WO2003048041A1 - Procede permettant de former une couche de dioxyde de silicium - Google Patents

Procede permettant de former une couche de dioxyde de silicium Download PDF

Info

Publication number
WO2003048041A1
WO2003048041A1 PCT/JP2002/012272 JP0212272W WO03048041A1 WO 2003048041 A1 WO2003048041 A1 WO 2003048041A1 JP 0212272 W JP0212272 W JP 0212272W WO 03048041 A1 WO03048041 A1 WO 03048041A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
film
silicon dioxide
dioxide film
deposition
Prior art date
Application number
PCT/JP2002/012272
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawasaki
Original Assignee
Kst World Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kst World Corp. filed Critical Kst World Corp.
Priority to AU2002365849A priority Critical patent/AU2002365849A1/en
Priority to US10/470,060 priority patent/US20040058080A1/en
Priority to EP02804354A priority patent/EP1437328B1/en
Priority to KR1020037010507A priority patent/KR100588081B1/ko
Priority to DK02804354T priority patent/DK1437328T3/da
Priority to DE60217701T priority patent/DE60217701T2/de
Priority to CA002436001A priority patent/CA2436001C/en
Publication of WO2003048041A1 publication Critical patent/WO2003048041A1/ja
Priority to US11/878,717 priority patent/US7754286B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation

Definitions

  • the present invention relates to a method of forming a thick film of silicon dioxide on a silicon substrate.
  • Optical information and communications ⁇ Soft optics mainly for processing technology, optical displays that are easy to use for humans and the environment ⁇ Cameras aiming to use light for input and output ⁇ Photo optics Devices used in the fields of hardware and photonics, which realize the limit of new light sources and develop advanced optical measurement technology, use materials with a thick silicon dioxide film formed on a silicon substrate. used.
  • an optical waveguide in an optical integrated device is formed by embedding a core layer having an optical waveguide circuit pattern in a silicon dioxide film on a silicon substrate.
  • the thickness of the silicon dioxide film is required to be at least 10 mJK or more if the thickness of the core layer is, for example, approximately the same as that of the optical fiber to be connected.
  • a typical method for forming a silicon dioxide film on a silicon substrate is a well-known direct thermal oxidation method.
  • the surface of a silicon substrate is directly thermally oxidized to form a silicon dioxide film.
  • the thickness of the formed film is proportional to the oxidation time in the case of a thin film. Since this oxidation reaction is performed through the generated oxide film, the film thickness in the case of a thick film is proportional to the 1/2 power of the oxidation time, and it takes time to generate. Therefore, it is difficult to form a film having a thickness of 10 m or more.
  • a high-pressure oxidation method using an oxidizing atmosphere of 10 to 25 atmospheres is used.
  • there are obstacles such as high pressure laws and regulations and expensive equipment costs. Therefore, it is substantially difficult to form a thick silicon dioxide layer having a thickness of more than 10 10 / m to more than 100 ⁇ m.
  • the present applicant has developed a method for forming a silicon dioxide film by poly-silicon deposition (Japanese Patent Application No. 2000-3428493, “Method for Forming Silicon Dioxide Film and Optical Waveguide Generation Method ").
  • This method deposits polysilicon on a silicon substrate, thermally oxidizes it to form a silicon dioxide film, and deposits new polysilicon on the resulting silicon dioxide film.
  • a thermal oxidation process is performed to form a silicon dioxide film, and by repeating this process, a desired thick silicon dioxide layer is formed. It is.
  • the surface roughness of the silicon dioxide film produced by polysilicon deposition is relatively rough.
  • a silicon dioxide film for an optical waveguide core layer is deposited and formed on this surface, there is a possibility that a rough surface is present at the boundary surface, which becomes a scattering factor of light and increases light loss. Therefore, if necessary, the surface of the silicon dioxide film is planarized before forming the core layer to improve the surface roughness.
  • the production of thick films by polysilicon deposition is advantageous for forming silicon dioxide films on large numbers of wafers. However, it is faster than direct thermal oxidation, but still takes several days to form a film of, for example, 1 D number, "m.
  • the deposition method is used, production equipment that requires a large degree of decompression is required, so that it is possible to appropriately respond to various requests from customers for the formation of a silicon dioxide film, delivery times, and large and small production volumes.
  • the preparation of a production system is desired.
  • the present invention has been made in view of the above-mentioned facts, and its technical problem is that a silicon layer is deposited on a silicon substrate and thermally oxidized to form a silicon dioxide film.
  • a silicon dioxide film having a thickness By providing a silicon dioxide film having a thickness, a method of forming a silicon dioxide film that can appropriately select the surface roughness of the silicon dioxide film to be formed, the growth rate of the deposited silicon film, and the like. is there.
  • a silicon dioxide film is formed on a silicon dioxide film formed on the silicon substrate by a thermal oxidation treatment.
  • a method for producing a con film is provided.
  • the silicon film deposition method of poly silicon deposition, epitaxial silicon deposition, or amorphous silicon deposition by selecting or combining the silicon film deposition method of poly silicon deposition, epitaxial silicon deposition, or amorphous silicon deposition, the surface roughness of the silicon dioxide film to be generated, The growth rate etc. can be changed appropriately.
  • the thickness of the silicon film per one deposition step is 5 or less.
  • FIG. 1 is an explanatory view showing steps of a method for producing a silicon dioxide film according to the present invention.
  • Figure 2 is a table showing an example of the experimental results.
  • step by step taking as an example the generation of a 15 5 m-thick silicon dioxide film.
  • the silicon substrate 2 shown in FIG. 1 (a) is thermally oxidized in an electric furnace to form a silicon dioxide film 4 on the surface of the silicon substrate 2 as shown in FIG. 1 (b).
  • a wet oxidation method using water vapor is used for this thermal oxidation.
  • the jet oxidation can be performed at a temperature of 180 ° C., which is sufficiently lower than the melting point of 140 ° C. of the silicon substrate 2, and without the need for high-pressure treatment.
  • a silicon dioxide film having a thickness of 2 is formed.
  • polysilicon, epitaxial silicon, or amorphous silicon is deposited on the silicon dioxide film 4 by a well-known chemical vapor deposition (CVD) method.
  • a cone film 6 is generated.
  • CVD chemical vapor deposition
  • a typical reduced pressure vapor deposition method is used.
  • the selection of polysilicon, epitaxial silicon, or amorphous silicon, and the low pressure vapor deposition method will be described later.
  • a silicon deposited film having a thickness of 1 ⁇ m is generated. This film thickness is preferably 5 Aem or less so that the oxidation rate can be increased in the next thermal oxidation step.
  • the above “deposition step” and “thermal oxidation step” are repeated until a predetermined silicon dioxide film thickness T of 15 m is formed.
  • the film thickness T of 15 Ac m is formed by repeating the deposition step and the thermal oxidation step five times. That is,
  • a polycrystalline silicon film can be formed as follows.
  • a film growth rate of 0.020 wm / min was obtained, and the surface roughness RMS after the thermal oxidation treatment was 20.5 nm.
  • a silicon single crystal film can be formed by silicon epitaxial growth as follows.
  • a film growth rate of 1.06 ⁇ / min was obtained, and the surface roughness RMS after thermal oxidation was 0. I was 5 nm.
  • an amorphous film can be formed as follows.
  • a film growth rate of 0.013 ⁇ m / min was obtained, and the surface roughness RMS after the thermal oxidation treatment was 0.4 to 0.7 nm. Also, a relatively large area can be formed. Therefore, if it is necessary to improve the surface roughness of the silicon dioxide film during the formation of the silicon dioxide film having a predetermined thickness T (15 ⁇ m), the silicon film Epic beef char silicon or amorphous silicon may be selected for sedimentation. In order to increase the growth rate of silicon, it suffices to select epitaxial silicon. In the case of epitaxial silicon, the degree of decompression is small and the equipment is relatively simple. In the case of amorphous silicon, silicon deposition of a relatively large area is possible.
  • Epitaxial silicon deposition or amorphous silicon deposition can improve the surface roughness of the silicon dioxide film, which has been a problem in polysilicon deposition. That is, the surface roughness (RMS) is 20.5 nm in the case of polysilicon, 0.15 ⁇ in the case of epitaxial silicon, and 0.4 in the case of amorphous silicon. It is greatly improved to 0.7 nm.
  • the silicon film growth rate is 1.0 Q ⁇ m / min for epitaxy silicon, and is significantly improved compared to 0.0200 ⁇ / ⁇ in for polysilicon. . Therefore, according to the epitaxial silicon deposition, the film growth time can be shortened.
  • silicon deposition silicon deposition, epitaxial silicon, or amorphous silicon can be used.
  • the silicon group A thick silicon dioxide film can be formed on the plate.
  • the thick silicon dioxide film it is possible to use a suitable combination of polysilicon, epitaxy silicon, or amorphous silicon for silicon deposition, if necessary.
  • a process of depositing a silicon layer on a silicon substrate and subjecting the silicon layer to thermal oxidation to form a silicon dioxide film is repeated.
  • a silicon dioxide film having a predetermined thickness can be generated, and the surface roughness of the silicon dioxide film to be generated, the growth rate of the silicon film to be deposited, and the like can be appropriately selected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Recrystallisation Techniques (AREA)
  • Silicon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明細書
二酸化シリ コ ン膜の生成方法
技術分野
本発明は、 シリコン基板上に二酸化シリコンの厚膜を生成する方法に関する。 背景技術
光情報通信 ·処理技術を主な対象とするソフ ト · フォ ト二クス、 人間や環境に とって使いやすい光表示 · 入出力などへの光の利用をめざすァメ二ティ · フォ ト 二クス、 新たな光源の極限性実現や先端的な光計測利用技術の開発を行うハード • フォ トニクスなどの分野に使用されるデバイスには、 シリコン基板上に厚膜の 二酸化シリコン膜を形成した材料が使用される。
例えば光集積デパイスにおける光導波路は、 シリコン基板上の二酸化シリ コ ン 膜の中に光導波路回路パターンを備えたコア層が埋め込まれ形成される。 この場 合の二酸化シリコン膜の厚さは、 コア層の厚さを例えば接続される光ファイバと 略同じ寸法にすると、 少なく とも 1 0数 mJK上が必要である。
二酸化シリコン膜をシリ コン基板上に生成する典型的な方法としては周知の直 接熱酸化法がある。 直接熱酸化法は、 シリ コ ン基板の表面を直接熱酸化して二酸 化シリ コ ン膜を生成するもので、 生成される膜厚は、 薄膜の場合には酸化時間に 比例するが、 この酸化反応は生成された酸化膜を通して行われるので、 厚膜の場 合の膜厚は酸化時間の 1 / 2乗に比例し生成に時間がかかる。 したがって、 1 0 数〃 m以上のような厚'膜の形成が難しい。 そこで、 酸化速度を高めるために 1 0 数〜 2 5気圧といった酸化雰囲気による高圧酸化法が実施されるが、 高圧に関す る法規制や高額な設備費などの障害もある。 したがって、 1 0数 / m〜 l 0 0 μ m超の厚膜な二酸化シリコン層を形成するのは実質上困難である。
本出願人は上述の問題を解決するために、 ポリ シリ コン堆積による二酸化シリ コン膜の生成方法を開発した (特願 2 0 0 0— 3 4 2 8 9 3 「二酸化シリ コン膜 生成方法及び光導波路生成方法」 ) 。 この方法は、 シリ コン基板上にポリ シリコ ンを堆積し、 これを熱酸化処理して二酸化シリ コ ン膜を生成し、 生成された二酸 化シリ コン膜上に新たにポリ シリコンを堆積し熱酸化処理して二酸化シリコン膜 を生成し、 この繰り返すことにより所望の厚膜の二酸化シリ コン層を形成するも のである。
発明の開示
しかしながら上述のポリ シリコン堆積による二酸化シリ コン膜の生成には次の とおりの改善すべき課題がある。
( 1 ) 二酸化シリ コ ン膜の表面粗さ :
ポリ シリ コン堆積により生成される二酸化シリコン膜の表面粗さは比較的粗く なる。 そして、 例えばこの表面に光導波路コア層用の二酸化シリコン膜を堆積生 成した場合、 境界面に粗い面が存在し光の散乱要因になり光損失が大きくなる可 能性がある。 そのため必要な場合には、 表面粗さを改善するためにコア層生成前 に二酸化シリコン膜の表面の平面加工が行われる。
( 2 ) 生産性:
ポリ シリコン堆積による厚膜の生成は、 大量のゥェ一ハにニ酸化シリコン膜を 形成するのに好都合である。 しかしながら、 例えば 1 D数," mの膜を形成するの に、 直接熱酸化による方法よりは速いが、 それでも数日の日数を要する。 そして 、 典型的なシリ コン膜堆積方法である減圧気相堆積法を採用する場合、 減圧程度 の大きい生産設備が必要になる。 したがって、 顧客からの二酸化シリ コ ン膜形成 に対する種々の要求、 納期、 生産量の大小などに適宜に対応することができる生 産体制の用意が望まれている。
本発明は上記事実に鑑みてなされたもので、 その技術的課題は、 シリ コ ン基板 上に、 シリコン層を堆積しこれを熱酸化処理し二酸化シリ コン膜を生成する工程 を繰り返すことにより所定厚さの二酸化シリコン膜を生成するとともに、 生成さ れるニ酸化シリコン膜の表面粗さ、 堆積するシリ コン膜の成長速度などを、 適宜 に選択できる二酸化シリ コン膜の生成方法を提供することである。
上記技術的課題を解決する二酸化シリコン膜の生成方法として、 本発明によれ ば、 シリ コン基板上に、 あるいは熱酸化処理により該シリ コン基板上に形成され た二酸化シリ コン膜上に、 ポリ シリ コン、 ェピタキシャルシリ コ ン、 あるいはァ モルファスシリ コンのいずれかを堆積しシリ コン膜を形成する堆積工程と、 該シ リコン膜を熱酸化処理し二酸化シリ コン膜にせしめる熱酸化工程とを含み、 該堆 積工程と熱酸化工程とを複数回繰り返し遂行する、 ことを特徴とする二酸化シリ コン膜の生成方法が提供される。
そして、 シリコン膜の堆積方法を、 ポリ シリ コン堆積、 ェピタキシャルシリコ ン堆積、 あるいはアモルファスシリ コ ン堆積のいずれかを選択し、 あるいは組み 合わせることにより、 生成される二酸化シリコン膜の表面粗さ、 成長速度などを 適宜に変更できるようにする。
好適には、 該堆積工程 1回当たりのシリ コン膜の厚さは 5 以下である。 図面の簡単な説明
図 1 は、 本発明に係る二酸化シリコン膜の生成方法の工程を示した説明図。 図 2は、 実験結果の一例を示す表である。
発—明を実施するための最良の形態
以下、 本発明に係る二酸化シリ コン膜の生成方法について、 膜厚 1 5 ^ mの二 酸化シリコン膜の生成を例に、 順を追ってさらに詳細に説明する。
( 1 ) シリコン基板の熱酸化:
図 1 ( a ) に示すシリ コ ン基板 2を電気炉において熱酸化し、 図 1 ( b ) に示 すごとく シリコン基板 2の表面に二酸化シリ コン膜 4を生成する。 この熱酸化に は、 例えば水蒸気によるゥエツ ト酸化方法が用いられる。 ゥエツ ト酸化は、 シリ コン基板 2の融点 1 4 1 0 °Cよりも十分に低い温度 1 0 8 0 °Cの温度で、 また高 圧の処理を必要としないで行うことができる。 この熱酸化工程において、 例えば 2 の膜厚の二酸化シリコン膜を形成する。
( 2 ) 堆積工程:
上述の二酸化シリコン膜 4上に、 図 1 ( c ) に示すごとく、 ポリ シリ コン、 ェ ピ夕キシャルシリ コン、 あるいはァモルファスシリ コンを周知の化学的気相堆積 法 (C V D ) により堆積させ、 シリ コ ン膜 6を生成する。 化学的気相堆積法とし ては、 典型的な減圧気相堆積法が用いられる。 このポリ シリ コ ン、 ェピタヰシャ ルシリ コ ン、 あるいはアモルファスシリ コ ンの選択、 そして減圧気相堆積法につ いては後に述べる。 この工程においては、 例えば 1 〃mの膜厚のシリ コン堆積膜 を生成する。 この膜厚は次の熱酸化工程において酸化速度を大きくすることがで きるように 5 Ae m以下が好ましい。
( 3 ) 熱酸化工程: 上述の 「 ( 1 ) シリコン基板の熱酸化」 と同様に、 電気炉においてシリコン膜 6を熱酸化処理し、 図 1 ( d) に示すように、 最初の二酸化シリ コ ン膜 4の上に 同質の二酸化シリコン膜 8を生成する。 上述の 1 mのシリ コ ン膜 6は、 熱酸化 による体積膨張によって 3 mの膜厚の二酸化シリコン膜 8を形成する。
( 4 ) 堆積工程及び熱酸化工程の繰り返し :
図 1 ( e ) 及び ( f ) に示すように、 上述の 「堆積工程」 と 「熱酸化工程」 と を所定の二酸化シリ コ ン膜の膜厚 T、 1 5 mが形成されるまで繰り返す。 1 5 Ac mの膜厚 Tは、 堆積工程と熱酸化工程とを 5回繰り返し遂行することにより形 成される。 すなわち、
基板の熱酸化 2 ^ m+ ( 3 A< mX 4回) + ( l ^ mX l回) = 1 5 ^ m 最後の l 〃mの膜厚は、 0. 3 〃 mのシリ コ ン膜を熱酸化することにより生成 される。
( 5 ) 減圧気相堆積法によるシリ コン堆積:
減圧気相堆積法によるポリ シリ コ ン、 ェピタキシャルシリ コ ン、 アモルフ ァス シリコンの堆積について、 本発明者による実験結果の一例を示す図 2を参照して 説明する。
( 5 - 1 ) ポリ シリ コ ン堆積:
ポリ シリ コン堆積によれば、 多結晶のシリ コ ン膜を次のごとく生成することが できる。
モノ シランガス ( S i H 4 ) 1 0 0 %、 8 0 c c /m i n、 5 7 0 Cヽ 1 0 0 P a ( 0. 7 5 T o r r ) の条件で、
膜成長速度 0. 0 0 2 0 wm/m i nが得られ、 熱酸化処理後の表面粗さ R M Sは 2 0. 5 n mであった。
( 5 - 2 ) ェピタキシャルシリ コン堆積:
ェピタキシャルシリコン堆積によれば、 シリ コ ンェピタキシャル成長によるシ リコン単結晶の膜を次のごとく生成することができる。
モノ シランガス ( S i H 4 ) 2 0 %、 1 2 0 0 c c / i n、 1 0 0 0 °C、 5 3 2 0 P a ( 4 0 T o r r ) の条件で、
膜成長速度 1 . 0 6 μτ /m i nが得られ、 熱酸化処理後の表面粗さ R M Sは 0. I 5 n mであった。
( 5— 3 ) アモルファスシリ コン堆積:
アモルフ ァスシリ コ ン堆積によれば、 アモルファス (非晶質) 化による膜を次 のごと く生成することができる。
モノ シランガス ( S i H 4 ) 1 0 0 %、 8 0 c c /m i n、 5 2 0 °Cs 1 0 0 P a ( 0. 7 5 T o r r ) の条件で、
膜成長速度 0. 0 0 1 3 u m/m i nが得られ、 熱酸化処理後の表面粗さ RM Sは、 0. 4〜0. 7 n mであった。 また、 比較的大面積の形成が可能である。 しがって、 所定の厚さ T ( 1 5 ^ m) の二酸化シリ コ ン膜を生成する途中にお いて二酸化シリコン膜の表面粗度を良好にすることが必要な場合には、 シリコン 膜の堆積にェピク牛シャルシリ コ ンあるいはァモルフ ァス シリ コンを選択すれば よい。 シリ コン胰の成長速度を速くするには、 ヱピタキシャルシリ コ ンを選択す ればよい。 また、 ェピタキシャルシリ コ ンの場合は、 減圧の程度の小さく装置は 比較的簡便である。 そして、 アモルファスシリ コンの場合は、 比較的大面積のシ リコン堆積が可能である。
上述したとおりの二酸化シリコン膜の生成方法の作用について説明する。
( 1 ) 二酸化シリコン膜の表面粗さ、 膜成長速度:
ェピタキシャルシリ コン堆積、 あるいはァモルファスシリコン堆積によればポ リ シリ コン堆積における問題であった二酸化シリコン膜の表面粗さを改善するこ とができる。 すなわち、 表面粗さ (RM S) は、 ポリ シリ コ ンの場合の 2 0. 5 n mに対し、 ェピタキシャルシリ コンの場合は 0. 1 5 η τη、 ァモルファスシリ コンの場合は 0. 4〜0. 7 n mと大幅に改善される。 またシリ コ ン膜成長速度 は、 ェピタキシャルシリ コ ンの場合 1 . 0 Q μ m/m i nと、 ポリ シリ コンの場 合の 0. 0 0 2 0 μιη/τη i nに対し大幅に改善される。 したがって、 ェピタキ シャルシリ コン堆積によれば、 膜成長時間を速くすることができる。
( 2 ) 生産性:
多量生産、 少量生産、 利用できる設備、 要求納期、 要求される表面品質、 形成 する面の大きさなどに応じて、 シリコン堆積にポリ シリ コン、 ェピ夕キシャルシ リコン、 あるいはアモルファスシリ コ ンのいずれかを適宜に選択し、 シリ コン基 板上に厚膜の二酸化シリコン膜を形成することができる。
( 3 ) シリコン堆積の組合せ:
また、 厚膜の二酸化シリ コン膜の形成途中において、 必要によりシリコン堆積 に、 ポリ シ リ コ ン、 ェピタキシャ ルシ リ コ ン、 あるいはァモルフ ァス シ リ コ ンを 適宜に組み合わせ用いることもできる。
本発明に従って構成された二酸化シリ コ ン膜の生成方法によれば、 シリ コン基 板上に、 シ リ コン層を堆積しこれを熱酸化処理し二酸化シ リ コン膜を生成するェ 程を繰り返すことにより所定厚さの二酸化シ リコン膜を生成するとともに、 生成 される二酸化シ リ コン膜の表面粗さ、 堆積するシリコ ン膜の成長速度などを、 適 宜に選択することができる。

Claims

請求の範囲
1 . シリコン基板上に所定の厚さの二酸化シリコン膜を生成する方法であって、 該シリコン基板上に、 あるいは熱酸化処理により該シリコン基板上に形成され た二酸化シリ コ ン膜上に、 ポリ シリ コ ン、 ェピタキシャ ルシリ コン、 あるいはァ モルフ ァス シリコンのいずれかを堆積しシリ コン膜を形成する堆積工程と、 該シ リコン膜を熱酸化処理し二酸化シリコン膜にせしめる熱酸化工程とを含み、 該堆積工程と熱酸化工程とを複数回繰り返し遂行する、 ことを特徴とする二酸 化シリコン膜の生成方法。
2 . 該堆積工程 1回当たりのシリコン膜の厚さが 5 μ ιη以下である、 請求項 1 記載の二酸化シリコン層の生成方法。
PCT/JP2002/012272 2001-12-06 2002-11-25 Procede permettant de former une couche de dioxyde de silicium WO2003048041A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2002365849A AU2002365849A1 (en) 2001-12-06 2002-11-25 Method for creating silicon dioxide film
US10/470,060 US20040058080A1 (en) 2001-12-06 2002-11-25 Method for creating silicon dioxide film
EP02804354A EP1437328B1 (en) 2001-12-06 2002-11-25 Method for creating silicon dioxide film
KR1020037010507A KR100588081B1 (ko) 2001-12-06 2002-11-25 이산화실리콘 막의 생성방법
DK02804354T DK1437328T3 (da) 2001-12-06 2002-11-25 Fremgangsmåde til fremstilling af en film af siliciumdioxid
DE60217701T DE60217701T2 (de) 2001-12-06 2002-11-25 Verfahren zum bliden eines siliziumdioxidfilms
CA002436001A CA2436001C (en) 2001-12-06 2002-11-25 Method of forming a silicon dioxide film
US11/878,717 US7754286B2 (en) 2001-12-06 2007-07-26 Method of forming a silicon dioxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-372474 2001-12-06
JP2001372474A JP4398126B2 (ja) 2001-12-06 2001-12-06 二酸化シリコン膜の生成方法

Publications (1)

Publication Number Publication Date
WO2003048041A1 true WO2003048041A1 (fr) 2003-06-12

Family

ID=19181362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012272 WO2003048041A1 (fr) 2001-12-06 2002-11-25 Procede permettant de former une couche de dioxyde de silicium

Country Status (10)

Country Link
US (2) US20040058080A1 (ja)
EP (1) EP1437328B1 (ja)
JP (1) JP4398126B2 (ja)
KR (1) KR100588081B1 (ja)
AU (1) AU2002365849A1 (ja)
CA (1) CA2436001C (ja)
DE (1) DE60217701T2 (ja)
DK (1) DK1437328T3 (ja)
TW (1) TWI282116B (ja)
WO (1) WO2003048041A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754550B2 (en) * 2003-07-10 2010-07-13 International Rectifier Corporation Process for forming thick oxides on Si or SiC for semiconductor devices
JP5435395B2 (ja) * 2008-02-06 2014-03-05 日本電気硝子株式会社 ガラス物品の製造方法
JP2010141221A (ja) * 2008-12-15 2010-06-24 Shin-Etsu Chemical Co Ltd 酸化膜付きシリコン基板の製造方法
JP2013048218A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
US8734903B2 (en) 2011-09-19 2014-05-27 Pilkington Group Limited Process for forming a silica coating on a glass substrate
US8455289B1 (en) * 2011-12-02 2013-06-04 Texas Instruments Incorporated Low frequency CMUT with thick oxide
CN104008995B (zh) * 2013-02-22 2017-09-01 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制备方法
RU2660622C1 (ru) * 2017-09-19 2018-07-06 Акционерное общество "Центральный научно-исследовательский институт "Электрон" Пленка двуокиси кремния на кремнии и способ ее получения
CN112331556A (zh) * 2020-11-02 2021-02-05 上海华虹宏力半导体制造有限公司 非晶硅薄膜成膜方法
CN113363138A (zh) * 2021-06-01 2021-09-07 上海晶盟硅材料有限公司 外延生长方法和设备
CN114724928A (zh) * 2022-06-08 2022-07-08 济南晶正电子科技有限公司 一种具有高厚度隔离层的复合衬底及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019363A (ja) * 1973-06-21 1975-02-28
JPS6066443A (ja) * 1983-09-21 1985-04-16 Fujitsu Ltd 半導体装置の製造方法
JPH02246226A (ja) * 1989-03-20 1990-10-02 Matsushita Electron Corp Mosトランジスタの製造方法
JPH05210022A (ja) * 1992-01-31 1993-08-20 Sumitomo Electric Ind Ltd 導波路作製方法
JP2002148462A (ja) * 2000-11-10 2002-05-22 Kst World Co Ltd 二酸化シリコン膜生成方法及び光導波路生成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158505A (en) * 1962-07-23 1964-11-24 Fairchild Camera Instr Co Method of placing thick oxide coatings on silicon and article
US3807039A (en) * 1971-04-05 1974-04-30 Rca Corp Method for making a radio frequency transistor structure
JPS6136936A (ja) * 1984-07-30 1986-02-21 Matsushita Electronics Corp 半導体装置の製造方法
US4698316A (en) * 1985-01-23 1987-10-06 Rca Corporation Method of depositing uniformly thick selective epitaxial silicon
US4604304A (en) * 1985-07-03 1986-08-05 Rca Corporation Process of producing thick layers of silicon dioxide
CA1326976C (en) * 1987-05-26 1994-02-15 Satoshi Takano Superconducting member
US4902086A (en) * 1988-03-03 1990-02-20 At&T Bell Laboratories Device including a substrate-supported optical waveguide, and method of manufacture
US5088003A (en) * 1989-08-24 1992-02-11 Tosoh Corporation Laminated silicon oxide film capacitors and method for their production
JPH05232683A (ja) 1992-02-20 1993-09-10 Toppan Printing Co Ltd 位相推移フォトマスクの位相推移体の形成方法
US5444302A (en) * 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
JPH06275689A (ja) * 1993-03-22 1994-09-30 Sanyo Electric Co Ltd 半導体装置の評価方法および評価装置
JPH0729897A (ja) * 1993-06-25 1995-01-31 Nec Corp 半導体装置の製造方法
JP3800788B2 (ja) * 1998-01-29 2006-07-26 ソニー株式会社 シリコン酸化膜の形成方法
JPH11354516A (ja) * 1998-06-08 1999-12-24 Sony Corp シリコン酸化膜形成装置及びシリコン酸化膜形成方法
US20010001384A1 (en) * 1998-07-29 2001-05-24 Takeshi Arai Silicon epitaxial wafer and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019363A (ja) * 1973-06-21 1975-02-28
JPS6066443A (ja) * 1983-09-21 1985-04-16 Fujitsu Ltd 半導体装置の製造方法
JPH02246226A (ja) * 1989-03-20 1990-10-02 Matsushita Electron Corp Mosトランジスタの製造方法
JPH05210022A (ja) * 1992-01-31 1993-08-20 Sumitomo Electric Ind Ltd 導波路作製方法
JP2002148462A (ja) * 2000-11-10 2002-05-22 Kst World Co Ltd 二酸化シリコン膜生成方法及び光導波路生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1437328A4 *

Also Published As

Publication number Publication date
AU2002365849A1 (en) 2003-06-17
US7754286B2 (en) 2010-07-13
TWI282116B (en) 2007-06-01
JP4398126B2 (ja) 2010-01-13
KR100588081B1 (ko) 2006-06-08
JP2003192328A (ja) 2003-07-09
EP1437328A1 (en) 2004-07-14
DK1437328T3 (da) 2007-03-05
DE60217701D1 (de) 2007-03-08
EP1437328A4 (en) 2006-04-05
EP1437328B1 (en) 2007-01-17
US20070266934A1 (en) 2007-11-22
CA2436001C (en) 2009-10-27
CA2436001A1 (en) 2003-06-12
DE60217701T2 (de) 2007-10-25
TW200300964A (en) 2003-06-16
US20040058080A1 (en) 2004-03-25
KR20040023589A (ko) 2004-03-18

Similar Documents

Publication Publication Date Title
US7754286B2 (en) Method of forming a silicon dioxide film
US3620833A (en) Integrated circuit fabrication
US20070077356A1 (en) Method for atomic layer deposition of materials using an atmospheric pressure for semiconductor devices
JPS63502470A (ja) 誘電体薄層を有する装置の製造方法
JPH05226247A (ja) エピタキシアル・シリコン膜
KR100216605B1 (ko) 원자력 현미경을 이용한 반도체 나노세선 형성방법
JP3697155B2 (ja) 二酸化シリコン膜生成方法及び光導波路生成方法
JP4943172B2 (ja) シリコンエピタキシャル膜を有するsos基板の形成法
JP3080806B2 (ja) エピタキシャル膜成長法
JP2000077710A (ja) 発光材料およびその製造方法並びにこれを用いた発光素子
JPH05291134A (ja) エピタキシャル層の形成方法
JP4387824B2 (ja) 酸窒化シリコン膜の製造方法
TW582088B (en) Method of filling trench
JPH10300963A (ja) 光導波路の形成方法
JPH05217820A (ja) 半導体基板及びその作製方法
JPH0597582A (ja) ダイヤモンド薄膜の堆積方法
KR960036155A (ko) 피.엘.티. 박막 제조방법
JPS59127841A (ja) 半導体装置の製造方法
CN112820634A (zh) 半导体结构、自支撑氮化镓层及其制备方法
JPH04115525A (ja) 半導体素子の製造方法
JP2010262947A (ja) 選択的膜製造方法
JPH065586A (ja) 薄膜半導体基板の製法
JPS63248137A (ja) 半導体装置の製造方法
KR20020080028A (ko) 급속가열화학증착장치 및 그 장치를 이용한 기판 및박막제조방법
KR970052107A (ko) 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002804354

Country of ref document: EP

Ref document number: 2436001

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10470060

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037010507

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037010507

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002804354

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWR Wipo information: refused in national office

Ref document number: 1020037010507

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2002804354

Country of ref document: EP