CN113101981B - Preparation method of catalyst for preparing carbon nanotube - Google Patents

Preparation method of catalyst for preparing carbon nanotube Download PDF

Info

Publication number
CN113101981B
CN113101981B CN202110370048.1A CN202110370048A CN113101981B CN 113101981 B CN113101981 B CN 113101981B CN 202110370048 A CN202110370048 A CN 202110370048A CN 113101981 B CN113101981 B CN 113101981B
Authority
CN
China
Prior art keywords
salt
solution
catalyst
methanol
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110370048.1A
Other languages
Chinese (zh)
Other versions
CN113101981A (en
Inventor
马伟斌
张权
张洋岳
杨锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaozuo Jiyue Nano Material Technology Co ltd
Original Assignee
Jiaozuo Jiyue Nano Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaozuo Jiyue Nano Material Technology Co ltd filed Critical Jiaozuo Jiyue Nano Material Technology Co ltd
Priority to CN202110370048.1A priority Critical patent/CN113101981B/en
Publication of CN113101981A publication Critical patent/CN113101981A/en
Application granted granted Critical
Publication of CN113101981B publication Critical patent/CN113101981B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • B01J35/33
    • B01J35/394
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Abstract

The invention relates to the technical field of carbon nanotube preparation, and discloses a preparation method of a catalyst for preparing a carbon nanotube, which comprises the following steps: 1) Preparation of Fe 3 O 4 Magnetic core: dissolving ferric trichloride solution and sodium acetate in ethylene glycol to form solution, carrying out crystallization reaction on the solution at 200 ℃ for 8 hours, cooling, washing, separating, drying and grinding reaction products to obtain Fe 3 O 4 (ii) a 2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @NiFe‑LDH、Fe 3 O 4 @ CoFe-LDH or Fe 3 O 4 @ CoFeNi-LDH catalyst precursor; 3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere to obtain the catalyst. The catalyst prepared by the preparation method has high catalytic activity for catalyzing the preparation of the carbon nano tube.

Description

Preparation method of catalyst for preparing carbon nanotube
Technical Field
The invention belongs to the technical field of carbon nanotube preparation, and particularly relates to a preparation method of a catalyst for carbon nanotube preparation.
Background
Carbon Nanotubes (CNTs) are a hollow tubular structure made of carbon elements, also known as buckytubes, which are one-dimensional quantum materials with special structures (diameters between a few nanometers to tens of nanometers, lengths up to several micrometers, and essentially sealed ends at both ends of the tube).
The carbon nano tube is used as a one-dimensional nano material, has light weight, perfect connection of a hexagonal structure and a plurality of excellent mechanical, electrical and chemical properties: 1) Mechanical properties: the tensile strength of the carbon nano tube reaches 50-200 GPa, which is 100 times of that of steel, the density is only 1/6 of that of the steel, the hardness is equivalent to that of diamond, the carbon nano tube has good flexibility and stretchability, the length-diameter ratio is generally more than 1000: 1, and the carbon nano tube is an ideal high-strength fiber material; 2) Electrical properties: the carbon nano tube has the same structure as the graphite sheet structure, so the carbon nano tube has good electrical property; 3) Thermal properties: the carbon nano tube has very large length-diameter ratio, so that the heat exchange performance along the length direction is very high, the carbon nano tube can synthesize a high-anisotropy heat conduction material through proper orientation, and in addition, the carbon nano tube has higher heat conductivity, so that the heat conductivity of the composite material can be greatly improved. Besides, the carbon nano tube has other good performances such as optics, hydrogen storage and the like, and the excellent performances enable the carbon nano tube to be considered as an ideal reinforcing material of the polymer composite material.
In view of the excellent physicochemical and mechanical properties of carbon nanotubes, great potential application values thereof are receiving wide attention. The application research of the carbon nano tube mainly focuses on the fields of composite materials, hydrogen storage, electronic devices, batteries, super capacitors, field emission displays, quantum wire template electron guns, sensors, microscope probes and the like.
The preparation method of the carbon nano tube comprises the following steps: an arc method, a Chemical Vapor Deposition (CVD) method, a catalytic thermal decomposition method, a hydrothermal method, and the like, wherein the CVD method has advantages of low cost, convenient operation, and the like, and has been widely used for the preparation of CNTs. In the process of preparing the CNT, if no catalyst is added, only amorphous carbon exists in a product, and only after the catalyst is added, a product contains a large amount of single-walled carbon nanotubes and multi-walled carbon nanotubes. The catalyst is an indispensable factor for nanotube preparation.
The catalyst for preparing the carbon nano tube comprises metal simple substances and compounds, wherein the metal simple substances comprise Fe, co, ni, mo, cr, cu, pt and the like, and bimetallic, polymetallic and alloy can also be used as the catalyst, and the compounds comprise salts, oxides and the like of the above metals. The supported metal catalyst can well solve the problems of agglomeration, enrichment and the like of metal simple substance catalyst particles, but has the problems of low activity and unfavorable purification of the carbon nano tube.
Disclosure of Invention
In view of the above-mentioned situation existing in the prior art, the present invention aims to provide a method for preparing a catalyst for preparing carbon nanotubes by adding a magnetic material Fe 3 O 4 The catalyst prepared by combining the hydrotalcite and the hydrotalcite has higher catalytic activity when being used for preparing the carbon nano tube.
In order to achieve the purpose, the invention is realized by the following technical scheme:
the first aspect of the present invention provides a method for preparing a catalyst for carbon nanotube production, the method comprising the steps of:
1) Preparation of Fe 3 O 4 Magnetic core: dissolving ferric trichloride solution and sodium acetate in ethylene glycol to form solution, carrying out crystallization reaction on the solution at 200 ℃ for 8 hours, cooling, washing, separating, drying and grinding reaction products to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @NiFe-LDH、 Fe 3 O 4 @ CoFe-LDH or Fe 3 O 4 @ CoFeNi-LDH catalyst precursor;
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere to obtain the catalyst.
In the present invention, fe 3 O 4 The magnetic core may be prepared by methods conventional in the art. The method in the step 1) is preferably adopted, and specifically, the molar concentration of the ferric trichloride solution is 0.1mol/L, the molar ratio of ferric trichloride to sodium acetate is 1: 5, and the ratio of the amount of ferric trichloride to the volume of ethylene glycol is 1 mol: 10L.
Preferably, in the step 1), the crystallization reaction is completed in a reaction kettle, and the cooling is to cool the reaction kettle to 10-30 ℃ in water bath; washing with ethanol and deionized water for 2-3 times; the separation is that permanent magnets are adopted for separation in the washing process; the drying is carried out in a vacuum drying oven at 65 ℃ for 24h.
Fe prepared by the invention 3 O 4 The magnetic core has good spherical appearance and strong magnetism.
Preferably, the Fe 3 O 4 The preparation of @ NiFe-LDH includes: mixing Fe 3 O 4 Dispersing in methanol, adding dropwise a salt solution and an alkali solution simultaneously while stirring, wherein the salt solution is a mixed solution of nickel salt and ferric iron salt, the alkali solution is a mixed solution of sodium hydroxide and sodium carbonate, the temperature is controlled at 60 ℃ and the pH value is 8-9 during the dropwise adding process, continuously crystallizing for 36h after the dropwise adding of the salt solution is finished, separating, washing, separating and drying to obtain Fe 3 O 4 @NiFe-LDH。
Further preferably, the Fe 3 O 4 The mass ratio of the methanol to the methanol is 2.5-5 g: 1L; the nickel salt is nickel nitrate, the ferric salt is ferric nitrate, the molar ratio of the nickel salt to the ferric salt is 1-3: 1, the solvent of the salt solution is a mixed solvent of methanol and water, the volume ratio of the methanol to the water is 1: 19, and the total concentration of cations in the salt solution is 0.1mol/L; the concentration of sodium hydroxide in the alkali solution is 0.1mol/L, and the concentration of sodium carbonate is 0.2mol/L; fe 3 O 4 The molar ratio of the nickel salt to the nickel salt is 1: 5.
Preferably, the Fe 3 O 4 The preparation of @ CoFe-LDH includes: mixing Fe 3 O 4 Dispersing in methanol, adding dropwise a salt solution and an alkali solution simultaneously while stirring, wherein the salt solution is a mixed solution of cobalt salt and ferric iron salt, the alkali solution is a mixed solution of sodium hydroxide and sodium carbonate, the temperature is controlled at 70 ℃ and the pH value is 8-8.5 during the dropwise adding process, the crystallization is continued for 36h after the dropwise adding of the salt solution is finished, and the Fe is obtained by separation, washing separation and drying 3 O 4 @CoFe-LDH。
Further preferably, the Fe 3 O 4 The mass ratio of the methanol to the methanol is 2.5-5 g: 1L; cobalt salt is cobalt nitrate, ferric salt is ferric nitrate, the molar ratio of the cobalt salt to the ferric salt is 2-5: 1, the solvent of the salt solution is a mixed solvent of methanol and water, the volume ratio of the methanol to the water is 1: 19, and the total concentration of cations in the salt solution is 0.1mol/L; the concentration of sodium hydroxide in the alkali solution is 0.1mol/L, and the concentration of sodium carbonate is 0.2mol/L; fe 3 O 4 The molar ratio of the cobalt salt to the cobalt salt is 1: 5.
Preferably, the Fe 3 O 4 @CoFeNi-LDHThe preparation method comprises the following steps: mixing Fe 3 O 4 Dispersing in methanol, dripping a salt solution and an alkali solution simultaneously while stirring, wherein the salt solution is a mixed solution of cobalt salt, nickel salt and trivalent iron salt, the alkali solution is a mixed solution of sodium hydroxide and sodium carbonate, the temperature is controlled at 60 ℃ and the pH value is 10.5 in the dripping process, continuously crystallizing for 36 hours after the dripping of the salt solution is finished, separating, washing, separating and drying to obtain Fe 3 O 4 @CoFeNi-LDH。
Further preferably, the Fe 3 O 4 The mass ratio of the methanol to the methanol is 2.5-5 g: 1L; the cobalt salt is cobalt nitrate, the nickel salt is nickel nitrate, the ferric salt is ferric nitrate, the molar ratio of the cobalt salt, the ferric salt and the nickel salt is 6: 3: 1, the solvent of the salt solution is a mixed solvent of methanol and water, the volume ratio of the methanol to the water is 1: 19, and the total concentration of cations in the salt solution is 0.1mol/L; the concentration of sodium hydroxide in the alkali solution is 0.1mol/L, and the concentration of sodium carbonate is 0.2mol/L; fe 3 O 4 The molar ratio of the cobalt salt to the total amount of the nickel salt is 1: 5.
In addition, in the process of preparing the catalyst precursor in the step 2), the separation is carried out by adopting a permanent magnet; the washing separation is to remove CO 2 Washing with deionized water for three times, wherein permanent magnet separation is adopted in the washing process; drying is carried out at 65 ℃ for 24 hours.
The invention is realized by adding Fe 3 O 4 NiFe-LDH, coFe-LDH and CoFeNi-LDH are coated and grown on the magnetic core, so that on one hand, the surface area of the carrier can be increased, and the dispersity of the active center is improved, thereby improving the activity of the catalyst; on the other hand, each hydrotalcite contains ions which can be used as active centers, and thus has high activity.
Preferably, in the step 3), the reducing atmosphere is a mixed gas of hydrogen and argon, the volume ratio of the hydrogen to the argon is 1: 1-20, and the reduction space velocity is 0.1-0.2hr -1 (mass space velocity: mass ratio of reducing gas to catalyst precursor), the reduction temperature is 500-800 ℃.
The parameters which are not limited in the invention are the conventional parameters in the prior art.
The second aspect of the present invention provides a catalyst obtained by the above-mentioned production method.
A third aspect of the present invention provides the use of the above catalyst in the preparation of carbon nanotubes.
The catalyst prepared by the preparation method of the invention has better catalytic activity when being used for preparing the carbon nano tube.
Detailed Description
The technical solutions in the embodiments of the present invention are clearly and completely described below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, belong to the scope of the present invention.
Example 1
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 3 times respectively, separating the reaction product by using a permanent magnet in the washing process, drying the reaction product for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction product to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @ NiFe-LDH catalyst precursor, specifically, 0.87g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding a salt solution of 5.45g Ni (NO) and an alkali solution dropwise simultaneously thereto under stirring 3 ) 2 ·6H 2 O and 2.53gFe (NO) 3 ) 3 ·9H 2 Dissolving O in the mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in the aqueous alkali to prepare the mixed solution,the concentration of sodium hydroxide and sodium carbonate in the aqueous alkali is 0.1mol/L and 0.2mol/L, the temperature is controlled at 60 ℃ and the pH value is 8.5 in the dropping process, the solution is continuously crystallized for 36h after the dropping is finished, the permanent magnet is used for separation, and CO is removed 2 Washing with deionized water for three times, separating with permanent magnet during washing, and drying at 65 deg.C for 24 hr to obtain Fe 3 O 4 @NiFe-LDH。
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 10, and the reduction space velocity is 0.1hr -1 And the reduction temperature is 600 ℃, thus obtaining the catalyst.
Example 2
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 3 times respectively, separating the reaction product by using a permanent magnet in the washing process, drying the reaction product for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction product to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @ NiFe-LDH catalyst precursor, specifically, 0.77g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding dropwise a salt solution of 4.85g of Ni (NO) and an alkali solution simultaneously under stirring 3 ) 2 ·6H 2 O and 3.37g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, the alkali solution is prepared by dissolving sodium hydroxide and sodium carbonate in water to prepare a mixed solution, the concentration of the sodium hydroxide in the alkali solution is 0.1mol/L, the concentration of the sodium carbonate in the alkali solution is 0.2mol/L,in the dripping process, controlling the temperature at 60 deg.C and pH at 8.5, continuously crystallizing for 36 hr after the salt solution is dripped, separating with permanent magnet, and removing CO 2 Washing with deionized water for three times, separating with permanent magnet during washing, and drying at 65 deg.C for 24 hr to obtain Fe 3 O 4 @NiFe-LDH。
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 20, and the reduction space velocity is 0.2hr -1 The reduction temperature is 650 ℃, and the catalyst is obtained.
Example 3
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 20 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 3 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @ NiFe-LDH catalyst precursor, specifically, 0.58g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding dropwise a salt solution of 3.63g of Ni (NO) and an alkali solution simultaneously under stirring 3 ) 2 ·6H 2 O and 5.05g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in water to prepare the mixed solution of the aqueous alkali, the concentration of the sodium hydroxide in the aqueous alkali is 0.1mol/L and the concentration of the sodium carbonate in the aqueous alkali is 0.2mol/L, controlling the temperature to be 60 ℃ and the pH value to be 9 in the dropping process, after the dropping of the salt solution is finished,continuously crystallizing for 36h, separating with permanent magnet, and removing CO 2 Washing with deionized water for three times, separating with permanent magnet during washing, and drying at 65 deg.C for 24 hr to obtain Fe 3 O 4 @NiFe-LDH。
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere, wherein the reducing atmosphere is a mixed gas of hydrogen and argon, the volume ratio of the hydrogen to the argon is 1: 1, and the reduction space velocity is 0.15hr -1 And the reduction temperature is 700 ℃, thus obtaining the catalyst.
Example 4
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 2 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @ CoFe-LDH catalyst precursor, specifically, 0.77g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding dropwise a salt solution and an alkali solution simultaneously under stirring, wherein the salt solution is prepared by adding 4.85g of Co (NO) 3 ) 2 ·6H 2 O and 3.37g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare a 250mL salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in water to prepare a mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the alkali solution are respectively 0.1mol/L and 0.2mol/L, controlling the temperature to be 70 ℃ and the pH value to be 8 in the dropping process, continuing crystallizing for 36h after the dropping of the salt solution is finished, separating by using a permanent magnet, and removing CO by using a CO removal method 2 Deionized water rinseWashing three times, separating by using a permanent magnet in the washing process, and drying for 24 hours at 65 ℃ to obtain Fe 3 O 4 @CoFe-LDH。
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 1, and the reduction space velocity is 0.1hr -1 And the reduction temperature is 700 ℃, thus obtaining the catalyst.
Example 5
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 3 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @ CoFe-LDH catalyst precursor, specifically, 0.87g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding dropwise a salt solution and an alkali solution simultaneously under stirring, wherein the salt solution is prepared by adding 5.46g of Co (NO) 3 ) 2 ·6H 2 O and 2.53g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in water to prepare the mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the alkali solution are respectively 0.1mol/L and 0.2mol/L, controlling the temperature to be 70 ℃ and the pH value to be 8.2 in the dropping process, continuing to crystallize for 36h after the dropping of the salt solution is finished, separating by adopting a permanent magnet, and removing CO by adopting a CO removing method 2 Washing with deionized water for three times, separating with permanent magnet, and drying at 65 deg.C for 24 hr to obtainFe 3 O 4 @CoFe-LDH。
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 10, and the reduction space velocity is 0.2hr -1 And the reduction temperature is 750 ℃, thus obtaining the catalyst.
Example 6
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 20 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 3 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation method 3 O 4 @ CoFe-LDH catalyst precursor, specifically, 0.96g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding dropwise a salt solution and an alkali solution simultaneously under stirring, wherein the salt solution is prepared by adding 6.06g of Co (NO) 3 ) 2 ·6H 2 O and 1.68g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare a 250mL salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in water to prepare a mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the alkali solution are respectively 0.1mol/L and 0.2mol/L, controlling the temperature at 70 ℃ and the pH value at 8.5 in the dropping process, continuing to crystallize for 36h after the dropping of the salt solution is finished, separating by using a permanent magnet, and removing CO by using a CO removing method 2 Washing with deionized water for three times, separating with permanent magnet during washing, and drying at 65 deg.C for 24 hr to obtain Fe 3 O 4 @CoFe-LDH。
3) System for makingPreparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 20, and the reduction space velocity is 0.2hr -1 And the reduction temperature is 800 ℃, thus obtaining the catalyst.
Example 7
A preparation method of a catalyst for preparing a carbon nanotube comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 2 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation 3 O 4 @ CoFeNi-LDH catalyst precursor, specifically, 0.81g of Fe prepared in step 1) 3 O 4 Ultrasonically dispersing in 200mL of methanol, and adding dropwise a salt solution and an alkali solution simultaneously under stirring, wherein the salt solution is prepared by adding 4.37g of Co (NO) 3 ) 2 ·6H 2 O、3.03g Fe(NO 3 ) 3 ·9H 2 O and 0.73g Ni (NO) 3 ) 2 ·6H 2 Dissolving O in a mixed solvent of water and methanol to prepare a 250mL salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in water to prepare a mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the alkali solution are respectively 0.1mol/L and 0.2mol/L, controlling the temperature at 60 ℃ and the pH value at 10.5 in the dropping process, continuing to crystallize for 36h after the dropping of the salt solution is finished, separating by using a permanent magnet, and removing CO by using a CO removing method 2 Washing with deionized water for three times, separating with permanent magnet during washing, and drying at 65 deg.C for 24 hr to obtain Fe 3 O 4 @CoFeNi-LDH。
3) Preparing a catalyst: will step withThe catalyst precursor prepared in the step 2) is reduced in a reducing atmosphere, the reducing atmosphere is a mixed gas of hydrogen and argon, the volume ratio of the hydrogen to the argon is 1: 10, and the reduction space velocity is 0.1hr -1 And the reduction temperature is 700 ℃, thus obtaining the catalyst.
Comparative example 1
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 2 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of NiFe-LDH catalyst precursor by two-drop coprecipitation with Fe in example 1 3 O 4 The preparation of @ NiFe-LDH differs: does not contain Fe 3 O 4 The dispersing step of (2), directly adding dropwise to 200mL of methanol, while stirring, a salt solution obtained by adding 5.45g of Ni (NO) and an alkali solution 3 ) 2 ·6H 2 O and 2.53g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in the aqueous alkali to prepare the mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the aqueous alkali are respectively 0.1mol/L and 0.2mol/L, controlling the temperature at 60 ℃ and the pH value at 8.5 in the dropping process, continuing to crystallize for 36h after the dropping of the salt solution is finished, filtering and separating, and removing CO by adopting 2 Washing with deionized water for three times, and drying at 65 ℃ for 24 hours to obtain NiFe-LDH.
3) 0.87g of Fe obtained in step 1) 3 O 4 Mixing with NiFe-LDH prepared in step 2), reducing the mixture in reducing atmosphere of mixed gas of hydrogen and argon at volume ratio of 1: 10 and airspeed of 0.1hr -1 The reduction temperature was 600 ℃ to obtain comparative catalyst 1.
Comparative example 2
Fe obtained in step 1) of comparative example 1 3 O 4 0.87g is reduced in a reducing atmosphere which is a mixed gas of hydrogen and argon, the volume ratio of the hydrogen to the argon is 1: 10, and the reduction space velocity is 0.1hr -1 The reduction temperature was 600 ℃ to obtain comparative catalyst 2.
Comparative example 3
Reducing the NiFe-LDH prepared in the step 2) in the comparative example 1 in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 10, and the reduction space velocity is 0.1hr -1 The reduction temperature was 600 ℃ to obtain comparative catalyst 3.
Comparative example 4
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 2 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) Preparation of CoFe-LDH catalyst precursor by two-drop coprecipitation method, with Fe in example 4 3 O 4 The preparation of @ CoFe-LDH differs: does not contain Fe 3 O 4 The dispersing step of (1), adding dropwise to 200mL of methanol, while stirring, a salt solution prepared by mixing 4.85g of Co (NO) and an alkali solution 3 ) 2 ·6H 2 O and 3.37g Fe (NO) 3 ) 3 ·9H 2 Dissolving O in a mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in the aqueous alkali to prepare the mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the aqueous alkali are respectively 0.1mol/L and 0.2mol/L, controlling the temperature to be 70 ℃ and the pH value to be 8 in the dropping process, continuing to crystallize for 36h after the dropping of the salt solution is finished, filtering and separating, and adoptingBy CO removal 2 Washed three times by deionized water and dried for 24 hours at 65 ℃ to obtain CoFe-LDH.
3) 0.77g of Fe obtained in step 1) 3 O 4 Mixing with CoFe-LDH prepared in step 2), and reducing the mixture in a reducing atmosphere of a mixture of hydrogen and argon at a volume ratio of 1: 1 and a reduction space velocity of 0.1hr -1 The reduction temperature was 700 ℃ to obtain comparative catalyst 4.
Comparative example 5
1) Preparation of Fe 3 O 4 Magnetic core: 8.66g FeCl was weighed 3 ·6H 2 Preparing 0.1mol/L ferric trichloride solution from O, mixing the ferric trichloride solution with 21.77g CH 3 COONa·3H 2 Dissolving O in 320mL of glycol to form a solution, transferring the solution into a 500mL reaction kettle, carrying out crystallization reaction for 8h at 200 ℃, cooling the reaction kettle to 30 ℃ in water bath, washing the reaction kettle with ethanol and deionized water for 2 times respectively, separating the reaction kettle with a permanent magnet during washing, drying the reaction kettle for 24h at 65 ℃ in a vacuum drying oven, and grinding the reaction kettle to obtain Fe 3 O 4
2) CoFeNi-LDH was prepared by a two-drop co-precipitation method, with Fe in example 7 3 O 4 The preparation of @ CoFeNi-LDH differs in that: does not contain Fe 3 O 4 The dispersing step of (1), to 200mL of methanol were added dropwise, simultaneously, with stirring, a salt solution obtained by mixing 4.37g of Co (NO) 3 ) 2 ·6H 2 O、3.03g Fe(NO 3 ) 3 ·9H 2 O and 0.73g Ni (NO) 3 ) 2 ·6H 2 Dissolving O in a mixed solvent of water and methanol to prepare 250mL of salt solution, wherein the volume ratio of the methanol to the water is 1: 19, dissolving sodium hydroxide and sodium carbonate in the aqueous alkali to prepare the mixed solution, the concentration of the sodium hydroxide and the concentration of the sodium carbonate in the aqueous alkali are respectively 0.1mol/L and 0.2mol/L, controlling the temperature at 60 ℃ and the pH value at 10.5 in the dropping process, continuing to crystallize for 36h after the dropping of the salt solution is finished, filtering and separating, and removing CO by adopting 2 Washed three times by deionized water, and dried for 24 hours at 65 ℃ to obtain CoFeNi-LDH.
3) 0.81g of Fe from step 1) 3 O 4 And step (ii)2) Mixing the prepared CoFeNi-LDH, and reducing the mixture in a reducing atmosphere which is a mixed gas of hydrogen and argon, wherein the volume ratio of the hydrogen to the argon is 1: 10, and the reduction space velocity is 0.1hr -1 The reduction temperature was 700 ℃ to obtain comparative catalyst 5.
Application examples 1 to 7
The catalysts prepared in examples 1 to 7 were used for the preparation of carbon nanotubes, respectively, and it should be noted that the step 3) of the catalyst preparation was performed in a carbon nanotube preparing apparatus, and the reaction conditions were controlled. The conditions for the preparation of carbon nanotubes and the parameters for the preparation of carbon nanotubes are shown in Table 1.
Application of comparative examples 1 to 5
The catalysts prepared in comparative examples 1 to 5 were used for the preparation of carbon nanotubes, respectively, and it should be noted that the step 3) in the preparation of the catalysts was carried out in a carbon nanotube preparing apparatus, and the preparation conditions were controlled. The conditions for the preparation of carbon nanotubes and the parameters for the preparation of carbon nanotubes are shown in Table 1.
TABLE 1
Figure RE-GDA0003089093080000161
Figure RE-GDA0003089093080000171
As can be seen from the data in Table 1, the present invention is achieved by adding Fe 3 O 4 NiFe-LDH, coFe-LDH and CoFeNi-LDH are coated and grown on the magnetic core, which can improve the activity of the catalyst and Fe 3 O 4 Compared with the simple mixing of magnetic cores and LDH, the activity of the catalyst obtained by corresponding coating production is higher, which proves that Fe 3 O 4 The magnetic core and the LDH have a synergistic effect.
Having described embodiments of the present invention, the foregoing description is intended to be exemplary, not exhaustive, and not limited to the disclosed embodiments. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the illustrated embodiments.

Claims (7)

1. The preparation method of the catalyst for preparing the carbon nanotube is characterized by comprising the following steps: the preparation method comprises the following steps:
1) Preparation of Fe 3 O 4 Magnetic core: dissolving ferric trichloride solution and sodium acetate in ethylene glycol to form solution, carrying out crystallization reaction on the solution at 200 ℃ for 8 hours, cooling, washing, separating, drying and grinding reaction products to obtain Fe 3 O 4
2) Preparation of the catalyst precursor: preparation of Fe by double-drop coprecipitation method 3 O 4 @NiFe-LDH、Fe 3 O 4 @ CoFe-LDH or Fe 3 O 4 @ CoFeNi-LDH catalyst precursor,
said Fe 3 O 4 The preparation of @ NiFe-LDH includes: mixing Fe 3 O 4 Dispersing in methanol, dropwise adding a salt solution and an alkali solution simultaneously while stirring, wherein the salt solution is a mixed solution of nickel salt and ferric iron salt, the alkali solution is a mixed solution of sodium hydroxide and sodium carbonate, the temperature is controlled at 60 ℃ in the dropwise adding process, the pH value is 8-9, after the dropwise adding of the salt solution is finished, continuously crystallizing for 36h, separating, washing, separating and drying to obtain Fe 3 O 4 @NiFe-LDH,
Said Fe 3 O 4 The preparation of @ CoFe-LDH includes: mixing Fe 3 O 4 Dispersing in methanol, adding dropwise a salt solution and an alkali solution simultaneously while stirring, wherein the salt solution is a mixed solution of cobalt salt and ferric iron salt, the alkali solution is a mixed solution of sodium hydroxide and sodium carbonate, the temperature is controlled at 70 ℃ and the pH value is 8-8.5 during the dropwise adding process, the crystallization is continued for 36h after the dropwise adding of the salt solution is finished, and the Fe is obtained by separation, washing separation and drying 3 O 4 @CoFe-LDH,
Said Fe 3 O 4 The preparation of @ CoFeNi-LDH includes: mixing Fe 3 O 4 Dispersing in methanol, adding salt solution and alkali solution into the methanol while stirring, wherein the salt solution is mixed solution of cobalt salt, nickel salt and ferric iron salt, and the alkali solution is mixed solution of sodium hydroxide and sodium carbonateControlling the temperature at 60 ℃ and the pH value at 10.5, continuously crystallizing for 36 hours after the salt solution is dripped, separating, washing, separating and drying to obtain Fe 3 O 4 @CoFeNi-LDH;
3) Preparing a catalyst: reducing the catalyst precursor prepared in the step 2) in a reducing atmosphere to obtain the catalyst.
2. The method for producing a catalyst for carbon nanotube production according to claim 1, wherein: the molar concentration of the ferric trichloride solution is 0.1mol/L, the molar ratio of the ferric trichloride to the sodium acetate is 1: 5, and the volume ratio of the amount of the ferric trichloride to the volume of the ethylene glycol is 1 mol: 10L;
in the step 1), the crystallization reaction is finished in a reaction kettle, and the cooling is to cool the reaction kettle to 10-30 ℃ in water bath; washing with ethanol and deionized water for 2-3 times; the separation is that permanent magnets are adopted for separation in the washing process; the drying is carried out in a vacuum drying oven at 65 ℃ for 24h.
3. The method for producing a catalyst for carbon nanotube production according to claim 1, wherein: said Fe 3 O 4 The mass ratio of the methanol to the methanol is 2.5-5 g: 1L; the nickel salt is nickel nitrate, the ferric salt is ferric nitrate, the molar ratio of the nickel salt to the ferric salt is 1-3: 1, the solvent of the salt solution is a mixed solvent of methanol and water, the volume ratio of the methanol to the water is 1: 19, and the total concentration of cations in the salt solution is 0.1mol/L; the concentration of sodium hydroxide in the alkali solution is 0.1mol/L, and the concentration of sodium carbonate is 0.2mol/L; fe 3 O 4 The molar ratio of the nickel salt to the nickel salt is 1: 5.
4. The method for producing a catalyst for carbon nanotube production according to claim 1, wherein: said Fe 3 O 4 The mass ratio of the methanol to the methanol is 2.5-5 g: 1L; cobalt salt is cobalt nitrate, ferric salt is ferric nitrate, the molar ratio of the cobalt salt to the ferric salt is 2-5: 1, the solvent of the salt solution is a mixed solvent of methanol and water, the volume ratio of the methanol to the water is 1: 19, and the total concentration of cations in the salt solution isIs 0.1mol/L; the concentration of sodium hydroxide in the alkali solution is 0.1mol/L, and the concentration of sodium carbonate is 0.2mol/L; fe 3 O 4 The molar ratio of the cobalt salt to the cobalt salt is 1: 5.
5. The method for producing a catalyst for carbon nanotube production according to claim 1, wherein: said Fe 3 O 4 The mass ratio of the methanol to the methanol is 2.5-5 g: 1L; the cobalt salt is cobalt nitrate, the nickel salt is nickel nitrate, the ferric salt is ferric nitrate, the molar ratio of the cobalt salt, the ferric salt and the nickel salt is 6: 3: 1, the solvent of the salt solution is a mixed solvent of methanol and water, the volume ratio of the methanol to the water is 1: 19, and the total concentration of cations in the salt solution is 0.1mol/L; the concentration of sodium hydroxide in the alkali solution is 0.1mol/L, and the concentration of sodium carbonate is 0.2mol/L; fe 3 O 4 The molar ratio of the cobalt salt to the total amount of the nickel salt is 1: 5.
6. The method for producing a catalyst for carbon nanotube production according to claim 1, wherein: in the step 2), the separation is carried out by adopting a permanent magnet; the washing separation is to remove CO 2 Washing with deionized water for three times, wherein permanent magnet separation is adopted in the washing process; drying is carried out at 65 ℃ for 24 hours.
7. The method for producing a catalyst for carbon nanotube production according to claim 1, wherein: in step 3), the reducing atmosphere is a mixed gas of hydrogen and argon, the volume ratio of hydrogen to argon is 1: 1-20, and the reduction space velocity is 0.1-0.2hr -1 The reduction temperature is 500-800 ℃.
CN202110370048.1A 2021-04-07 2021-04-07 Preparation method of catalyst for preparing carbon nanotube Active CN113101981B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110370048.1A CN113101981B (en) 2021-04-07 2021-04-07 Preparation method of catalyst for preparing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110370048.1A CN113101981B (en) 2021-04-07 2021-04-07 Preparation method of catalyst for preparing carbon nanotube

Publications (2)

Publication Number Publication Date
CN113101981A CN113101981A (en) 2021-07-13
CN113101981B true CN113101981B (en) 2022-11-29

Family

ID=76714388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110370048.1A Active CN113101981B (en) 2021-04-07 2021-04-07 Preparation method of catalyst for preparing carbon nanotube

Country Status (1)

Country Link
CN (1) CN113101981B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199727C (en) * 2003-03-03 2005-05-04 清华大学 Catayst for preparing carbon-nano tube
CN102513126B (en) * 2011-11-04 2013-07-17 北京化工大学 Multilevel core-shell structure magnetic nano gold catalyst and preparation method thereof
JP6209059B2 (en) * 2013-11-11 2017-10-04 川研ファインケミカル株式会社 Aggregate of carbon nanofibers, method for producing aggregate of carbon nanofibers, and magnetic body
CN110252304B (en) * 2018-03-12 2021-12-17 中国石油化工股份有限公司 Iron-based catalyst, preparation method and application thereof, carbon nano tube and preparation method thereof
CN110272036B (en) * 2019-05-13 2021-03-23 中山大学 Preparation method of magnetic substance doped multi-walled carbon nanotube and multi-walled carbon nanotube prepared by same

Also Published As

Publication number Publication date
CN113101981A (en) 2021-07-13

Similar Documents

Publication Publication Date Title
JP4004502B2 (en) Method for producing ultrafine fibrous nanocarbon
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Sunny et al. Synthesis and properties of highly stable nickel/carbon core/shell nanostructures
EP2873457B1 (en) Catalyst for preparing chiral selective and conductive selective single-walled carbon nanotube, preparation method and application thereof
WO2014046471A1 (en) Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
WO2021135252A1 (en) One-dimensional metal oxide/carbide composite material and preparation method therefor
Liu et al. A simple method for coating carbon nanotubes with Co–B amorphous alloy
JP7008373B2 (en) A method for synthesizing high-purity carbon nanocoils based on a composite catalyst consisting of multiple small-sized catalysts.
Zhao et al. Catalytic anisotropy induced by multi-particles for growth of carbon nanocoils
JP5072244B2 (en) Catalyst particles for producing carbon nanocoils, method for producing the same, and method for producing carbon nanocoils
CN114308049A (en) Growth catalyst for preparing carbon nano tube with high specific surface area
JP5585275B2 (en) Carbon nanotube manufacturing method
CN113101981B (en) Preparation method of catalyst for preparing carbon nanotube
WO2004067169A1 (en) Catalyst for producing carbon nanocoil and method for preparation thereof, and method for producing carbon nanocoil
CN115889760A (en) Device and method for rapidly preparing carbon nanotube coated superfine high-entropy alloy composite powder
CN113511645B (en) Method for preparing carbon nano tube
CN114524466A (en) Synthesis method of high-activity catalyst
JP2004324004A (en) Carbon fiber and method for producing the same
CN112371131A (en) Carbon nano tube growth catalyst, preparation method thereof and preparation method of carbon nano tube
KR100483803B1 (en) Preparation method for fibrous nano-carbon
Guo et al. Mechanochemical formation of novel catalyst for preparing carbon nanotubes: nanocrystalline yttrium aluminum iron perovskite
WO2023173352A1 (en) Method for preparing carbon nanotube by catalytic cracking of methanol or propylene
JP7276148B2 (en) fibrous carbon nanostructure
Suda Chemical Vapor Deposition of Helical Carbon Nanofibers
Soneda et al. High yield of multiwalled carbon nanotubes from the decomposition of acetylene on Co/MgO catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant