 18 were placed in the reaction tank 4, and the carbon nanocoils 1 were manufactured by the CVD method. The CVD growth was performed at 700 ° C for 30 minutes by flowing 200 sccm of He gas as a carrier gas and 60 sccm of C 2 H 2 gas as a source gas. The carbon nanocoil 1 grown on the substrate 18 was photographed by a scanning electron microscope (SEM). Anneal temperature and average coil diameter D of carbon nanocoil 1
の関係は表 3に纏められている。 Table 3 summarizes the relationship.
<表 3 >ァニール温度と平均コィル直径の関係  <Table 3> Relationship between anneal temperature and average coil diameter
<ァユール温度 > くコイル直径〉 <3£1^写真>  <Ayur temperature> Coil diameter> <3 £ 1 ^ photo>
室 温 200nm 図 14  Room temperature 200nm Figure 14
700°C 90 nm 図 15  700 ° C 90 nm Figure 15
900 °C 150 nm 図 16  900 ° C 150 nm Figure 16
ァニール温度が低いほうがコイル直径 Dが小さくなり、 表には示されていないがチ ユーブル直径 dも小さくなることが分かった。 この結果は、 表 2に見られるように、 ァニール温度が低いほうが触媒微粒子直径 sが小さくなることと共通している。 即ち 、 触媒微粒子直径 sが小さいとチューブル直径 dが小さくなり、 これに連動してコィ ル直径 Dも小さくなるのである。  It was found that the lower the annealing temperature, the smaller the coil diameter D, and although not shown in the table, the smaller the cable diameter d. This result, as seen in Table 2, has a common fact that the lower the annealing temperature, the smaller the catalyst particle diameter s. That is, when the diameter s of the catalyst fine particles is small, the diameter d of the tubule becomes small, and in conjunction with this, the diameter D of the coil becomes small.
他方、 室温 (ァニール処理されない) では、 コイル直径 Dが 200 nmと大きくな り、 触媒微粒子が形成され難!/、ことが分かった。 カーボンナノコイル 1の密度から云 うと、 9 0 0 °Cで密度が最大になり、 7 0 0 °Cでは密度はやや低くなるが、 サイズの 均一性は 7 0 0 °Cで最高になる。 室温では、 コイル密度は一番小さくなつた。 1 2 0 0 °Cも試験したが、 触媒として利用可能であることは確認された。 On the other hand, at room temperature (not annealed), the coil diameter D increased to 200 nm. It is difficult to form catalyst fine particles! / I understand. According to the density of the carbon nanocoil 1, the density becomes maximum at 900 ° C, and the density becomes slightly lower at 700 ° C, but the size uniformity becomes the highest at 700 ° C. At room temperature, the coil density was lowest. A test at 1200 ° C. was also performed, but it was confirmed that the catalyst could be used.
このァニール処理を用いた実施例から、 次のことが分かった。 カーボンナノコイル のサイ 'ズを均一化でき、 また従来の触媒薄膜よりコイル直径の小さなカーボンナノコ ィルを製造できる。 更にァニール温度を変ィヒすることにより、 コイル直径を可変する ことに成功した。  From the examples using this annealing treatment, the following was found. The size of the carbon nanocoil can be made uniform, and a carbon nanocoil with a smaller coil diameter than conventional catalyst thin films can be manufactured. By changing the annealing temperature, we succeeded in changing the coil diameter.
[実施例 2 : 1 0 0〜4 0 0 °Cで基板加熱処理による微粒子化]  [Example 2: Particle formation by substrate heat treatment at 100 to 400 ° C]
次に、 基板 1 8を加熱しながら、 他のスパッタリング条件は実施例 1と全く同様の 条件で、 イオンビームスパッタリング法を用いて基板 1 8にインジウム ·スズ ·鉄系 触媒微粒子膜 2 2を形成した。 薄膜形成と基板加熱を同時に行うことによって、 薄膜 を微粒子化する方法である。  Next, while heating the substrate 18, the other sputtering conditions were exactly the same as those in Example 1, and an indium-tin-iron-based catalyst fine particle film 22 was formed on the substrate 18 using the ion beam sputtering method. did. This is a method of forming a thin film into fine particles by simultaneously performing thin film formation and substrate heating.
基板 1 8の加熱温度は 1 0 0 °C、 2 0 0 °C、 3 0 0 °C及び 4 0 0 °Cの 4種類である 。 基板 1 8には触媒微粒子 2 4が薄膜状に集合したインジウム ·スズ '鉄系触媒微粒 子膜 2 2が形成されている。 これらの基板を用いて実施例 1と同様に C VD法を用い てカーボンナノコイル 1が製造された。 成長したカーボンナノコイル 1は走査型電子 顕微鏡 ( S EM) により撮影された。 基板加熱温度とカーボンナノコイル 1の平均コ ィル直径 D及びコィル密度の相関関係は表 4に纏められている。  The heating temperature of the substrate 18 is four types: 100 ° C., 200 ° C., 300 ° C., and 400 ° C. On the substrate 18, an indium-tin-iron-based catalyst fine particle film 22 in which catalyst fine particles 24 are gathered in a thin film shape is formed. Using these substrates, carbon nanocoils 1 were produced by the CVD method in the same manner as in Example 1. The grown carbon nanocoil 1 was photographed with a scanning electron microscope (SEM). Table 4 shows the correlation between the substrate heating temperature and the average coil diameter D and coil density of the carbon nanocoil 1.
<表 4 >基板加熱温度と平均コィル直径の関係  <Table 4> Relationship between substrate heating temperature and average coil diameter
<基板加熱温度〉 くコイル直径〉 ぐ密度〉 < S EM写真〉  <Substrate heating temperature> coil diameter> density> <SEM photo>
1 0 o。c 1 5 0 n m 小 図 1 7  10 o. c 1 5 0 n m Small Figure 1 7
2 0 0 °C 1 3 0 n m 中 図 1 8  2 0 0 ° C 1 3 0 n m Medium Figure 18
3 0 0 °C 1 8 0 n m 中 図 1 9  3 0 0 ° C 1 80 nm Medium Figure 1 9
4 0 0 °C 1 6 0 n m 大 図 2 0  4 0 0 ° C 16 0 n m Large Figure 20
コイル直径 Dと基板加熱温度の間には目立った関係は見当たらないが、 1 0 0 °C〜 4 0 0 °Cの間ではコイル直径は起伏に富んで変化することが分かった。 他方、 コイル 密度は基板加熱温度の増加に従って増大していることが分かる。 従って、 この 4例の 中では、 4 0 0 °Cの基板加熱法を用いれば、 カーボンナノコイル 1の量産性が最大で あることが分かる。 No noticeable relationship was found between the coil diameter D and the substrate heating temperature, but it was found that the coil diameter varied between 100 ° C. and 400 ° C. in a highly undulating manner. On the other hand, it can be seen that the coil density increases as the substrate heating temperature increases. Therefore, among these four examples, if the substrate heating method at 400 ° C is used, the mass productivity of the carbon nanocoils 1 is the largest. You can see that there is.
[実施例 3 :溶液法による触媒微粒子の製造]  [Example 3: Production of catalyst fine particles by solution method]
I n C 13 · 4H20 (純度 99. 9%) を 1. 76 g、 S nC 14 (純度 60%) を 0. 14 g、 F e C 13 · 6H20 (純度 97%) を 5. 02 gだけ用意して脱ィ オン水 4 Om 1に分散させ、 塩ィ匕ィンジゥム '塩化スズ ·塩化鉄の混合水溶液を調製 した。 また、 炭酸アンモニゥム (純度 30%) 1 1· 7 gを脱イオン水 20 Om 1に 溶解させ、 炭酸アンモニゥム水溶液を調製した。 I n C 13 · 4H 2 0 ( purity 99.9%) of 1. 76 g, S nC 1 4 ( 60% pure) and 0. 14 g, F e C 13 · 6H 2 0 (purity 97%) Only 5.02 g was prepared and dispersed in 4 Om 1 of deionized water to prepare a mixed aqueous solution of salt chloride and tin chloride / iron chloride. Also, 11.7 g of ammonium carbonate (purity 30%) was dissolved in 20 Om 1 of deionized water to prepare an aqueous solution of ammonium carbonate.
攪拌しながら、 炭酸アンモニゥム水溶液 (pH8. 6) に塩化インジウム '塩化ス ズ '塩化鉄の混合水溶液を 20分掛けて滴下したところ、 pH7. 4の茶褐色の懸濁 液が生成された。 滴下終了後、 更に 10分間攪拌を続け、 次いで、 ろ過して固形物を 分離した。'この固形物を水洗し、 110°Cで乾燥させ、 乳鉢で粉碑し、 更に 600°C で 2時間焼成した。 その結果、 酸化インジウム、 酸化スズ、 酸化鉄の固溶体粉末が合 成された。 この触媒微粒子の組成比は、 酸化物換算で、 鉄 Zインジウム/スズ =3/ 1/0. 05 (モル%) であった。  While stirring, a mixed aqueous solution of indium chloride 'tin chloride' and iron chloride was added dropwise to the aqueous solution of ammonium carbonate (pH 8.6) over 20 minutes to produce a brown suspension of pH 7.4. After completion of the dropwise addition, stirring was continued for another 10 minutes, and then filtration was performed to separate a solid. 'The solid was washed with water, dried at 110 ° C, dusted in a mortar, and baked at 600 ° C for 2 hours. As a result, solid solution powders of indium oxide, tin oxide, and iron oxide were synthesized. The composition ratio of the catalyst fine particles was iron / z indium / tin = 3/1 / 0.05 (mol%) in terms of oxides.
[実施例 4 :実施例 3の触媒微粒子によるカーボンナノコィルの合成]  [Example 4: Synthesis of carbon nanocoils using catalyst fine particles of Example 3]
実施例 1で得られた触媒 l O Omgをエタノール l gの中に分散させ、 分散溶液を 石英板 (4 cmxl. 5 cm) の上に滴下した。 エタノールが乾燥した後、 石英板上 には約 3 m gの触媒が存在していた。 この石英板を反応室 8の中心部に配置した。 室温の状態で反応室 8に Heガスを 260 s c cmの流量で導入した。 その後、 H eガスを導入しながら、 反応室内の温度を 15 °C/分の割合で室温から 700°Cまで 上昇させた。 700°Cに到達した後、 H eガスの 1ノ3を C2H2に置換し、 この混 合ガスを 30分間流通させた。 その後、 C2H2ガスを遮断して Heガスのみを流通 させ、 室温まで冷却させた。 The catalyst lO Omg obtained in Example 1 was dispersed in ethanol lg, and the dispersion solution was dropped on a quartz plate (4 cmxl. 5 cm). After the ethanol had dried, there was about 3 mg of catalyst on the quartz plate. This quartz plate was arranged at the center of the reaction chamber 8. At room temperature, He gas was introduced into the reaction chamber 8 at a flow rate of 260 sccm. Thereafter, the temperature inside the reaction chamber was increased from room temperature to 700 ° C at a rate of 15 ° C / min while introducing He gas. After the temperature reached 700 ° C, 1 to 3 of He gas was replaced with C 2 H 2 , and the mixed gas was allowed to flow for 30 minutes. Thereafter, C 2 H 2 gas was cut off, He gas alone was allowed to flow, and the mixture was cooled to room temperature.
石英板に析出した黒色生成物は全量で 23 m gであり、 元の触媒量に比べて数倍以 上の増加が見られた。 黒色生成物を走査型電子顕微鏡 (SEM) で観察したところ、 無数のカーボンナノコイルが観察された。  The total amount of black product deposited on the quartz plate was 23 mg, which was more than several times the amount of the original catalyst. When the black product was observed with a scanning electron microscope (SEM), countless carbon nanocoils were observed.
[実施例 5 :他の組成比による触媒微粒子とカーボンナノコィルの合成]  [Example 5: Synthesis of catalyst fine particles and carbon nanocoils with other composition ratios]
I n C 13 · 4H20 (純度 99. 9%) を 1. 47 g、 SnC l 4 (純度 60%) を 0. l l g、 F e C 13 · 6H20 (純度 97%) を 6. 83 gだけ準備して、 脱 イオン水 4 0 m lに分散させ、 塩化ィンジゥム '塩化スズ ·塩化鉄の混合水溶液を調 製した。 また、 炭酸アンモニゥム (純度 3 0 %) 1 4. 4 7 gを脱イオン水 2 0 0 m 1に溶解させ、 炭酸アンモニゥム水溶液を調製した。 I n C 13 · 4H 2 0 ( purity 99.9%) of 1. 47 g, 0. The SnC l 4 (purity 60%) llg, F e C 1 3 · 6H 2 0 (purity 97%) 6 Prepare only 83 g and remove The mixture was dispersed in 40 ml of ionic water to prepare a mixed aqueous solution of zinc chloride and tin chloride / iron chloride. In addition, 1.47 g of ammonium carbonate (purity: 30%) was dissolved in 200 ml of deionized water to prepare an aqueous solution of ammonium carbonate.
攪拌しながら、 炭酸アンモ-ゥム水溶液 ( p H 9 . 4 ) に塩ィヒインジウム '塩ィ匕ス ズ ·塩化鉄の混合水溶液を 3 0分掛けて滴下したところ、 p H 7 . 9の茶褐色の懸濁 液が生成された。 滴下終了後、 更に 1 0分間攪拌を続け、 次いで、 ろ過して固形物を 分離した。 この固形物を水洗し、 1 1 0°Cで乾燥させ、 乳鉢で粉碎し、 更に 6 0 0 °C で 2時間焼成した。 その結果、 酸化インジウム、 酸化スズ、 酸化鉄の固溶体粉末が合 成された。 この触媒微粒子の組成比は、 酸化物換算で、 鉄/インジウム/スズ = 5 Z While stirring, a mixed aqueous solution of indium chloride and salted iron / chloride was added dropwise to the aqueous solution of ammonium carbonate (pH 9.4) over 30 minutes to obtain a brownish brown solution having a pH of 7.9. A suspension was formed. After completion of the dropwise addition, stirring was continued for another 10 minutes, and then filtration was performed to separate a solid. The solid was washed with water, dried at 110 ° C., ground in a mortar, and calcined at 600 ° C. for 2 hours. As a result, solid solution powders of indium oxide, tin oxide, and iron oxide were synthesized. The composition ratio of these catalyst particles is iron / indium / tin = 5 Z
1 / 0 . 0 5 (モル%) であった。 1 / 0.05 (mol%).
実施例 4と同様の方法で、 触媒を石英板に配置してカーボンナノコイルを合成した 。 黒色生成物を走査型電子顕微鏡 ( S EM) で観察したところ無数のカーボンナノコ ィルが観察された。  In the same manner as in Example 4, the catalyst was arranged on a quartz plate to synthesize carbon nanocoils. When the black product was observed with a scanning electron microscope (SEM), countless carbon nanocoils were observed.
本発明は上記実施形態及び実施例に限定されるものではなく、 本発明の技術的思想 を逸脱しない範囲における種々の変形例、 設計変更などをその技術的範囲内に包含す るものである。  The present invention is not limited to the above embodiments and examples, but encompasses various modifications and design changes within the technical scope thereof without departing from the technical concept of the present invention.
(産業上の利用可能性) (Industrial applicability)
第 1の発明によれば、 ィンジゥム · スズ ·鉄系触媒の触媒微粒子が提供され、 この 触媒微粒子がチューブル先端の触媒核となってカーボンナノコイルを強力に成長させ ることができる。 触媒微粒子の直径を自在に可変することによりチュープル直径を可 変でき、 その結果、 製造されるコイル直径を自在に調節することができる。 触媒微粒 子の直径を均一化することにより、 均一なコイル形状を有したカーボンナノコイルを 効率的に量産できる。  According to the first invention, catalyst fine particles of an indium-tin-iron catalyst are provided, and the catalyst fine particles can serve as a catalyst nucleus at the tip of a tube to strongly grow carbon nanocoils. By freely changing the diameter of the catalyst fine particles, the diameter of the tuple can be changed, and as a result, the diameter of the manufactured coil can be freely adjusted. By making the diameter of the catalyst fine particles uniform, carbon nanocoils having a uniform coil shape can be efficiently mass-produced.
第 2の発明によれば、 直径が 1 n m〜l 0 0 μπιのカーボンナノコイル製造用の触 媒微粒子が提供される。 触媒微粒子が触媒核となってカーボンナノコイルを成長させ るから、 触媒微粒子の直径とチューブル直径とは緊密な相関性を有している。 触媒微 粒子の直径を 1 n m〜l 0 Ο μπιの範囲で自在に制御すれば、 任意のチュープル直径 及ぴコイル直径を有したカーボンナノコイルを選択的に安価且つ大量に提供すること ができる。 According to the second invention, catalyst fine particles having a diameter of 1 nm to 100 μπι for producing carbon nanocoils are provided. Since the catalyst fine particles serve as the catalyst nuclei to grow the carbon nanocoils, the diameter of the catalyst fine particles and the diameter of the tubule have a close correlation. By freely controlling the diameter of the catalyst particles in the range of 1 nm to 10 μμπι, it is possible to selectively and inexpensively provide a large amount of carbon nanocoils with arbitrary tuple diameter and coil diameter. Can be.
第 3の発明によれば、 鉄がインジウムに対し 1 0〜9 9 . 9 9モル0/。、 スズがイン ジゥムに対し 0〜3 0モル0 /0の範囲で添加されたカーボンナノコイル製造用触媒が提 供される ς インジウム ·スズ '鉄系触媒を構成するインジウムとスズと鉄のモル比を 任意に調整して、 均一サイズのカーボンナノコイルを高効率に製造することができる 第 4の発明によれば、 基板にィンジゥム ·スズ ·鉄系触媒薄膜を形成し、 この薄膜 が形成された基板を加熱することにより薄膜を微粒子化して基板上に触媒微粒子を形 成することができる。 1段目でインジウム ·スズ '鉄系化合物の薄膜平面触媒を形成 し、 2段目で基板加熱により薄膜平面触媒を微粒子状に変化させ、 基板上に無数の触 媒微粒子を形成する。 生成された触媒微粒子の直径に応じた形状のカーボンナノコィ ルを製造することができる。 According to the third invention, iron is in a range of 10 to 99.9 mol 0 / indium. , Moles of indium and tin and iron tin constituting 0-3 0 mole 0/0 S indium-tin 'iron-based catalyst for synthesizing carbon nanocoils catalyst added in the range is provision of relative in Jiumu According to the fourth invention, a carbon nanocoil of uniform size can be manufactured with high efficiency by adjusting the ratio arbitrarily. According to the fourth invention, an indium-tin-iron-based catalyst thin film is formed on a substrate, and this thin film is formed. By heating the heated substrate, the thin film can be made finer to form fine catalyst particles on the substrate. In the first step, a thin-film planar catalyst of indium-tin-iron-based compound is formed. In the second step, the thin-film planar catalyst is changed into fine particles by heating the substrate, and countless catalyst particles are formed on the substrate. A carbon nanocoil having a shape corresponding to the diameter of the generated catalyst fine particles can be produced.
第 5の発明によれば、 薄膜が形成された基板を 1 0 0 °C〜1 2 0 0 °Cの温度でァニ ールして薄膜を微粒子化することができる。 加熱温度によつて触媒微粒子の直径を可 変でき、 均一な直径を有した触媒微粒子を形成することにより、 形状が揃ったカーボ ンナノコィルの大量生産が実現できる。  According to the fifth aspect, the substrate on which the thin film is formed can be annealed at a temperature of 100 ° C. to 1200 ° C. to make the thin film fine. The diameter of the catalyst particles can be varied according to the heating temperature, and by forming the catalyst particles having a uniform diameter, mass production of carbon nanocoils having a uniform shape can be realized.
第 6の発明によれば、 加熱状態にある基板に薄膜を形成して、 形成される薄膜が同 時に微粒子化され、 薄膜形成と微粒子化を平行して実現できる。 従って、 微粒子触媒 の製造工程を短縮して、 製造コストの低減が可能になる。  According to the sixth aspect, a thin film is formed on a substrate in a heated state, and the formed thin film is finely divided at the same time, so that the thin film formation and the fine particle formation can be realized in parallel. Therefore, the production process of the fine particle catalyst can be shortened, and the production cost can be reduced.
第 7の発明によれば、 ィンジゥム化合物とスズ化合物と鉄化合物は溶液内で均一に 混合されるから、 インジウム 'スズ.鉄の糸且成比が均一な固形物が生成される。 この 固形物を焼成して固溶体を形成し、 しかも微粒子化できるから、 組成比と粒径が均一 な触媒微粒子を製造できる。 溶液法と焼成法の組み合わせにより触媒微粒子の量産が 可能になる。  According to the seventh aspect, since the indium compound, the tin compound, and the iron compound are uniformly mixed in the solution, a solid material having a uniform indium-tin-iron composition ratio is generated. Since the solid is fired to form a solid solution and can be made into fine particles, catalyst fine particles having a uniform composition ratio and particle diameter can be produced. The combination of the solution method and the firing method enables mass production of catalyst fine particles.
第 8の発明によれば、 溶液中でィンジゥム化合物とスズ化合物と鉄化合物が混合し てコロイドを形成するから、 このコロイドからなる固形物が分離されて焼成される。 つまり、 コロイドが焼成により触媒微粒子となるから、 コロイド直径を制御すること により、 触媒微粒子の直径を可変制御できる。  According to the eighth invention, since the indium compound, the tin compound and the iron compound are mixed in a solution to form a colloid, a solid formed of the colloid is separated and fired. In other words, since the colloid becomes the catalyst fine particles by firing, the diameter of the catalyst fine particles can be variably controlled by controlling the colloid diameter.
第 9の発明によれば、 触媒微粒子が原料ガスを分解して炭素原子を吸着しながらチ ユーブルを形成し、 このチュープルが触媒微粒子により卷回してカーボンナノコイル が形成される。 触媒微粒子をチューブル先端の触媒核として積極的に活用し、 触媒微 粒子の直径に応じた均一サイズのカーボンナノコイルを基板上に大量生産することが できる。 According to the ninth aspect, the catalyst fine particles decompose the raw material gas and adsorb carbon atoms to form a catalyst. A tuple is formed, and the tuple is wound by the catalyst fine particles to form a carbon nanocoil. By actively using the catalyst fine particles as the catalyst nucleus at the tip of the tube, it is possible to mass-produce carbon nanocoils of uniform size according to the diameter of the catalyst fine particles on the substrate.
第 1 0の発明によれば、 触媒微粒子を噴霧などにより空間中に浮遊させ、 浮遊中に 原料ガスと反応してカーボンナノコイルを成長させるから、 基板などが不用となり、 カーボンナノコィルを連続的に大量生産することが可能になる。  According to the tenth aspect, the catalyst fine particles are suspended in the space by spraying or the like, and the carbon nanocoils are grown by reacting with the raw material gas during the suspension. Mass production becomes possible.

Claims

It 求 の 範 囲 Range of request
1 . 外直径が 1 0 0 0 n m以下のカーボンナノコイルを化学的気相成長法により製 造するィンジゥム 'スズ.鉄系触媒であり、 このインジウム ·スズ'鉄系触媒が触媒 微粒子から構成されることを特徴とするカーボンナノコィル製造用触媒。 1. An indium-tin-based catalyst that produces carbon nanocoils with an outer diameter of 100 nm or less by chemical vapor deposition. The indium-tin-based catalyst is composed of catalyst particles. A catalyst for producing carbon nanocoils, characterized in that:
2 . 前記触媒微粒子の直径が 1 n m〜 1 0 Ο μπιである請求項 1に記載のカーボン ナノコイル製造用触媒。 2. The catalyst for producing carbon nanocoils according to claim 1, wherein the diameter of the catalyst fine particles is 1 nm to 10 μπι.
3 . 鉄はインジウムに対し 1 0〜9 9 . 9 9モル0 /0、 スズはインジウムに対し 0〜 3 0モル%の範囲で添加された請求項 1に記載のカーボンナノコイル製造用触媒。3. Iron 0-9 1 whereas indium 9. 9 9 mole 0/0, tin 0 whereas indium 3 0 mole% of the added carbon nanocoils catalyst according to claim 1 in the range.
4 . 基板にインジウム 'スズ '鉄系化合物の薄膜を形成し、 この薄膜が形成された 基板を加熱することにより薄膜を微粒子化して基板上に触媒微粒子を形成することを 特徵とするカーボンナノコイル製造用触媒の製造方法。 4. A carbon nanocoil characterized in that a thin film of indium 'tin' iron-based compound is formed on a substrate, and the substrate on which the thin film is formed is heated to form the thin film into fine particles to form catalyst fine particles on the substrate. A method for producing a production catalyst.
5 . 前記薄膜が形成された基板を 1 0 0 °C〜 1 2 0 0 °Cの温度でァニールして薄膜 を微粒子化する請求項 4に記載のカーボンナノコイル製造用触媒の製造方法。  5. The method for producing a catalyst for producing carbon nanocoils according to claim 4, wherein the substrate on which the thin film is formed is annealed at a temperature of 100 ° C. to 1200 ° C. to make the thin film fine.
6 . 加熱されている基板にインジウム ·スズ ·鉄系化合物の薄膜を形成し、 この薄 膜を前記加熱により同時に微粒子化して基板上に触媒微粒子を形成することを特徴と するカーボンナノコイル製造用触媒の製造方法。  6. A carbon nanocoil manufacturing method characterized in that a thin film of an indium / tin / iron-based compound is formed on a heated substrate, and the thin film is simultaneously finely divided by the heating to form catalyst fine particles on the substrate. Method for producing catalyst.
7 . インジウム化合物とスズ化合物と鉄化合物を溶媒に添加した溶液を形成し、 こ の溶液から固形物を分離し、 分離された固形物を焼成してィンジゥム ·スズ ·鉄系化 合物の触媒微粒子を製造することを特徴とするカーボンナノコイル製造用触媒の製造 方法。  7. A solution containing an indium compound, a tin compound and an iron compound added to a solvent is formed, a solid is separated from the solution, and the separated solid is calcined to catalyze an indium / tin / iron compound. A method for producing a catalyst for producing carbon nanocoils, which comprises producing fine particles.
8 . 前記インジウム化合物とスズ化合物と鉄化合物が溶液内でコロイドを形成し、 このコロイド粒子により触媒微粒子を形成する請求項 7に記載のカーボンナノコイル 製造用触媒の製造方法。  8. The method for producing a carbon nanocoil production catalyst according to claim 7, wherein the indium compound, tin compound and iron compound form a colloid in the solution, and the colloid particles form catalyst fine particles.
9 . インジウム ·スズ'鉄系触媒の触媒微粒子を基板上に配置し、 原料ガスが流通 する反応槽の中に前記基板を配置して、 この触媒微粒子を核にして前記原料ガスを分 解しながらカーボンナノコイルを成長させることを特徴とするカーボンナノコイル製 造方法。  9. Dispose the catalyst particles of the indium-tin-iron catalyst on the substrate, dispose the substrate in a reaction vessel through which the source gas flows, and disassemble the source gas using the catalyst particles as nuclei. A carbon nanocoil manufacturing method characterized by growing carbon nanocoils while growing.
1 0 . 原料ガスが流通する反応槽の中にィンジゥム · スズ ·鉄系触媒の触媒微粒子 を浮遊させ、 この触媒微粒子を核にして前記原料ガスを分解しながらカーボンナノコ ィルを成長させることを特徴とするカーボンナノコィル製造方法。 1 0. Catalyst fine particles of aluminum, tin, and iron catalysts in the reaction vessel through which the raw material gas flows. A carbon nanocoil is grown while decomposing the raw material gas using the catalyst fine particles as nuclei to grow the carbon nanocoil.
PCT/JP2004/000722 2003-01-28 2004-01-27 Catalyst for producing carbon nanocoil and method for preparation thereof, and method for producing carbon nanocoil WO2004067169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003018352A JP2004261630A (en) 2003-01-28 2003-01-28 Catalyst for manufacturing carbon nanocoil, its manufacturing method, and method for manufacturing carbon nanocoil
JP2003-018352 2003-01-28

Publications (1)

Publication Number Publication Date
WO2004067169A1 true WO2004067169A1 (en) 2004-08-12

Family

ID=32820582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000722 WO2004067169A1 (en) 2003-01-28 2004-01-27 Catalyst for producing carbon nanocoil and method for preparation thereof, and method for producing carbon nanocoil

Country Status (2)

Country Link
JP (1) JP2004261630A (en)
WO (1) WO2004067169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649929A1 (en) * 2003-05-29 2006-04-26 Japan Science and Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033367A1 (en) 2004-09-24 2006-03-30 Japan Science And Technology Agency Process and apparatus for producing carbon nanostructure
FR2896493B1 (en) * 2006-01-23 2008-02-22 Commissariat Energie Atomique METHOD FOR PRODUCING A SUPPORT FOR THE GROWTH OF LOCALIZED LONG NANOSTRUCTURES
JP5072244B2 (en) * 2006-03-20 2012-11-14 公立大学法人大阪府立大学 Catalyst particles for producing carbon nanocoils, method for producing the same, and method for producing carbon nanocoils
JP4863361B2 (en) * 2006-03-28 2012-01-25 パナソニック電工株式会社 Method for producing carbon nanotube
JP5196417B2 (en) * 2007-07-10 2013-05-15 公立大学法人大阪府立大学 Catalyst for producing carbon nanocoil and method for producing carbon nanocoil
TWI378897B (en) 2007-12-27 2012-12-11 Univ Nat Taiwan Method for producing carbon nanocoils
JP5156896B2 (en) * 2008-03-11 2013-03-06 一般財団法人ファインセラミックスセンター Method for producing catalyst for producing carbon nanocoil and method for producing carbon nanocoil
JP5552834B2 (en) * 2010-02-23 2014-07-16 学校法人 東洋大学 Method for producing carbon nanotube
JP5710185B2 (en) * 2010-09-10 2015-04-30 株式会社Cmc総合研究所 Micro coil manufacturing method and manufacturing apparatus
CN103252240A (en) * 2013-04-07 2013-08-21 华东理工大学 A solvothermal method for solid solution catalyst NixM1-x-yMgyO (M is Ce, co, sn, mn) used for dry gas reforming of CH4-CO2
CN110642240B (en) * 2019-09-23 2022-05-27 大连理工大学 Method for synthesizing high-purity carbon nanocoil by using composite catalyst formed on basis of multiple small-size catalysts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758028A2 (en) * 1995-07-10 1997-02-12 Research Development Corporation Of Japan Process of producing graphite fiber
US20030010279A1 (en) * 2001-07-11 2003-01-16 Yoshikazu Nakayama And Daiken Chemical Co., Ltd. Method for mass-producing carbon nanocoils

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758028A2 (en) * 1995-07-10 1997-02-12 Research Development Corporation Of Japan Process of producing graphite fiber
US20030010279A1 (en) * 2001-07-11 2003-01-16 Yoshikazu Nakayama And Daiken Chemical Co., Ltd. Method for mass-producing carbon nanocoils

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HOYOKAWA S, ET AL: "Synthesis of carbon nanocoils using fine particle, Extended Abstracts (The 50th Spring Meeting,2003)", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 1, 27 March 2003 (2003-03-27), pages 571, XP002979137 *
LI X, ET AL: "Preparation of catalyst of Fe-In-Sn compound oxide and synthesis of carbon nanocoils, Extended Abstracts (The 50th Spring Meeting,2003) 30a-ZG-8", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 1, 27 March 2003 (2003-03-27), pages 570, XP002979136 *
LUO GUOHUA ET AL: "Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed", PHYSICA, vol. 323, no. 1-4, 2002, pages 314 - 317, XP002254673 *
NISHIMURA K. ET AL: "X-ray diffraction analysis of Fe-ITO catalyst for growth of carbon nanocoils,Extended Abstracts (The 50th Spring Meeting,2003) 30a-ZG-11", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 1, 27 March 2003 (2003-03-27), pages 571, XP002979135 *
PAN LUJUN ET AL: "Growth mechanism of carbon nanocoils", JOURNAL OF APPLIED PHYSICS, vol. 91, no. 12, 2002, pages 10058 - 10061, XP002979133 *
SUEKANE O. ET AL: "Evaluation and formation of carbon nano coils by using Fe-In-Sn-O catalysts,Extended Abstracts (The 50th Spring Meeting,2003) 30a-ZG-10", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 1, 27 March 2003 (2003-03-27), pages 571, XP002979134 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649929A1 (en) * 2003-05-29 2006-04-26 Japan Science and Technology Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
EP1649929A4 (en) * 2003-05-29 2006-12-20 Japan Science & Tech Agency Catalyst for preparing carbon nanocoil, method for preparation thereof, method for preparing carbon nanocoil and carbon nanocoil
EP2062642A1 (en) * 2003-05-29 2009-05-27 Japan Science and Technology Agency Catalyst for synthesizing carbon nanocoils, synthesising method of the same and synthesizing method of carbon nanocoils

Also Published As

Publication number Publication date
JP2004261630A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
US8048821B2 (en) Catalyst composition for the synthesis of thin multi-walled carbon nanotube and its manufacturing method
US8202818B2 (en) Catalyst composition for preparing carbon nanotube
US9006132B2 (en) Process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method
US20070020167A1 (en) Method of preparing catalyst for manufacturing carbon nanotubes
US8541054B2 (en) Methods for preparation of one-dimensional carbon nanostructures
JP5347139B2 (en) Method for producing carbon nanotube
WO2004067169A1 (en) Catalyst for producing carbon nanocoil and method for preparation thereof, and method for producing carbon nanocoil
WO2007105707A1 (en) Process for production of carbon nanotube aggregates, carbon nanotube aggregates, catalyst particle dispersion membrane, electron emitters, and field emission displays
US7829494B2 (en) Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
US8673807B2 (en) Catalyst composition for the synthesis of thin multi-walled carbon nanotube
CN115888729A (en) Catalyst for mass production of multi-walled carbon nanotubes
JP3913583B2 (en) Method for producing carbon nanotube
WO2005033001A2 (en) Methods for preparation of one-dimensional carbon nanostructures
JP2008138348A (en) Method for producing carbon nanofiber aggregate
KR101779668B1 (en) 3-dimensional carbon composite and preparing method thereof
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
JP2003112050A (en) Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JP2010042942A (en) Method for manufacturing substrate for forming carbon nanotube and method for manufacturing carbon nanotube using the substrate
JP2009018234A (en) Catalyst and method for producing carbon nano-coil
CN113101981B (en) Preparation method of catalyst for preparing carbon nanotube
KR100791638B1 (en) Method for preparing carbon nanotube from liquid phase catalyst precursor employing rapid thermal chemical vapor deposition
KR20200012563A (en) Method for preparing carbonnanotube
JP2004277925A (en) Coin-laminated type nanographite, method for producing the same, and catalyst therefor
KR101440417B1 (en) Manufacturing method of catalyst for synthesis of carbon nanotubes using ultrasonic pyrolysis and carbon nanotubes using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase