WO1997034742A1 - Dispositif de commande d'un systeme de transport de pieces - Google Patents

Dispositif de commande d'un systeme de transport de pieces Download PDF

Info

Publication number
WO1997034742A1
WO1997034742A1 PCT/JP1997/000832 JP9700832W WO9734742A1 WO 1997034742 A1 WO1997034742 A1 WO 1997034742A1 JP 9700832 W JP9700832 W JP 9700832W WO 9734742 A1 WO9734742 A1 WO 9734742A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
chamber
work
point
speed
Prior art date
Application number
PCT/JP1997/000832
Other languages
English (en)
French (fr)
Inventor
Shunsuke Sugimura
Matsuo Nose
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to KR10-1998-0707398A priority Critical patent/KR100469931B1/ko
Priority to JP09533350A priority patent/JP3105544B2/ja
Priority to EP97907329A priority patent/EP0891840A4/en
Publication of WO1997034742A1 publication Critical patent/WO1997034742A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34387Delay command as function of speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37225Tool holder, measure forces in chuck, tool holder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43006Acceleration, deceleration control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43162Motion control, movement speed combined with position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50391Robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention is applied to a semiconductor manufacturing apparatus, an LCD manufacturing apparatus, and the like.
  • a plurality of process chambers are arranged adjacent to a single transfer chamber having a work transfer robot.
  • the present invention relates to an improvement for realizing an efficient transfer operation of the work transfer robot in a multi-chamber type manufacturing apparatus configured to transfer a workpiece such as a workpiece from a certain prosence chamber to another process chamber.
  • This type of multi-chamber type semiconductor manufacturing apparatus is configured, for example, as shown in FIG.
  • Fig. 16 around the transfer chamber 2 where the wafer transfer robot 1 is installed, process chambers 3a to 3e for executing various semiconductor processing processes on the wafer, and a work is loaded from outside. And a work unloading chamber 5 for unloading the work to the outside.
  • An openable and closable gate valve is provided between the process chambers 3a to 3e and the transfer chamber 2, between the transfer chamber 2 and the work load chamber 4, and between the transfer chamber 2 and the work discharge chamber 5.
  • 6 a to 6 g are provided, and the chambers are connected to each other by opening these gate valves 6 a to 6 g.
  • the transfer chamber 2, the process chambers 3a to 3e and the work loading / unloading chambers 4 and 5 are kept in a vacuum state, and the work loading / unloading chambers 4 and 5—transfer chamber 2—process chambers 3a to 3e.
  • the degree of vacuum becomes higher in this order.
  • the gate valves 6a to 6g have a limitation that two or more gate valves cannot be opened simultaneously in order to secure a degree of vacuum. That is, when opening a certain gate valve, the opening control of the required gate valve is started in a state where the other gate valve is completely closed.
  • the work loading station 7 and the work unloading station 8 which are installed adjacent to the workpiece loading chamber 4 and the workpiece unloading chamber 5, A robot 9 and a work unloading robot 10 are installed, respectively, and the work loading and unloading robots 9 and 10 carry in and out the work (wafer) to and from the outside.
  • the A-side area is an unmanned area
  • the B-side area is a manned clean room.
  • a wafer transfer robot 1 disposed in the transfer chamber 2 has two arms 11 and 12 having a rotational degree of freedom, and a hand 13 having a table shape.
  • the hand 13 has a wafer detection sensor (not shown) for detecting whether or not the wafer W is placed thereon.
  • the wafer W is supported by a lifter (not shown) that can move up and down in the prosense chamber 3. When the wafer W is placed on the hand 13 of the robot 1, the lifter is lowered. It is supposed to.
  • the procedure when wafer pen W is transferred from process chamber 3c to process chamber 3d by wafer transfer robot 1 is as follows. First, when the lifter supporting the wafer W is lowered in the prosense chamber 3 c and the wafer W is placed on the hand 13 of the robot 1 (FIG. 17, point P 1), the wafer W is built into the hand 13. The turned on wafer detection sensor is turned on. When this ON is confirmed, the mouth bot 1 contracts the arms 11 1 and 12 and moves the wafer W to the point P 2. When the movement of the wafer W to the point P2 is completed, the robot 1 temporarily stops at this point P2, and outputs a retreat evacuation end signal to a system controller (not shown) that controls the entire system. You.
  • the system controller Upon receiving the evacuation end signal, the system controller starts control to close the gate valve 6c.
  • the system controller confirms that the gate valve 6c is closed, the system controller executes control to open the gate valve 6d.
  • the gate valve 6d When opening and closing the gate valves 6c and 6d, the gate valve 6d must be opened after the gate valve 6c is closed due to the above-mentioned restriction that two or more gate valves cannot be opened at the same time. ing.
  • the robot 1 moves from the point P2 to the point P3 in parallel with the opening and closing operation of the gate valve 6c.6d, and the point P3 When it reaches, it stops again here.
  • Robot 1 stops at point P3 At this point, the open / close state of the gate valve 6 d is checked, and after confirming that the gate valve 6 d is open, movement to the point P 4 is started. That is, the robot 1 waits at the point P3 until it can confirm the opening of the gate valve 6d.
  • the robot 1 When moving to the point P4, the robot 1 extends the arms 11 and 12 to the position P4 where the wafer W in the process chamber 3d is to be placed, and stops the positioning at the position P4. A movement end signal is sent to the system controller.
  • the system controller Upon receiving the movement end signal, the system controller raises the lifter in the prosense chamber 3d and transfers the wafer W from the robot 1 hand to the lifter.
  • the above is a series of wafer transport operations.
  • FIGS. ' Various moving speed patterns according to the above-described conventional technology are shown in FIGS. '
  • T is the time required from the start of closing the gate valve 6c to the end of the opening of the gate valve 6d (a fixed value unique to the system). Is common.
  • the present invention has been made in view of such circumstances, and provides a control device for a work transfer system capable of performing high-speed work transfer with a short transfer time as possible without stopping the robot as much as possible.
  • the purpose is to do. Disclosure of the invention
  • a transfer chamber provided with a work transfer robot and a plurality of work chambers disposed adjacent to the transfer chamber and performing various processings on the workpiece are provided.
  • a work processing apparatus having a process chamber, a plurality of gate means provided between each of the process chamber and the transfer chamber, and a work in a transfer source sense chamber of the plurality of process chambers, A work transfer port for transferring to a transfer destination process chamber along a predetermined movement locus via a gate means of the transfer source process chamber, the transfer chamber, and a gate means of the transfer destination process chamber.
  • Gate means for the source and destination process chambers during the transfer In the work transfer system that requires a predetermined opening / closing time T for closing and opening operations, a first operation in which a work moves from the transfer source process chamber to the transfer chamber to the transfer operation in the transfer chamber on the movement trajectory. And a second point where the transfer operation from the transfer chamber in the transfer chamber to the transfer operation from the transfer chamber to the destination process chamber is set,
  • the speed pattern on the above-mentioned movement locus is set so that the transfer time up to the point is the shortest time equal to or longer than the opening / closing time T, and the speed of the peak transport robot is controlled in accordance with the set speed pattern.
  • Speed control means is provided.
  • the opening of the transfer destination gate valve is completed, and the transfer time from the first point to the second point is equal to the transfer source and the transfer time.
  • the transfer speed pattern from the source process chamber to the destination process chamber is set so that the minimum time required for opening and closing the gate means of the transfer destination process chamber is T or more, and the robot is driven with this calculated speed pattern.
  • the robot does not stop halfway while moving, and a high-speed workpiece transfer with a short transfer time can be performed, thereby improving the throughput of the workpiece manufacturing.
  • the speed parameter according to the first invention is provided.
  • the work speed at the second point can stop the work at a stop point set in front of the gate means of the transfer destination process chamber on the movement trajectory; and A condition is further added such that the moving speed at the first point can be reduced to the moving speed at the second point,
  • the work processing apparatus further includes a gate open / close detection sensor that detects an open / close state of each of the plurality of gate means,
  • open / close determining means for determining the open / closed state of the gate means of the transfer destination process chamber when the robot reaches the second point based on the output of the gate open / close sensor of the transfer destination process chamber;
  • the robot can be moved without stopping, and the robot does not stop halfway except in the case of some abnormality, thereby improving efficiency. A good work transfer operation.
  • a gate open / close sensor of the transfer destination process chamber is provided after a workpiece passes through the first point.
  • a second open / close determining means for constantly determining the open / close state of the gate means of the transfer destination process chamber based on the output of the transfer destination chamber, and a second open / close determining means before the workpiece reaches the second point. If it is determined that the gate means of the transfer destination process chamber is open, the acceleration and deceleration switching control means for immediately stopping the deceleration and executing the acceleration operation if the high-speed operation is being performed at the time of the determination is provided. I have to.
  • the deceleration operation is performed at the second determination point.
  • an acceleration / deceleration switching control means for immediately stopping the deceleration and executing the acceleration operation is added, so that an efficient work transfer operation can be performed in a shorter time.
  • the work transfer robot is provided.
  • a transfer chamber a plurality of process chambers disposed adjacent to the transfer chamber to perform various processings on the workpiece, a plurality of gate means provided between the process chambers and the transfer chamber, respectively.
  • a work processing apparatus having a gate opening / closing detection sensor for detecting the open / close state of each of the plurality of gate means, and a work in the transfer source process chamber of the plurality of process chambers.
  • a workpiece transfer port bot for transferring to a transfer destination process chamber along a predetermined movement locus via a gate means of a process chamber, the transfer chamber, and a gate means of a transfer destination process chamber; When closing the gate means of the source and destination process chambers In a work transfer system that requires a predetermined opening and closing time for
  • a stop point is previously set at a predetermined position on the movement trajectory before the workpiece reaches the gate means of the transfer destination process chamber, and the work is transferred to a predetermined position on the movement trajectory further before the stop point.
  • a check point for checking the open / closed state of the gate means of the preceding process chamber is set in advance,
  • a moving speed pattern of the work transfer robot to the destination process chamber is set in advance, first speed control means for controlling the speed of the work transfer robot in accordance with the set movement speed pattern, and a gate of the transfer destination process chamber. Opening / closing determining means for determining the open / closed state of the gate means of the transfer destination process chamber when the work passes the check point by the output of the open / close sensor; and gate control of the transfer destination process chamber by the open / close determination means.
  • the workpiece is moved according to the moving speed pattern set in the first speed control means.
  • the robot is transported to the transfer destination process chamber without stopping at the stop point, and the robot is stopped at the stop point when the opening / closing determination means confirms that the gate means of the transfer destination process chamber is closed.
  • second speed control means for controlling the speed of the vehicle.
  • the speed pattern is set so that the robot can be stopped at a predetermined stop point before the transfer destination prosense chamber.
  • the speed pattern is set so that the transfer time from the first point to the second point is equal to or longer than the opening and closing time T of the gate and the means of the process chamber of the transfer source and the transfer destination. Not set.
  • the robot when the robot detects that the gate means of the transfer destination process chamber is closed, the robot has a speed pattern that can be stopped at a predetermined stop point before the transfer destination pro sense chamber. It will be possible to move in the speed pattern with the shortest transfer time.
  • the gate means of the transfer destination process chamber is different from the fourth invention in that the gate passes through the gate means of the transfer source process chamber, and If it is determined that the actuator has opened during the movement to the confirmation point, if deceleration is being performed at this point, an acceleration / deceleration switching control means that immediately stops deceleration and executes acceleration will be added. Therefore, an efficient work transfer operation can be performed in a shorter time.
  • a transfer chamber provided with a work transfer robot and a plurality of transfer chambers provided adjacent to the transfer chamber and performing various types of processing on the work are provided.
  • a workpiece processing apparatus comprising: a process chamber; a plurality of gate means provided between each of the process chamber and the transfer chamber; and a gate open / close detection sensor for detecting an open / close state of each of the plurality of gate means.
  • a work supporting arm capable of performing a first moving movement related to a work movement between the process chamber and the transfer chamber and a second moving movement related to a work moving operation in the transfer chamber.
  • the work in the transfer source prosense chamber of the plurality of process chambers is The first moving movement allows the workpiece to pass through the gate means of the transfer source process chamber and moves into the transfer chamber, and then moves the workpiece through the transfer chamber by the second moving operation.
  • a work opening / closing operation requiring a predetermined opening / closing time, a first speed pattern from acceleration to deceleration stop of the second movement, and a transfer chamber performed following the second movement.
  • Speed pattern setting means in which a second speed pattern from acceleration to deceleration stop of the first movement from the inside to the transfer destination process chamber is respectively set in advance; and a trajectory of the second movement.
  • Speed pattern generating means for superimposing a pattern, and selecting the first speed pattern for the work movement to the confirmation start point in the transfer chamber, wherein the confirmation start point force and the transfer destination process chamber are selected.
  • a robot driving means for selecting a speed pattern generated from the speed pattern generating means and controlling the speed of the work transport robot in accordance with the selected speed pattern.
  • the opening / closing determination means confirms that the gate means of the transfer destination process chamber has been opened, the first speed pattern relating to the movement of the work in the process chamber and the transfer rate from the process chamber to the transfer destination process chamber And the second speed pattern relating to the movement of the workpiece to the target process chamber.
  • the position from the position corresponding to the time when the opening of the gate means of the transfer destination process chamber is confirmed according to the synthesized speed pattern to the transfer destination process chamber is synthesized.
  • the process of the sixth invention is performed. It is specified that the second movement movement, which is movement of the workpiece in the transfer chamber, is movement from a position substantially in front of the source process chamber in the transfer chamber to a position substantially in front of the destination process chamber in the transfer chamber. ing.
  • the transfer chamber in which the work transfer robot is disposed and the processing chamber is disposed adjacent to the transfer chamber to perform various processings on the work A work having a plurality of process chambers, a plurality of gate means provided between each of the process chambers and the transfer chamber, and a gate open / close detection sensor for respectively detecting the open / close state of the plurality of gate means.
  • An arm for supporting a work capable of performing a first moving movement related to a work movement between the process chamber and the transfer chamber and a second moving movement related to a work moving operation in the transfer chamber;
  • the work in the transfer source prosense chamber of the plurality of process chambers is moved to the transfer chamber through the gate means of the transfer source process chamber by the first movement.
  • the work located substantially in front of the transfer source process chamber in the transfer chamber is transferred to a position substantially in front of the transfer destination process chamber in the transfer chamber by the second movement.
  • the transfer chamber is located at a position substantially in front of the transfer destination process chamber in the transfer chamber.
  • a work transfer robot that transfers the work to the transfer chamber through the gate means of the transfer chamber;
  • the transfer from the source process chamber to the transfer chamber is performed.
  • a speed pattern setting means in which the speed pattern of the third is set in advance, and a work in a predetermined position between the gate means of the source process chamber on the transfer path and the first intersection.
  • a first speed pattern generating means for overlapping the first speed pattern and the second speed pattern, and a predetermined position in the middle of the trajectory by the second moving motion as a confirmation start point
  • Opening / closing determining means for starting the determination of opening / closing of the gate means of the transfer destination process chamber based on the output of the gate opening / closing sensor from the time when the mouth bottle passes the confirmation start point;
  • Second speed pattern generating means for superimposing the second speed pattern and the third speed pattern when the gate means of the transfer destination process chamber is confirmed to be opened by the open / close determining means. And selecting the first speed pattern generation means from the transfer source process chamber to the check start point, and controlling the second speed pattern generation means from the check start point to the transfer destination process chamber. Port driving means for selecting and controlling the speed of the work transfer robot in accordance with the selected speed pattern.
  • the transfer from the transfer source process chamber is performed.
  • the first speed pattern relating to the movement to the first intersection and the second pattern relating to the movement from the first intersection to the second intersection are superimposed, and the speed is controlled according to the superimposition pattern. Therefore, the transition from the movement movement from the transfer source process champ to the transfer chamber to the movement movement in the transfer chamber is performed on the short cut path where the first and second velocity patterns are synthesized. Done in
  • the opening / closing determination means confirms that the gate means of the transfer destination process chamber is open.
  • the third speed pattern is superimposed with the third speed pattern, and the speed from the position force corresponding to the time when the opening of the gate means of the transfer destination process chamber is confirmed to the transfer destination process chamber is controlled in accordance with the superposed speed pattern. Therefore, the opening / closing determination means confirms the opening of the gate means of the transfer destination process chamber from the check start point to the transfer destination process chamber.
  • the vehicle moves on one of a plurality of different short cut routes.
  • the gate means of the transfer destination process chamber is opened before the work stops at the second intersection, the work stops once at the second intersection and then stops at the transfer destination process chamber.
  • the opening of the gate means is confirmed, the wafer is transferred from the second intersection to the transfer destination process chamber.
  • the speed pattern is synthesized when the gate means of the transfer destination process chamber is confirmed to be opened, and the speed is controlled based on the synthesized speed pattern.
  • collision avoidance control for the gate means is performed by synthesizing the speed patterns, three speed patterns are sufficient for one route in advance, and the memory capacity is reduced. This saves money and simplifies the control configuration.
  • the plurality of process chambers are disposed around the transfer chamber, and It is specified that the arm can perform a turning operation and a linear moving operation in a centripetal direction and a centrifugal direction.
  • a work processing apparatus comprising: a plurality of gate means provided between each process chamber and the transfer chamber; and a gate open / close detection sensor for detecting an open / close state of each of the plurality of gate means.
  • the work in the source process chamber of the plurality of process chambers is moved on a predetermined movement locus via the gate means of the source process chamber, the transfer chamber, and the gate means of the destination process chamber.
  • a work transfer robot which transfers the work to the transfer destination process chamber along the edge thereof, wherein the work transfer requires a predetermined opening and closing time for closing and opening the gate means of the transfer source and transfer destination process chambers during the transfer.
  • a confirmation start point for starting confirmation of the open / close state of the gate means of the transfer destination process chamber is set in advance at a position on the movement trajectory before the workpiece comes into contact with the gate means of the transfer destination process chamber,
  • a predetermined evacuation route different from the movement locus is set in advance from the confirmation start point as a starting point, and
  • An opening / closing determination means for starting determination of opening / closing of a gate means of a transfer destination process chamber based on an output of the gate opening / closing sensor from a point in time when the robot has passed the confirmation starting point;
  • the opening / closing determination means confirms the opening of the gate means of the transfer destination process chamber when passing, the work is moved to the transfer destination process chamber on the movement locus, and the work has passed the check start point.
  • the opening / closing determination means does not confirm that the gate means of the transfer destination process chamber is open, the retreat path is selected and the workpiece is moved.
  • the speed control means for controlling the speed of the work transfer robot so as to return to the movement locus. So that it provided the door.
  • the work is moved to the transfer destination process chamber on a normal movement trajectory. If the opening of the gate means of the transfer destination process chamber is not confirmed when the work has passed the check start point, the retreat path is selected and the work is moved, and the gate of the transfer destination process chamber is moved on this retreat path.
  • speed control is performed so as to return to the trajectory. And the probability that the work must actually stop is reduced: (2) The speed of the transfer is not from the state where the bot is completely stopped, but from a state with a certain speed. Acceleration operation to the first process chamber can be performed, and efficient work transfer can be achieved.
  • the transfer chamber in which the work transfer robot is provided and the various processing processes on the work which are provided adjacent to the transfer chamber are performed.
  • a work having a plurality of process chambers, a plurality of gate means provided between each of the process chambers and the transfer chamber, and a gate open / close detection sensor for detecting the open / close state of each of the plurality of gate means.
  • the work in the transfer source ⁇ -sense chamber of the plurality of process chambers is moved by a predetermined reference movement via the gate means of the transfer source process chamber, the transfer chamber, and the gate means of the transfer destination process chamber.
  • a workpiece transfer robot that transfers the workpiece along the trajectory to the destination process chamber;
  • a confirmation start point for starting confirmation of the open / closed state of the gate means of the transfer destination process chamber is set beforehand at a position just before the contact with the gate means, and this confirmation start point is set as a start point and set in advance.
  • a predetermined evacuation route different from the reference movement trajectory extending to a predetermined stop point, and a plurality of different return routes for returning to the reference route from respective positions on the evacuation route are set in advance,
  • An opening / closing determination means for starting the determination of opening / closing of the gate means of the destination process chamber based on the output of the gate opening / closing sensor from the time when the robot passes the confirmation start point; and a source process chamber along the reference movement trajectory.
  • a plurality of third speed patterns from a point via the evacuation route and the return route to the transfer destination process chamber, respectively. Selecting the first speed pattern from the transfer source process chamber to the confirmation start point, and confirming that the transfer destination process chamber is open by the open / close determination means at the confirmation start point.
  • a robot driving means for controlling the speed of the work transfer robot is provided.
  • the work is different from the gate means in case that the gate means of the transfer destination process chamber is not opened when the work has passed the confirmation start point.
  • An evacuation route that does not contact and a return route from this evacuation route to the above-mentioned reference route are set in advance, and if the opening / closing determination means confirms the opening of the transfer destination process chamber at the confirmation start point, The work is transferred along the normal reference route to the transfer destination process gate. If the opening / closing determination means does not confirm that the transfer destination process chamber is open at the check start point, the work is transferred along the retreat route. Then, when it is confirmed that the transfer destination process gate is opened, the transfer along the return route is started, and thereafter, the work is transferred to the transfer destination process chamber via the return route. Is transported.
  • the eleventh invention when the opening of the gate means of the transfer destination process chamber is not confirmed, the work is released to the retreat path, and when the opening of the gate means is confirmed, the work is transferred to the transfer path via the return path.
  • FIG. 1 is a flowchart showing a procedure for calculating and setting a speed pattern between point 1 and point 2 according to the first embodiment of the present invention.
  • Figure 2 Block diagram showing an example of the configuration of the control system of the present invention.
  • FIG. 3 is a diagram showing a wafer movement trajectory and the like due to the implementation of the present invention.
  • FIG. 4 A diagram showing various parameter values used in calculating a speed pattern according to the first embodiment of the present invention.
  • FIG. 5 A diagram showing a part of the speed pattern used in the first embodiment of the present invention
  • FIG. 6 A diagram illustrating various speed patterns from point S to point 1 and points 2 to E
  • FIG. 4 is a diagram showing a speed pattern from point 1 to point 2 according to the first embodiment.
  • FIG. 8 is a diagram illustrating speed patterns according to the conventional and the first embodiment.
  • FIG. 9 is a diagram illustrating a speed pattern according to the related art and the first embodiment.
  • FIG. 10 A diagram illustrating speed patterns according to the conventional and the first embodiment.
  • FIG. 11 is a diagram showing various parameter values used in calculating a speed pattern according to the second and third embodiments of the present invention.
  • Fig. 12 Diagram showing the speed pattern from point 1 to point 2 according to the second embodiment.
  • Fig. 13 Diagram showing the speed pattern from point 1 to point 2 according to the third embodiment.
  • Fig. 14 Diagram for explaining parameter value NO used in the third embodiment.
  • Figure 15 Diagram showing the speed pattern from point 1 to point 2 according to the fourth embodiment.
  • Fig. 16 Overall view showing a multi-chamber type manufacturing equipment in which a wafer transfer robot is placed.
  • Fig. 17 Partial configuration diagram showing a multi-chamber type manufacturing equipment in which a niha transfer robot is placed.
  • Fig. 18 Diagram showing the work transfer path according to the fifth embodiment.
  • FIG. 19 A diagram illustrating a speed pattern according to the fifth embodiment.
  • FIG. 20 Flow chart showing the wafer transfer operation of the fifth embodiment.
  • Figure 21 Diagram showing the work transfer path according to the sixth embodiment.
  • FIG. 2 shows an example of the configuration of a control system for the embodiment of the present invention.
  • This control system controls the multi-chamber type wafer processing apparatus shown in FIGS. 16 and 17 described above. Is what you do.
  • the wafer detection sensor 20 is connected to the wafer transport robot 1 in FIG. , Which detects that the wafer W has been placed on the hand 13.
  • the wafer detection signal is input to the system controller 30 and the robot controller 40.
  • the gate valve opening / closing sensors 6 as to 6 es are provided in the gate valves 6 a to 6 e provided in each of the process chambers 3 a to 3 e in FIG. 16 and open and close the gate valves 6 a to 6 e. Detect state.
  • the gate valve opening / closing signal detected by each of the gate valve opening / closing sensors 6 as to 6 es is input to the system controller 30 and the robot controller 40.
  • the system controller 3 0 is for overall control of respective components shown in FIG. 1 6, as the control related to the present invention performs the following control e
  • the robot controller 40 controls the driving of the wafer transfer robot 1, and executes the following control as control related to the present invention.
  • the robot controller 40 When a wafer is transferred between O process chambers, a movement end signal is output to the system controller when it reaches the transfer destination process chamber.
  • the robot controller 40 has the following two functions.
  • Pass point function that can pass teaching points (points P2, P3, etc. in Fig. 17) other than the O platform point and end point without positioning stop.
  • the transfer source is determined based on the distance between the moving process chambers and the time ⁇ required to open and close the gate valve of each chamber.
  • the robot keeps the speed as high as possible without stopping, and the robot moves to the destination process chamber.
  • the robot determines a moving speed pattern that indicates that the gate valve of the destination process chamber has finished opening, and uses this moving speed pattern to control the robot. I try to drive.
  • the dashed line q in FIG. 3 indicates the movement path of the center of the wafer W from the process chamber 3c to the process chamber 3d.
  • an instruction to move ⁇ ⁇ ⁇ ⁇ -W in the process chamber 3c to the process chamber 3d is input from the system controller 30 to the robot controller 40.
  • the robot controller 40 detects that the wafer W is placed on the hand 13 of the robot 1 from the detection signal of the wafer detection sensor 20 built in the hand 13 (point P 1 ), The arms 11 and 12 of the robot 1 are contracted, and the wafer W is moved to the point P5.
  • the robot controller 40 outputs an evacuation end signal to the system controller 30. Note that the robot does not stop at the point P5.
  • the system controller 30 Upon receiving the evacuation end signal, the system controller 30 performs control to close the gate valve 6c, and confirms that the gate valve 6c is closed by the output of the gate valve open / close sensor 6cs. Execute control to open gate valve 6d. As described above, when the gate valves 6c and 6d are opened and closed, two or more gate valves cannot be opened at the same time, so the gate valve 6d is closed after the gate valve 6c is closed. To open.
  • the robot 1 makes a turning movement from the point P5 to the point P8 via the points P6 and P7.
  • the opening of the gate valve 6d is completed when the wafer W reaches the point P8 by the robot speed control. Then, the robot 1 continues to move toward the point P4 without stopping at this point P8.
  • the robot controller 40 sends a movement end signal to the system controller 30.
  • the movement path q of the wafer moves between points P5 and P6 and between points P7 and P8 by a short cut locus connected by a curve such as an arc.
  • a curve such as an arc.
  • a predetermined wafer mounting position in one process chamber is set as a starting point S (corresponding to P1 in FIG. 3), and a predetermined wafer mounting position in another process chamber is set as a starting point S.
  • a predetermined wafer mounting position in another process chamber is set as a starting point S.
  • the gate valve on the start point S side is 6 S
  • the gate valve on the end point E side is 6 E.
  • L 1 Distance from point S to point 1 (distance from point 2 to point E)
  • V2 Speed of the robot passing through point 2 (Accurately, the speed of the robot at the time of transition from the arm turning operation to the arm extending operation, which is the combined speed of the arm extending speed and the turning end speed)
  • the movement speed pattern from the start point S to the end point E is line-symmetric with the center point on the time axis as the center line (see Fig. 8 (introduction Fig. 9 (3 ⁇ 4), Fig. 10 (3 ⁇ 4))). V1-V2.
  • VI and V2 can be stopped at the starting point S and the ending point E, and the travel time from point 1 to point 2 must be longer than the time T required for opening and closing the gate valves 6S and 6E as much as possible. Enlarge.
  • the travel time from point 1 to point 2 is made as short as possible provided that it is equal to or longer than the total time T for opening and closing the gate valve.
  • ⁇ , ⁇ (2 am-L1) is the velocity at point 1 when the acceleration is continued from the starting point S to point 1 at the maximum acceleration am. That is, f (2 am-L1) is derived by the following equation (1).
  • r ⁇ is the maximum turning angular velocity at point 1.
  • the turning VI of the point 1 is obtained as the speed VI of point 1.
  • the maximum turning angular speed of the arm r ⁇ com is V m or ⁇ (2 am- If it is smaller than Ll)
  • the maximum turning angular velocity r ⁇ om is selected as the speed V1 at point 1.
  • r ⁇ v C is obtained.
  • the time 2 ⁇ ( ⁇ - ⁇ ) d ⁇ m is compared with the time T required for opening and closing the gate valves 6S and 6E,
  • the speed pattern of ⁇ 5 is the same as the speed pattern of FIG.5C in the turning operation from the point 1 to the point 2, the force s for performing the deceleration-acceleration operation with the maximum acceleration dojm and the speed s0.
  • the turning time from point 1 to point 2 can be made to coincide with the gate valve opening / closing time T without lowering.
  • vc is as follows. Note that 0 ⁇ 2 is a substitute symbol for squaring the parentheses.
  • the speed patterns from the start point S to point 1 and from point 2 to end point E are usually as shown in Fig. 6). In other words, it accelerates from the starting point S with the maximum arm expansion and contraction acceleration am, and reaches the maximum velocity Vm before reaching point 1.
  • the speed pattern from the starting point S to the point 1 and from the point 2 to the end point E is usually as shown in Fig. 6: That is, the starting point S Accelerates with the maximum arm expansion and contraction am from and reaches point 1: before reaching the maximum speed vm c
  • step 140 the arc distance between points 1 and 2 at the VI value! ⁇ .Compare the required time r 6 VI when moving ⁇ with the gate opening / closing time T. If r ⁇ / V 1 T, turn between point 1 and point 2 with a turn larger than As shown in Fig. 7 (f), adopt the low speed pattern A (step 150). If r 6 V 1 T T, a deceleration pattern B as shown in FIG. 7 is adopted so that the gate can be moved between point 1 and point 2 at a time corresponding to the gate opening / closing time T (step 1 60):
  • the speed patterns from the start point S to the point 1 and from the point 2 to the end point E are as shown in FIG. 6, for example.
  • the speed pattern in Fig. 6 (3 ⁇ 4 is only an example. In other words, the speed r is obtained at the point 1 and the point between the starting point S and the point 1 can be obtained; select a speed pattern that can move in a short time.
  • the turning operation from the point 1 to the point 2 is either the deceleration pattern B shown in FIG. 7 ( ⁇ ⁇ ⁇ ) or the constant velocity pattern E shown in FIG.
  • a deceleration pattern B as shown in FIG. 7 (step 19) can be moved between point 1 and point 2 at a time corresponding to the gate opening / closing time T. 0).
  • the speed patterns from the start point S to the point 1 and from the point 2 to the end point E are as shown in FIG. 6F, for example.
  • the speed pattern in Fig. 6 (3 ⁇ 4) is only an example.For the route from the starting point S to the point 1, the speed r Vc is obtained at the point 1 and the speed between the starting point S and the point 1 is as short as possible. Choose a speed pattern that allows you to move.
  • the robot The controller 40 controls the speed of the robot 1 according to the determined speed pattern.
  • FIGS. 8, 9, and 10 show a comparative example of the above-described first embodiment: the speed pattern according to the first embodiment and the speed pattern according to the related art.
  • points P2 and P3 on each time axis indicate points on FIG.
  • the vehicle stops at the point P3 and waits for the opening of the gate valve 6d.
  • the point P3 when the point P3 is reached, The time when d is fully opened coincides, and the overall transfer time has been shortened by 2 ⁇ ⁇ ⁇ compared to the past.
  • the entire transfer time can be shortened by 2 ⁇ T as compared with the conventional case.
  • the gate valve 6d is opened during the turning of the mouth bot and there is no waiting time.
  • the first embodiment further improves the prior art. Only 2 ⁇ ⁇ + can reduce the transfer time.
  • is the time from when the gate valve 6d is opened to when it reaches the end point ⁇ 4 by the conventional technology.
  • the moving speed pattern from the start point S to the end point E is made to be line-symmetric with respect to the center point of the time axis as a center line, but the present invention is not limited to this. That is, V1 ⁇ V2 may be satisfied.
  • the stop at the point Q is performed by the deceleration control from the point 2.
  • the speed n at point 1, the moving speed between point 1 and point 2, and the speed u at point 2 are set so that the gate valve can be set at point 2 in this second embodiment. 6 Because the opening and closing state of E is set to a clinic, point 1.
  • the speed pattern is not set so that the turning time from the point to point 2 is always longer than the time T required for opening and closing the gate valves 6S and 6E.
  • f (2 am-L1) is the speed when the vehicle continues to accelerate by the distance L1 at the maximum moving acceleration am when the arm expands and contracts from the state of speed 0, and is proportional to (L3 / L1)
  • n V ⁇ (2 r ⁇ 2 ⁇ d d ⁇ + u A 2)
  • the final speed at point 2 is the above upper limit speed u.
  • n is selected as VI
  • the turning speed pattern from point 1 to point 2 will be as shown in Fig. 12 (3 ⁇ 4)
  • a value other than n is selected as VI
  • the turning speed pattern from point 1 to point 2 is as shown in Figure 12.
  • the movement from the starting point S to the point 1 is the same as in the first embodiment, the speed VI at the determined point 1 is realized, and the point 1 is reached as soon as possible.
  • the moving speed pattern is determined so that it can be performed.
  • the robot at point 2, the robot can stop at the predetermined stop point Q in front of the destination pro sense chamber when the closing of the gate valve of the destination process chamber is detected. Of these, it is possible to move with a high-speed pattern with the shortest transfer time.
  • the stop point Q is preferably a position as close as possible to the gate 6E of the transfer destination process chamber, but any position on the movement trajectory before the workpiece reaches the gate 6E of the transfer destination process chamber.
  • the position may be set arbitrarily.
  • the position for confirming the opening of the gate 6E is not limited to the position corresponding to the point 2 as long as it is a position before the stop position Q.
  • the speed pattern is not set so that the turning time from point 1 to point 2 is always equal to or longer than the time T required for opening and closing the gate valves 6 S and 6 E.
  • the turning time from point 1 to point 2 is always longer than the time T required for opening and closing the gate valves 6 S and 6 E, and the turning time of the parenthesis is as short as possible. Setting of a moving speed pattern. This is the difference between the third embodiment and the second embodiment.
  • the vehicle can be stopped at the point Q by the deceleration control from the point 2, and the turning time from the point 1 to the point 2 is always the time T required for opening and closing the gate valves 6S and 6E.
  • the force that sets the speed n at point 1, the moving speed between point 1 and point 2, and the speed u at point 2 so that this turning time is as short as possible As a result, n takes four different values-and the speed at point 2 is not the same as u1.
  • the speed u at the point 2 is determined by the above equation (4).
  • the time required for turning from point 1 to point 2 with the robot's maximum turning acceleration d ⁇ / is ( ⁇ — U) / (r ⁇ d ⁇ )
  • nl is calculated by the above equations (10) and (11).
  • the nl thus calculated is compared with the NO obtained in accordance with FIG. 14 described above, and one of the patterns shown in FIGS. 13) to 1 is selected based on the comparison result.
  • the selected speed pattern differs depending on whether NO is larger or smaller than U.
  • nl NO and NO is U
  • the turning speed pattern from point 1 to point 2 is selected from Fig. 13 (Fig. 13 or Fig. 13).
  • 3f a value that satisfies the velocity pattern shown in Fig. 13 fe) is selected.
  • NO and U means that the speed n at point 1 is slower than the speed u at point 2, so that the evacuation from the starting point S to point 1 should be performed as soon as possible. It means that out of the principle that Kusuru is the speed u at the point 2 so that to maximize the speed n at point 1 and smaller than U c
  • the opening of the gate means at the transfer destination is completed when the robot reaches point 2 and the point 1 to point 2 is different from the second embodiment.
  • the travel speed pattern is set and calculated by adding the condition that the transfer time is the shortest time that is equal to or longer than the time T required for opening and closing the gate valves of the source and destination process chambers.
  • the robot will not stop halfway except in the case of some abnormality, and a more efficient wafer transfer operation can be performed.
  • the fourth embodiment is obtained by adding one function to the second embodiment or the third embodiment.
  • this additional function checks the open / closed state of the gate valve 6E sequentially while moving from point 1 to point 2 and moves the gate valve 6E while moving from point 1 to point 2.
  • the opening of the gate valve 6E is confirmed, if the state at that time is high speed, the deceleration operation is stopped at that point and the acceleration operation is immediately performed at the maximum acceleration d. o 7 However, if the speed reaches the allowable speed limit value V during acceleration operation, this speed limit V is maintained.
  • the limit speed VZi is the minimum value of vm, r ⁇ , and J ⁇ (2 am-LI) as shown in the following equation.
  • the opening of the gate valve 6E can be confirmed during the movement from the point 1 to the point 2, if the state at that time is decelerating, the deceleration operation is stopped at that time, Since the accelerating operation is immediately performed at the maximum acceleration d ⁇ / ⁇ , the transfer time can be reduced and the transfer can be performed.
  • the start of the confirmation of the opening of the gate 6 ⁇ of the transfer destination process chamber is started only after the workpiece has passed through the gate 6S of the transfer source process chamber.
  • the turning trajectory is set to a position close to the gates 6S and 6E, the arm is extended from near point 2 to the gate 6E. In this case, if the gate 6E is closed, the workpiece collides with the gate 6E.
  • the confirmation of the opening of the gate 6E of the transfer destination process chamber is started from the time when the work reaches the predetermined position Qd on the turning locus, and the opening of the gate 6E is started.
  • the arm extension operation is started toward the gate 6E: In this case, the point 2 where the work path and the arm extension path intersect is set as the work stop point. I am trying to do it. Therefore, if the gate 6E does not open before the work reaches the point 2, the work stops at the point 2 and the arm extends in the direction of the gate 6E from the point when the gate 6E opens. Operation will be performed.
  • a short cut trajectory should be actively adopted to minimize the work transfer distance and shorten the work transfer time.
  • Speed pattern K1 a second speed pattern K2 for accelerating and turning the workpiece stopped at point 1 and stopping at point 2, and a peak from point 2 (exactly point Qc) to end point E
  • a third speed pattern K3 relating to the arm extension operation for transferring and stopping in the centrifugal direction is prepared in advance, and the speed from the start point S to the end point E is obtained by superimposing (combining) these.
  • a pattern is generated. Note that the speed pattern shown in FIG. 19 is merely an example.
  • a position of synthesizing a first speed pattern and the second speed pattern is fixed, and when the center of the work has reached a position Q a gate 6 S.
  • the synthesis position between the second speed pattern and the third speed pattern is not fixed, the position where the opening of the gate one bets 6 E was confirmed at a position between the point to Q C or et point 2 on the orbiting trajectory
  • the synthesis position between the second speed pattern and the third speed pattern is not fixed, the position where the opening of the gate one bets 6 E was confirmed at a position between the point to Q C or et point 2 on the orbiting trajectory
  • the first and second speed patterns must be able to stop at point 2, and do not exceed the limit speed of arm extension / retraction and turning movement.
  • the speed pattern should be set so that the transfer between the start point S and the end point ⁇ can be performed in the shortest time, provided that the system does not exceed the limit speed V and the limit acceleration a I ⁇ .
  • the speed pattern 3 is the same as the first speed pattern.
  • the position of the point Qc is set as follows.
  • the maximum acceleration of the arm retracting motion is a
  • the maximum acceleration of the turning motion is dc
  • the distance between points 2 and Qd is, and the distance between points 2 and Qc is Lc
  • the maximum acceleration is The time T required to move from point 2 to point Qd is
  • the distance Lc over which the vehicle can turn with the maximum turning acceleration d comm in the opposite direction on the turning locus from point 2 during this time T is set as the distance on the arc from point 2 of point Qc. I do.
  • the robot controller 40 reads the speed pattern corresponding to the transfer source and transfer destination process chamber numbers from a memory (not shown), and performs the arm retracting operation in accordance with the read speed pattern K1. (Step 300).
  • the first and third speed patterns Kl and K3 corresponding to the arm extending / contracting operation are common irrespective of the source and destination process chamber numbers, and the second speed pattern K2 for the turning operation is Depends on source and destination process chamber numbers.
  • the first and third speed patterns Ki and K3 are also common.
  • the robot controller 40 detects that a predetermined time required for the work to pass the predetermined point Qa corresponding to the position of the gate 6S has elapsed after the start of the work movement (step 31). 0), the second speed pattern K2 related to the turning motion is synthesized with the first speed pattern K1 related to the arm retracting operation, and the robot is driven in accordance with the synthesized speed pattern. It is transported along the short cut trajectory toward Q &, and then it turns between point Qb and point Qc (step 320).
  • the robot controller 40 detects that a predetermined time required for the workpiece to pass through the position of the point Qc has elapsed (step 330)
  • the gate of the gate of the transfer destination process chamber is detected.
  • the opening of the gate is confirmed from the output of the valve opening / closing sensor (step 340). If the opening of the gate is confirmed at this time, the arm is moved to the second speed pattern K2 relating to the turning operation at this time.
  • the point work is transferred from the point Qc to the point Qti along the short cut trajectory. Further, a linear movement is made between the subsequent point and the end point E (step 370). In this case, the work moves on the route R1 in FIG.
  • the turning operation continues according to the second speed pattern. Let it.
  • the opening of the gate of the transfer destination process chamber is constantly checked based on the output of the gate valve open / close sensor (steps 350, 36). 0), when the opening of the gate is confirmed, the third speed pattern K3 related to the arm extension operation is synthesized with the second speed pattern K2 related to the turning operation, and the robot is moved according to the synthesized speed pattern. Drive (Step 370).
  • the workpiece is transferred along the route R2 in FIG. 18 and the time when the gate is confirmed to be open is In the case of point Q in FIG. 19, the workpiece is transferred along route R3 in FIG. Furthermore, if the gate is confirmed to be open after the work stops at point 2 according to the turning speed pattern, the work turns to point 2 and stops there, and then moves from point 2 to end point E. Will be moved linearly.
  • the speed pattern of the turning motion and the speed pattern of the arm extension motion are synthesized, and the speed is controlled by the synthesized speed pattern.
  • the acceleration operation to the transfer destination process chamber can be performed in a state having a certain speed instead of the state in which the speed is stopped at zero.
  • the collision avoidance control for the gate is performed by synthesizing the speed patterns. Therefore, the speed patterns previously provided for one transfer path can be reduced to three speed patterns. The capacity can be saved and the control configuration can be simplified.
  • the position where the first speed pattern and the third speed pattern are combined is not limited to the point, and any position may be set as long as the position is between the point Q and the point 1. It may be. Further, the position at which the synthesis of the second speed pattern and the third speed pattern is started is not limited to the point Qc determined by the distance Lc obtained by the above-mentioned conditional expression, but is arbitrary.
  • the method for determining that the workpiece has passed point Qa and point Qc Although the method detects that a predetermined time required to pass through these points has elapsed, the position of the work may be directly obtained to determine that the point has passed.
  • the stop point is set to point 2, but an arbitrary point on the turning locus may be set as the stop point.
  • the speed pattern of the workpiece transfer trajectory is not generated by combining the arm extension / contraction operation and the turning operation as in the fifth embodiment described above, but the speed pattern for the normal reference path movement is used.
  • a speed pattern for an evacuation route for preventing the workpiece from colliding with the gate of the transfer destination process chamber, and a speed pattern for a return route for returning the evacuation route to the reference route It is set in advance for each transfer path (each time the transfer distance is different). If the workpiece collides with the gate of the transfer destination process chamber, the reference path is set by transferring the retreat path and the return path. Work is transferred on another path different from
  • the two shortcut routes on the reference route are configured by pseudo circular interpolation using straight lines.
  • the reference route] VI is a route connecting the start point S—point Qa—point Q—point Qc—point Qd—end point E, and the retreat route N is the stop point 2 from the point Qc.
  • the return route is a route such as J 1 or J 2 that returns from the evacuation route to the reference route.
  • Te point Q C smell starts opening the confirmation of the gate 6 E of the transfer destination processing chamber, this point Qc Dege - DOO 6 E
  • the work is transferred along the normal reference path M, but when the opening of the gate 6E cannot be confirmed at the point Qc, the work is moved along the preset return path N. Transfer.
  • a return route set in advance corresponding to the confirmed position is selected, and the work is processed according to the selected return route. Transfer. Work stops at 2. If the gate 6E can be confirmed to be open after stopping at, the work will be transported to the stop point 2 where it will be paused and then moved linearly toward the end point E. .
  • the transfer operation of the sixth embodiment is consequently the same as that of the previous fifth embodiment, but the method of speed control for causing the transfer operation is different.
  • the robot can perform an acceleration operation to the transfer destination process chamber at a certain speed rather than from a completely stopped speed of zero, and transfer the wafer more efficiently. I can do it.
  • the position Qc at which the opening of the gate of the transfer destination process chamber is started to be confirmed and the stop point 2 may be set to any other positions.
  • the wafer is placed on the hand.
  • the wafer may be supported by an air-vacuum suction cup or the like.
  • a frog-leg type robot is used.
  • another articulated robot may be used.
  • the wafer is transported between the points 1 and 2 by rotating the robot, but the wafer is transported between the points 1 and 2 by moving the arm.
  • Well the arm.
  • the present invention is applied to a manufacturing apparatus for processing a wafer.
  • the present invention may be applied to another manufacturing apparatus for manufacturing a work such as an LCD (liquid crystal display element). Good.
  • the present invention is applied to a system in which a process chamber is disposed around a transfer chamber.
  • a system in which a plurality of process chambers are juxtaposed adjacent to the transfer chamber is used.
  • the present invention may be applied to a computer.
  • a plurality of process chambers are arranged around a single transfer chamber where a work transfer robot is installed. This is useful when applied to a multi-chamber type processing apparatus in which a workpiece is transferred from one blow sense chamber to another process chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明 細 書
ワーク搬送システムの制御装置
技術分野
この発明は半導体製造装置や L C D製造装置などに適用されるもので、 ワーク 搬送ロボットを配設した 1つのトランスファチャンバに隣接して複数のプロセス チャンバを配設し、 ワーク搬送ロボッ 卜によってゥヱハまたは L C D等のワーク を或るプロセンスチャンバから他のプロセスチャンバへ搬送するようにしたマル チチャンバ型の製造装置において、 前記ワーク搬送ロボッ トの効率の良い搬送動 作を実現するための改良に関する。
背景技術
この種のマルチチャンバ型の半導体製造装置は、 例えば図 1 6のように構成さ れている。
図 1 6において、 ウェハ搬送ロボット 1が配設される トランスファチャンバ 2 の周囲には、 ウェハに対する各種の半導体加工処理を実行するためのプロセスチ ヤンバ 3 a〜3 eと、 外部からワークの搬入を行うためのワーク搬入チャンバ 4 と、 外部へのワークの搬出を行うワーク搬出チャンバ 5とが設けられている。 プロセスチャンバ 3 a〜3 eと トランスファチャンバ 2との間、 トランスファ チャンバ 2とワーク搬入チャンバ 4との間、 およびトランスファチャンバ 2とヮ ーク搬出チャンバ 5との間には、 開閉自在のゲ一トバルブ 6 a〜6 gが夫々設け られており、 これらゲートバルブ 6 a〜6 gを開することによって各チャンバ間 が連通されるようになつている。 また、 トランスファチャンバ 2、 プロセスチヤ ンバ 3 a〜3 eおよびワーク搬入搬出チャンバ 4 , 5は真空状態に保たれており、 ワーク搬入搬出チャンバ 4, 5—トランスファチャンバ 2—プロセスチャンバ 3 a〜 3 eの順に真空度が高くなるようになつている。 なお、 ゲートバルブ 6 a〜 6 gは、 真空度を確保するために 2つ以上のゲ一卜バルブを同時に開くことはで きないという制限がある。 すなわち、 或るゲートバルブを開く際は、 他のゲート バルブが完全に閉まつた状態で所要のゲ一トバルブの開制御を開始する。
また、 ワーク搬入チャンバ 4およびワーク搬出チャンバ 5に隣接設置されてい るワーク搬入ステ一ション 7およびワーク搬出ステーション 8には、 ワーク搬入 ロボッ ト 9 , ワーク搬出ロボッ ト 1 0がそれぞれ設置されており、 これらワーク 搬入搬出ロボッ ト 9 , 1 0によって外部との間でワーク (ウェハ) の搬入及び搬 出を実行する。 なお、 図 1 6中で A側領域は無人領域であり、 B側領域は有人の クリーンルームである。
一方、 トランスファチャンバ 2に配設されるウェハ搬送ロボット 1は、 例えば、 図 1 7に示すように、 旋回自由度を有する 2本アーム 1 1, 1 2と、 台の形状を したハンド 1 3とが備えられた謂ゆるフロッグレグ型ロボッ トであり、 ハンド 1 3にはウェハ Wが載置されているか否かを検出するウェハ検出センサ (図示せず) が內蔵されている。 なお、 ウェハ Wは、 プロセンスチャンバ 3内で、 昇降自在の リフタ (図示せず) によって支持されており、 ロボッ ト 1のハンド 1 3にウエノ、 Wを載置する際には、 リフタが下降するようになっている。
係る構成において、 ウェハ搬送ロボッ 卜 1によってゥニハ Wをプロセスチャン バ 3 cからプロセスチャンバ 3 dに移送する場合の手順は以下のようになる。 まず、 プロセンスチャンバ 3 c内でウェハ Wを支持しているリフタが下降され、 ウェハ Wがロボット 1のハンド 1 3に載置されると (図 1 7点 P 1) 、 ハンド 1 3 に内蔵されているウェハ検出センサがオンになる。 このオンが確認されると、 口 ボット 1はアーム 1 1 , 1 2を縮めてウェハ Wを点 P 2に移動する。 そして、 ゥェ ハ Wの点 P 2への移動が終了すると、 ロボッ ト 1はこの点 P 2で一旦停止し、 退.避 終了信号をシステム全体を制御するシステムコントローラ (図示せず) に出力す る。
システムコントローラでは、 上記退避終了信号を受信すると、 ゲートバルブ 6 cを閉じる制御を開始する。 そして、 システムコントローラが、 ゲートバルブ 6 cの閉を確認すると、 ゲ一卜バルブ 6 dを開する制御を実行する。 なお、 ゲート バルブ 6 c、 6 dの開閉の際、 2つ以上のゲートバルブを同時に開くことはでき ないという前述した制限によって、 ゲートバルブ 6 cの閉の後にゲートバルブ 6 dを開するようにしている。
—方、 ロボッ ト 1は、 退避終了信号をシステムコントローラに出力すると、 上 記ゲートバルブ 6 c . 6 dの開閉動作に並行して点 P 2から点 P 3への移動を行い、 点 P 3に到達すると、 ここで再度停止する。 そして、 ロボッ ト 1は、 点 P 3で停止 した時点でゲートバルブ 6 dの開閉状態を確認し、 ゲートバルブ 6 dの開を確認 した後に、 点 P 4への移動を開始する。 すなわち、 ロボッ ト 1はゲ一トバルブ 6 d の開を確認することができるまで、 点 P 3で待機する。
点 P 4への移動の際、 ロボット 1は、 プロセスチャンバ 3 dのウェハ Wを載置す るべき位置 P 4までアーム 1 1, 1 2を伸張し、 位置 P 4で位置決め停止を行った 後に移動終了信号をシステムコントローラに送出する。
移動終了信号を受信したシステムコントローラでは、 プロセンスチャンバ 3 d のリフタを上昇し、 ウェハ Wをロボッ ト 1のハンドからリフタ上に移載する。 以 上が一連のゥェハ搬送動作である。
上記従来技術による各種の移動速度パターンを図 8 、 図 9 fa 図 l O fc^に 示す。 '
なお、 これらの図において、 Tはゲートバルブ 6 cの閉を開始してからゲート バルブ 6 dの開を終了するまでに要する時間 (システム固有の固定値) であり、 これは全てのゲ一トバルブで共通である。
図 8 (" 、 図 9 f 、 図 1 0 からも明らかなように、 上記従来技術によれば、 移動元プロセンスチャンバからの退避点 (P2) と移動先プロセスチャンバへの進 入点 (P 3) で、 常にロボットを一旦停止させているので、 ウェハ搬送に時間がか 力 り、 効率の良いウェハ搬送をなし得ず、 加工ウェハのスループッ ト (単位時間 当たりの処理数) が今 1つ向上しない。
そこで、 単に上記 P2および P 3での一時停止をなく したとする。 この場合、 プ ロセスチャンバ間の距離が充分に離れているとき (旋回角が大きいとき) は問題 ないが、 プロセスチャンバ間の距離が短い場合 (旋回角が小さい場合) 、 点 P 2か ら点 P 3までの移動時間が上記したゲー卜バルブの開閉に要する時間丁よりも短く なると、 ウェハがゲートバルブに衝突することになる。 また、 このことを考慮し てロボッ 卜速度を下げすぎると、 何のために P 2および P 3での一時停止をなく し たか判らなくなる。
この発明はこのような実情に鑑みてなされたもので、 ロボッ トをできるだけ一 時停止させずに、 かつできるだけ移送時間の短い髙速のワーク移送をなし得るヮ ーク搬送システムの制御装置を提供することを目的とする。 発明の開示
請求の範囲第 1項に対応する第 1の発明では、 ワーク搬送ロボッ 卜が配設され る トランスファチャンバと、 このトランスファチャンバに隣接して配設されてヮ ークに対する各種加工処理を行う複数のプロセスチャンバと、 これら各プロセス チャンバと トランスファチャンバとの間にそれぞれ設けられる複数のゲ一ト手段 とを有するワーク加工装置と、 前記複数のプロセスチャンバのうちの移送元プロ センスチャンバにあるワークを、 当該移送元プロセスチャンバのゲート手段、 前 記トランスファチャンバ、 および移送先プロセスチャンバのゲ一ト手段を経由し た所定の移動軌跡上に沿つて移送先プロセスチャンバまで移送するワーク搬送口 ボッ トとを備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲ一 ト手段の閉及び開動作に所定の開閉時間 Tを要するワーク搬送システムにおいて、 前記移動軌跡上に、 ワークが移送元プロセスチャンバから トランスファチャン バへの移動動作からトランファチャンバ内の移動動作に移行する第 1の点と、 前 記トランファチャンバ内の移動動作からトランスファチャンバから移送先プロセ スチャンバへの移動動作に移行する第 2の点を設定し、
前記ワークの移送距離と前記開閉時間とに基づき、 前記移動軌跡上の前記第 2 の点にワークが到達した時点に移送先のゲ一トバルブの開が終了し、 かつ第 1の 点から第 2の点までの移送時間が前記開閉時間 T以上の最短時間になるように前 記移動軌跡上の速度バタ一ンを設定し、 該設定された速度パターンに従ってヮ一 ク搬送ロボッ 卜を速度制御する速度制御手段を備えるようにしている。
かかる第 1の発明では、 第 2の点をロボットが通過するときに、 移送先のゲ一 トバルブの開が終了し、 かつ第 1の点から第 2の点までの移送時間が前記移送元 および移送先のプロセスチャンバのゲート手段の開閉に要する時間 T以上の最短 時間になるように移送元プロセスチャンバから移送先プロセスチャンバまでの移 動速度パターンを設定し、 この演算した速度パターンでロボット駆動するように しているので、 ロボッ トが移動中に途中で停止することはなくなり、 移送時間の 短い高速のワーク移送をなし得、 これによりワーク製造のスループッ 卜を向上さ せることが可能になる。
また、 請求の範囲第 3項に対応する第 2の発明では、 前記第 1の発明の速度パ ターンの条件に対し、 前記第 2の点での移動速度が前記移動軌跡上の移送先プロ セスチャンバのゲー卜手段の手前に設定された停止点にワークを停止させること ができて、 かつ前記第 1の点での移動速度が前記第 2の点での移動速度に減速す ることができるような条件を更に追加し、
また、 前記ワーク加工装置に前記複数のゲ一卜手段の開閉状態をそれぞれ検出 するゲー卜開閉検出センサを更に具えさせ、
更に、 移送先プロセスチャンバのゲート開閉センサの出力により前記第 2の点 にロボッ 卜が達した時点に移送先プロセスチャンバのゲー卜手段の開閉状態を判 定する開閉判定手段と、 この開閉判定手段により移送先プロセスチャンバのゲ一 卜手段の開が確認されたときは前記停止点で停止させずに移送先プロセスチャン バまで搬送するとともに、 前記開閉判定手段により移送先プロセスチヤンバのゲ ート手段の閉が確認されたときは前記停止点で停止させるようにロボッ トの速度 制御を行う停止制御手段とを備えるようにしている。
かかる第 2発明によれば、 第 1及び第 2の点間の距離が短い場合でも停止する ことなく移動でき、 また何らかの異常のとき以外はロボッ 卜が途中で停止するこ とはなくなり、 より効率の良いワーク搬送動作をなし得る。
次に、 請求の範囲第 4項に対応する第 3の発明では、 前記第 2の発明に対し、 前記第 1の点をワークが通過した後に、 前記移送先プロセスチャンバのゲ一ト開 閉センサの出力により前記移送先プロセスチャンバのゲ一 ト手段の開閉状態を常 に判定する第 2の開閉判定手段と、 前記第 2の点にワークが到達する前に、 前記 第 2の開閉判定手段により移送先プロセスチャンバのゲート手段が開したことが 判定されると、 この判定時点で减速動作を行っている場合は、 直ちに減速を停止 し加速動作を実行させる加減速切替え制御手段とを更に備える様にしている。 かかる第 3の発明では、 移送先プロセスチャンバのゲー卜手段が前記第 1の点 から第 2の点までの移動中に開したことが判定されると、 二の判定時点で減速動 作を行っている場合は、 直ちに減速を停止し加速動作を実行させる加減速切替え 制御手段を追加するようにしたので、 さらに短時間で効率の良いワーク移送動作 をなし得る。
請求の範囲第 6項に対応する第 4発明では、 ワーク搬送ロボッ 卜が配設される トランスファチャンバと、 このトランスファチャンバに隣接して配設されてヮー クに対する各種加工処理を行う複数のプロセスチャンバと、 これら各プロセスチ ヤンバと トランスファチャンバとの間にそれぞれ設けられる複数のゲ一卜手段と, これら複数のゲ一ト手段の開閉状態をそれぞれ検出するゲ一卜開閉検出センサと を有するワーク加工装置と、 前記複数のプロセスチヤンバのうちの移送元プロセ ンスチャンバにあるワークを、 当該移送元プロセスチャンバのゲート手段、 前記 トランスファチャンバ、 および移送先プロセスチャンバのゲー卜手段を経由した 所定の移動軌跡上に沿つて移送先プロセスチャンバまで移送するワーク搬送口ボ ットとを備え、 前記移送の際、 移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、
前記移送先プロセスチャンバのゲ一ト手段にワークが到達する前の移動軌跡上 の所定の位置に停止点を予め設定するとともに、 前記停止点よりさらに手前の移 動軌跡上の所定の位置に移送先プロセスチヤンバのゲート手段の開閉状態を確認 する確認点を予め設定し、
前記停止点にワークを停止させることができる上限速度に前記確認点での速度 が設定されることを条件として前記移動軌跡上のワーク移動時間が最短時間とな るような移送元プロセスチャンバから移送先プロセスチャンバまでの前記ワーク 搬送ロボッ 卜の移動速度パターンが予め設定され、 この設定された移動速度パタ —ンに従ってワーク搬送ロボットを速度制御する第 1の速度制御手段と、 移送先 プロセスチャンバのゲ一卜開閉センサの出力によって前記確認点をワークが通過 した時点に移送先プロセスチャンバのゲ一ト手段の開閉状態を判定する開閉判定 手段と、 この開閉判定手段により移送先プロセスチャンバのゲ一卜手段の開が確 認されたときは前記第 1の速度制御手段に設定された移動速度パターンに従って ワークを前記停止点で停止させずに移送先プロセスチャンバまで搬送するととも に、 前記開閉判定手段により移送先プロセスチャンバのゲ一ト手段の閉が確認さ れたときは前記停止点で停止させるようにロボッ 卜の速度制御を行う第 2の速度 制御手段とを備えるようにしている。
かかる第 4発明によれば、 ロボッ トは移送先プロセンスチャンバの手前の所定 の停止点で停止できるように速度パターンが設定されているので、 先の第 1発明 . のように、 第 1の点から第 2の点までの移送時間が前記移送元および移送先のブ ロセスチャンバのゲ一ト、手段の開閉時間 T以上になるようには、 その速度パター ンが設定されてはいない。
したがつてこの第 4の発明によれば、 ロボッ トは移送先プロセスチャンバのゲ ―ト手段の閉が検出された場合に移送先プロセンスチャンバの手前の所定の停止 点で停止できる速度パターンのうちの最も移送時間の短い速度パターンで移動す ることができるようになる。
請求の範囲第 7項に対応する第 5発明では、 前記第 4の発明に対し、 移送先プ ロセスチャンバのゲ一卜手段が前記移送元プロセスチャンバのゲート手段をヮー クが通過してから前記確認点までの移動中に開したことが判定されると、 この判 定時点で減速動作を行つている場合は、 直ちに減速を停止し加速動作を実行させ る加減速切替え制御手段を追加するようにしたので、 さらに短時間で効率の良い ワーク移送動作をなし得る。
次に、 請求の範囲第 9項に対応する第 6発明では、 ワーク搬送ロボッ 卜が配設 される トランスファチャンバと、 このトランスファチャンバに隣接して配設され てワークに対する各種加工処理を行う複数のプロセスチャンバと、 これら各プロ セスチャンバと トランスファチャンバとの間にそれぞれ設けられる複数のゲ一ト 手段と、 これら複数のゲート手段の開閉状態をそれぞれ検出するゲ一ト開閉検出 センサとを有するワーク加工装置と、 前記プロセスチャンバと前記トランスファ チャンバとの間のワーク移動に関する第 1の移動運動及び前記トランスファチヤ ンバ内でのワーク移動動作に関する第 2の移動運動が可能なワーク支持用のァ一 ムを有し、 前記複数のプロセスチャンバのうちの移送元プロセンスチャンバにあ るワークを前記第 1の移動運動によって当該移送元プロセスチャンバのゲー卜手 段を通過させてトランスファチャンバ内まで移動させ、 つぎに前記第 2の移動運 動によってワークをトランスファチャンバ内を移送し、 さらに前記第 1の移動運 動によってトランスファチヤンバ内にあるワークを移送先トランファチャンバの ゲート手段を通過させて移動先トランファチャンバまで移送するワーク搬送ロボ ッ卜と、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記第 2の移動運動に関する加速から減速停止までの第 1の速度パターンと、 前記第 2の移動運動に続いて行われるトランスファチャンバ内から前記移送先プ ロセスチャンバまでの前記第 1の移動運動の加速から減速停止までに関する第 2 の速度パターンとが夫々予め設定される速度パターン設定手段と、 前記第 2の移 動運動による軌跡途中の所定の位置を確認開始点とし、 この確認開始点を口ボッ トが通過した時点から前記ゲート開閉センサの出力に基づき移送先プロセスチヤ ンバのゲート手段の開閉の判定を開始する開閉判定手段と、 この開閉判定手段に よって移送先プロセスチャンバのゲ一卜手段の開が確認された時点に前記第 1の 速度パターンと第 2の速度パターンとを重ね合わせる速度パターン発生手段と、 前記トランスファチャンバ内の前記確認開始点までのワーク移動に関しては前記 第 1の速度パターンを選択し、 前記確認開始点力ゝら前記移送先プロセスチャンバ までは前記速度パターン発生手段から発生された速度パターンを選択し、 該選択 した速度パターンに従って前記ワーク搬送ロボッ 卜の速度制御を行うロボット駆 動手段とを備えるようにしている。
かかる第 6発明によれば、 前記開閉判定手段によつて移送先プロセスチャンバ のゲート手段の開が確認された時点にプロセスチャンバ内のワーク移動に関する 第 1の速度パターンとプロセスチャンバから移送先プロセスチャンバへのワーク 移動に関する第 2の速度パターンとを合成し、 該合成した速度パターンに従って 前記移送先プロセスチャンバのゲ一ト手段の開が確認された時点に対応する位置 力 ら移送先プロセスチャンバまでを速度制御するようにして、 極力ワークを停止 させることなくワークのゲート手段への衝突を回避させるようにしているので、 ワークが実際に停止しなくてはならない確率が滅るとともに、 ロボッ 卜が完全に 停止した速度ゼロの状態からではなく或る程度の速度を有する状態で前記移送先 プロセスチャンバへの加速動作を行う事が可能になる。 また、 この第 6発明では、 速度パターンの合成によってゲー卜手段への衝突回避制御を行うようにしている ので、 1つの経路に関して予め持つ速度パターンが少なくなり、 メモリ容量を節 約できると共に、 その制御構成が簡単になる。 .
つぎ:こ、 請求の範囲第 1 0項に対応する第 7発明では、 先の第 6発明のプロセ. スチャンバ内のワーク移動である第 2の移動運動が、 トランスファチャンバ内の 移送元プロセスチャンバの略正面位置からトランスファチヤンバ内の移送先プロ セスチャンバの略正面の位置まで移動運動であることを規定している。
次に、 請求の範囲第 1 2項に対応する第 8発明では、 ワーク搬送ロボッ トが配 設されるトランスファチャンバと、 このトランスファチャンバに隣接して配設さ れてワークに対する各種加工処理を行う複数のプロセスチャンバと、 これら各プ ロセスチャンバと トランスファチャンバとの間にそれぞれ設けられる複数のゲ一 ト手段と、 これら複数のゲート手段の開閉状態をそれぞれ検出するゲート開閉検 出センサとを有するワーク加工装置と、
前記プロセスチヤンバと前記トランスファチャンバとの間のワーク移動に関す る第 1の移動運動及び前記トランスファチャンバ内でのワーク移動動作に関する 第 2の移動運動が可能なワーク支持用のアームを有し、 前記複数のプロセスチヤ ンバのうちの移送元プロセンスチヤンバにあるワークを前記第 1の移動運動によ つて当該移送元プロセスチャンバのゲ一ト手段を通過させてトランスファチャン バ內まで移動させ、 つぎに前記第 2の移動運動によってトランスファチャンバ内 の前記移送元プロセスチヤンバの略正面に位置するワークをトランスファチャン バ内の前記移送先プロセスチャンバの略正面の位置まで移送し、 さらに前記第 1 の移動運動によってトランスファチヤンバ内の前記移送先プロセスチャンバの略 正面の位置にあるワークを移送先トランファチャンバのゲ一ト手段を通過させて 移動先トランファチャンバまで移送するワーク搬送ロボッ 卜と、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するヮ一ク搬送システムにおいて、 前記移送元プロセスチャンバから前記トランスファチャンバへの前記第 1の移 動運動と前記第 2の移動運動とが交差する第 1の交差点までの第 1の移動運動の 加速から滅速停止までに関する第 1の速度パターンと、 この第 1の交差点から前 記第 2の移動運動と前記トランスファチャンバから移送先プロセスチャンバへの 第 1の移動運動とが交差する第 2の交差点までの前記第 2の移動運動の加速から 減速停止までに関する第 2の速度パターンと、 前記第 2の交差点から前記移送先 プロセスチャンバまでの前記第 1の移動運動の加速から減速停止までに関する第 3の速度パターンとが夫々予め設定される速度パターン設定手段と、 前記移送経 路上の移送元プロセスチャンバのゲート手段と前記第 1の交差点との間に予め設 定された所定の位置をワークが通過した時点に、 前記第 1の速度パターンと前記 第 2の速度パターンとを重ね合わせる第 1の速度パターン発生手段と、 前記第 2 の移動運動による軌跡途中の所定の位置を確認開始点とし、 この確認開始点を口 ボッ 卜が通過した時点から前記ゲ一ト開閉センサの出力に基づき移送先プロセス チャンバのゲート手段の開閉の判定を開始する開閉判定手段と、
この開閉判定手段によつて移送先プロセスチャンバのゲート手段の開が確認さ れた時点に前記第 2の速度パターンと第 3の速度パタ―ンとを重ね合わせる第 2 の速度パタ一ン発生手段と、 前記移送元プロセスチャンバから前記確認開始点ま では、 前記第 1の速度パターン発生手段を選択し、 前記確認開始点から前記移送 先プロセスチャンバまでは前記第 2の速度パタ一ン発生手段を選択し、 該選択し た速度パターンに従って前記ワーク搬送ロボッ トの速度制御を行う口ボッ ト駆動 手段とを備えるようにしている。
かかる第 8発明では、 前記移送経路上の移送元プロセスチャンバのゲ一ト手段 と前記第 1の交差点との間に予め設定された所定の位置をヮークが通過した時点 に、 移送元プロセスチャンバから第 1の交差点までの移動運動に関する第 1の速 度パターンと第 1の交差点から第 2の交差点までの移動運動に関する第 2の パターンとを重ね合わせ、 この重ね合わせパターンに従って速度制御するように しているので、 移送元プロセスチャンパから 卜ランスファチャンバまでの移動運 動からトランスファチャンバ内での移動運動への移行は前記第 1及び第 2の速度 パターンが合成されたショートカツ トされた経路上で行われる。
また、 第 8発明では、 前記開閉判定手段によって移送先プロセスチャンバのゲ 一卜手段の開が確認された時点に第 2の速度パターンと前記第 2の交差点から移 送先プロセスチャンバまでの移動運動に関する第 3の速度パターンとを重ね合わ せ、 該重ね合わされた速度パターンに従って前記移送先プロセスチャンバのゲ一 卜手段の開が確認された時点に対応する位置力 ら移送先プロセスチャンバまでを 速度制御するようにしているので、 確認開始点から移送先プロセスチャンバまで は前記開閉判定手段によつて移送先プロセスチャンバのゲート手段の開が確認さ . れた時点に対 する位置に応じて複数の異なるショ一卜カツ ト経路のうちの 1経 路上を移行する事になる。
ただし、 前記ワークが前記第 2の交差点で停止する前に、 移送先プロセスチヤ ンバのゲート手段の開が確認されない場合は、 ワークは前記第 2の交差点で一旦 停止した後、 移送先プロセスチャンバのゲ一卜手段の開が確認された時点で第 2 の交差点から移送先プロセスチャンバまで移送される。
このようにこの第 8発明によれば、 ショートカツト経路を経由してヮ一クの移 送を行うようにしたので、 移送元プロセスチャンバから移送先プロセスチャンバ までのワーク移送距離が短くなるとともに、 経路上に方向変換のための急角度が なくなり、 ワークを緩やかなカーブ上を高速搬送することができ、 ワーク落下な どの事故を防ぐことができる。 - またこの第 8発明によれば、 移送先プロセスチャンバのゲート手段の開が確認 された時点に速度パターンを合成し、 この合成速度パターンによつて速度制御を 行うことにより、 極力前記第 2の交差点でワークを停止させることなく ワークの ゲ一卜手段への衝突を回避させるようにしているので、 ワークが実際に停止しな くてはならない確率が減るとともに、 ロボッ 卜が完全に停止した速度ゼロの状態 からではなく或る程度の速度を有する状態で前記移送先プロセスチャンバへの加 速動作を行う事が可能になる。
またこの第 8発明では、 速度パターンの合成によってゲ一ト手段への衝突回避 制御を行うようにしているので、 1つの経路に関して予め持つ速度パターンは、 3つの速度パターンでよくなり、 メモリ容量を節約できると共に、 その制御構成 が簡単になる。
つぎに、 請求の範囲第 1 3項に対応する第 9発明では、 先の第 8発明において、 複数のプロセスチャンバトランスファチャンバの周囲に配設されていることを規 定すると共に、 前記ワーク支持用のアームが旋回動作と求心方向及び遠心方向へ の直線移動動作とが可能なのものであることを規定するようにしている。
つぎに、 請求の範囲第 1 6項に対応する第 1 0発明では、 ワーク搬送コボッ ト が配設されるトランスファチャンバと、 このトランスファチャンバに隣接して配 設されてワーク,'こ対する各種加工処理を行う複数のプロセスチャンバと、 これら 各プロセスチヤンバと トランスファチャンバとの間にそれぞれ設けられる複数の ゲー卜手段と、 これら複数のゲー卜手段の開閉状態をそれぞれ検出するゲ一卜開 閉検出センサとを有するワーク加工装置と、 前記複数のプロセスチャンバのうち の移送元プロセンスチヤンバにあるワークを、 当該移送元プロセスチヤンバのゲ ート手段、 前記トランスファチャンバ、 および移送先プロセスチャンバのゲート 手段を経由した所定の移動軌跡上 ίこ沿って移送先プロセスチャンバまで移送する ワーク搬送ロボットとを備え、 前記移送の際、 前記移送元及び移送先プロセスチ ヤンバのゲ一ト手段の閉及び開動作に所定の開閉時間を要するワーク搬送システ ムにおいて、
前記移動軌跡上にあって前記移送先プロセスチャンバのゲ一ト手段にワークが 接触する手前の位置に移送先プロセスチャンバのゲート手段の開閉状態の確認を 開始する確認開始点を予め設定すると共に、 この確認開始点を始点として前記移 動軌跡とは異なる所定の退避経路を予め設定するとともに、
前記確認開始点をロボッ卜が通過した時点から前記ゲー卜開閉センサの出力に 基づき移送先プロセスチャンバのゲ一ト手段の開閉の判定を開始する開閉判定手 段と、 前記確認開始点をワークが通過したときに前記開閉判定手段により移送先 プロセスチャンバのゲート手段の開が確認されたときは前記移動軌跡上を移送先 プロセスチャンバまでワークを移動させるとともに、 前記確認開始点をワーク.が 通過したときに前記開閉判定手段により移送先プロセスチャンバのゲ一ト手段の 開が確認されないときは前記退避経路を選択してワークを移動させ、 前記退避経 路上で前記開閉判定手段により移送先プロセスチャンバのゲ一卜手段の開が確認 された時点で前記移動軌跡に復帰させるようワーク搬送ロボッ トを速度制御する 速度制御手段とを備えるようにしている。
かかる第 1 0発明では、 確認開始点をワークが通過したときに移送先プロセス チャンバのゲート手段の開が確認されたときは通常の移動軌跡上を移送先プロセ スチャンバまでワークを移動させるとともに、 前記確認開始点をワークが通過し たときに移送先プロセスチャンバのゲート手段の開が確認されないときは退避経 路を選択してワークを移動させ、 この退避経路上で移送先プロセスチャンバのゲ ―ト手段の開が確認された時点で前記移動軌跡に復帰させるように速度制御を行. つているので、 ワークが実際に停止しなくてはならない確率が減るととも:二、 Π ボッ 卜が完全に停止した速度ゼ口の状態からではなく或る程度の速度を有する状 態で前記移送先プロセスチャンバへの加速動作を行う事が可能になり、 効率の良 いワーク搬送をなし得る。
つぎに、 請求の範囲第 1 7項に対応する第 1 1発明では、 ワーク搬送ロボッ ト が配設されるトランスファチャンバと、 このトランスファチャンバに隣接して配 設されてワークに対する各種加工処理を行う複数のプロセスチャンバと、 これら 各プロセスチヤンバと トランスファチャンバとの間にそれぞれ設けられる複数の ゲート手段と、 これら複数のゲ一ト手段の開閉状態をそれぞれ検出するゲート開 閉検出センサとを有するワーク加工装置と、
前記複数のプロセスチヤンバのうちの移送元プ πセンスチヤンバにあるワーク を、 当該移送元プロセスチャンバのゲート手段、 前記トランスファチャンバ、 お よび移送先プロセスチャンバのゲ一ト手段を経由した所定の基準移動軌跡上に沿 つて移送先プロセスチャンバまで移送するワーク搬送ロボッ 卜と、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記基準移動軌跡上にあって前記移送先プロセスチャンバのゲート手段にヮ一 クが接触する手前の位置に移送先プロセスチャンバのゲート手段の開閉状態の確 認を開始する確認開始点を予め設定すると共に、 この確認開始点を始点とし且つ 予め設定された所定の停止点まで延びる前記基準移動軌跡とは異なる所定の退避 経路と、 この退避経路上の各位置から前記基準経路に復帰する複数の異なる復帰 経路を予め設定するとともに、
前記確認開始点をロボッ 卜が通過した時点から前記ゲート開閉センサの出力に 基づき移送先プロセスチャンバのゲート手段の開閉の判定を開始する開閉判定手 段と、 前記基準移動軌跡上を移送元プロセスチャンバから前記確認開始点までヮ —クを移動させる第 1の速度パターンと、 前記基準移動軌跡上を前記確認開始点 から移送先プロセスチャンバまでワークを移動させる第 2の速度パターンと、 前 記確認開始点から前記退避経路および前記復帰経路を経由して前記移送先プロセ スチャンバに至る複数の第 3の速度パターンとが夫々予め設定される速度パター ン設定手段と、 前記移送元プロセスチャンバから前記確認開始点までは、 前記第 1の速度パターンを選択し、 前記確認開始点で前記開閉判定手段により移送先プ ロセスチャンバの開が確認された場合は前記第 2の速度パターンを選択し、 前記 確認開始点で前記開閉判定手段により移送先プロセスチャンバの開が確認されな い場合は前記第 3の速度パターンを選択し、 これら選択した速度パターンに従つ て前記ワーク搬送ロボッ 卜の速度制御を行うロボッ ト駆動手段とを備えるように している。
かかる第 1 1発明では、 確認開始点をワークが通過した時点に移送先プロセス チャンバのゲート手段が開になっていない場合に備えて、 通常の基準経路以外に ワークが前記ゲ一ト手段とは接触することのない退避経路とこの退避経路から前 記基準経路への復帰経路を予め設定しており、 前記確認開始点で前記開閉判定手 段により移送先プロセスチャンバの開が確認された場合は通常の基準経路に沿つ てワークを移送先プロセスゲ一トまで移送し、 確認開始点で前記開閉判定手段に より移送先プロセスチャンバの開が確認されない場合はワークを前記退避経路 ίこ 沿って移送し、 前記移送先プロセスゲ一卜の開が確認された時点で前記復帰経路 に沿った移送を開始し、 その後この復帰経路を経由して移送先プロセスチャンバ までワークを移送する。
従ってこの第 1 1発明では、 移送先プロセスチャンバのゲート手段の開が確認 されない場合は、 退避経路にワークを逃がし、 前記ゲート手段の開が確認された 時点で復帰経路を介してワークを移送先プロセスチャンバまで移送する二とによ り極力ワークを停止させることなくワークのゲ一ト手段への衝突を回避させるよ うにしているので、 ワークが実際に停止しなくてはならない確率が減るとともに、 ロボットが完全に停止した速度ゼ口の状態からではなく或る程度の速度を有する 状態で前記移送先プロセスチャンバへの加速動作を行う事が可能になる。
図面の簡単な説明
図 1 : この発明の第 1実施例による点 1および点 2間の速度パターンの演算設 定手順を示すフローチヤ—ト。
図 2 : この発明の制御系の構成例を示すブロック図。
図 3 : この発明の実施冽によるウェハ移動軌跡等を示す図。 図 4 : この発明の第 1実施例による速度パターンの演算の際に用いる各種パラ メータ値を示す図。
図 5 : この発明の第 1実施例に用いる速度パターンの一部を示す図: 図 6 :点 Sから点 1までと点 2から点 Eまでの各種速度パタ一ンを例示する図 図 7 :第 1の実施例による点 1から点 2までの速度パターンを示す図。
図 8 :従来及び第 1の実施例による速度パターンを例示する図。
図 9 :従来及び第 1の実施例による速度パターンを例示する図。
図 1 0 :従来及び第 1の実施例による速度パターンを例示する図。
図 1 1 : この発明の第 2及び第 3実施例による速度パターンの演算の際に用い る各種パラメータ値を示す図。
図 1 2 : 第 2の実施例による点 1から点 2までの速度パターンを示す図。 図 1 3 :第 3の実施例による点 1から点 2までの速度パターンを示す図。
図 1 4 :第 3の実施例で用いるパラメータ値 NOを説明する為の図。
図 1 5 :第 4の実施例による点 1から点 2までの速度パターンを示す図。
図 1 6 : ウェハ搬送ロボッ トが配置されるマルチチャンバ型の製造装置を示す 全体図。
図 1 7 : ゥニハ搬送ロボッ 卜が配置されるマルチチャンバ型の製造装置を示す 部分構成図。
図 1 8 :第 5実施例によるワーク移送経路を示す図。
図 1 9 :第 5実施例による速度パターンを例示する図。
図 2 0 :第 5実施例のウェハ搬送動作を示すフローチャント図。
図 2 1 :第 6実施例によるワーク移送経路を示す図。
発明を実施するための最良の形態
以下この発明の実施例を添付図面に従つて詳細に説明する。
図 2は、 この発明の実施例についてその制御系の構成例を示すもので、 この制 御系システムは、 先の図 1 6および図 1 7に示したマルチチャンバ型のウェハ加 ェ装置を制御するものである。
図 2において、 ウェハ検出センサ 2 0は、 図 1 7のウェハ搬送ロボッ ト 1のノ、 ンド 1 3に取り付けられるもので、 ウェハ Wがハンド 1 3上に載置されたことを 検出する。 ウェハ検出信号はシステムコントロ一ラ 3 0およびロボッ トコン ト口 ーラ 4 0に入力される。 ゲ一トバルブ開閉センサ 6 a s〜6 e sは、 図 1 6の各 プロセスチャンバ 3 a〜3 eに設けられたゲ一トバルブ 6 a〜6 eに設けられ、 各ゲートバルブ 6 a〜6 eの開閉状態を検出する。 各ゲートバルブ開閉センサ 6 a s〜6 e sで検出されたゲートバルブ開閉信号は、 システムコントローラ 3 0 およびロボッ トコン トコーラ 4 0に入力される。
システムコントローラ 3 0は、 図 1 6に示した各構成要素を統括的に制御する もので、 本発明に関係する制御としては以下の制御を実行する e
(1 ゲ一トバルブ 6 a〜 6 eの開閉制御
2ロボッ トコン 卜ローラ 4 0にプロセスチャンバ間でのゥニハ移載を行わせ る際に、 その際のロボッ ト始動指令、 移送元のチャンバ番号および移送先 のチャンバ番号を指令する
異常停止指令をロボッ トコントローラに出力する。
ロボッ トコントローラ 4 0は、 ウェハ搬送ロボッ ト 1を駆動制御するするもの で、 本発明に関係する制御としては以下の制御を実行する。
(Ijプロセスチャンバ間でのウェハ移載を行なう際に、 アームを縮めて移送元 のプロセスチャンバから脱出すると、 退避終了信号をシステムコントロー ラに出力する 。
Oプロセスチヤンバ間でのゥェハ移送を行なう際に、 移送先のプロセスチヤ ンバに到達すると、 移動終了信号をシステムコントローラに出力する。 ただし、 本発明を実施するために、 ロボットコント口一ラ 4 0には、 以下の 2 つの機能が搭載されている。
( ロボッ トの駆動制御と外部 (システムコントロ一ラ 3 0およびゥニハ検出 センサ 2 0、 ゲートバルブ開閉センサ 6 a s〜6 e s ) との信号の授受処 理を並列に実行可能なパラレル処理機能
O台点及び終点以外の教示点 (図 1 7の点 P 2、 P 3など) を位置決め停止し ないで通過可能なパスボイント機能。
かかる構成による第 1の実施例を説明する。 この第 1の実施例においては、 プロセスチャンバ間でのゥ-ハ移載を行なう際 に、 移動するプロセスチャンバ間の距離、 各チャンバのゲー トバルブを開閉する に要する時間 τに基づき、 少なくとも移送元プロセスチャンバからの待機点 (図 1 7の P 2) および移送先プロセスチャンバへの進入点 (図 1 7の P 3) では停止 せずにかつできるだけ高速を維持するとともに、 ロボッ 卜が移送先プロセスチヤ ンバの進入点 (図 1 7の P 3) に到達した際には移送先プロセスチャンバのゲート バルブが開動作を終了しているような移動速度パターンを求め、 この移動速度パ ターンをもってロボットを駆動するようにしている。 - 例えば、 図 3中の破線 qは、 プロセスチャンバ 3 cからプロセスチャンバ 3 d へのウェハ Wの中心の移動経路を示すものであるが、 まず二の図 3を参照して本 第 1の実施例の概略動作について説明する c
まず、 システムコントローラ 3 0からロボッ トコントコーラ 4 0に対して、 プ ロセスチャンバ 3 c内のゥ-ハ Wをプロセスチャンバ 3 dに対して移動させる命 令が入力される。 ロボットコントローラ 4 0は、 ハン ド 1 3に内蔵されているゥ ェハ検出センサ 2 0の検出信号からウェハ Wがロボッ ト 1のハンド 1 3に載置さ れたことを検出すると (点 P 1) 、 ロボッ ト 1のアーム 1 1 , 1 2を縮めてウェハ Wを点 P 5まで移動する。 そして、 ロボッ トコン トローラ 4 0は、 ロボッ ト 1が点 P 5に到達すると、 退避終了信号をシステムコン トローラ 3 0に出力する- なお、 点 P 5でロホッ トは停止することはない。
システムコン トローラ 3 0は、 上記退避終了信号を受信すると、 まずケ一トバ ルブ 6 cを閉じる制御を行い、 ゲートバルブ開閉センサ 6 c sの出力によってゲ ―トバルブ 6 cの閉を確認すると、 次にゲートバルブ 6 dを開する制御を実行す る。 なお、 前述したように、 ゲートバルブ 6 c、 6 dの開閉の際、 2つ以上のゲ 一トバルブを同時に開くことはできないという制限によって、 ゲ一トバルブ 6 c の閉の後にゲ一トバルブ 6 dを開するようにしている。
—方、 上記ゲートバルブ 6 c , 6 dの開閉動作に並行してロボッ ト 1は、 点 P 5から点 P 6、 点 P 7を経由して点 P 8への旋回移動を行う。 この実施例では、 ロボ ッ卜の速度制御によってウェハ Wが点 P 8に到達した時点でゲートバルブ 6 dの開 が終了しているようにしている。 そして、 ロボッ ト 1は、 この点 P 8においても停止することなく、 点 P 4に向カ つての移動を続行する。 ロボッ トコン トローラ 4 0は、 ウェハ Wが点 P 4に到達す ると、 移動終了信号をシステムコントローラ 3 0に送出する。 以上がゥニハ搬送 動作の概略である。
なお、 この場合のウェハの移動経路 qは、 点 P 5と点 P 6との間、 および点 P 7と 点 P 8との間を、 円弧などの曲線で結んだショートカツ ト軌跡によって移動するよ うにして、 移送元プロセスチャンバ 3 Cから移送先プロセスチャンバ 3 dまでの ワーク移送距離を短くするとともに、 経路上に方向変換のための急角度をなく し て、 ワークを緩やかなカーブ上を移送させるようにして、 ワーク落下などの事故 を防ぐようにしている。
次に、 図 4などを用いてロボッ ト 1の速度制御の詳細について説明する。
今、 図 4に示すよう;こ、 或るプロセスチャンバ内の所定のウェハ載置位置を始 点 S (図 3の P 1に対応) とし、 他のプロセスチャンバ内の所定のウェハ载置位置 を終点 E (図 3の P 4に対応) とした、 ウェハの移動を考える。 点 1はロボッ トァ —ム 1 1 , 1 2によるアーム縮退の終了点であり、 また点 2は旋回動作の終了点 である。 なお、 この場合は、 アーム伸縮動作と旋回動作を合成したショー卜カツ ト軌跡に沿ってワークを移行させるようにしているので、 実際の旋回動作の開始 点は点 1より少し手前の位置であり、 またアーム伸張の開始点は点 2より少し手 前の位置となる。
また、 この場合、 始点 S側のゲ一トバルブを 6 Sとし、 終点 E側のゲ一トバル ブを 6 Eとする。
ここで、 以下のパラメータを設定する。
v m: ロボッ 卜のアーム伸縮の際の最大移動速度
a m: ロボッ 卜のアーム伸縮の際の最大移動加速度
t 1 :点 Sから点 1までの移動時間 (点 2から点 Eまでの移動時間)
L 1 :点 Sから点 1までの距離 (点 2から点 Eまでの距離)
ω ηι '· ロボッ 卜の最大旋回速度
d ω : ロボッ トの最大旋回加速度
V I :点 1を通過するロボッ トの速度 (正確には、 アームの縮退動作から旋回 . 動作に移行する際のロボッ 卜の速度で、 アームの縮退速度と旋回開始速 度の合成速度となる)
V2:点 2を通過するロボッ トの速度 (正確には、 アーム旋回動作からアーム の伸張動作に移行する際のロボッ 卜の速度で、 アームの伸張速度と旋回 終了速度の合成速度となる)
Θ :旋回角
T : ロボッ トが始点 S側のプロセスチャンバから退避した後、 開いた状態にあ るゲ一卜バルブ 6 Sを閉にした後、 終点 E側のゲ一トバルブ 6 Eを完全に 開にする迄に要する時間 (システム固有の固定値)
r :旋回半径
次に、 以下に第 1の実施例の速度制御を行う際の前提条件を示す。
•前提条件
始点 Sから終点 Eまでの移動速度パターンは時間軸の中点を中心線とし て線対称にする (図 8 (¾入 図 9 (¾)、 図 1 0 (¾)参照) 。 したがって、 常に、 V 1 - V2である。
•前提条件 (¾
点 2に対応する点 (図 3では点 P 8) にゥヱハ Wが到達したときに、 ゲ 一トバルブ 6 Eの開が終了しているようにロボッ ト移動速度を加滅速制 御する:
•前提条件 fcj
V Iおよび V2は、 始点 S及び終点 Eで停止することができかつ点 1から 点 2までの移動時間が、 ゲートバルブ 6 Sおよび 6 Eの開閉に要する時 間 T以上にするという条件で、 できるだけ大きくする。
•前提条件め
点 1から点 2までの移動時間は、 前記ゲ一トバルブの開閉の合計時間 T 以上であるという条件でできるだけ小さくする。
•前提条件よ
ウェハがハンドからずれたり、 落下しないように、 限界速度 V および 限界加速度 a を設定する。 第 1の実施例では、 上記前提条件 〜 を全て満足するような, 移動速度パ ターンを生成する。
以下、 図 1のフローチヤ一卜に従って上記前提条件 (^(〜(^めを満足する第 1の 実施例の移動速度パターン導出制御手順を説明する。
ロボッ トコントロ一ラ 4 0では、 システムコントローラ 3 0からゥヱハ移動指 令が入力されると (ステップ 1 00) 、 点 1 (及び点 2) での移動速度 VI (=V 2) を決定するために、 まず、 以下の 4つの値を計算し (ステップ 1 1 0) 、 これ ら計算した 4つの値のうちで最も小さい値を点 1 (及び点 2) での移動速度 VI ( = V2) とする (ステップ 1 2 0) 。 なお、 () は、 0 内の式が "内に含まれ ることを示す代用記号である。
• V m
• 广 ( 2 a m · L 1)
' ΐ ω m
' · vc
まず、 ν,ηは、 ロボッ トのアーム伸縮の際の最大移動速度でこれはロボッ ト固 有の値 (固定値) である。 すなわち、 VI ( = V2) として vmが選択される場合、 始点 Sを出発して点 1に到達する前に最高速度 vmに到達したケースを想定して いる。
つぎに、 、厂 (2 am - L1) は、 始点 Sから点 1まで最大加速度 a mで加速し 続けたときの点 1での速度である。 すなわち、 f (2 am - L1) は、 下式 (1 ) によって導出される。
Vl= a m · t \ = f ( 2 a m · LI)
なぜならば、 t l = ^ (2 LI/ am) ··· ( 1 ) この値^ (2 am - LI) 力;、 VI ( = V2) として選択される場合は、 始点 S を出発した後、 最高加速度 a ;nで加速してしている状態で、 最高速度 v に到達 する前に点 1に到達したケースである。
つぎに、 r · は点 1での最大旋回角速度である。 すなわち、 点 1において 例えば、 、 ロボッ トアームの縮退速度 (例えば vm) がアームの旋回最高角速度 r · comを上回ることが可能であったとしても、 点 1の速度 VIとして、 旋回最 - 髙角速度 r · ω"ιよりも大きいアーム縮退速度を選択すると、 その後の旋回の際 に急激な速度ダウンを強いられるので、 アームの旋回最高角速度 r · comが、 V mや Γ ( 2 a m - Ll) よりも小さい場合には、 点 1の速度 V 1として、 旋回最高 角速度 r · omを選択する。
次に、 r · vCであるが、 この値 vc (角速度) は、 プロセスチャンバ間の移動 距離が短くて (旋回角度 Θが小さい) 、 点 1から点 2までの移動時間を前記ゲ一 卜バルブ 6 Sおよび 6 Eの開閉に要する時間 Tよりも大きく しょうとし、 かつ V 1 ( = V2) をできるだけ大きな値に設定しょうとした場合に、 点 1から点 2への 旋回動作時に少なくとも何らかの滅速—加速動作が必要になる場合を想定してお り、 図 5 (¾)を参照して vcについて説明する。
まず、 この旋回動作時の減速—加速動作においては、 VI ( = V2) をできるだ け大きな値に設定できるようにするために、 図 5に示すように、 ロボッ トの最大 旋回加速度 (=最大旋回減速度) d comをもって減速一加速動作を実行する。 ここで、 点 1の角速度 (=点 2の角速度) を vCとした場合、 図 5 こ示すよ うに、 最大旋回加速度一 d comをもって速度 0まで減速したときの減速時間は V cZd c mとなり、 また速度 0の状態から再度最大旋回加速度 d をもって vc まで加速した際の加速時間も vc/d wmとなる。 また、 図 5 において、 ノヽッ チング部分の面積は旋回角 Θに等しいので、 下式 (2) が成立する。 .
vc = J~ { d ωτη ■ θ )
なぜならば、 2 · ( ν c/2) · {vc/ ά ωτη) = θ
… (2)
したがって、 点 1の速度を (d ω/η · Θ ) として最大旋回加速度一 d ω mをもつて速度 0まで滅速し、 その後直ちに速度◦の状態から再度最大旋回加 速度 d comをもって元の速度 vcまで戻るために要する時間は、
2 vr ( d ω m · θ ) / ά ωιη
となる。
したがって、 この時間 2^ (ά ωηι - θ ) d ω mを前記ゲートバルブ 6 Sお よび 6 Eの開閉に要する時間 Tと比較し、
T≥ 2^ ( d ωηι - θ ) / ά である場合は、 v c= (d com , θ ) とし . て、 図 5 に示した速度パターンを点 1から点 2の移動速度パターンと て採 用する。
すなわち、 この図 5 こ示した速度パターンにおいては、 VI ( = V2) をで きるだけ大きな値に設定しつつ、 点 1から点 2までの移動時間が前記開閉時間 T に一致するように、 一時停止を含んだ旋回速度制御を行っているのである。 次に、 Tく 2 (do m ' Θ ) Zd <omの場合には、 点 1から点 2までの移動 速度パターンとして、 図 5(¾)に示したパターンが採用される c
すなわち、 この囡 5 の速度パターンは、 点 1から点 2までの旋回動作の際 に、 前記図 5 C の速度パターン同様、 最大加速度 d ojmをもって減速一加速動 作を行う力 s、 速度 0まで低下させることなく点 1から点 2までの旋回時間を上記 ゲートバルブ開閉時間 Tに一致させることができる場合であり、 この場合の vc は次のようになる。 なお、 0 Λ2は、 () 内を 2乗することを示す代用記号で ある。
すなわち、 図 5( ^において、 ハッチング部の面積は旋回角 0に一致するので 下式が成立する。
Figure imgf000024_0001
したがって、
vc= { θ + (Τ/2) Λ2 · d ωτη) /Ί ■■■ ( 3)
となる。
すなわち、 図 1のステップ 1 1 0の vcの計算の際、
T≥ 2 [ά ωτη - θ ) Zd comである場合は、
vc= (d ωηι · θ )
が選択され、
T< 2 ( d ω m · Θ ) Zd w, の場合には
vc= { Θ + (丁/ 2) Λ2 · d ωτη) /Ί
が選択される。
次に、 図 1のステップ 1 2 0においては、 前述したように、 前記計算した 4つ のパラメ一タ vm、 ( 2 a m · LI) 、 r ωιη. r ν cのうち最も小さレ 直のも のを点 1の速度 VI (=点 2の速度 V2) として決定する。
まず、 上記 4つのパラメ一タのうち vmまたは " (2 am - L 1) が選択され た場合について説明する (ステップ 1 30、 1 4 0) 。
v/nが選択された場合、 始点 Sから点 1までおよび点 2から終点 Eまでの速度 パターンは、 通常図 6 )に示すようなものとなる。 すなわち、 始点 Sから最高 アーム伸縮加速度 a mをもつて加速し、 点 1に到達する前に最高速度 V mに到達 するのである。
また、 (2 am · L1) が選択された場合、 始点 Sから点 1までおよび点 2 から終点 Eまでの速度パターンは、 通常図 6 に示すようなものとなる: すな わち、 始点 Sから最高アーム伸縮加速度 amをもって加速し、 最高速度 vmに到 達するまえに点 1:こ到達するのである c
次に、 点 1から. S 2までの旋回動作は、 vm、 および " (2 a m - Ll) のい ずれが選択された場合でも、 同様な速度パターンを選択する。
すなわち、 ステップ 1 3 0で vm、 または— (2 am - Ll) が選択されたと レ、うことは、 旋回最高速度 r c はこれらの値 VI (= vm、 または 7" (2 am • Ll) ) よりも大きいということであり、 したがって、 当該 VI値からの加減速 が可能であることを意味する。
そこで、 ステップ 1 40において、 当該 VI値で点 1及び点 2間の円弧距離! ·. Θ を移動したときの所要時間 r 6 VIを前記ゲート開閉時間 Tと比較し、 r θ /V 1 Tならば、 点 1及び点 2間を丁よりも大きくかつできるだけ短い時間で旋回で きるよう、 図 7 f¾に示すような增速パターン Aを採用する (ステップ 1 5 0) 。 また、 r 6 V 1く Tならば、 点 1及び点 2間を前記ゲ一ト開閉時間 Tと一致す る時間で移動できるような、 図 7 こ示すような減速パターン Bを採用する ( ステップ 1 60) :
次に、 上記 4つのパラメータのうち r mが選択された場合について説明する (ステップ 1 30、 1 70) 。
最高旋回速度 r が選択された場合、 始点 Sから点 1までおよび点 2から終 点 Eまでの速度パ々ーンは、 例えば、 図 6 に示すようなものとなる。 この図 6(¾の速度パターンはほんの一例であり、 始点 Sから点 1までの経路について 言えば、 点 1で速度 r が得られかつ始点 Sおよび点 1間をできるだ;了短時間 に移動できるような速度パターンを選択するようにする。
次に、 r c が選択された場合、 点 1から点 2までの旋回動作は、 図 7(¾)示 した減速パターン Bおよび図 7 ( に示した等速パターン Eの何れかとなる。 すなわち、 r ω/ηが選択された場合は、 当該 VI値 (= r cofn) で点 1及び点 2間の円弧距離 r Θを移動したときの時間 6 Ζω;ηを前記ゲ一ト開閉時間 Τと比 較し、 θ /ω/η Τならば、 点 1及び点 2間を Τよりも大きくかつできるだけ短 い時間で旋回できるよう、 図 7 に示すような等速パターン Εを採用する (ス テツプ 1 8 0) 。 なお、 この場合は、 VIとして最高旋回速度 r が採用され ているので、 これ以上の增速はできないから、 等速制御となる。
また、 0 Zcum< Tならば、 点 1及び点 2間を前記ゲート開閉時間 Tと一致す る時間で移動できるような、 図 7 (¾ こ示すような減速パターン Bを採用する ( ステップ 1 9 0) 。
次に、 上記 4つのパラメータのうち r · vCが選択された場合について説明す る (ステップ 1 3 0、 2 0 0) 。
r vCが選択された場合、 始点 Sから点 1までおよび点 2から終点 Eまでの速 度パターンは、 例えば、 図 6 fめに示すようなものとなる。 この図 6(¾)の速度パ ターンはほんの一例であり、 始点 Sから点 1までの経路について言えば、 点 1で 速度 r V cが得られかつ始点 Sおよび点 1間をできるだけ短時間に移動できるよ うな速度パターンを選択するようにする。 勿論、 この際の vC値は、 前述したよ うに、 Ί≥2 (ά ωτη ' θ ) Zd comである場合は、 vc= " (ά ωηι - θ ) が選択され、 < 2f {ά ωιη · θ ) Zd ojmの場合には、 v c= { Θ + (T / 2) Λ2 · d com) ZTが選択される。
次に、 r vcが選択された場合、 点 1から点 2までの旋回動作は、 先の図 5を 用いて説明したように、 T 27" (ά ωηΐ ' Θ ) ノ d comである場合は、 図 7fc_ に示す速度パターン C (=図 5 ) が選択され (ステップ 2 0 0、 2 1 0) 、 Τ< 2-Γ ( d ω /7i · Θ ) / d oo の場合は、 図 7〔めに示す速度パターン D (= 図 5 ) が選択される (ステップ 2 0 0、 2 2 0) 。
このようにして始点 Sから終点 Eまでの速度パターンが決定されると、 ロボッ トコン トローラ 4 0は該決定された速度パタ一ンに従ってロボッ 卜 1を速度制御 する。
図 8、 図 9、 図 1 0は、 上記第 1の実施例:こよる速度パターンと従来技術の速 度パターンの比較例を示すものである。 なお、 これらの図において、 各時間軸上 の点 P 2、 P3は、 図 3上の点を示している。
図 8の場合、 従来技術では、 点 P 3で停止してゲートバルブ 6 dの開を待ってい るが、 本第 1の実施例によれば、 点 P 3に到達したときと、 ゲートバルブ 6 dが全 開した時点が一致しかつ、 全体の移送時間も従来に比べ 2 Δ Τだけ短縮すること ができている。
また、 図 9の場合においても、 本第 1の実施例によれば、 全体の移送時間も従 来に比べ 2 Δ Tだけ短縮することができている。 '
また、 図 1 0の場合は、 従来においても口ボッ ト旋回中にゲートバルブ 6 dが 開になって待ち時間はないのであるが、 本第 1の実施例によればかかる従来技術 よりもさらに 2 Δ Τ +ひだけゥェハ移送時間を短縮することができている。 なお、 αはゲ一トバルブ 6 dが開になつてから従来技術によって終点 Ρ 4まで到達するま での時間である。
なお、 上記第 1の実施例では、 始点 Sから終点 Eまでの移動速度パターンは時 間軸の中点を中心線として線対称にするようにしたが、 本発明はこれに限るわけ ではない。 すなわち、 V 1≠V2としてもよい。
次に、 図 1 1にしたがってこの発明の第 2実施例について説明する。
この第 2実施例によれば、 図 1 1の点 2に到達したときに (実際には、 点 2上 は通過しないので点 2を通過すべき時刻に対応する移動軌跡 (^ショートカッ ト軌 跡上の点) 、 移送先側のゲ一トバルブ 6 Eの開閉状態をチヱックし、 ゲ一トバ ルブ 6 Eが閉の場合はゲー卜バルブ 6 E手前の所定の停止位置 Qで停止し、 ゲー トバルブ 6 Eが開の場合は停止位置 Qで停止することなくそのまま終点位置 Eま で移動するようにする。 このため、 この第 2の実施例では、 点 2からの減速制御 によって点 Qで停止できるように点 1の速度 n、 点 1及び点 2間の移動速度、 点 2の速度 uを設定するようにしている。 ただし、 この第 2の実施例では、 点 2に おいて、 ゲートバルブ 6 Eの開閉状態をチニックするようにしているので、 点 1. から点 2までの旋回時間が常にゲ一トバルブ 6 S, 6 Eの開閉に要する時間 T以 上になるような速度パターンを設定するようにはしていない。
まず、 点 Qで停止できるためには点 2の速度 uは、 下式 (4) を満足すること が条件となる。
u≤^ (L3/L1) · (2 am · L1)
… (4)
すなわち、 f (2 am - L1) は、 速度 0の状態からアーム伸縮の際の最大移 動加速度 a mで距離 L1だけ加速し続けたときの速度であり、 これを (L3/L 1) で比例配分することにより、 点 Qで停止できるための点 2の上限速度 uを求め ることができる。
さらに、 点 1および点 2間は、 ロボッ トの最大旋回加速度 d ω/ をもって減速 するとすると、 点 1での速度 ηは、 下式 (5) から (6) 式のようになる。 なお、 r A2は rの 2乗であり、 uA2は uの 2乗である。
((n + u)/2) · ((η- η)/(τ - ά ωτη)) = r θ
··· (5)
n =V~ ( 2 r Λ2 · Θ · d ω + u A2)
·■· (6)
すなわち、 この第 2の実施例では、 先の第 1の実施例の図 1のステップ 1 2.0 に示した選択条件式 m i n ( vm, J~(2 a m - LI), r c m, r vc) の r vcを nに置き換えた下式
m i n ( v m, ·Γ (2 a m■ LI), r ω m, n )
にしたがって点 1での最終的な速度 VIを決定するようにしている。 点 2での最終 的な速度は上記上限速度 uである。
したがって、 VIとして nが選択された場合は、 点 1から点 2までの旋回速度パ ターンは図 1 2(¾)に示すようになり、 また、 VIとして n以外が選択された場合 は、 点 1から点 2までの旋回速度パターンは図 1 2 に示すようになる。
この第 2の実施例においても、 始点 Sから点 1までの移動は先の第 1の実施例 と同様であり、 決定された点 1での速度 VIを実現しかつできるだけ早く点 1に到 達できるようその移動速度パターンが決定される。 このようにこの第 2の実施例では、 点 2でロボッ 卜は移送先プロセスチャンバ のゲートバルブの閉が検出された場合に移送先プロセンスチャンバの手前の所定 の停止点 Qで停止できる速度パターンのうちの最も移送時間の短い高速度パター ンで移動することができるようになる。
なお、 前記停止点 Qとしては、 できるだけ移送先プロセスチャンバのゲート 6 Eに近い位置が望ましいが、 移送先プロセスチャンバのゲ一ト 6 Eにワークが到 達する前の移動軌跡上の位置であれば、 その位置は任意に設定してもよい。 また、 前記ゲ一ト 6 Eの開を確認するための位置も停止位置 Qよりも手前の位置であれ ば、 点 2に対応する位置に限らず任意である。
次に、 この発明の第 3の実施例について説明する。
先の第 2の実施例では、 点 1から点 2までの旋回時間が常にゲ一トバルブ 6 S , 6 Eの開閉に要する時間 T以上になるような速度パターンを設定するようにはし ていない。 しかし、 この第 3の実施例では、 点 1から点 2までの旋回時間が常に ゲートバルブ 6 S , 6 Eの開閉に要する時間 T以上になりかっこの旋回時間がで きるだけ短時間になるような移動速度パターンの設定を行うようにしている。 こ の点が、 第 3の実施例と第 2の実施例の違いである。
すなわちこの第 3の実施例にぉレ、ても、
m i n ( v m, J~(2 a m ' L l), τ ω τη, n )
にしたがって点 1での最終的な速度 V Iを決定するようにしているが、 上記 nの内 容が先の第 2の実施例とは異なっているのである。
すなわちこの第 3の実施例では、 点 2からの減速制御によつて点 Qで停止でき、 かつ点 1から点 2までの旋回時間が常にゲ一トバルブ 6 S , 6 Eの開閉に要する 時間 T以上になり、 さらにこの旋回時間ができるだけ短時間になるように点 1の 速度 n、 点 1及び点 2間の移動速度、 点 2の速度 uを設定するようにしている力 前記時間 Tを考慮したために、 nが 4種類の異なる値をとるようになる- また、 点 2の速度 u 1種類とはならなレ、。
以下、 第 3の実施例を先の図 1 1を参照して説明する。
この第 3の実施咧においても、 点 Qで停止するためには、 点 2の速度 uは、 先 の (4 ) 式から o 97/34742 u =V^ (L3/L1) - ( 2 a m - L 1) =U ■·■ ( 7 ) であればよい。 この (7) 式によって決定される uをし ίとする。
さらに、 前記同様、 点 1および点 2間をロボッ 卜の最大旋回加速度 d comをも つて減速するとすると、 点 1での速度 nは、 式 (6) から
n =^ (2 r A2 - Θ - d ω + u Λ2) =Ν ··· (8) となる。 この (8 ) 式によって決定される ηを Νとする。
ここで、 点 1の速度を Νとし、 点 2の速度を Uとした場合に、 点 1から点 2ま でをロボッ 卜の最大旋回加速度一 d ω/ をもって旋回するための時間は、 (Ν— U) / ( r · d ωτη) となるので、
T≤ (N-U) / ( r · d ω) のときには、
η =Νで、 u =Uとなり、 点 1から点 2までの旋回速度パターンは図 1 3 のようになる。
しかし、 T〉 (N-U) / ( r · d ω) のときには、 点 1から点 2までの旋回 速度パターンとして、 図 1 3(¾)〜図 1 3 に示すパターンのうちの 1つが選択 される。
ここで、 図 1 4に示すように、 最大加速度一 r · d wmで減速し、 速度 0にな つた時点で即座に最大加速度 r · d co で加速し、 その後速度が Uに等しくるま での移動距離 (旋回距離) が r · 0に等しくなるような点 1での速度 NOを求める と、
Figure imgf000030_0001
+ (U/2) · /(τ · d ωτη)) = r · θ の関係によって、
Ν0=7" (2 · r Λ2 · θ · d ojm— UA2) … (9 )
となる。
つぎに、 T > (N-U) / ( r - d ω) のときには、 まず図 1 3 に示す、 2つの異なるハッチング部分の面稍が等しくなるような速度 n lを求める。
すなわち、 T〉 (N— U) (r · d ω) のときには、 図 1 3 に示した速 度パターンより全体的に速度を落として、 点 1から点 2まで (距離は r · 0 ) の 旋回時間が Tに一致するようにする必要があるので、 この場合には、 減速加速度. — d comは変えずに点 1での速度を n lに下げ、 所定時間 t 1が経過した後、 加速 度 d ω/ηをもって再加速することによって速度低下を実現する。
まず、
η 1— r - d ωηι · t l+ r · d ωιη · (T— t l) =U
より
t
Figure imgf000031_0001
- d ωηι)) + T } ■·· ( 1 0) となる。
また、 その面積から
nl ' t l— (1ノ 2) - r · ά ωπι - t 1A2+U (丁一 t 1)
- ( 1 /2 ) · r · ά ωτη - (T- t 1) Λ2= r - θ
が成立し、 したがって、 次式 (1 1 ) が成立する。 '
(n l-U) t 1+ U · T
- ( 1 /2) ' r ' d wm ' (ΤΛ2— 2 T t 1 + 2 t Λ2) = r · θ
… ( 1 1 )
上記 (1 0) 式および (1 1 ) 式によって nlを算出する。
次に、 このようにして算出した n lを先の図 1 4に従って求めた NOと比較し、 この比較結果に基づいて図 1 3 )〜図 1 に示すパターンのうちの 1つを選 択する。
すなわち、 n l≥N0の場合は、 n = n lで、 また u =Uとなり、 点 1から点 2ま での旋回速度パターンは図 1 3 (このようになる。
また、 nl< N0の場合は、 NOが Uより大きいか小さいかで選択される速度パタ ーンが異なる。
すなわち、 n lく NOで、 N0〉Uの場合は、 n =N0で、 また u =Uとし、 点 1 から点 2までの旋回速度パターンは図 1 3 のようになる。
また、 nlく NOで、 NOく Uの場合は、 点 1から点 2までの旋回速度パターンは 図 1 3(めまたは図 1 3 の何れかを選択し、 そのときの n, uは図 1 3f 、 図 1 3 fe)に示した速度パターンが成立するような値が選ばれる。
すなわち、 NOく Uであるということは、 点 1の速度 nを点 2の速度 uよりも遅 くするということであるので、 これは始点 Sから点 1までの退避をできるだけ早 くするという原則から外れることになるので、 点 2での速度 uを Uより も小さく して点 1での速度 nをできるだけ大きくするようにしているのである c
ここで、 図 1 3(¾)または図 1 3( ^の場合は、 n = uとして、 nおよび uを求 める際の計算を簡単化するようにしている。
図 1 3(¾)の例においては、
η · Τ— ( 1 /2) · Τ · ( r - ά ωτη - (I / 2)) = r - θ
が成立するので、
η = u = ( I Θ /Τ) + ( ά ωτη ' Ύ ■ (\ / A)) ( 1 2) となる。
また、 図 1 3 の例では、
η · κ η /(τ · d ωιη)) = r · θ
が成立するので、
n = u = r vr ( d ω m · θ )
となる。
なお、 図 1 3(¾ (または図 1 3 に示した速度パターンにおいては、 n = uと したが、 n > uが成立する最適な n及び uを決定するようにしてもよレ、。
このようにこの第 3実施例では、 先の第 2の実施例に対し、 点 2にロボットが 到達したときに移送先のゲ一ト手段の開が終了し、 かつ点 1から点 2までの移送 時間が前記移送元および移送先のプロセスチヤンバのゲー卜バルブの開閉に要す る時間 T以上の最短時間になるという条件を追加して移動速度パターンを設定演 算するようにしているので、 何らかの異常のとき以外はロボッ卜が途中で停止す ることはなくなり、 より効率の良いゥュハ搬送動作をなし得る
次に、 図 1 5に従ってこの発明の第 4実施例について説明する。
この第 4の実施例は、 先の第 2実施例または第 3実施例に対し、 1つの機能を 追加したものである。
この追加機能では、 図 1 5faおよび図 1 5 に示すように、 点 1から点 2へ の移動中に、 逐次ゲートバルブ 6 Eの開閉状態をチェックし、 点 1から点 2への 移動中にゲ一卜バルブ 6 Eの開を確認できた場合、 そのときの状態が减速中であ れば、 その時点で減速動作を停止し、 直ちに最高加速度 d での加速動作を行 o 7 うようにしている ただし、 加速動作の際、 速度が許容速度の限界値 V に達し た場合は、 この限界速度 V を維持するようにする。
この場合の限界速度 VZiは下式のように、 vm、 r ω η、 J~ (2 a m - LI) の なかの最小値となる。
m i n ( v m, r ω m, ~ ( 2 a m · L 1) )
なお、 上式において、 アーム伸縮速度に関するパラメータ vm, (2 am - L1) を入れたのは、 旋回動作の終了点である点 2で上記 v または V_ (2 a m • L1) を超えると、 終点 Eで停止することができなくなるからである。
この第 4実施例においては、 点 1から点 2の移動中にゲ一トバルブ 6 Eの開を 確認できた場合、 そのときの状態が減速中であれば、 その時点で減速動作を停止 し、 直ちに最高加速度 d ω/ηでの加速動作を行うようにしているので、 より移送 時間の短いゥ-ノ、搬送をなし得る。
なお、 この第 4の実施例において、 移送先のプロセスチャンバのゲート 6 Εの 開の確認を開始するのは、 移送元プロセスチャンバのゲ一卜 6 Sをワークが通過 した後の時点であれば任意である。
次に、 図 1 8に従ってこの発明の第 5実施例について説明する。
この第 5の実施例では、 旋回軌跡をゲ一卜 6 S、 6 Eに近い位置に設定するよ うにしているので、 点 2近傍からゲ一ト 6 Eに向かってアーム伸張動作を行った 場合、 ゲート 6 Eが閉じていた場合は、 ワークがゲート 6 Eに衝突することにな る。
したがって、 この第 5実施例では、 旋回軌跡上の所定の位置 Qdこワークが到 達した時点から移送先プロセスチャンバのゲ一ト 6 Eの開の確認を開始し、 ゲー ト 6 Eの開が確認された時点でゲート 6 Eに向かってのァ一ム伸張動作を開始す るようにしている: また、 この場合、 ワーク の旋回軌跡とアーム伸張軌跡が交差 する点 2をワーク停止点として設定するようにしている。 従って、 ワークが点 2 に到達するまでにゲ一ト 6 Eが開にならない場合は、 ワークは点 2で一旦停止し、 ゲート 6 Eが開になった時点からゲート 6 E方向へのアーム伸張動作を行うこと になる。
また、 この第 5実施例では、 図 1 8に示すように、 点 1及び点 2付近の移動の 際に積極的にショー卜カツ ト軌跡を採用して、 ワークの移送距離をできるだけ短 くするようにして、 ワーク移送時間の短縮化を図るようにしてレ、る。
また、 この実施例では、 図 1 9にも示すように、 始点 Sから点 1 (正確には点 Q 6) までワークを求心方向に移送して停止するためのァ一ム縮退動作に関する 第 1速度パターン K 1と、 点 1から停止しているワークを加速旋回して点 2で停止 させるための第 2速度パターン K2と、 点 2 (正確には点 Qc) から終点 Eまでヮ ークを遠心方向に移送して停止するためのアーム伸張動作に関する第 3速度バタ —ン K3とをそれぞれ予め用意し、 これらを重ね合わせる (合成する) ことによつ て、 始点 Sから終点 Eに至る速度パターンを発生させるようにしている。 なお、 図 1 9に示した速度パターンは単に一例を示すものである。
この場合、 第 1速度パターンと第 2速度パターンを合成する位置は固定であり、 ワークの中心がゲート 6 Sの位置 Qaに到達した時点とする。 一方、 第 2速度パ ターンと第 3速度パターンとの合成位置は固定ではなく、 旋回軌跡上の点 QCか ら点 2までの間の位置でゲ一ト 6 Eの開が確認された位置とする。
また、 この場合は、 点 2に停止点を設定するようにしているので、 第 1及び第 2の速度パターンは、 点 2に停止することができること、 アーム伸縮および旋回 動作の限界速度を上回らないこと、 システムの限界速度 V および限界加速度 a I ίを上回らないことを条件として、 最も短時間で始点 Sおよび終点 Ε間の移送が. できるような速度パターンに設定するようにしている また、 第 3の速度パター ンは、 第 1の速度パターンと同じパターンとしている。
また、 この場合、 点 Qcの位置は次のようにして設定するようにしている。
すなわち、 アーム縮退動作の最高加速度を a とし、 旋回動作の最高加速度を d c とし、 点 2及び点 Qd間の距離を とし、 点 2及び点 Q c間の距離を L cと すると、 最高加速度で点 2から点 Qdまで移動するのに要する時間 Tは、
Τ =、Γ ( 2 · L d/ a m)
であるので、 この時間 Tの間に点 2から旋回軌跡上を逆方向に最高旋回加速度 d co mをもって旋回することができる距離 L cを、 点 Qcの点 2からの円弧上の距離 として設定する。
すなわち、 L c^ f L d · d ω m)/ a m
である。
次に、 この第 5実施例の動作を図 2 0のフローチヤ一卜に従って説明する。 ゥヱハ移動命令が入力されると、 ロボッ トコン トローラ 4 0は、 移送元および 移送先プロセスチャンバ番号に対応する速度パターンを図示しないメモリから読 み出し、 該読み出した速度パターン K 1に従ってアームを縮退動作させる (ステツ プ 3 0 0 ) 。 なお、 通常、 アーム伸縮動作に対応する前記第 1および第 3の速度 パターン K l, K3は、 移送元および移送先プロセスチャンバ番号に関係なく共通 であり、 旋回動作に関する第 2の速度パターン K2が移送元および移送先プロセス チャンバ番号に応じて異なっている。 また、 この場合、 第 1及び第 3の速度バタ —ン K i, K 3も共通である。 '
次に、 ロボッ トコントローラ 4 0は、 ワーク移動開始後、 ワークがゲ一卜 6 S の位置に対応する所定の点 Qaを通過するに要する所定の時間が経過したことを 検出すると (ステップ 3 1 0 ) 、 アーム縮退動作に関する第 1の速度パターン K 1に旋回動作に関する第 2の速度パターン K2を合成し、 この合成した速度パター ンにしたがってロボットを駆動することにより、 点ワークを点 Qaから点 Q &に 向けてショートカツ 卜軌跡に沿って移送し、 さらにその後点 Q bおよび点 Q c間を 旋回移動させる (ステップ 3 2 0 ) 。
つぎに、 ロボッ トコントローラ 4 0は、 ワークが点 Q cの位置を通過するに要 する所定の時間が経過したことを検出すると (ステップ 3 3 0 ) 、 移送先プロセ スチャンバのゲ一卜のゲートバルブ開閉センサの出力から該ゲ一卜の開を確認し (ステップ 3 4 0 ) 、 この時点で該ゲートの開を確認できた場合は、 この時点で 旋回動作に関する第 2の速度パターン K2にアーム伸張動作に関する第 3の速度パ ターン K3を合成し、 この合成した速度パターンにしたがってロボッ 卜を駆動する ことにより、 点ワークを点 Qcから点 Qtiに向けてショートカツ ト軌跡に沿って 移送し、 さらにその後点 および終点 E間を直線移動させる (ステップ 3 7 0 ) 。 この場合、 ワークは図 1 8のル一ト R 1上を移動する事になる。
—方、 ワークが点 Qcに到達したときに、 移送先プロセスチャンバのゲートの 開を確認できない場合は、 そのまま第 2の速度パターンに従って旋回動作を続行- させる。 また、 二の旋回動作に並行して移送先プロセスチャンバのゲー トのゲー トバルブ開閉センサの出力に基づいて該ゲ一卜の開を常時確認するようにしてお り (ステップ 3 5 0 , 3 6 0 ) 、 該ゲー トの開を確認できた時点で旋回動作に関 する第 2の速度パターン K2にアーム伸張動作に関する第 3の速度パターン K3を 合成し、 この合成した速度パターンにしたがってロボッ トを駆動する (ステップ 3 7 0 ) 。
したがって、 前記ゲートの開の確認時点が図 1 9の Qc '時点の場合、 ワーク は図 1 8のル一ト R2にそって移送されることになり、 また該ゲートの開の確認時 点が図 1 9の Q 時点の場合、 ワークは図 1 8のルート R 3にそって移送される ことになる。 さらに、 ワークが旋回速度パターンに従って点 2で停止した後に、 上記ゲートの開が確認できた場合は、 ワークは、 点 2まで旋回してここで一時停 止した後、 点 2から終点 Eに向かって直線移動される事になる。
このようにこの第 5実施例では、 移送先プロセスチャンバのゲートの開が確認 された時点に旋回運動の速度パターンとアーム伸張運動の速度パターンとを合成 し、 この合成速度パターンによって速度制御を行うことにより、 極力前記点 2で ワークを停止させることなくワークのゲ一卜への衝突を回避させるようにしてい るので、 ワークが実際に停止しなくてはならない確率が減るとともに、 ロボッ ト が完全に停止した速度ゼロの状態からではなく或る程度の速度を有する状態で移 送先プロセスチャンバへの加速動作を行う事が可能になる。
またこの第 5実施例では、 速度パターンの合成によってゲ一卜への衝突回避制 御を行うようにしているので、 1つの移送経路に関して予め持つ速度パターンは、 3つの速度パターンでよくなり、 メモリ容量を節約できると共に、 その制御構成 が簡単にすることが可能になる。
なお、 上記第 5実施例において、 第 1速度パターンと第 3速度パターンとを合 成する位置は、 点 に限らず、 点 Qひおよび点 1間の位置であれば任意の位置 を設定するようにしてもよい。 また、 第 2の速度パターンと第 3の速度パターン の合成を開始する位置も前述した条件式で求められた距離 L cによつて決定され る点 Qcに限るわけでなく、 任意である。
また、 上記実施例では、 点 Qa, 点 Qcをワークが通過したことを判断する方 法として、 これらの点を通過するに要する所定の時間が経過したことを検出する ようにしているが、 ワークの位置を直接求めて上記点を通過した事を判断するよ うにしてもよいつ
また、 上記第 5実施例において、 停止点は点 2に設定したほうが好ましいが、 旋回軌跡上の任意の点を停止点として設定するようにしてもよい。
さらに、 この第 5実施例の発想を先の第 2実施例または第 3実施例に対して適 用するようにしてもよい。
次に、 図 2 1を参照してこの発明の第 6実施例について説明する。
この第 6実施例では、 先の第 5実施例のように、 ワーク移送軌跡の速度パター ンをアーム伸縮動作と旋回動作の合成によって発生させるのではなく、 通常の基 準経路移動用の速度パターンと、 ワークが移送先プロセスチャンバのゲー卜に衝 突するのを回避させるための退避経路用の速度パターンと、 この退避経路から基 準経路に復帰させるための復帰経路用の速度パターンとを各移送経路毎に (移送 距離が異なる毎に) 予め設定するようにしており、 ワークが移送先プロセスチヤ ンバのゲー卜に衝突する場合は、 退避経路および復帰経路を移送させることによ り基準経路とは異なる他の経路上をワークを移送させるようにしている
また、 この場合、 図 2 1に示すように、 基準経路上の 2つのショートカット経 路は、 直線による擬似円弧補間で経路を構成するようにしている。
すなわち、 この第 6実施例において、 基準経路] VIは始点 S—点 Qa—点 Qわ— 点 Qc—点 Qd—終点 Eを結ぶ経路であり、 また退避経路 Nは点 Qcから停止点 2 に至る経路であり、 また復帰経路は上記退避経路から基準経路に復帰する J 1, J 2などの経路である。
すなわち、 この第 6実施例においても、 先の第 5実施例と同様、 点 QCにおい て、 移送先プロセスチャンバのゲート 6 Eの開の確認を開始し、 この点 Qcでゲ —ト 6 Eの開を確認できた場合は、 通常の基準経路 Mに沿ってワークを移送させ るが、 点 Qcでゲ一ト 6 Eの開を確認できない場合は予め設定された復帰経路 N 上をワークを移送させる。 そして、 この復帰経路 Nを移送中にゲート 6 Eの開を 確認できた時点で、 その確認できた位置に対応して予め設定されている復帰経路 を選択し、 該選択した復帰経路に従ってワークを移送させる。 ワークが停止点 2 . で停止した後に, 上記ゲ一ト 6 Eの開が確認できた場合は、 ワークは停止点 2ま で移送されてここで一時停止した後、 終点 Eに向かって直線移動されることにな る。
すなわち、 この第 6実施例の移送動作は結果的には先の第 5実施例と同様であ るが、 その移送動作を行わせるための速度制御の手法が異なるのである。
このようにこの第 6実施例では、 停止点でワークを極力停止させることなくヮ —クのゲ一卜への衝突を回避させるようにしているので、 ワークが実際に停止し なくてはならない確率が減るとともに、 ロボットが完全に停止した速度ゼロの状 態からではなく或る程度の速度を有する状態で移送先プロセスチャンバへの加速 動作を行う事が可能になり、 より効率のようウェハ搬送をなし得る。
なお、 上記第 6実施例においても、 移送先プロセスチャンバのゲートの開を確 認開始する位置 Qcと、 停止点 2とは他の任意の位置に設定するようにしてもよ い。
なお、 上記各実施例では、 ウェハをハンドに載置するようにしたが、 エア一バ キューム吸盤などによってゥ-ハを支持するようにしてもよレ、。
また、 上記各実施例ではフロッグレグ型のロボッ 卜を用いるようにしたが、 他 の、 多関節ロボットを用いるようにしてもよい。 また、 上記各実施例では、 点 1 及び点 2間をロボッ トの旋回動作によってウェハ搬送を行うようにしたが、 ァ一 ムの移動によって点 1及び点 2間のウェハ搬送を行うようにしてもよレ、。
また、 上記実施例では、 本発明をウェハを加工する製造装置に適用するように したが、 他の L C D (液晶ディスプレイ素子) 等のワークを製造する製造装置に 本発明を適用するようにしてもよい。
さらに、 上記実施例では、 トランスファチャンバの周囲にプロセスチャンバを 配設するようなシステム本発明を適用するようにしたが、 トランスファチャンバ に隣接されて複数のプロセスチャンバが並設されているようなシステムに本発明 を適用するようにしてもよい。
産業上の利用可能性
ワーク搬送ロボッ トを配設した 1つのトランスファチャンバの周囲に複数のプ ロセスチャンバを配設し、 ヮ一ク搬送ロボッ 卜によってウェハまたは L C D等の ワークを或るブロセンスチャンバから他のプロセスチャンバへ搬送するようなマ ルチチャンバ型の加工装置に適用して有用である。

Claims

請求の範囲
1 . ワーク搬送ロボットが配設される トランスファチャンバと、 この トランス ファチャンバに隣接して配設されてワークに対する各種加工処理を行う複数のプ ロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間に それぞれ設けられる複数のゲー卜手段とを有するワーク加工装置と、
前記複数のプロセスチャンバのうちの移送元プロセンスチャンバにあるワーク を、 当該移送元プロセスチャンバのゲート手段、 前記トランスファチャンバ、 お よび移送先プロセスチャンバのゲート手段を経由した所定の移動軌跡上に沿って 移送先プロセスチャンバまで移送するワーク搬送ロボッ トと、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記移動軌跡上に、 ワークが移送元プロセスチャンバから、 トランスファチヤ ンバへの移動動作からトランファチャンバ内の移動動作に移行する第 1の点と、 前記トランファチャンバ內の移動動作から、 トランスファチャンバから移送先プ ロセスチャンバへの移動動作に移行する第 2の点を設定し、
前記ワークの移送距離と前記開閉時間とに基づき、 前記移動軌跡上の前記第 2 の点にワークが到達した時点に移送先のゲ一トバルブの開が終了し、 かつ第 1の 点から第 2の点までの移送時間が前記開閉時間以上の最短時間になるように前記 移動軌跡上の速度パターンを設定し、 該設定された速度パターンに従ってワーク 搬送ロボッ 卜を速度制御する速度制御手段を備えるようにしたことを特徴とする ワーク搬送ロボッ 卜の制御装置。
2 . 前記速度制御手段は、 前記第 1の点および第 2の点での移動速度がロボッ 卜の限界速度および当該システムの制約速度を超えなレ、範囲の最大値となるよう に前記移動軌跡上の速度パターンが設定されている請求項 1記載のワーク搬送口 ボッ 卜の制御装置 c
3 . 前記移動軌跡上の移送先プロセスチャンバのゲ一ト手段の手前にワークを 停止させる所定の停止点を更に設定し、 前記ワーク加工装置は、 前記複数のゲ一ト手段の開閉状態をそれぞれ検出する ゲート開閉検出センサを更に具え、
前記速度制御手段は、 さらに前記第 2の点での移動速度が前記停止点にワーク を停止させることができて、 かつ前記第 1の点での移動速度が前記第 2の点での 移動速度に減速することができるように前記移動軌跡上の速度パターンを設定し、 該設定された速度パターンに従ってワーク搬送ロボッ 卜を速度制御するものであ 、
移送先プロセスチャンバのゲ一卜開閉センサの出力により前記第 2の点にロボ ットが達した時点:こ移送先プロセスチャンバのゲ一ト手段の開閉状態を判定する 開閉判定手段と、
この開閉判定手段により移送先プロセスチャンバのゲ一卜手段の開が確認され たときは前記停止^で停止させずに移送先プロセスチャンバまで搬送するととも に、 前記開閉判定手段により移送先プロセスチャンバのゲート手段の閉が確認さ れたときは前記停止点で停止させるようにロボッ トの速度制御を行う停止制御手 段と、
を備えるようにした事を特徴とする請求の範囲第 1項記載のワーク搬送システ ムの制御装置。
4 . 前記第 1の点をワークが通過した後に、 前記移送先プロセスチャンバのゲ —ト開閉センサの出力により前記移送先プロセスチャンバのゲ一ト手段の開閉状 態を常に判定する第 2の開閉判定手段と、
前記第 2の点にワークが到達する前に、 前記第 2の開閉判定手段により移送先 プロセスチャンバのゲ一卜手段が開したことが判定されると、 この判定時点で減 速動作を行っている場合は、 直ちに減速を停止し加速動作を実行させる加減速切 替え制御手段と、
を更に備えるようにしたことを特徴とする請求項 3記載のワーク搬送システム の制御装置
5 . 前記加減速切替え制御手段による加速動作はロボッ 卜の限界速度および当 該システムの制約速度を超えないように行われる請求項 4記載のワーク搬送シス テムの制御装置 r
6 . ワーク搬送ロボッ トが配設される トランスファチャンバと、 このトランス ファチヤンバに隣接して配設されてワークに対する各種加工処理を行う複数のプ ロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間に それぞれ設けられる複数のゲ一ト手段と、 これら複数のゲート手段の開閉状態を それぞれ検出するゲ一ト開閉検出センサとを有するワーク加工装置と、
前記複数のプロセスチャンバのうちの移送元プロセンスチヤンバにあるワーク を、 当該移送元プロセスチャンバのゲート手段、 前記トランスファチャンバ、 お よび移送先プロセスチャンバのゲ一卜手段を経由した所定の移動軌跡上に沿って 移送先ブコセスチヤンバまで移送するワーク搬送ロボッ トと、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記移送先プロセスチャンバのゲート手段にワークが到達する前の移動軌跡上 の所定の位置に停止点を予め設定するとともに、 前記停止点よりさらに手前の移 動軌跡上の所定の位置に移送先プロセスチャンバのゲート手段の開閉状態を確認 する確認点を予め設定し、
前記停止点にワークを停止させることができる上限速度に前記確認点での速度 が設定されることを条件として前記移動軌跡上のワーク移動時間が最短時間とな るような移送元プロセスチヤンバから移送先プロセスチャンバまでの前記ワーク 搬送ロボッ 卜の移動速度パターンが予め設定され、 この設定された移動速度バタ ーンに従ってワーク搬送ロボッ トを速度制御する第 1の速度制御手段と、 移送先プロセスチャンバのゲート開閉センサの出力によって前記確認点をヮ一 クが通過した時点に移送先プロセスチャンバのゲート手段の開閉状態を判定する 開閉判定手段と、
この開閉判定手段により移送先プロセスチャンバのゲ一卜手段の開が確認され たときは前記第 1の速度制御手段に設定された移動速度パターンに従ってワーク を前記停止点で停止させずに移送先プロセスチャンバまで搬送するとともに、 前 記開閉判定手段により移送先プロセスチャンバのゲート手段の閉が確認されたと きは前記停止点で停止させるようにロボッ トの速度制御を行う第 2の速度制御手 段と、
を備えるようにした事を特徴とするワーク搬送システムの制御装置。
7 . 前記移送元プロセスチャンバのゲート手段をワークが通過した後に、 前記 移送先プロセスチャンバのゲ一ト開閉センサの出力により前記移送先プロセスチ ャンバのゲー卜手段の開閉状態を常に判定する第 2の開閉判定手段と、
前記確認点に到達する前に、 前記第 2の開閉判定手段により移送先プロセスチ ヤンバのゲ一ト手段が開したことが判定されると、 この判定時点で減速動作を行 つている場合は、 直ちに減速を停止し加速動作を実行させる加減速切替え制御手 段と、
を備えるようにしたことを特徴とする請求項 6記載のワーク搬送システムの制 御装置。
8 . 前記加減速切替え制御手段による加速動作はロボッ トの限界速度および当 該システムの制約速度を超えないように行われる請求項 7記載のワーク搬送シス テムの制御装置。 .
9 . ワーク搬送ロボッ トが配設される トランスファチャンバと、 このトランス ファチャンバに隣接して配設されてワークに対する各種加工処理を行う複数のブ ロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間に それぞれ設けられる複数のゲー卜手段と、 これら複数のゲート手段の開閉状態を それぞれ検出するゲート開閉検出センサとを有するワーク加工装置と、
前記プロセスチャンバと前記トランスファチャンバとの間のワーク移動に関す る第 1の移動運動及び前記トランスファチャンバ内でのワーク移動動作に関する 第 2の移動運動が可能なワーク支持用のアームを有し、 前記複数のプロセスチヤ ンバのうちの移送元プロセンスチャンバにあるワークを前記第 1の移動運動によ つて当該移送元プロセスチャンバのゲ一 卜手段を通過させて トランスファチャン - バ内まで移動させ、 つぎに前記第 2の移動運動によってワークをトランスファチ ヤンバ内を移送し、 さらに前記第 1の移動運動によってトランスファチャンバ内 にあるワークを移送先トランファチャンバのゲ一卜手段を通過させて移動先トラ ンファチャンバまで移送するワーク搬送ロボッ トと、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、
前記第 2の移動運動に関する加速から減速停止までの第 1の速度パターンと、 前記第 2の移動運動に続いて行われる トランスファチャンバ内から前記移送先プ ロセスチャンバまでの前記第 1の移動運動の加速から減速停止までに関する第 2 の速度パターンとが夫々予め設定される速度パターン設定手段と、
前記第 2の移動運動による軌跡途中の所定の位置を確認開始点とし、 この確認 開始点をロボッ 卜が通過した時点から前記ゲ一卜開閉センサの出力に基づき移送 先プロセスチャンバのゲート手段の開閉の判定を開始する開閉判定手段と、 この開閉判定手段によつて移送先プロセスチヤンバのゲ一ト手段の開が確認さ れた時点に前記第 1の速度パターンと第 2の速度パターンとを重ね合わせる速度 パターン発生手段と、
前記トランスファチャンバ内の前記確認開始点までのワーク移動に関しては前 記第 1の速度パターンを選択し、 前記確認開始点力、ら前記移送先プロセスチヤ : バまでは前記速度パターン発生手段から発生された速度パターンを選択し、 該選 択した速度パターンに従って前記ワーク搬送ロボッ 卜の速度制御を行うロボッ ト 駆動手段と、
を備えるようにしたワーク搬送システムの制御装置。
1 0 . ワーク搬送ロボッ トが配設される トランスファチャンバと、 この卜ラン スファチャンバに隣接して配設されてワークに対する各種加工処理を行う複数の プロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間 にそれぞれ設けられる複数のゲ一ト手段と、 これら複数のゲ一卜手段の開閉状態 をそれぞれ検出すろゲー卜開閉検出センサとを有するワーク加工装置と、
前記プロセスチヤンバと前記トランスファチャンバとの間のワーク移動に関す る第 1の移動運動及び前記トランスファチャンバ内でのワーク移動動作に関する 第 2の移動運動が可能なワーク支持用のアームを有し、 前記複数のプロセスチヤ ンバのうちの移送元プロセンスチャンバにあるワークを前記第 1の移動運動によ つて当該移送元プロセスチャンバのゲ一 卜手段を通過させて トランスファチャン バ内まで移動させ、 つぎに前記第 2の移動運動によってトランスファチャンバ内 の前記移送元プロセスチヤンバの略正面に位置するワークをトランスファチャン バ内の前記移送先プロセスチャンバの略正面の位置まで移送し、 さらに前記第 1 の移動運動によってトランスファチヤンバ内の前記移送先プ口セスチヤンバの略 正面の位置にあるワークを移送先トランファチャンバのゲート手段を通過させて 移動先トランファチャンバまで移送するワーク搬送ロボッ 卜と、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記第 2の移動運動と前記トランスファチャンバから移送先プロセスチャンバ への第 1の移動運動とが交差する交差点までの前記第 2の移動運動の加速から滅 速停止までに関する第 1の速度パターンと、 前記交差点から前記移送先プロセス チヤンバまでの前記第 1の移動運動の加速から減速停止までに関する第 2の速度 パターンとが夫々予め設定される速度パターン設定手段と、
前記第 2の移動運動による軌跡途中の所定の位置を確認開始点とし、 この確認 開始点をロボッ 卜が通過した時点から前記ゲート開閉センサの出力に基づき移送 先プロセスチャンバのゲ一ト手段の開閉の判定を開始する開閉判定手段と、 この開閉判定手段によって移送先プロセスチャンバのゲー卜手段の開が確認さ れた時点に前記第 1の速度パターンと第 2の速度パターンとを重ね合わせる速度 パターン発兰手段と、
前記卜ランスファチャンバ内の移送元プロセスチヤンバの略正面位置から前記 確認開始点までは、 前記第 1の速度パターンを選択し、 前記確認開始点から前記 移送先ブ スチャンバまでは前記速度パターン発生手段から発生された速度パ ターンを選択し、 該選択した速度パターンに従って前記ワーク搬送ロボッ 卜の速 度制御を行うロボ ·ν ト駆動手段と、
を備えるようにしたワーク搬送システムの制御装置。
1 1 . 前記速度パターン設定手段に設定される、 第 1および第 2の速度パター ンの加減速動作は、 ロボッ 卜の限界速度および当該システムの制約速度を超えな いことを条件として最大加速度および最大減速度が採用されている請求の範囲第 9項または第 1 0項記載のワーク搬送システムの制御装置。
1 2 . ワーク搬送コボッ トが配設される トランスファチャンバと、 このトラン スファチャンバに隣接して配設されてワークに対する各種加工処理を行う複数の プロセス ヤンバと、 これら各プロセスチャンバと トランスファチャンバとの間 にそれぞれ設けられる複数のゲート手段と、 これら複数のゲ一ト手段の開閉状態 をそれぞれ検出するゲート開閉検出センサとを有するワーク加工装置と、 前記プニセスチャンバと前記トランスファチャンバとの間のワーク移動に関す る第 1の移動運動及び前記トランスファチャンバ內でのワーク移動動作に関する 第 2の移動運動が可能なワーク支持用のアームを有し、 前記複数のプロセスチヤ ンバのうちの移送元プロセンスチャンバにあるワークを前記第 1の移動運動によ つて当該移送元プロセスチャンバのゲート手段を通過させてトランスファチャン バ内まで移動させ、 つぎに前記第 2の移動運動によってトランスファチャンバ內 の前記移送元プロセスチャンバの略正面に位置するワークをトランスファチャン バ内の前言ミ移送先プロセスチヤンバの略正面の位置まで移送し、 さらに前記第 1 の移動運動によつて トランスファチヤンバ内の前記移送先プロセスチヤンバの略 正面の位置:二あるワークを移送先トランファチャンバのゲ一ト手段を通過させて 移動先トランファチャンバまで移送するワーク搬送ロボッ トと、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記移送元プロセスチヤンバから前記トランスファチャンバへの前記第 1の移 動運動と 記第 2の移動運動とが交差する第 1の交差点までの第 1の移動運動の 加速から ¾违停止までに関する第 1の速度パターンと、 この第 1の交差点から前 記第 2の移動運動と前記トランスファチャンバから移送先プロセスチャンバへの 第 1の移 運動とが交差する第 2の交差点までの前記第 2の移動運動の加速から 滅速停止までに関する第 2の速度パターンと、 前記第 2の交差点から前記移送先 プロセスチャンバまでの前記第 1の移動運動の加速から減速停止までに関する第 3の速度パターンとが夫々予め設定される速度パターン設定手段と、
前記移送経路上の移送元プロセスチャンバのゲ一ト手段と前記第 1の交差点と の間に予め設定された所定の位置をワークが通過した時点に、 前記第 1の速度パ ターンと前記第 2の速度パターンとを重ね合わせる第 1の速度パタ一ン発生手段 と、
前記第 2の移動運動による軌跡途中の所定の位置を確認開始点とし、 この確認 開始点をロボッ トが通過した時点から前記ゲ一ト開閉センサの出力に基づき移送 先プロセスチャンバのゲート手段の開閉の判定を開始する開閉判定手段と、 この開閉判定手段によつて移送先プロセスチャンバのゲート手段の開が確認さ れた時点に前記第 2の速度パターンと第 3の速度パターンとを重ね合わせる第 2 の速度パターン発生手段と、
前記移送元プロセスチャンバから前記確認開始点までは、 前記第 1の速度バタ —ン発生手段を選択し、 前記確認開始点力 ^ら前記移送先プロセスチャンバまでは 前記第 2の速度パターン発生手段を選択し、 該選択した速度パターンに従って前 記ワーク搬送ロボッ 卜の速度制御を行うロボッ ト駆動手段と、
を備えるようにしたワーク搬送システムの制御装置。 -
1 3 . ワーク搬送ロボッ トが配設される トランスファチャンバと、 このトラン スファチャンバの周囲に配設されてワークに対する各種加工処理を行う複数のブ ロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間に それぞれ設けられる複数のゲ一ト手段と、 これら複数のゲー卜手段の開閉状態を それぞれ検出するゲー卜開閉検出センサとを有するワーク加工装置と、
旋回動作と求心方向及び遠心方向への直線移動動作とが可能なワーク支持用の アームを有し、 前記複数のプロセスチャンバのうちの移送元プロセンスチャンバ にあるワークを、 前記求心方向への直線移動動作によって当該移送元プロセスチ ヤンバのゲ一卜手段を通過させてトランスファチャンバ内まで移動させ、 つぎに 前記旋回動作によってトランスファチャンバ内の前記移送元プロセスチヤンバの 略正面に位置すろワークをトランスファチャンバ内の前記移送先プロセスチャン バの略正面の位置まで移送し、 さらに前記遠心方向への直線移動動作によってト ランスファチャンバ内の前記移送先プロセスチャンバの略正面の位置にあるヮー クを移送先トランファチャンバのゲ一卜手段を通過させて移動先トランファチヤ ンバまで移送十るワーク搬送ロボッ 卜と、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記移送元プロセスチャンバから前記求心方向への直線移動運動と前記旋回運 動とが交差する第 1の交差点までの前記求心方向への直線移動運動の加速から減 速停止までに関する第 1の速度パターンと、 この第 1の交差点から前記旋回運動 と前記遠心方向への直線移動運動とが交差する第 2の交差点までの前記旋回運動 の加速から減速停止までに関する第 2の速度パターンと、 前記第 2の交差点から 前記移送先ブコセスチャンバまでの前記遠心方向への直線移動運動の加速から減 速停止までに関する第 3の速度パターンとが夫々予め設定される速度パターン設 定手段と、
前記移送経路上の移送元プロセスチャンバのゲート手段と前記第 1の交差点と の間に予め設定された所定の位置をワークが通過した時点に、 前記第 1の速度パ ターンと前記第 2 速度パターンとを重ね合わせる第 1の速度パターン発生手段 と、
前記旋回軌跡途中の所定の位置を確認開始点とし、 この確認開始点をロボッ ト が通過した時点 ら前記ゲート開閉センサの出力に基づき移送先プロセスチャン バのゲ一卜手段の開閉の判定を開始する開閉判定手段と、
この開閉判定手段によって移送先プロセスチャンバのゲート手段の開が確認さ れた時点に前記第 2の速度パターンと第 3の速度パターンとを重ね合わせる第 2 の速度パターン 主手段と、
前記移送元ブに スチヤンバから前記確認開始点までは、 前記第 1の速度パタ ―ン発生手段を選択し、 前記確認開始点から前記移送先プロセスチャンバまでは 前記第 2の速度パターン発生手段を選択し、 該選択した速度パターンに従って前 記ワーク搬送口ボッ 卜の速度制御を行うロボッ 卜駆動手段と、 を備えるよ にしたワーク搬送システムの制御装置
1 4 . 前記第 1の速度パターン発生手段で設定される前記移送元プロセスチヤ ンバのゲ一卜手段と前記第 1の交差点との間の所定の位置は、 前記ゲ一卜手段の 配設位置に接近している位置である請求の範囲第 1 2項または第 1 3項記載のヮ 一ク搬送システムの制御装置。
1 5 . 前記速度パターン設定手段に設定される、 第 1、 第 2及び第 3の速度パ ターンの加減速動作は、 ロボッ 卜の限界速度および当該システムの制約速度を超 えないことを条件として最大加速度および最大减速度が採用されている請求の範 囲第 1 2項または第 1 3項記載のワーク搬送システムの制御装置。
1 6 . ワーク搬送ロボッ トが配設されるトランスファチャンバと、 この トラン スファチャンバに隣接して配設されてワークに対する各種カ卩ェ処理を行う複数の プロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間 にそれぞれ設けられる複数のゲ一ト手段と、 これら複数のゲート手段の開閉状態 をそれぞれ検出するゲ一卜開閉検出センサとを有するワーク加工装置と、
前記複数のプコセスチャンバのうちの移送元プロセンスチャンバにあるワーク · を、 当該移送元プロセスチャンバのゲート手段、 前記トランスファチャンバ、 お よび移送先ブロセスチャンバのゲート手段を経由した所定の移動軌跡上に沿って 移送先プロセスチャンバまで移送するワーク搬送ロボットと、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、
前記移動軌跡上にあって前記移送先プロセスチャンバのゲート手段にワークが 接触する手前の位置に移送先プロセスチャンバのゲ一ト手段の開閉状態の確認を 開始する確認開始点を予め設定すると共に、 この確認開始点を始点として前記移 動軌跡とは異なろ所定の退避経路を予め設定するとともに、
前記確認開始点を口ボッ 卜が通過した時点から前記ゲ一卜開閉センサの出力に 基づき移送先ブ πセスチャンバのゲ一卜手段の開閉の判定を開始する開閉判定手 段と、
前記確認開 台点をワークが通過したときに前記開閉判定手段により移送先プロ セスチャンバのゲート手段の開が確認されたときは前記移動軌跡上を移送先プロ セスチャンバまでワークを移動させるとともに、 前記確認開始点をワークが通過 したときに前記開閉判定手段により移送先プロセスチャンバのゲ一卜手段の開が 確認されないときは前記退避経路を選択してワークを移動させ、 前記退避経路上 で前記開閉判定手段により移送先プロセスチャンバのゲート手段の開が確認され た時点で前記移動軌跡に復帰させるようワーク搬送ロボッ トを速度制御する速度 制御手段と、
を備えるようにしたワーク搬送システムの制御装置。
1 7 . ワーク搬送ロボッ トが配設されるトランスファチャンバと、 このトラン スファチャンバに隣接して配設されてワークに対する各種加工処理を行う複数の プロセスチャンバと、 これら各プロセスチャンバと トランスファチャンバとの間 にそれぞれ設けられる複数のゲート手段と、 これら複数のゲ一卜手段の開閉状態 をそれぞれ検出するゲ一ト開閉検出センサとを有するワーク加工装置と、 前記複数のプロセスチャンバのうちの移送元プロセンスチヤンバにあるワーク を、 当該移送元プロセスチャンバのゲート手段、 前記トランスファチャンバ、 お よび移送先プロセスチャンバのゲ一卜手段を経由した所定の基準移動軌跡上に沿 つて移送先ブロセスチャンバまで移送するワーク搬送ロボッ 卜と、
を備え、 前記移送の際、 前記移送元及び移送先プロセスチャンバのゲート手段 の閉及び開動作に所定の開閉時間を要するワーク搬送システムにおいて、 前記基準移動軌跡上にあって前記移送先プロセスチャンバのゲ一ト手段にヮ一 クが接触する手前の位置に移送先プロセスチャンバのゲ—ト手段の開閉状態の確 認を開始する確認開始点を予め設定すると共に、 この確認開始点を始点とし且つ 予め設定された所定の停止点まで延びる前記基準移動軌跡とは異なる所定の退避 経路と、 この退避経路上の各位置から前記基準経路に復帰する複数の異なる復帰 経路を予め設定するとともに、
前記確認開始点をロボッ 卜が通過した時点から前記ゲ一ト開閉センサの出力に 基づき移送先フロセスチャンバのゲート手段の開閉の判定を開始する開閉判定手 段と、
前記基準移動軌跡上を移送元プロセスチャンバから前記確認開始点までワーク を移動させる第 1の速度パターンと、 前記基準移動軌跡上を前記確認開始点から 移送先プロセスチャンバまでワークを移動させる第 2の速度パターンと、 前記確 認開始点から前記退避経路および前記復帰経路を経由して前記移送先プロセスチ ヤンバに至る複钕の第 3の速度パターンとが夫々予め設定される速度パターン設 定手段と、
前記移送元ブロセスチャンバから前記確認開始点までは、 前記第 1の速度パタ ーンを選択し、 前記確認開始点で前記開閉判定手段により移送先プロセスチャン バの開が確認された場合は前記第 2の速度パターンを選択し、 前記確認開始点で 前記開閉判定手段により移送先プロセスチャンバの開が確認されなレ、場合は前記 第 3の速度パターンを選択し、 これら選択した速度パターンに従って前記ワーク 搬送口ボッ 卜の速度制御を行う口ボッ 卜駆動手段と、
を備えるようにしたワーク搬送システムの制御装置。
1 8 . 前記 πボッ ト駆動手段は、 前記確認開始点で前記開閉判定手段により移 送先プロセスチャンバの開が確認されない場合は、 前記複数の第 3の速度パタ一 ンのうち開閉判定手段で移送先プロセスチャンバのゲー卜手段の開を確認した地 点に対応する速度パターンを選択し、 該選択した速度パターンに従って前記ヮ一 ク搬送口ボン 卜の速度制御を行う請求の範囲第 1 7項記載のワーク搬送システム の制御装置。
PCT/JP1997/000832 1996-03-18 1997-03-17 Dispositif de commande d'un systeme de transport de pieces WO1997034742A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-1998-0707398A KR100469931B1 (ko) 1996-03-18 1997-03-17 공작물반송시스템의제어장치
JP09533350A JP3105544B2 (ja) 1996-03-18 1997-03-17 ワーク搬送システムの制御装置
EP97907329A EP0891840A4 (en) 1996-03-18 1997-03-17 DEVICE FOR CONTROLLING A PARTS TRANSPORTATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6122796 1996-03-18
JP8/61227 1996-03-18

Publications (1)

Publication Number Publication Date
WO1997034742A1 true WO1997034742A1 (fr) 1997-09-25

Family

ID=13165127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000832 WO1997034742A1 (fr) 1996-03-18 1997-03-17 Dispositif de commande d'un systeme de transport de pieces

Country Status (6)

Country Link
US (1) US6246923B1 (ja)
EP (1) EP0891840A4 (ja)
JP (1) JP3105544B2 (ja)
KR (1) KR100469931B1 (ja)
TW (1) TW369463B (ja)
WO (1) WO1997034742A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6382902B1 (en) 1997-04-08 2002-05-07 Komatsu, Ltd Method for controlling handling robot
JP2003507195A (ja) * 1999-05-28 2003-02-25 ブルックス オートメーション インコーポレイテッド 予め定義された時間最適軌道形状に基づくロボットマニピュレータ
WO2003058706A1 (fr) * 2001-12-27 2003-07-17 Tokyo Electron Limited Systeme de transport de pieces, systeme de vehicule de transport sans pilote, vehicule de transport sans pilote, et procede de transport de pieces
WO2007000914A1 (ja) * 2005-06-28 2007-01-04 Tokyo Electron Limited 被処理体の搬送装置
US7286890B2 (en) 2005-06-28 2007-10-23 Tokyo Electron Limited Transfer apparatus for target object
WO2010013422A1 (ja) * 2008-08-01 2010-02-04 株式会社アルバック 搬送ロボットの制御方法
CN102138209A (zh) * 2008-08-28 2011-07-27 细美事有限公司 调节传送构件的速度的方法、使用该方法传送基板的方法以及基板处理设备
WO2011148782A1 (ja) * 2010-05-27 2011-12-01 シャープ株式会社 基板処理装置および仮置き棚
WO2012070572A2 (ja) 2010-11-26 2012-05-31 ローツェ株式会社 ロボットの制御装置および制御方法
CN110949991A (zh) * 2020-01-03 2020-04-03 佛亚智能装备(苏州)有限公司 一种多工位检测物料输送及电路控制方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152070A (en) 1996-11-18 2000-11-28 Applied Materials, Inc. Tandem process chamber
EP2099061A3 (en) * 1997-11-28 2013-06-12 Mattson Technology, Inc. Systems and methods for low contamination, high throughput handling of workpieces for vacuum processing
KR100427522B1 (ko) * 2000-10-28 2004-04-30 (주)다사테크 연속이동경로 생성방법
US6385508B1 (en) * 2000-10-31 2002-05-07 Fanuc Robotics North America, Inc. Lead-through teach handle assembly and method of teaching a robot assembly
WO2002066210A1 (fr) 2001-02-22 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande de robot
US6556887B2 (en) * 2001-07-12 2003-04-29 Applied Materials, Inc. Method for determining a position of a robot
JP2003124286A (ja) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp 工程間搬送システムおよび工程間搬送方法
CN100423180C (zh) * 2002-06-21 2008-10-01 应用材料股份有限公司 用于检测衬底位置/存在的共用传感器
US6883776B2 (en) * 2002-08-20 2005-04-26 Asm America, Inc. Slit valve for a semiconductor processing system
US20050220582A1 (en) * 2002-09-13 2005-10-06 Tokyo Electron Limited Teaching method and processing system
KR100541434B1 (ko) 2003-02-10 2006-01-10 삼성전자주식회사 물류반송시스템을 위한 레이아웃 모델링시스템
US6900608B2 (en) * 2003-04-17 2005-05-31 Automated Assemblies Corporation Apparatus for controlling a motor
WO2004095520A2 (en) * 2003-04-22 2004-11-04 Berkeley Process Control, Inc. System of path planning for robotic manipulators based on maximum acceleration and finite jerk constraints
US20050107909A1 (en) * 2003-11-14 2005-05-19 Siemens Technology-To-Business Center Llc Systems and methods for programming motion control
US20050107911A1 (en) * 2003-11-14 2005-05-19 Siemens Technology-To-Business Center Llc Systems and methods for controlling load motion actuators
US7440091B2 (en) 2004-10-26 2008-10-21 Applied Materials, Inc. Sensors for dynamically detecting substrate breakage and misalignment of a moving substrate
JP4610317B2 (ja) * 2004-12-06 2011-01-12 東京エレクトロン株式会社 基板処理装置及び基板処理装置の基板搬送方法
US7387484B2 (en) * 2005-12-21 2008-06-17 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer positioning systems and methods thereof
US20080101912A1 (en) * 2006-10-26 2008-05-01 Martin Todd W Deposition analysis for robot motion correction
US9117870B2 (en) * 2008-03-27 2015-08-25 Lam Research Corporation High throughput cleaner chamber
US8276959B2 (en) 2008-08-08 2012-10-02 Applied Materials, Inc. Magnetic pad for end-effectors
KR100980706B1 (ko) * 2008-09-19 2010-09-08 세메스 주식회사 기판 이송 장치, 이를 갖는 기판 처리 장치 및 이의 기판 이송 방법
KR102030051B1 (ko) * 2012-09-18 2019-10-08 세메스 주식회사 기판 이송 장치 및 방법
JP6309847B2 (ja) * 2014-07-14 2018-04-11 ファナック株式会社 定格ワークパラメータを超えるワークを搬送可能なロボット制御装置
KR102430980B1 (ko) * 2020-11-11 2022-08-09 삼성디스플레이 주식회사 자동반송시스템의 제어방법
CN115910886B (zh) * 2022-12-28 2024-04-16 深圳市纳设智能装备股份有限公司 传输腔、半导体设备及晶圆传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294984A (ja) * 1991-03-20 1992-10-19 Hitachi Ltd ロボットおよびこのロボットを用いた被処理部材の処理方法
JPH0655471A (ja) * 1992-07-31 1994-03-01 Sony Corp ワーク移載ロボットの動作制御方法
JPH0714908A (ja) * 1993-06-23 1995-01-17 Nec Corp 基板搬送装置
JPH07307373A (ja) * 1993-07-16 1995-11-21 Applied Materials Inc 可変速度ウエハ交換ロボット

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799057A (en) * 1972-01-26 1974-03-26 Palmer Shile Co Electrical control system
US4260940A (en) * 1975-10-28 1981-04-07 Unimation, Inc. Programmable automatic assembly system
US5280983A (en) * 1985-01-22 1994-01-25 Applied Materials, Inc. Semiconductor processing system with robotic autoloader and load lock
JPS6261104A (ja) * 1985-09-11 1987-03-17 Fanuc Ltd 水平関節型ロボツトの加減速制御方式
US4699575A (en) * 1986-02-12 1987-10-13 Robotics, Inc. Adhesive pump and it's control system
JPS63273107A (ja) * 1987-04-30 1988-11-10 Fanuc Ltd ロボット制御装置
KR970004947B1 (ko) * 1987-09-10 1997-04-10 도오교오 에레구토론 가부시끼가이샤 핸들링장치
US5012169A (en) * 1988-07-20 1991-04-30 Yokogawa Electric Corporation Motor drive system
US5102280A (en) * 1989-03-07 1992-04-07 Ade Corporation Robot prealigner
JPH02256483A (ja) * 1989-03-29 1990-10-17 Kobe Steel Ltd 産業用ロボットの速度制御装置
ES2090074T3 (es) * 1989-10-20 1996-10-16 Applied Materials Inc Robot biaxial con acoplamiento magnetico.
US5243690A (en) * 1989-11-14 1993-09-07 General Electric Company Robot targeting using transit time control
JP2644912B2 (ja) * 1990-08-29 1997-08-25 株式会社日立製作所 真空処理装置及びその運転方法
JP3038972B2 (ja) * 1991-04-03 2000-05-08 ソニー株式会社 加減速パターン生成装置及びパターン生成方法
US5363872A (en) * 1993-03-16 1994-11-15 Applied Materials, Inc. Low particulate slit valve system and method for controlling same
US5379984A (en) * 1994-01-11 1995-01-10 Intevac, Inc. Gate valve for vacuum processing system
US5738767A (en) * 1994-01-11 1998-04-14 Intevac, Inc. Substrate handling and processing system for flat panel displays
KR0161042B1 (ko) * 1994-06-07 1999-01-15 김광호 로보트의 주행제어장치 및 그 방법
US5706634A (en) * 1994-06-10 1998-01-13 Johnson & Johnson Vision Products, Inc. Contact lens transfer device
US5655060A (en) * 1995-03-31 1997-08-05 Brooks Automation Time optimal trajectory for cluster tool robots
KR100244041B1 (ko) * 1995-08-05 2000-02-01 엔도 마코토 기판처리장치
JP3114579B2 (ja) * 1995-08-30 2000-12-04 松下電器産業株式会社 産業用ロボットおよびその制御装置
US5801945A (en) * 1996-06-28 1998-09-01 Lam Research Corporation Scheduling method for robotic manufacturing processes
US5944940A (en) * 1996-07-09 1999-08-31 Gamma Precision Technology, Inc. Wafer transfer system and method of using the same
US5980194A (en) * 1996-07-15 1999-11-09 Applied Materials, Inc. Wafer position error detection and correction system
US5838121A (en) * 1996-11-18 1998-11-17 Applied Materials, Inc. Dual blade robot
US5855681A (en) * 1996-11-18 1999-01-05 Applied Materials, Inc. Ultra high throughput wafer vacuum processing system
US5961269A (en) * 1996-11-18 1999-10-05 Applied Materials, Inc. Three chamber load lock apparatus
US6007229A (en) * 1997-06-05 1999-12-28 Johnson & Johnson Vision Products, Inc. Rapid robotic handling of mold parts used to fabricate contact lenses
US5943484A (en) * 1997-09-26 1999-08-24 International Business Machines Corporation Advanced material requirements planning in microelectronics manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294984A (ja) * 1991-03-20 1992-10-19 Hitachi Ltd ロボットおよびこのロボットを用いた被処理部材の処理方法
JPH0655471A (ja) * 1992-07-31 1994-03-01 Sony Corp ワーク移載ロボットの動作制御方法
JPH0714908A (ja) * 1993-06-23 1995-01-17 Nec Corp 基板搬送装置
JPH07307373A (ja) * 1993-07-16 1995-11-21 Applied Materials Inc 可変速度ウエハ交換ロボット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0891840A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6382902B1 (en) 1997-04-08 2002-05-07 Komatsu, Ltd Method for controlling handling robot
JP2003507195A (ja) * 1999-05-28 2003-02-25 ブルックス オートメーション インコーポレイテッド 予め定義された時間最適軌道形状に基づくロボットマニピュレータ
JP2012232410A (ja) * 1999-05-28 2012-11-29 Brooks Automation Inc 時間最適アーム動作を生成する装置
US7283890B2 (en) 2001-12-27 2007-10-16 Tokyo Electron Limited Work convey system, unmanned convey vehicle system, unmanned convey vehicle, and work convey method
WO2003058706A1 (fr) * 2001-12-27 2003-07-17 Tokyo Electron Limited Systeme de transport de pieces, systeme de vehicule de transport sans pilote, vehicule de transport sans pilote, et procede de transport de pieces
WO2007000914A1 (ja) * 2005-06-28 2007-01-04 Tokyo Electron Limited 被処理体の搬送装置
US7286890B2 (en) 2005-06-28 2007-10-23 Tokyo Electron Limited Transfer apparatus for target object
KR100793502B1 (ko) * 2005-06-28 2008-01-14 동경 엘렉트론 주식회사 피처리체의 반송 장치
JPWO2010013422A1 (ja) * 2008-08-01 2012-01-05 株式会社アルバック 搬送ロボットの制御方法
WO2010013422A1 (ja) * 2008-08-01 2010-02-04 株式会社アルバック 搬送ロボットの制御方法
US8543235B2 (en) 2008-08-01 2013-09-24 Ulvac, Inc. Method of controlling transfer robot
TWI477371B (zh) * 2008-08-01 2015-03-21 Ulvac Inc The control method of conveying the robot
CN102138209A (zh) * 2008-08-28 2011-07-27 细美事有限公司 调节传送构件的速度的方法、使用该方法传送基板的方法以及基板处理设备
WO2011148782A1 (ja) * 2010-05-27 2011-12-01 シャープ株式会社 基板処理装置および仮置き棚
WO2012070572A2 (ja) 2010-11-26 2012-05-31 ローツェ株式会社 ロボットの制御装置および制御方法
KR20130122899A (ko) 2010-11-26 2013-11-11 로제 가부시키가이샤 로봇의 제어 장치 및 제어 방법
US9199373B2 (en) 2010-11-26 2015-12-01 Rorze Corporation Robot control device and control method
CN110949991A (zh) * 2020-01-03 2020-04-03 佛亚智能装备(苏州)有限公司 一种多工位检测物料输送及电路控制方法

Also Published As

Publication number Publication date
KR20000064681A (ko) 2000-11-06
TW369463B (en) 1999-09-11
KR100469931B1 (ko) 2005-04-06
US6246923B1 (en) 2001-06-12
JP3105544B2 (ja) 2000-11-06
EP0891840A1 (en) 1999-01-20
EP0891840A4 (en) 2000-01-19

Similar Documents

Publication Publication Date Title
WO1997034742A1 (fr) Dispositif de commande d&#39;un systeme de transport de pieces
KR100640019B1 (ko) 미리 정의된 시간 최적 궤적 형상에 기초한 로봇 매니퓰레이터
JP3890016B2 (ja) 半導体ウェハキャリアを運搬する設備
JP4098338B2 (ja) ウェハ移載装置および基板移載装置
KR102279602B1 (ko) 물품 반송 설비
JP4389305B2 (ja) 処理装置
EP1695936B1 (en) Apparatus for avoiding collision when lowering container
JP2005150129A (ja) 移載装置及び移載システム
US6398476B1 (en) Automatic storage unit and automatic storing method
CN103247556B (zh) 搬运装置
KR100288852B1 (ko) 반도체수납도구, 핸들링방법 및 생산시스템
WO2011158308A1 (ja) 処理設備
JP6637362B2 (ja) 基板搬送装置、基板処理装置及び基板処理方法
JP3971526B2 (ja) 基板搬入搬出装置及び搬送システム
JPH10124132A (ja) ロボット制御装置及びロボット
CN116960038A (zh) 路径设定***、路径设定方法和软件
WO2021220582A1 (ja) 天井搬送車及び天井搬送システム
JP2008103755A (ja) 基板搬送方法
TW202144257A (zh) 物品搬送設備
JP2022157992A (ja) ワーク搬送システム及びその制御方法
JP2530431B2 (ja) 無人搬送車
JP3410118B2 (ja) 基板処理装置
JP4890037B2 (ja) ライブラリ棚装置
KR20190111785A (ko) 물품 반송 설비
KR100636601B1 (ko) 천정주행 반송장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980707398

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997907329

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997907329

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997907329

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707398

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707398

Country of ref document: KR