WO1995016593A1 - Fremdkraftbremsanlage - Google Patents

Fremdkraftbremsanlage Download PDF

Info

Publication number
WO1995016593A1
WO1995016593A1 PCT/DE1994/001476 DE9401476W WO9516593A1 WO 1995016593 A1 WO1995016593 A1 WO 1995016593A1 DE 9401476 W DE9401476 W DE 9401476W WO 9516593 A1 WO9516593 A1 WO 9516593A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
pedal
brake system
power
simulator
Prior art date
Application number
PCT/DE1994/001476
Other languages
English (en)
French (fr)
Inventor
Alain Gaillard
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US08/491,898 priority Critical patent/US5567021A/en
Priority to EP95902063A priority patent/EP0683740A1/de
Priority to JP7516460A priority patent/JPH08507021A/ja
Priority to KR1019950703465A priority patent/KR960700923A/ko
Publication of WO1995016593A1 publication Critical patent/WO1995016593A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/4086Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S303/00Fluid-pressure and analogous brake systems
    • Y10S303/02Brake control by pressure comparison
    • Y10S303/03Electrical pressure sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S303/00Fluid-pressure and analogous brake systems
    • Y10S303/02Brake control by pressure comparison
    • Y10S303/03Electrical pressure sensor
    • Y10S303/04Pressure signal used in electrical speed controlled braking circuit

Definitions

  • the invention is based on a power brake system according to the preamble of the main claim.
  • a brake system is known from DE 23 27 508 AI.
  • Such a power brake system has an electrical setpoint device for the electrical control of the power brake in order to be able to adjust the brake pressures in the wheel brake cylinders depending on the driver's selected foot power. No pedal travel is actually necessary when recording the selected foot force on the pedal. For ergonomic reasons, however - as is usual with conventional brake systems - it is very advantageous if the driver feels a path when the brake is actuated on the pedal, depending on the foot force exerted on the pedal. Therefore, a path simulator is used in this power brake system.
  • the path simulator which contains a compressible simulator spring, is arranged between the pedal and an emergency brake cylinder.
  • the simulator spring is compressed and the electrical setpoint adjuster is adjusted, to which an electronic control unit is connected, via which the external hydraulic force is controlled and the brakes are activated with the aid of solenoid valves. If the external hydraulic power or the Control unit, the pedal must be depressed even further in order to generate emergency brake pressure by moving the emergency brake pistons in the emergency brake cylinder and finally in the wheel brake cylinders.
  • a travel simulator with a simulator cylinder, with a simulator spring and with a piston is provided on a dual-circuit emergency brake cylinder, which is displaced by hydraulic pressure emanating from the emergency brake cylinder when the pedals are moved, i.e. the pistons in the emergency brake cylinder must first cover a distance in order to generate an activation pressure for the distance simulator.
  • the path simulator includes a shut-off valve, which normally closes an opening of the simulator cylinder and is apparently controlled by pressure from the external power source, so that the simulator spring can only be compressed in external power operation.
  • the simulator cylinder has the same diameter as the double-ice emergency brake cylinder and is integrally formed on it in the same axis as an extension of it.
  • Two hydraulically controllable brake pressure control valves are provided for introducing pressure medium from the hydraulic external power source into the two brake circuits leading to the wheel brakes for the purpose of generating brake pressure. The hydraulic control is carried out by pressure from two cylinder chambers of the dual-circuit emergency brake cylinder.
  • a power brake system is known from US Pat. No. 4,327,414 with an electrical control logic, with at least one electrically controllable pressure modulator and with a brake signal transmitter that can be adjusted by pedal, the electrical output signal of which is processed in the control logic as the desired value of the desired vehicle deceleration.
  • the brake signal generator is designed so that it simultaneously transmits two independent redundant signals to the control logic. Transmission errors can be recognized and possibly eliminated.
  • This power brake system does not have an emergency brake cylinder operated by a pedal.
  • the power brake system according to the invention with the characterizing features of the main claim has the advantage that quantities of pressure medium to be discharged from wheel brakes can be conducted away to the reservoir through the at least one emergency brake line and the emergency brake cylinder.
  • the measures listed in the subclaims permit advantageous developments and improvements of the power brake system specified in the main claim.
  • the characterizing features of claim 2 result in the advantage that with each braking the locking piston and the at least one piston of the emergency brake cylinder are shifted so far that sticking in the associated cylinders is avoided.
  • the characterizing features of claim 3 indicate a constructive embodiment of the expansion chamber.
  • the characterizing features of claim 4 result in the Advantage that the simulator spring only in
  • Power brake operation is compressible, so that practically the entire pedal stroke for shifting the at least one piston of the emergency brake cylinder is available in emergency operation. Thanks to the electrical controllability of the solenoid valve, the path simulator can be blocked quickly if the external power source fails.
  • the characterizing features of claim 5 give the advantage that overall length is saved.
  • the characterizing features of claim 6 provide the advantage that the sensor used to obtain a path simulator path signal is located at a sufficient distance from a pedal plate of the pedal, thereby preventing damage to the sensor by a driver's foot.
  • the characterizing features of claim 7 result in the possibility of using a pressure signal, which is dependent on a force exerted on the pedal, instead of a sensor, such as swivel angle sensor, which is intended for measuring the distance of the path simulator.
  • the characterizing features of claim 8 provide the advantage that the functionality of a sensor used for electrical control of the power brake system, such as a displacement sensor and / or pressure sensor, can be monitored, with power brake operation being suppressed if the sensor is defective, for example.
  • a sensor used for electrical control of the power brake system such as a displacement sensor and / or pressure sensor
  • FIG. 1 shows the power brake system according to the invention
  • FIG. 2 shows the emergency brake cylinder with the path simulator on an enlarged scale
  • FIG. 3 shows another version of the emergency brake cylinder
  • FIG. 4 shows another control of the path simulator.
  • An external brake system has a pedal 1 which can be actuated by the driver and which is connected via two piston rods 2 and 3 to a piston unit 5 enclosed by a housing 4.
  • One piston rod 2 has an articulation point 6 approximately in the middle of a pedal lever 7 and the other piston rod 3 is received by an articulation point 8 at the end of the pedal lever 7 facing away from the pedal 1.
  • the last-mentioned piston rod 3 has a joint 9 so that its end facing the pedal lever 7 can deflect.
  • a liquid reservoir 10, which can also be referred to as a refill container, is arranged on the housing 4.
  • the power brake system is equipped with an electric motor 11, which drives a pump 12, which sucks in liquid from the reservoir 10 and presses it into a store 13.
  • Motor 11, pump 12 and accumulator 13 form an external power supply unit 14, which usually creates the brake pressure in the system.
  • the rest of the brake system is designed, for example, as an anti-lock brake system.
  • each wheel brake 15, 16, 17 and 18 it has a pair of 2/2-way solenoid valves 19/20, 21/22, 23/24 and 25/26 and the solenoid valves of one axle are each a 2/2 -Way solenoid valve 27 or 28 upstream.
  • the solenoid valves mentioned can Brake phases create pressure increase, pressure maintenance and pressure reduction. If the external force and / or the electronics fail, the solenoid valves 20, 22, 24 and 26 are switched into their open position so that there is free passage from the piston unit 5 to the wheel brakes 15, 16, 17 and 18.
  • FIG. 2 shows the piston assembly 5 again, on an enlarged scale.
  • a cylinder 30 is provided in the housing 4, in which a spring plate-like, i.e. sealless piston 31 is movable against the force of a spring 32.
  • This piston 31 carries the piston rod 3 and usually abuts an end wall 33 of the cylinder 30.
  • the parts 30, 31 and 32 form a path simulator 34 of the power brake system.
  • pistons 35, 36 and 37 are arranged in the housing 4, all of which lie on a common axis. They are arranged in cylinders 38, 39 and 40, which are likewise coaxial, with a first piston 35 near the pedal being fastened to the piston rod 2 and being able to move in the cylinder 38, also near the pedal.
  • This piston is a locking piston 35 and, as a movable wall, delimits a locking chamber 41 which is connected to the reservoir 10 via a housing channel 42.
  • the passage through the housing channel 42 is monitored by a 2/2-way solenoid valve 43, which is usually closed.
  • the two cylinders 39 and 40 form an emergency brake cylinder 44 for the power brake system.
  • the cylinders 39 and 40 are connected on the one hand via channels 45 and 46 to the reservoir 10 and on the other hand via channels 47 and 48 to emergency brake lines 49 and 50 leading to the wheel brakes.
  • the respective openings of the channels 45, 46, 47 and 48 in the cylinders 39 and 40 are placed so that they are usually not covered by the two pistons 36 and 37.
  • the piston 36 is a push rod piston and the piston 37 is an intermediate piston.
  • the push rod piston 36 of the emergency brake cylinder 44 carries a piston rod 51, which projects into the locking chamber 41 in a sealed manner by means of an annular seal 52 provided in a housing wall and is connected there to the locking piston 35 near the pedal.
  • the intermediate piston 37 of the emergency brake cylinder 44 is arranged between two springs 53 and 54, one of which (53) rests on the push rod piston 36 and the second (54) abuts an end wall 55.
  • the two springs 53 and 54 are arranged in chambers 56 and 57, which serve as working chambers in an emergency.
  • the piston assembly 5 described is preferably equipped with two sensors 58 and 59.
  • One sensor 58 is a swivel angle sensor which is installed in the pivot point 8 and indirectly indicates the pedal travel via a swivel angle measured between the pedal lever 78 and the travel simulator piston rod 3.
  • the second sensor 59 is a pressure sensor that detects the pressure in the locking chamber 41.
  • the measured values from the two sensors 58 and 59 can be fed to an electronic control unit 60 and monitored there to determine whether they are essentially of the same size or whether changes are logically in the same direction. If the control unit 60 recognizes that the measured values are impermissibly different, then it can emit a fault message and / or Report the fault indirectly by suppressing the power brake operation.
  • the power brake system If the power brake system is intact, it is ready for operation.
  • the brake pedal 1 When the brake pedal 1 is tapped, the 2/2-way solenoid valve 43 is closed, so that the locking chamber 41 is closed and consequently the pedal lever 7 is firmly supported at the articulation point 6.
  • the pedal 1 When the pedal 1 is actuated further, the piston rod 3 and the piston 31 are pulled to the left against the force of the spring 32, and the displacement sensor 58 is adjusted so that it indicates a setpoint value corresponding to the movement of the pedal 1.
  • the joint 9 on the piston rod 3 enables the degree of freedom required for the movement of the articulation point 8.
  • the volume enclosed in the locking chamber 41 remains almost constant because of the low compressibility of the brake fluid.
  • the pressure built up by the driver's foot force in the locking chamber 41 is detected with the aid of the pressure sensor 59 and reported to the control unit 60, for example, as a setpoint.
  • the travel of the pedal 1 is proportional to the travel of the simulator spring 32.
  • the solenoid valves 19 to 28 provided in the brake lines leading to the wheel brakes 15 to 18 make it possible to use the at least one sensor 58 or 59 and the electronic control unit 60 to generate any brake pressure from the pressure held in the external power supply unit.
  • This power brake system can with known expertise are trained to perform anti-lock braking (ABS) and, for example, traction control (ASR). In all of these operating modes, the components of the emergency brake, which in themselves are a conventional tandem master cylinder, are not used because the piston rod 51 is blocked because of the locking chamber 41 not moved.
  • the external power brake system remains in the emergency braking mode. All solenoid valves are therefore de-energized.
  • the driver has the emergency braking mode
  • the braking energy is applied solely by the driver's foot power.
  • the locking chamber 41 is connected directly to the reservoir 10 (storage container) via the normally open 2/2-way solenoid valve 43. Since no pressure can thus arise in the locking chamber 41, the driver builds up the brake pressure with his own foot power by actuating the pedal 1. This foot force is applied mechanically to the piston rod 51 and the piston 36. As a result, a brake pressure is generated in the two working chambers 56 and 57 of the emergency brake cylinder 44, which is transmitted to the wheel brakes 15 to 19 via the brake lines 49 and 50.
  • the two pistons 36 and 37 are at the far left in their starting position at the beginning of their working stroke, the two working chambers 56 and 57 adjacent to the pistons have their greatest volume. As a result, the total possible displacement paths of the pistons for brake pressure generation are available in a desired manner during emergency braking by means of the emergency brake cylinder 44.
  • Power brake system are that in the piston unit 5 for the alternative functions
  • FIG. 3 shows a power brake system that is largely constructed like that according to FIG. 2. Corresponding parts therefore have the same reference numbers.
  • an expansion chamber 61 with an expansion piston 62 is provided on the separation chamber 41, the rear side of which delimits a spring chamber 63 which is connected to the reservoir 10 via a channel 64.
  • the aim of this variant is to allow a minimal path, for example about 1 mm, for the separating piston 41 and the two pistons 36 and 37 coaxial with it, so that the seals in the piston unit 5 cannot get stuck, which can damage the seals in one breakaway caused by emergency braking.
  • the pressure built up in the piston unit 5 by the driver's foot force when the external power brake system is intact in the locking chamber 41 shifts the extension piston 62 minimally.
  • both the locking piston 35 delimiting the locking chamber 41 and the two pistons 36 and 37 with their piston rods 2 and 51 are minimally displaced.
  • the sealing elements in the piston unit 5, which are not described in any more detail, cannot get stuck or cannot stick.
  • the two connecting channels 45 and 46 to the reservoir 10 are not covered by the pistons 36 and 37 in such a minimal movement.
  • the two working chambers 56 and 57 are still connected to the reservoir 10 without pressure, so that no pressure can build up in the working chambers 56 and 57, and that pressure medium quantities to be derived from wheel brakes can escape to the reservoir 10 during external power operation.
  • FIG. 4 shows a type in which a path simulator 65 is supplemented by a 2/2-way solenoid valve 66 which is closed when de-energized.
  • the solenoid valve 66 monitors a channel 67, which runs from a spring chamber 68 of the path simulator 65 to the reservoir 10.
  • the path simulator 65 in this type is equipped with a sealing piston 69, and its piston rod 70 is passed through a ring seal 71 fixed to the housing.
  • a chamber 72 provided on the side opposite the spring chamber 68 of the piston 69 is connected directly to the reservoir 10 via a channel 73.
  • the magnetic valve 66 is opened by external force, and the volume in the spring chamber 68 of the displacement simulator 65 is at least partially displaced into the rerservoir 10. This guarantees the pedal travel, which is advantageous for ergonomic reasons.
  • the solenoid valve is de-energized. Then the spring chamber 68 of the path simulator 65 is no longer connected to the reservoir 10, and the simulator piston 69 can no longer be displaced, i.e. , the path simulator 65 is blocked. The remaining pedal travel is then available for shifting the two pistons 36 and 37.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

Es wird eine mittels eines Pedals betätigbare Fremdkraftbremsanlage mit einem Wegsimulator (34) und einem mit diesem verkoppelten Sollwertgeber (58) vorgeschlagen. Beispielsweise ist ein zweiter alternativ als Sollwertgeber (59) benützbarer Sensor vorgesehen. Der zweite Sollwertgeber (59) ist ein Druckgeber. Die Signale beider Sollwertgeber (58 und 59) werden in einem elektronischen Steuergerät (60) auf im wesentlichen übereinstimmende Signalgröße überwacht. Bei unzulässiger Signalgrößendifferenz wird Fremdkraftbremsbetrieb unterdrückt. Bremsen ist dann mittels eines Notbremszylinders (44) möglich. Die Fremdkraftbremsanlage ist für Kraftfahrzeuge des Personen- und Güterverkehrs verwendbar, insbesondere für solche Kraftfahrzeuge, die mit einem Blockierschutz (ABS) oder mit einem Antriebsschlupfschutz (ASR) ausgerüstet sind.

Description

Fremdkraftbremsanl ge
Stand der Technik
Die Erfindung geht aus von einer Fremdkraftbremsanlage nach der Gattung des Hauptanspruchs. Eine derartige Bremsanlage ist bekannt durch die Druckschrift DE 23 27 508 AI.
Eine solche Fremdkraftbremsanlage hat zur elektrischen Steuerung der Fremdkraftbremsung einen elektrischen Sollwertgeber, um in Abhängigkeit der gewählten Fußkraft des Fahrers die Bremsdrücke in den RadbremsZylindern einstellen zu können. Bei der Aufnahme der gewählten Fußkraft am Pedal ist an sich kein Pedalweg nötig. Aus ergonomischen Gründen ist es jedoch - wie bei konventionellen Bremsanlagen üblich - sehr vorteilhaft, wenn der Fahrer bei einer Bremsbetätigung am Pedal einen Weg in Abhängigkeit von der auf das Pedal ausgeübten Fußkraft spürt. Deshalb wird in dieser Fremdkraftbremsanlage ein Wegsimulator verwendet.
Bei der bekannten elekrisch steuerbaren Fremdkraftbremsanlage ist der eine zusammendrückbare Simulatorfeder enthaltende Wegsimulator zwischen dem Pedal und einem NotbremsZylinder angeordnet. Bei jeder Pedalbetätigung wird die Simulatorfeder zusammengedrückt und der elektrische Sollwertgeber verstellt, an den ein elektronisches Steuergerät angeschlossen ist, über das unter Zuhilfenahme von Magnetventilen die hydraulische Fremdkraft eingesteuert und die Bremsen zur Wirkung gebracht werden. Bei Ausfall der hydraulischen Fremdkraft oder des Steuergerätes muß das Pedal noch weiter durchgetreten werden, um durch Verschieben von Notbremskolben im NotbremsZylinder und schließlich in den RadbremsZylindern Notbremsdruck zu erzeugen.
Bei einer anderen durch die GB-PS 20 84 275 bekannten zweikreisigen Fremdkraftbremsanlage ist an einem Zweikreisnotbremszylinder ein Wegsimulator mit einem Simulatorzylinder, mit einer Simulatorfeder und mit einem Kolben vorgesehen, der von einem bei einer Pedalbewegung vom NotbremsZylinder ausgehenden hydraulischen Druck verschoben wird, d.h. die Kolben im Notbremszylinder müssen erst einen Weg zurücklegen, um einen Aktivierungsdruck für den Wegsimulator zu erzeugen. Des weiteren gehört zu dem Wegsimulator ein Sperrventil, das normalerweise eine Öffnung des Simulatorzylinders verschließt und mittels Druck aus der Fremdkraftquelle gesteuert offenbar ist, damit die Simulatorfeder nur im Fremdkraftbetrieb zusammendrückbar ist. Fällt die Fremdkraft aus, so verhindert in dem Simulatorzylinder eingeschlossene Druckflüssigkeit eine Zusammendrückung der Simulatorfeder, so daß ein Pedalhub insgesamt zum Verschieben der Notbremszylinderkolben für den Bremsdruck erzeugende Pumparbeit zur Verfügung steht. In fertigungstechnisch günstiger Weise hat der Simulatorzylinder den gleichen Durchmesser wie der Zweikeisnotbremszylinder und ist gleichachsig zu diesem nach Art einer Verlängerung an diesen integral angeformt. Zum Einleiten von Druckmittel aus der hydraulischen Fremdkraftquelle in die beiden zu den Radbremsen führenden Bremskreise zwecks Bremsdruckerzeugung sind zwei hydraulisch steuerbare Bremsdruckregelventile vorgesehen. Die hydraulische Steuerung erfolgt mittels Druck aus zwei Zylinderkammern des Zweikreisnotbremszylinders. Unter Zuhilfenahme von elektromagnetisch steuerbaren Wegeventilen in den Bremskreisen zwischen den Bremsdruckregelventilen und den Radbremsen ist diese Fremdkraftbremsanlage weitergebildet zum Vermeiden von Radblockiergefahr. Durch die US-Patentschrift 43 27 414 ist eine Fremdkraftbremsanlage bekannt mit einer elektrischen Steuerlogik, mit wenigstens einem elektrisch steuerbaren Druckmodulator und mit einem per Pedal verstellbaren BremsSignalgeber, dessen elektrisches Ausgangssignaϊ als Soll-Wert der gewünschten Fahrzeugverzögerung in der Steuerungslogik verarbeitet wird. Zur Erhöhung der Funktionstüchtigkeit ist der BremsSignalgeber so ausgebildet, daß er gleichzeitig zwei voneinander unabhängige redundante Signale zur Steuerungslogik überträgt. Übertragungsfehler können erkannt und eventuell beseitigt werden. Diese Fremdkraftbremsanlage besitzt keinen per Pedal betätigbaren Notbremszylinder.
Vorteile der Erfindung
Die erfindungsgemäße Fremdkraftbremsanlage mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß im Fremdkraftbetrieb aus Radbremsen abzuführende Druckmittelmengen durch die wenigstens eine Notbremsleitung und den Notbremszylinder zu dessen Reservoir wegleitbar sind.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Fremdkraftbremsanlage möglich. Die kennzeichnenden Merkmale des Anspruchs 2 ergeben den Vorteil, daß bei jeder Bremsung der Arretierkolben und der wenigstens eine Kolben des NotbremsZylinders so weit verschoben werden, daß ein Festkleben in den zugeordneten Zylindern vermieden wird. Die kennzeichnenden Merkmale des Anspruchs 3 geben ein konstruktives Ausführungsbeispiel der Erweiterungskammer an. Die kennzeichnenden Merkmale des Anspruchs 4 ergeben den Vorteil, daß die Simulatorfeder nur im
Fremdkraftbremsbetrieb zusammendrückbar ist, daß also im Notbetrieb praktisch der gesamte Pedalhub zur Verschiebung des wenigstens einen Kolbens des NotbremsZylinders zur Verfügung steht. Dank der elektrischen Steuerbarkeit des Magnetventils kann im Falle des Versagens der Fremdkraftquelle der Wegsimulator schnell blockiert werden. Die kennzeichnenden Merkmale des Anspruchs 5 ergeben den Vorteil, daß Baulänge gespart wird.
Die kennzeichnenden Merkmale des Anspruchs 6 ergeben den Vorteil, daß der zur Gewinnung eines Wegsimulatorwegsignals verwendete Sensor sich in einem ausreichenden Abstand von einer Pedalplatte des Pedals befindet, wodurch eine Beschädigung des Sensors durch einen Fahrerfuß vermieden wird.
Die kennzeichnenden Merkmale des Anspruchs 7 ergeben die Möglichkeit, anstelle eines zur Wegsimulatorwegmessung bestimmten Sensors wie Schwenkwinkelsensor ein Drucksignal zu verwenden, das von einer auf das Pedal ausgeübten Kraft abhängig ist.
Die kennzeichnenden Merkmale des Anspruchs 8 ergeben den Vorteil, daß die Funktionstüchtigkeit eines zur elektrischen Steuerung der Fremdkraftbremsanlage verwendeten Sensors wie Wegsensor oder/und Drucksensor überwachbar ist, wobei bei defektem Sensor beispielsweise Fremdkraftbremsbetrieb unterdrückt wird.
Zeichnung
Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen: Figur 1 die Fremdkraftbremsanlage nach der Erfindung, Figur 2 den Notbremszylinder mit dem Wegsimulator in vergrößertem Maßstab, Figur 3 eine andere Ausführung des NotbremsZylinders und Figur 4 eine andere Steuerung des Wegsimulators.
Beschreibung der Ausführungsbeispiele
Eine Fremdkraftbremsanlage hat ein vom Fahrer betätigbares Pedal 1, das über zwei Kolbenstangen 2 und 3 mit einem von einem Gehäuse 4 umschlossenen Kolbenaggregat 5 verbunden ist. Die eine Kolbenstange 2 hat einen Anlenkpunkt 6 etwa in der Mitte eines Pedalhebels 7 und die andere Kolbenstange 3 ist an dem dem Pedal 1 abgekehrten Ende des Pedalhebels 7 von einem Anlenkpunkt 8 aufgenommen. Die zuletzt genannte Kolbenstange 3 hat ein Gelenk 9, damit ihr dem Pedalhebel 7 zugekehrtes Ende auslenken kann. Auf dem Gehäuse 4 ist ein Flüssigkeits-Reservoir 10 angeordnet, das auch als Nachfüllbehälter bezeichnet werden kann.
Die Fremdkraftbremsanlage ist mit einem Elektromotor 11 ausgerüstet, der eine Pumpe 12 antreibt, die Flüssigkeit aus dem Reservoir 10 ansaugt und in einen Speicher 13 drückt. Motor 11, Pumpe 12 und Speicher 13 bilden eine Fremdkraftbeschaffungseinheit 14, die gewöhnlich den Bremsdruck in der Anlage erstellt.
Die übrige Bremsanlage ist beispielsweise als Blockierschutz-Bremsanlage ausgeführt. Sie hat für je eine Radbremse 15, 16, 17 und 18 ein Paar von 2/2-Wege- Magnetventilen 19/20, 21/22, 23/24 und 25/26 und den Magnetventilen einer Achse ist noch je ein 2/2-Wege-Magnet¬ ventil 27 bzw. 28 vorgeschaltet. Mit Hilfe von nicht dargestellten Rad-Drehzahlsensoren und einem elektronischen Steuergerät können die genannten Magnetventile die Bremsphasen Druckanstieg, Druckhalten und Druckabsenken erstellen. Bei Ausfall der Fremdkraft und/oder der Elektronik werden die Magnetventile 20, 22, 24 und 26 in ihre Durchlaßstellung geschaltet, so daß ein freier Durchgang vom Kolbenaggregat 5 zu den Radbremsen 15, 16, 17 und 18 besteht.
In der Figur 2 ist das Kolbenaggregat 5 noch einmal und zwar in vergrößertem Maßstab dargestellt. Hier ist besser zu erkennen, daß im Gehäuse 4 ein Zylinder 30 vorgesehen ist, in dem ein federtellerartiger, d.h. dichtungsloser Kolben 31 gegen die Kraft einer Feder 32 bewegbar ist. Dieser Kolben 31 trägt die Kolbenstange 3 und liegt gewöhnlich an einer Endwand 33 des Zylinders 30 an. Die Teile 30, 31 und 32 bilden einen Wegsimulator 34 der Fremdkraftbremsanlage.
Des weiteren sind im Gehäuse 4 noch drei andere Kolben 35, 36 und 37 angeordnet, die alle auf einer gemeinsamen Achse liegen. Sie sind in ebenfalls gleichachsigen Zylindern 38, 39 und 40 angeordnet, wobei ein erster, pedalnaher Kolben 35 an der Kolbenstange 2 befestigt ist und sich in dem ebenfalls pedalnahen Zylinder 38 bewegen kann. Dieser Kolben ist ein Arretierkolben 35 und begrenzt als bewegliche Wand eine Arretierkammer 41, die über einen Gehäusekanal 42 an das Reservoir 10 angeschlossen ist. Der Durchgang durch den Gehäusekanal 42 wird von einem 2/2-Wege-Magnetventil 43 überwacht, das gewöhnlich geschlossen ist.
Die beiden Zylinder 39 und 40 bilden einen Notbremszylinder 44 für die Fremdkraftbremsanlage. Zu diesem Zweck sind die Zylinder 39 und 40 einerseits über Kanäle 45 und 46 mit dem Reservoir 10 und andererseits über Kanäle 47 und 48 an zu den Radbremsen führende Notbremsleitungen 49 und 50 angeschlossen. Die jeweiligen Ausmündungen der Kanäle 45, 46, 47 und 48 in die Zylinder 39 und 40 sind so gelegt, daß sie gewöhnlich von den beiden Kolben 36 und 37 nicht abgedeckt werden. Nach der bei hydraulischen Tandem- HauptZylindern üblichen Definition ist der Kolben 36 ein Druckstangenkolben und der Kolben 37 ist ein Zwischenkolben. Die beiden Ausmündungen der zu dem Reservoir 10 führenden Kanäle 45 und 46 werden jedoch bei einer Bewegung der beiden Kolben 36 und 37 im Notbremssinn von diesen sofort verschlossen, damit die Kolben 36 und 37 in dem Notbremszylinder 44 Druck erzeugen können. Der Druckstangenkolben 36 des NotbremsZylinders 44 trägt eine Kolbenstange 51, die mittels einer in einer Gehäusewand vorgesehenen Ringdichtung 52 abgedichtet in die Arretierkammer 41 hineinragt und dort mit dem pedalnahen Arretierkolben 35 verbunden ist. Der Zwischenkolben 37 des NotbremsZylinders 44 ist zwischen zwei Federn 53 und 54 angeordnet, von denen die eine (53) am Druckstangenkolben 36 und die zweite (54) an einer Endwand 55 anliegt. Die beiden Federn 53 und 54 sind in Kammern 56 und 57 angeordnet, die im Notfall als Arbeitskammern dienen.
Das beschriebene Kolbenaggregat 5 ist vorzugsweise mit zwei Sensoren 58 und 59 ausgerüstet. Der eine Sensor 58 ist ein Schwenkwinkelsensor, der in den Anlenkpunkt 8 eingebaut ist und über einen zwischen dem Pedalhebel 78 und der Wegsimulator-Kolbenstange 3 gemessenen Schwenkwinkel indirekt den Pedalweg anzeigt.
Der zweite Sensor 59 ist ein Drucksensor, der den Druck in der Arretierkammer 41 erfaßt. Die Meßwerte aus den beiden Sensoren 58 und 59 können einem elektronischen Steuergerät 60 zugeführt und dort überwacht werden darauf, ob sie jeweils im wesentlichen gleich groß sind oder ob Veränderungen logisch gleichsinnig verlaufen. Erkennt das Steuergerät 60, daß die Meßwerte unzulässig unterschiedlich sind, dann kann es eine Störmeldung abgeben und/oder indirekt durch Unterdrückung des Fremdkraftbremsbetriebs die Störung melden.
Wirkungsweise
Wenn die Fremdkraftbremsanlage intakt ist, ist sie betriebsbereit. Beim Antippen des Brems-Pedals 1 wird das 2/2-Wege-Magnetventil 43 geschlossen, so daß die Arretierkammer 41 abgeschlossen ist und demzufolge der Pedalhebel 7 am Anlenkpunkt 6 eine feste Abstützung findet. Bei weiterer Betätigung des Pedals 1 werden die Kolbenstange 3 und der Kolben 31 gegen die Kraft der Feder 32 nach links gezogen, und der Weggeber 58 wird verstellt, so daß er einen Sollwert entsprechend der Bewegung des Pedals 1 anzeigt. Das Gelenk 9 an der Kolbenstange 3 ermöglicht den hierbei erforderlichen Freiheitsgrad für die Bewegung des Anlenkpunktes 8.
Da die Verbindung zwischen der Arretierkammer 41 und dem Rerservoir 10 geschlossen ist, bleibt das in der Arretierkammer 41 eingeschlossene Volumen wegen der geringen Kompressibilität der Bremsflüssigkeit nahezu konstant. Der durch die Fußkraft des Fahrers aufgebaute Druck in der Arretierkammer 41 wird mit Hilfe des Drucksensors 59 erfaßt und dem Steuergerät 60 beispielsweise als Sollwert gemeldet. Der Weg des Pedals 1 ist proportional dem Federweg der Simulator-Feder 32.
Die in den zu den Radbremsen 15 bis 18 führenden Bremsleitungen vorgesehenen Magnetventile 19 bis 28 erlauben es, mit Hilfe des wenigstens einen Sensors 58 oder 59 und des elektronischen Steuergerätes 60 aus in der Fremdkraftbeschaffungseinheit vorrätig gehaltenem Druck beliebige Bremsdrücke zu erzeugen. Diese Fremdkraftbremsanlage kann mit bekanntem Fachwissen weitergebildet werden zum Durchführen von Blockierschutz (ABS) und beispielsweise auch Antriebsschlupfregelung (ASR) Bei all diesen Betriebsarten werden die Bauteile der Notbremse, die an sich einen herkömmlichen Tandem- Hauptzylinder darstellen, nicht benutzt, weil sich die Kolbenstange 51 wegen der Blockierung der Arretierkammer 41 nicht bewegt.
Fallen jedoch die Fremdkraftbereitstellung und/oder die Elektronik aus, so bleibt die Fremdkraftbremsanlage im Notbremsbetrieb-Modus. Dabei sind also alle Magnetventile unbestromt. Durch den Notbremsbetrieb-Modus hat der Fahrer
eine vollwertige zweikreisige Bremsanlage zum Betrieb mit Muskelkraft zur Verfügung.
Beim Notbremsen wird die Bremsenergie also allein durch die Fußkraft des Fahrers aufgebracht. Über das stromlos offene 2/2-Wege-Magnetventil 43 ist die Arretierkammer 41 direkt mit dem Reservoir 10 (Vorratsbehälter) verbunden. Da in der Arretierkammer 41 somit kein Druck entstehen kann, baut der Fahrer durch Betätigung des Pedals 1 den Bremsdruck mit seiner eigenen Fußkraft auf. Diese eingeleitete Fußkraft gelangt mechanisch auf die Kolbenstange 51, und den Kolben 36.Dadurch wird in den beiden Arbeitskammern 56 und 57 des NotbremsZylinders 44 ein Bremsdruck erzeugt, der über die Bremsleitungen 49 und 50 an die Radbremsen 15 bis 19 weitergeleitet wird.
Da die beiden Kolben 36 und 37 zu Beginn ihres Arbeitshubes sich ganz links in ihrer Ausgangsposition befinden, haben die beiden an die Kolben angrenzenden Arbeitskammern 56 und 57 ihr größtes Volumen. Infolgedessen sind in gewollter Weise beim Notbremsen mittels des NotbremsZylinders 44 die insgesamten möglichen Verschiebewege der Kolben zur Bremsdruckerzeugung verfügbar.
Die besonderen Vorteile der beschriebenen
Fremdkraftbremsanlage liegen darin, daß im Kolbenaggregat 5 die für die alternativen Funktionen
Sollwertgeber/Wegsimulator und Notbremszylinder nötigen Elemente untergebracht sind. Um von einer Funktion in die andere zu wechseln, muß lediglich das 2/2-Wege-Magnetventil 43 umgeschaltet werden. Vorteilhaft ist auch, wie bereits in der Beschreibungseinleitung angedeutet, die kompakte Konstruktion mit dem zur Arretierkammer 41 und zum Notbremszylinder 44 achsparallelen Wegsimulator 34 im gleichen Gehäuse 4.
Die Übernahme der bewährten Grundstruktur eines herkömmlichen Tandem-Hauptzylinders für den Notbremszylinder ist für die Sicherheit von Vorteil.
In der Figur 3 ist eine Fremdkraftbremsanlage dargestellt, die weitgehend so aufgebaut ist wie die gemäß der Figur 2. Entsprechende Teile tragen deshalb die gleichen Bezugszahlen. Zusätzlich ist hier aber an der Trennkammer 41 eine Erweiterungskammer 61 mit einem Erweiterungskolben 62 vorgesehen, dessen Rückseite einen Federraum 63 begrenzt, der über einen Kanal 64 mit dem Reservoir 10 verbunden ist.
Ziel dieser Variante ist es, einen minimalen Weg, z.B. etwa 1 mm, für den Trennkolben 41 sowie die beiden zu ihm gleichachsigen Kolben 36 und 37 zuzulassen, damit sich die Dichtungen im Kolbenaggregat 5 nicht festsetzen können, was zu einer Beschädigung der Dichtungen bei einem durch eine Notbremsung bewirkten Losbrechen führen könnte. Der im Kolbenaggregat 5 durch die Fußkraft des Fahrers bei intakter Fremdkraftbremsanlage aufgebaute Druck in der Arretierkammer 41 verschiebt den Erweiterungskolben 62 minimal. Dadurch werden sowohl der die Arretierkammer 41 begrenzende Arretierkolben 35 als auch die beiden Kolben 36 und 37 mit ihren Kolbenstangen 2 und 51 minimal verschoben. Die nicht näher bezeichneten Dichtungselemente im Kol- benaggregat 5 können sich nicht festsetzen bzw. nicht festkleben. Die beiden Verbindungs-Kanäle 45 und 46 zum Reservoir 10 werden bei einer solchen Minimalbwegung von den Kolben 36 und 37 nicht abgedeckt. Dadurch sind die beiden Arbeitskammern 56 und 57 auch weiterhin drucklos mit dem Reservoir 10 verbunden, so daß sich kein Druck in den Arbeitskammern 56 und 57 aufbauen kann, und daß im Fremd¬ kraftbetrieb aus Radbremsen abzuleitende Druckmittelmengen zum Reservoir 10 hin entweichen können.
Findet Notbremsbetrieb statt, dann ist der zusätzliche Pedalweg bis zum Ansprechen der hydraulischen Bremse vernachlässigbar klein.
Die Figur 4 zeigt eine Bauart, bei welcher ein Wegsimulator 65 durch ein stromlos geschlossenes 2/2-Wege-Magnetventil 66 ergänzt ist. Das Magnetventil 66 überwacht einen Kanal 67, der von einer Federkammer 68 des Wegsimulators 65 zum Reservoir 10 verläuft. Außerdem ist der Wegsimulator 65 bei dieser Bauart mit einem dichtenden Kolben 69 ausgerüstet, und seine Kolbenstange 70 ist durch eine gehäusfeste Ringdichtung 71 hindurchgeführt. Schließlich ist eine auf der der Federkammer 68 des Kolbens 69 gegenüberliegenden Seite vorgesehene Kammer 72 über einen Kanal 73 unmittelbar an das Reservoir 10 angeschlossen.
Diese Bauart arbeitet wie folgt:
Bei intakter Fremdkraftbremsanlage wird beim Bremsen mittels Fremdkraft das Magnetventil 66 geöffnet, und das Volumen in der Federkammer 68 des Wegsimulators 65 wird zumindest teilweise in das Rerservoir 10 verdrängt. Damit ist der aus ergonomischen Gründen vorteilhafte Pedalweg garantiert.
Tritt ein Defekt an der Elektrik oder in der Fremdkraftbeschaffungseinheit 14 auf, wird das Magnetventil stromlos. Dann ist die Federkammer 68 des Wegsimulators 65 nicht mehr mit dem Reservoir 10 verbunden, und der Simulator-Kolben 69 läßt sich nicht mehr verschieben, d.h. , der Wegsimulator 65 ist gesperrt. Der restliche Pedalweg steht dann zur Verschiebung der beiden Kolben 36 und 37 zur Verfügung.

Claims

Patentansprüche
1. Fremdkraftbremsanlage mit einer über ein Pedal elektrisch steuerbaren Ventilanordnung zum Einstellen von Radbremsdrücken, die von einer Fremdkraftdruckquelle abgeleitet werden, mit einem dem Pedal zugeordneten Wegsimulator und mit einem mittels des Pedals betätigbaren Notbremszylinder, dessen wenigstens einer Kolben beim Bremsen mit Fremdkraft im Bereich einer Ausgangsstellung verbleibt, von der aus bei einem Arbeitshub des (der) Kolbens (s) ein Notbremsdruck erzeugbar und durch wenigstens eine Notbremsleitung Radbremsen zuführbar ist, dadurch gekennzeichnet, daß zwischen dem Pedal (1) und dem als Druckstangenkolben ausgebildeten Kolben (36) ein Zylinder
(38) mit einem in diesem verschiebbaren Arretierkolben (35) angeordnet ist, daß ferner im Zylinder (38) eine notkolbenseitige, vom Arretierkolben (35) begrenzte Arretierkammer (41) vorgesehen ist, die über ein im Fremdkraftbetrieb geschlossenes 2/2-Wege-Magnetventil (43) an ein Reservoir (10) angeschlossen ist, und daß das 2/2- Wege-Magnetventil (43) im Notbetrieb offen ist und die Arretierkammer (41) mit dem Reservoir (10) verbindet.
2. Fremdkraftbremsanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Arretierkammer (41) mit einer Erweiterungskammer (61) in Verbindung steht (Figur 3) .
3. Fremdkraftbremsanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Erweiterungskammer (61) von einem Erweiterungskolben (62) als beweglicher Wand begrenzt ist und daß auf der Rückseite des Erweiterungskolbens (62) ein Federraum (63) vorgesehen ist, der mit dem Reservoir (10) über einen Kanal (64) ständig verbunden ist.
4. Fremdkraftbremsanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Wegsimulator (65) einen Kolben (69) hat, der eine Federkammer (68) von einer ständig mit dem Reservoir (10) verbundenen Kammer (72) trennt und daß die Federkammer (68) über ein normal geschlossenes und im Fremdkraftbetrieb mittels elektrischem Strom offenbares Magnetventil (66) mit dem Reservoir (10) verbindbar ist
(Figur 4) .
5. Fremdkraftbremsanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Wegsimulator (34, 65) parallel versetzt zum Notbremszylinder (39, 40) angeordnet ist und daß das Pedal (1) von einem Pedalhebel (7) getragen wird, an dem sowohl eine Kolbenstange (2) des Arretierkolbens (35) als auch eine Kolbenstange (3, 70) eines im Wegsimulator (34, 65) angeordneten Simulatorkolbens (31, 69) angelenkt ist.
6. Fremdkraftbremsanlage nach Anspruch 5, dadurch gekennzeichnet, daß in dem für den Wegsimulator (34, 65) bestimmten Anlenkpunkt (8) des Pedals (1) ein einen Schwenkwinkel aufnehmender Sensor (58) zur Gewinnung eines einem Weg des Kolbens (31) des Wegsimulators (34, 35) entsprechenden Wegsignals vorgesehen ist, das dem Steuergerät (60) zugeführt wird.
7. Fremdkraftbremsanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß an die Arretierkammer (41) ein Drucksensor (59) angeschlossen ist und daß ein vom Drucksensor (59) geliefertes Drucksignal einem elektronischen Steuergerät (60) der Fremdkraftbremsanlage zuführbar ist.
8. Fremdkraftbremsanlage nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, daß das Steuergerät eingerichtet ist zum Überwachen des Wegsignals des Wegsensors (58) und des Drucksignals des Drucksensors (59) auf im wesentlichen übereinstimmende Größen.
PCT/DE1994/001476 1993-12-18 1994-12-13 Fremdkraftbremsanlage WO1995016593A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/491,898 US5567021A (en) 1993-12-18 1994-12-13 Power-assisted brake system
EP95902063A EP0683740A1 (de) 1993-12-18 1994-12-13 Fremdkraftbremsanlage
JP7516460A JPH08507021A (ja) 1993-12-18 1994-12-13 サーボブレーキ装置
KR1019950703465A KR960700923A (ko) 1993-12-18 1994-12-13 동력보조식 제동장치(Power-assisted brake system)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4343314.6 1993-12-18
DE4343314A DE4343314A1 (de) 1993-12-18 1993-12-18 Fremdkraftbremsanlage

Publications (1)

Publication Number Publication Date
WO1995016593A1 true WO1995016593A1 (de) 1995-06-22

Family

ID=6505418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001476 WO1995016593A1 (de) 1993-12-18 1994-12-13 Fremdkraftbremsanlage

Country Status (6)

Country Link
US (1) US5567021A (de)
EP (1) EP0683740A1 (de)
JP (1) JPH08507021A (de)
KR (1) KR960700923A (de)
DE (1) DE4343314A1 (de)
WO (1) WO1995016593A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029222A1 (de) * 1995-03-23 1996-09-26 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung bzw. regelung der bremsanlage eines fahrzeugs
GB2336414A (en) * 1998-04-16 1999-10-20 Toyota Motor Co Ltd Judging normal operation of brake system based upon pedal depression stroke and master cylinder pressure
WO2005007476A1 (de) * 2003-07-11 2005-01-27 Continental Teves Ag & Co. Ohg Elektrohydraulische bremsanlage für kraftfahrzeuge

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089678A (en) * 1994-10-06 2000-07-18 Lucas Industries Public Limited Company Hydraulic braking systems for vehicles
DE19515842A1 (de) * 1995-04-29 1996-10-31 Teves Gmbh Alfred Sollwertgeber
GB9510177D0 (en) * 1995-05-19 1995-07-12 Lucas Ind Plc Improvements in and relating to electronic braking systems
DE19533174A1 (de) * 1995-09-08 1997-03-13 Teves Gmbh Alfred Elektronisch regelbares Bremsbetätigungssystem für Kraftfahrzeuge
DE69514360T2 (de) * 1995-10-11 2000-09-28 Lucas Industries Ltd Betätigungseinrichtung für ein elektronisch gesteuertes Bremssystem eines Kraftfahrzeuges
EP0768221B1 (de) * 1995-10-11 2000-03-22 Lucas Industries Limited Bremspedal für Betätigung eines Kraftfahzeugbremszylinders und eine Betätigungseinheit für eine elektronische Kraftfahzeugbremsanlage unter Verwendung des Bremspedals
WO1997032766A1 (en) * 1996-03-07 1997-09-12 Kelsey Hayes Company Electronic brake management system with manual fail safe
US5941608A (en) * 1996-03-07 1999-08-24 Kelsey-Hayes Company Electronic brake management system with manual fail safe
JP3716490B2 (ja) 1996-04-05 2005-11-16 トヨタ自動車株式会社 制動力制御装置
DE19615449B4 (de) * 1996-04-19 2009-12-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
JP3528415B2 (ja) 1996-04-23 2004-05-17 トヨタ自動車株式会社 制動圧力制御装置
JPH09286324A (ja) * 1996-04-23 1997-11-04 Toyota Motor Corp 制動力制御装置
JP3528418B2 (ja) * 1996-04-25 2004-05-17 トヨタ自動車株式会社 制動力制御装置
DE19655276B4 (de) * 1996-04-25 2008-04-30 Lucas Industries Plc, Solihull Elektrohydraulische Bremsanlage
EP0891275B1 (de) 1996-04-25 2002-06-26 Lucas Industries Limited Elektrohydraulische bremssysteme
JP3617180B2 (ja) 1996-04-26 2005-02-02 トヨタ自動車株式会社 制動力制御装置
JP3716493B2 (ja) 1996-04-26 2005-11-16 トヨタ自動車株式会社 制動力制御装置
JP3528419B2 (ja) 1996-04-26 2004-05-17 トヨタ自動車株式会社 制動力制御装置
JP3724053B2 (ja) 1996-04-26 2005-12-07 トヨタ自動車株式会社 制動力制御装置
JP3528421B2 (ja) * 1996-04-26 2004-05-17 トヨタ自動車株式会社 制動力制御装置
JP3716494B2 (ja) * 1996-04-30 2005-11-16 トヨタ自動車株式会社 制動力制御装置
JP3927256B2 (ja) 1996-05-28 2007-06-06 トヨタ自動車株式会社 制動力制御装置
US6135572A (en) * 1996-05-31 2000-10-24 Varity Gmbh Actuation unit for an electronically controlled vehicle brake system
JP3827250B2 (ja) * 1996-07-02 2006-09-27 トヨタ自動車株式会社 ブレーキ液圧制御装置
JP3287259B2 (ja) 1996-08-02 2002-06-04 トヨタ自動車株式会社 制動力制御装置
DE19640767A1 (de) * 1996-10-02 1998-04-09 Teves Gmbh Alfred Einrichtung zur Betätigung einer Kraftfahrzeug-Bremsanlage
JPH10217936A (ja) * 1997-02-10 1998-08-18 Tokico Ltd 車両用ブレーキ制御装置
JP3454092B2 (ja) 1997-03-06 2003-10-06 トヨタ自動車株式会社 制動力制御装置
US6283561B1 (en) 1997-03-06 2001-09-04 Toyota Jidosha Kabushiki Kaisha Braking force controller
DE59801376D1 (de) 1997-04-16 2001-10-11 Siemens Ag Bremswertgeber für eine elektrisch gesteuerte und betätigte bremsanlage
US6161903A (en) * 1997-04-18 2000-12-19 Lucas Industries Public Limited Company Brake-pressure-transmitter arrangement for a hydraulic motor-vehicle brake system, and brake system equipped therewith
JP3454078B2 (ja) 1997-05-09 2003-10-06 トヨタ自動車株式会社 制動力制御装置
JP3771672B2 (ja) * 1997-05-27 2006-04-26 曙ブレーキ工業株式会社 ブレーキペダル操作検出装置
US6183050B1 (en) * 1997-06-30 2001-02-06 Kelsey-Hayes Company Braking system with remote boost valve
US6170924B1 (en) * 1997-07-08 2001-01-09 Toyota Jidosha Kabushiki Kaisha Brake force control apparatus accurately detecting an amount of brake operation intended by a vehicle operator
JP3433786B2 (ja) * 1997-07-08 2003-08-04 トヨタ自動車株式会社 制動力制御装置
JP3564960B2 (ja) 1997-08-12 2004-09-15 トヨタ自動車株式会社 ブレーキ液圧制御装置
EP1032517B1 (de) 1997-11-22 2005-01-26 Continental Teves AG & Co. oHG Elektromechanisches bremssystem
DE19811265B4 (de) * 1998-02-21 2006-09-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Bremsanlage
JP3932692B2 (ja) * 1998-03-10 2007-06-20 アイシン精機株式会社 車両ブレーキ装置
DE19825110C1 (de) 1998-06-05 2000-02-03 Lucas Automotive Gmbh Bremsdruckgebervorrichtung für eine hydraulische Fahrzeugbremsanlage
DE19861144C2 (de) * 1998-06-12 2003-10-09 Bosch Gmbh Robert Elektrisches Bremssystem für ein Kraftfahrzeug
DE19838948A1 (de) * 1998-08-27 2000-03-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung einer Pumpe eines Bremssystems
DE19852399A1 (de) * 1998-11-13 2000-05-18 Wabco Gmbh & Co Ohg Bremswertgeber mit integrierter Additionsredundanz
JP2000142369A (ja) * 1998-11-16 2000-05-23 Bosch Braking Systems Co Ltd ブレーキシステム
JP4102947B2 (ja) * 1998-12-04 2008-06-18 アイシン精機株式会社 車両のブレーキ装置
DE19914400A1 (de) * 1999-03-30 2000-10-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Kompensation des Speicherdrucks in einem elektrohydraulischen Bremssystem
JP3872242B2 (ja) * 1999-09-21 2007-01-24 トヨタ自動車株式会社 ブレーキ制御装置
EP1175324B1 (de) * 2000-02-24 2004-04-28 Delphi Technologies, Inc. Elektronische systemarchitektur vom typ "brake-by-wire" mit mehrfachen stromquellen und schutzschaltung
US6267456B1 (en) 2000-03-28 2001-07-31 Ford Global Technologies, Inc. Brake master cylinder and pedal feel emulator
US7052094B2 (en) * 2001-05-10 2006-05-30 Kelsey-Hayes Company Vehicle brake system
DE10159789C1 (de) * 2001-12-05 2003-04-17 Daimler Chrysler Ag Elektrohydraulisches Bremssystem mit einem Pedalwegsimulator zusammengesetzt aus einem Federspeicherdruckzylinder und mechanisch gekoppeltem Servokolben
US6860569B1 (en) 2002-05-23 2005-03-01 Kelsey-Hayes Company Electro-hydraulic brake system with four wheel push through
DE10260008A1 (de) * 2002-12-13 2004-07-22 Lucas Automotive Gmbh Pedalsimulationseinrichtung
DE102004027508A1 (de) * 2004-06-04 2005-12-22 Robert Bosch Gmbh Hydraulische Bremsanlage und Verfahren zur Beeinflussung einer hydraulischen Bremsanlage
FR2874881B1 (fr) * 2004-09-08 2006-12-15 Bosch Gmbh Robert Dispositif de freinage pour vehicule automobile
JP5123543B2 (ja) * 2007-03-27 2013-01-23 本田技研工業株式会社 ブレーキ装置
US20090001805A1 (en) * 2007-06-26 2009-01-01 Troy Eugene Schick Hydraulic by-wire brake system
JP5014916B2 (ja) 2007-08-10 2012-08-29 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP5014919B2 (ja) 2007-08-17 2012-08-29 日立オートモティブシステムズ株式会社 ブレーキ制御装置
DE102007047208A1 (de) * 2007-10-02 2009-04-09 Lucas Automotive Gmbh Elektro-hydraulisches Bremsaggregat für ein Landfahrzeug
DE102009033499A1 (de) * 2008-07-18 2010-01-21 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
CN102307765B (zh) * 2009-02-03 2015-08-05 凯尔西-海耶斯公司 具有受控的增压的液压制动***
US20100326778A1 (en) * 2009-05-29 2010-12-30 Magna Powertrain Ag & Co Kg Brake pedal simulator and brake system
DE112011103226T5 (de) * 2010-10-26 2013-08-22 Kelsey-Hayes Co. Hydraulisches Bremssystem mit gesteuerter Verstärkung
DE102011004140A1 (de) * 2011-02-15 2012-08-16 Robert Bosch Gmbh Bremssystem sowie Verfahren zur Regelung eines Druckes eines Bremsmediums in einem Bremssystem
WO2013147250A1 (ja) * 2012-03-30 2013-10-03 日信工業株式会社 マスタシリンダ装置
US10458497B2 (en) 2015-06-29 2019-10-29 Goodrich Corporation Hybrid electric and hydraulic brake system
JP6702248B2 (ja) * 2017-03-24 2020-05-27 トヨタ自動車株式会社 制動操作装置
JP7042202B2 (ja) * 2018-11-16 2022-03-25 日立Astemo株式会社 ブレーキ制御装置およびブレーキシステム
JP7275923B2 (ja) * 2019-06-28 2023-05-18 トヨタ自動車株式会社 車載ブレーキシステム
JP7085696B2 (ja) * 2019-09-24 2022-06-16 日立建機株式会社 ダンプトラック
CN111674373B (zh) * 2020-06-22 2022-01-28 北京经纬恒润科技股份有限公司 一种制动踏板感模拟器及制动踏板感调节方法
FR3115254B1 (fr) * 2020-10-16 2024-03-22 Bosch Gmbh Robert Système de simulateur de sensation de pédale de frein d’un système de freinage
CN113734122B (zh) * 2021-09-22 2022-07-19 中国第一汽车股份有限公司 一种制动***的辅助制动控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327508A1 (de) * 1973-05-30 1974-12-19 Teldix Gmbh Fahrzeugbremsanlage
DE4102497C1 (de) * 1991-01-29 1992-05-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
WO1992018361A1 (de) * 1991-04-13 1992-10-29 Robert Bosch Gmbh Hydraulische fremdkraft-bremsanlage mit blockierschutz- und antriebsschlupfregeleinrichtung, insbesondere für kraftfahrzeuge

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926017A1 (de) * 1979-06-28 1981-02-12 Teves Gmbh Alfred Fahrzeugbremsanlage
DE3124755A1 (de) * 1981-06-24 1983-01-13 Robert Bosch Gmbh, 7000 Stuttgart Fahrzeugbremsanlage
DE3131095A1 (de) * 1981-08-06 1983-02-24 Alfred Teves Gmbh, 6000 Frankfurt Hilfskraftunterstuetzte hauptzylinderanordnung fuer eine fahrzeugbremsanlage
DE3507186A1 (de) * 1985-03-01 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart Hydraulischer bremskraftverstaerker
DE3511579A1 (de) * 1985-03-29 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur bremsdrucksteuerung bei fahrzeugbremsanlagen
JPH0775963B2 (ja) * 1989-03-25 1995-08-16 住友電気工業株式会社 電子制御ブレーキ装置
DE3943002A1 (de) * 1989-12-27 1991-07-04 Lucas Ind Plc Fahrzeugbremsanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327508A1 (de) * 1973-05-30 1974-12-19 Teldix Gmbh Fahrzeugbremsanlage
DE4102497C1 (de) * 1991-01-29 1992-05-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
WO1992018361A1 (de) * 1991-04-13 1992-10-29 Robert Bosch Gmbh Hydraulische fremdkraft-bremsanlage mit blockierschutz- und antriebsschlupfregeleinrichtung, insbesondere für kraftfahrzeuge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029222A1 (de) * 1995-03-23 1996-09-26 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung bzw. regelung der bremsanlage eines fahrzeugs
GB2336414A (en) * 1998-04-16 1999-10-20 Toyota Motor Co Ltd Judging normal operation of brake system based upon pedal depression stroke and master cylinder pressure
GB2336414B (en) * 1998-04-16 2000-03-29 Toyota Motor Co Ltd Device for judging normal operation of brake system based upon correlation of pedal depression stroke and master cylinder pressure
US6129425A (en) * 1998-04-16 2000-10-10 Toyota Jidosha Kabushiki Kaisha Device for judging normal operation of brake system based upon correlation of pedal depression stroke and master cylinder pressure
WO2005007476A1 (de) * 2003-07-11 2005-01-27 Continental Teves Ag & Co. Ohg Elektrohydraulische bremsanlage für kraftfahrzeuge

Also Published As

Publication number Publication date
DE4343314A1 (de) 1995-06-22
EP0683740A1 (de) 1995-11-29
KR960700923A (ko) 1996-02-24
US5567021A (en) 1996-10-22
JPH08507021A (ja) 1996-07-30

Similar Documents

Publication Publication Date Title
EP0683740A1 (de) Fremdkraftbremsanlage
EP1802503B1 (de) Bremsanlage für kraftfahrzeuge
EP2303655B1 (de) Bremsanlage für kraftfahrzeuge
EP1446312B1 (de) Elektrohydraulische bremsanlage für kraftfahrzeuge
EP0847350A1 (de) Elektronisch regelbares bremsbetätigungssystem für kraftfahrzeuge
EP1853469A1 (de) Bremsanlage für kraftfahrzeuge
DE4415438A1 (de) Elektronisch regelbares Bremsbetätigungssystem
DE102011081463A1 (de) Bremsanlage für Kraftfahrzeuge
DE3338826A1 (de) Bremsanlage mit schlupfregelung fuer kraftfahrzeuge
EP0374485A1 (de) Bremsanlage
DE3838848A1 (de) Unterdruck-bremskraftverstaerker
DE3511975A1 (de) Hydraulischer bremskraftverstaerker
DE3700698A1 (de) Bremsgeraet
DE2942979C2 (de)
DE3936851A1 (de) Blockierschutzregelanlage
DE3413430A1 (de) Fahrzeugbremsanlage mit blockierschutzeinrichtung
WO1990000127A1 (de) Hydraulische kupplungseinrichtung, sowie bremsanlage mit einer derartigen kupplung
DE3542601A1 (de) Schlupfgeregelte bremsanlage
DE10007184B4 (de) Hauptzylinder
DE3531437A1 (de) Hydraulische bremsanlage mit schlupfregelung
DE10028092A1 (de) Fahrzeugbremsanlage mit zwei Bremskreisen
DE4223433A1 (de) Bremssteuervorrichtung
DE3428870C2 (de)
DE3446063A1 (de) Schlupfgeregelte bremsanlage fuer kraftfahrzeuge
DE3541833A1 (de) Schlupfgeregelte bremsanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08491898

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995902063

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995902063

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995902063

Country of ref document: EP