TWI462734B - Heat device - Google Patents

Heat device Download PDF

Info

Publication number
TWI462734B
TWI462734B TW100100250A TW100100250A TWI462734B TW I462734 B TWI462734 B TW I462734B TW 100100250 A TW100100250 A TW 100100250A TW 100100250 A TW100100250 A TW 100100250A TW I462734 B TWI462734 B TW I462734B
Authority
TW
Taiwan
Prior art keywords
electrode
carbon nanotube
therapy device
thermal therapy
heating element
Prior art date
Application number
TW100100250A
Other languages
Chinese (zh)
Other versions
TW201228649A (en
Inventor
Lu-Zhou Chen
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100100250A priority Critical patent/TWI462734B/en
Publication of TW201228649A publication Critical patent/TW201228649A/en
Application granted granted Critical
Publication of TWI462734B publication Critical patent/TWI462734B/en

Links

Description

熱理療器 Thermal therapy

本發明涉及一種熱理療器,尤其涉及一種基於奈米碳管的熱理療器。 The invention relates to a thermal therapy device, in particular to a thermal therapy device based on a carbon nanotube.

先前技術中有採用熱理療的方式來做熱保健按摩、治療關節炎、風濕類風濕等疾病的醫療保健方法。熱理療的一種係在人體上敷上一熱源,由熱源的熱力經皮膚及皮下組織使肌肉或筋骨感受到熱度,來減輕或消除疼痛,更有以熱源的熱度來促進人們局部的血液迴圈,達到保健治病的功能。 In the prior art, there are medical treatment methods using thermal therapy to treat heat health massage, arthritis, rheumatoid rheumatism and the like. One type of thermal therapy is applied to a heat source on the human body. The heat of the heat source causes the muscles or bones to feel the heat through the skin and the subcutaneous tissue to relieve or eliminate the pain, and the heat of the heat source promotes the local blood circulation. Achieve the function of health care.

先前技術中的熱理療器,通常係採用金屬電熱元件(例如鎢絲或者鉬片等)為基本的發熱單元構成。然而,由於金屬電熱元件的熱容較高,熱響應較遲鈍,能量轉換效率較低。並且,金屬發熱元件會因為複數次熱脹冷縮以及曲折等機械外力而容易受損疲勞,功能下降,影響產品壽命。 The thermal therapy device of the prior art usually consists of a metal heating element (such as a tungsten wire or a molybdenum sheet) as a basic heat generating unit. However, due to the higher heat capacity of the metal electric heating element, the thermal response is slower and the energy conversion efficiency is lower. Moreover, the metal heating element is likely to be damaged and fatigued due to a plurality of mechanical external forces such as thermal expansion and contraction and tortuosity, and the function is degraded, which affects the life of the product.

有鑒於此,提供一種發熱效率高,使用壽命長的熱理療器實為必要。 In view of this, it is necessary to provide a thermal therapy device with high heat generation efficiency and long service life.

一種熱理療器,其包括:一絕緣基底具有一表面;複數個行電極與複數個列電極設置於絕緣基底的表面,該複數個行電極與複數個列電極相互交叉設置,每兩個相鄰的行電極以及與該兩個行電 極交叉的兩個相鄰的列電極形成一個網格,且行電極與列電極之間電絕緣;以及複數個加熱單元,每個加熱單元對應一個網格設置,每個加熱單元包括一第一電極、一第二電極和一加熱元件,該第一電極與第二電極間隔設置,該第一電極與第二電極分別與所述行電極和列電極電連接,所述加熱元件與所述第一電極和第二電極電連接;所述加熱元件包括一奈米碳管膜結構以及一柔性高分子基體,所述柔性高分子基體具有一靠近所述絕緣基底的表面,所述奈米碳管膜結構設置於所述柔性高分子基體中且靠近該高分子基體靠近所述絕緣基底的表面。 A thermal therapy device comprising: an insulating substrate having a surface; a plurality of row electrodes and a plurality of column electrodes disposed on a surface of the insulating substrate, the plurality of row electrodes and the plurality of column electrodes intersecting each other, each two adjacent Row electrode and the two rows of electricity Two adjacent column electrodes of the pole crossing form a grid, and the row electrode and the column electrode are electrically insulated; and a plurality of heating units, each heating unit corresponding to one grid, each heating unit including a first electrode a second electrode and a heating element, the first electrode is spaced apart from the second electrode, the first electrode and the second electrode are electrically connected to the row electrode and the column electrode, respectively, the heating element and the first electrode The electrode and the second electrode are electrically connected; the heating element comprises a carbon nanotube film structure and a flexible polymer matrix, the flexible polymer substrate having a surface close to the insulating substrate, the carbon nanotube film The structure is disposed in the flexible polymer matrix and adjacent to the surface of the polymer substrate near the insulating substrate.

一種熱理療器,其包括:一絕緣基底以及設置於所述絕緣基底上的至少一加熱單元,該加熱單元包括一第一電極、一第二電極以及一加熱元件。所述第一電極與第二電極間隔設置並與加熱元件電連接,該加熱元件的相對兩端分別固定於所述絕緣基底。所述加熱元件包括一柔性高分子基體以及一奈米碳管膜結構包埋於所述柔性高分子基體中,所述柔性高分子基體具有一靠近所述絕緣基底的表面,所述奈米碳管膜結構靠近所述柔性高分子基體的靠近絕緣基底的表面設置。 A thermal therapy device comprising: an insulating substrate and at least one heating unit disposed on the insulating substrate, the heating unit comprising a first electrode, a second electrode and a heating element. The first electrode is spaced apart from the second electrode and electrically connected to the heating element, and opposite ends of the heating element are respectively fixed to the insulating substrate. The heating element includes a flexible polymer matrix and a carbon nanotube film structure embedded in the flexible polymer matrix, the flexible polymer matrix having a surface adjacent to the insulating substrate, the nanocarbon The tubular film structure is disposed adjacent to a surface of the flexible polymer substrate adjacent to the insulating substrate.

相較於先前技術,所述的熱理療器中的加熱元件將奈米碳管膜結構複合於柔性高分子基體中。由於奈米碳管膜結構的熱容較小,具有較高的發熱效率和較快的熱響應速度,因此該熱理療器的發熱效率高、熱響應快。該加熱元件的奈米碳管膜結構具有較好的柔性,不會因為複數次彎曲影響使用壽命,從而該加熱元件具有較長的使用壽命。另外,本發明的加熱元件中的奈米碳管膜結構靠近該柔性高分子基體靠近所述絕緣基底的表面設置,從而使得 該加熱元件具有非對稱的熱膨脹係數分佈。當該熱理療器通電加熱時,所述加熱元件會朝向遠離所述絕緣基底的方向凸起,從而還可以起到一定的按摩作用。 In contrast to the prior art, the heating element in the thermal therapy device composites the carbon nanotube membrane structure into a flexible polymeric matrix. Since the carbon nanotube membrane structure has a small heat capacity, high heat generation efficiency and fast thermal response speed, the heat treatment device has high heat generation efficiency and fast thermal response. The carbon nanotube membrane structure of the heating element has better flexibility and does not affect the service life due to multiple bending, so that the heating element has a long service life. In addition, the carbon nanotube film structure in the heating element of the present invention is disposed close to the surface of the flexible polymer substrate near the insulating substrate, thereby The heating element has an asymmetric coefficient of thermal expansion distribution. When the thermal therapy device is electrically heated, the heating element may be convex toward a direction away from the insulating substrate, so that a certain massage effect may also be exerted.

10,20,30‧‧‧熱理療器 10,20,30‧‧‧Hot physiotherapy

102‧‧‧絕緣基底 102‧‧‧Insulation base

110‧‧‧第一電極 110‧‧‧First electrode

112‧‧‧第二電極 112‧‧‧second electrode

120‧‧‧加熱單元 120‧‧‧heating unit

130‧‧‧加熱元件 130‧‧‧heating elements

132‧‧‧奈米碳管 132‧‧‧Nano Carbon Tube

134‧‧‧奈米碳管膜結構 134‧‧‧Nano carbon nanotube membrane structure

136‧‧‧柔性高分子基體 136‧‧‧Flexible polymer matrix

143‧‧‧奈米碳管片段 143‧‧‧Nano carbon nanotube fragments

160‧‧‧導電膠 160‧‧‧ conductive adhesive

204‧‧‧行電極 204‧‧‧ row electrode

206‧‧‧列電極 206‧‧‧ column electrodes

214‧‧‧網格 214‧‧‧Grid

216‧‧‧絕緣介質層 216‧‧‧Insert dielectric layer

224‧‧‧固定元件 224‧‧‧Fixed components

1362‧‧‧第一表面 1362‧‧‧ first surface

1364‧‧‧第二表面 1364‧‧‧ second surface

圖1為本發明第一實施例的熱理療器的俯視圖。 Fig. 1 is a plan view of a thermal therapy device according to a first embodiment of the present invention.

圖2為圖1中的熱理療器沿II-II線的剖面圖。 Figure 2 is a cross-sectional view of the thermal therapy device of Figure 1 taken along line II-II.

圖3為本發明第一實施例中熱理療器的加熱元件的俯視圖。 Figure 3 is a top plan view of a heating element of a thermal therapy device in a first embodiment of the present invention.

圖4為圖1中的熱理療器沿IV-IV線的剖面圖。 Figure 4 is a cross-sectional view of the thermal therapy device of Figure 1 taken along line IV-IV.

圖5為本發明第一實施例熱理療器的加熱元件使用的奈米碳管拉膜結構的掃描電鏡照片。 Fig. 5 is a scanning electron micrograph of a structure of a carbon nanotube film used for a heating element of a thermal therapy device according to a first embodiment of the present invention.

圖6為圖5中的奈米碳管拉膜結構中的奈米碳管片段的結構示意圖。 Fig. 6 is a structural schematic view showing a carbon nanotube segment in the carbon nanotube film structure of Fig. 5.

圖7為本發明第一實施例熱理療器的加熱元件使用的非扭轉的奈米碳管線的掃描電鏡照片。 Figure 7 is a scanning electron micrograph of a non-twisted nanocarbon line used in the heating element of the thermal therapy device of the first embodiment of the present invention.

圖8為本發明第一實施例熱理療器的加熱元件使用的扭轉的奈米碳管線的掃描電鏡照片。 Figure 8 is a scanning electron micrograph of a torsional nanocarbon line used in the heating element of the thermal therapy device of the first embodiment of the present invention.

圖9為本發明第一實施例熱理療器中加熱元件直接設置於絕緣基底表面的剖面圖。 Figure 9 is a cross-sectional view showing the heating element of the thermal therapy device of the first embodiment of the present invention directly disposed on the surface of the insulating substrate.

圖10為本發明第一實施例的熱理療器在通電時的結構示意圖。 Fig. 10 is a schematic view showing the structure of a thermal therapy device according to a first embodiment of the present invention when it is energized.

圖11為本發明第二實施例的熱理療器的俯視圖。 Figure 11 is a plan view of a thermal therapy device in accordance with a second embodiment of the present invention.

圖12為圖11中的熱理療器沿XII-XII線的剖面圖。 Figure 12 is a cross-sectional view of the thermal therapy device of Figure 11 taken along the line XII-XII.

圖13為本發明第二實施例設置有固定元件的熱理療器的剖面圖。 Figure 13 is a cross-sectional view showing a thermal therapy device provided with a fixing member according to a second embodiment of the present invention.

圖14為本發明第三實施例的熱理療器的俯視圖。 Figure 14 is a plan view of a thermal therapy device in accordance with a third embodiment of the present invention.

圖15為圖14中的熱理療器沿XV-XV線的剖面圖。 Figure 15 is a cross-sectional view of the thermal therapy device of Figure 14 taken along line XV-XV.

以下將結合附圖對本發明的熱理療器作進一步的詳細說明。 The thermal therapy device of the present invention will be further described in detail below with reference to the accompanying drawings.

請參考圖1及圖2,本發明第一實施例提供一種熱理療器10,其包括一絕緣基底102,以及至少一個加熱單元120設置於該絕緣基底102。該加熱單元120包括一第一電極110,一第二電極112,以及一加熱元件130。該第一電極110與所述第二電極112間隔設置於所述絕緣基底102。該加熱元件130設置於所述第一電極110與第二電極112之間,並固定於所述絕緣基底102。該加熱元件130與所述第一電極110和第二電極112電連接。 Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a thermal therapy device 10 including an insulating substrate 102, and at least one heating unit 120 is disposed on the insulating substrate 102. The heating unit 120 includes a first electrode 110, a second electrode 112, and a heating element 130. The first electrode 110 and the second electrode 112 are spaced apart from the insulating substrate 102 . The heating element 130 is disposed between the first electrode 110 and the second electrode 112 and is fixed to the insulating substrate 102. The heating element 130 is electrically connected to the first electrode 110 and the second electrode 112.

所述絕緣基底102可以為硬性或柔性絕緣材料構成。當該絕緣基底102選擇硬性材料時,其可以為陶瓷、玻璃、樹脂、石英、塑膠等中的一種或幾種。當該絕緣基底102選擇柔性材料時,其可以為樹脂、橡膠、塑膠或柔性纖維等中的一種或幾種。當該絕緣基底102為硬性材料構成時,其可以為管狀、球狀、長方體狀,或者也可以根據人體具體理療部位的外部形狀進行設計。所述絕緣基底102可以做成橫截面為半圓或C字形的管狀,從而套在膝關節,對膝關節理療。當該絕緣基底102選擇柔性材料時,可根據實際需要彎折成任意形狀,可以很好的貼合在人體需要理療的部位,從而具有更好的理療效果。所述絕緣基底102的大小與厚度不限,本領域技術人員可以根據實際需要(如根據熱理療器10的 預定大小),設置絕緣基底102的尺寸。本實施例中,所述絕緣基底102為由柔性材料製成的平面橡膠基板,該平面橡膠基板為厚度約5毫米,邊長為10厘米的正方形薄膜。可以理解,所述絕緣基底102的材料不應僅僅局限於本說明書中記載的範圍,可以根據實際需要任意選擇。 The insulating substrate 102 may be constructed of a rigid or flexible insulating material. When the insulating substrate 102 selects a hard material, it may be one or more of ceramic, glass, resin, quartz, plastic, and the like. When the insulating substrate 102 selects a flexible material, it may be one or more of resin, rubber, plastic or flexible fiber. When the insulating substrate 102 is made of a hard material, it may be tubular, spherical, or rectangular, or may be designed according to the external shape of the specific physical treatment site of the human body. The insulating substrate 102 may be formed into a tubular shape having a semicircular or C-shaped cross section so as to be fitted over the knee joint and to the knee joint. When the insulating substrate 102 selects a flexible material, it can be bent into any shape according to actual needs, and can be well adhered to a part of the human body that needs physical therapy, thereby having a better physical therapy effect. The size and thickness of the insulating substrate 102 are not limited, and those skilled in the art can according to actual needs (such as according to the thermal therapy device 10 The predetermined size) is set to the size of the insulating substrate 102. In this embodiment, the insulating substrate 102 is a planar rubber substrate made of a flexible material, and the planar rubber substrate is a square film having a thickness of about 5 mm and a side length of 10 cm. It can be understood that the material of the insulating substrate 102 should not be limited to the range described in the specification, and may be arbitrarily selected according to actual needs.

所述第一電極110以及第二電極112可為金屬導電材料、表面塗有導電材料層的其他材料或者導電橡膠構成。所述第一電極110與第二電極112間隔且平行設置在所述絕緣基底102表面。該第一電極110與第二電極112均為平面導電體,其尺寸可以根據所述加熱元件130的尺寸進行設置。本實施例中,該第一電極110以及第二電極112優選為採用金屬絲構成的平面導電體。該金屬絲通過高分子黏結劑黏結於所述絕緣基底102的表面。所述第一電極110與第二電極112的長度為20微米~1.5厘米,寬度為30微米~1厘米,厚度為0.4毫米~0.5厘米。 The first electrode 110 and the second electrode 112 may be made of a metal conductive material, other materials coated with a conductive material layer, or conductive rubber. The first electrode 110 is spaced apart from the second electrode 112 and disposed on the surface of the insulating substrate 102 in parallel. The first electrode 110 and the second electrode 112 are both planar electrical conductors, and the size thereof can be set according to the size of the heating element 130. In this embodiment, the first electrode 110 and the second electrode 112 are preferably planar conductors made of a metal wire. The wire is bonded to the surface of the insulating substrate 102 by a polymer binder. The first electrode 110 and the second electrode 112 have a length of 20 micrometers to 1.5 centimeters, a width of 30 micrometers to 1 centimeter, and a thickness of 0.4 millimeters to 0.5 centimeters.

所述加熱元件130具有相對的兩端。該加熱元件130的一端可以通過導電膠160黏結在所述第一電極110的表面。所述加熱元件130的另一端通過導電膠160黏結在所述第二電極112的表面。所述加熱元件130通過所述第一電極110,以及所述第二電極112支撐,從而與所述絕緣基底102間隔設置。所述加熱元件130黏附於所述第一電極110的一端通過導電膠160與所述第一電極110電連接;所述加熱元件130黏附於第二電極112的一端通過導電膠160與所述第二電極112電連接。使用時,可以通過第一電極110及第二電極112施加電壓於所述加熱元件130的兩端。 The heating element 130 has opposite ends. One end of the heating element 130 may be bonded to the surface of the first electrode 110 through a conductive paste 160. The other end of the heating element 130 is bonded to the surface of the second electrode 112 through a conductive paste 160. The heating element 130 is supported by the first electrode 110 and the second electrode 112 so as to be spaced apart from the insulating substrate 102. One end of the heating element 130 adhered to the first electrode 110 is electrically connected to the first electrode 110 through a conductive adhesive 160; the heating element 130 is adhered to one end of the second electrode 112 through the conductive adhesive 160 and the first The two electrodes 112 are electrically connected. In use, a voltage may be applied to both ends of the heating element 130 through the first electrode 110 and the second electrode 112.

請一併參見圖3,該加熱元件130為平面薄膜狀結構,其長度、寬 度、厚度可以根據實際需要設置。本實施例中,該加熱元件130為2毫米厚的一長方形薄片,長為1厘米,寬為0.5厘米。所述加熱元件130包括一奈米碳管膜結構134以及一柔性高分子基體136。所述奈米碳管膜結構134包埋於柔性高分子基體136中。該奈米碳管膜結構134與該柔性高分子基體136結合成一個整體結構。所述奈米碳管膜結構134與所述柔性高分子基體136的厚度比為1:2~1:300。優選地,所述奈米碳管膜結構134與所述柔性高分子基體136的厚度比為1:20。該柔性高分子基體136具有一遠離所述絕緣基底102的第一表面1362,以及一靠近所述絕緣基底102的第二表面1364。所述第一表面1362平行於所述第二表面1364。所述奈米碳管膜結構134設置於所述柔性高分子基體136之中,並靠近第二表面1364設置。所述奈米碳管膜結構134平行於所述第二表面1364。具體地,奈米碳管膜結構134到第一表面1362的距離大於奈米碳管膜結構134到第二表面的距離。也可以理解為,所述奈米碳管膜結構134在所述柔性高分子基體136中的位置,相對於所述第一表面1362以及第二表面1364係非對稱的。或者,所述奈米碳管膜結構134到第一表面1362以及第二表面1364的距離係不相等的。優選地,所述奈米碳管膜結構134距離所述第二表面1364的距離大於等於10微米且小於等於1毫米。一方面,可確保該加熱元件130的第一表面1362不導電,從而避免漏電;另一方面,該奈米碳管膜結構134非對稱的設置於所述柔性高分子基體136中,上述距離範圍還可以保證奈米碳管膜結構134到第一表面1362之間的部分的熱膨脹係數大於奈米碳管膜結構134到第二表面1364之間的部分的熱膨脹係數。該奈米碳管膜結構134的長度要大於或等於所述柔性高分子基體136的長度,所謂“長度”係 指,所述奈米碳管膜結構134在平行於所述第二表面1364的方向的最大尺寸。從而在該加熱元件130的相對兩端都有部分奈米碳管膜結構134露出。由於加熱元件130的兩端通過導電膠160分別黏附於第一電極110以及第二電極112,因此該奈米碳管膜結構134在加熱元件130的兩端露出的部分可以通過導電膠160與所述第一電極110和第二電極112電連接。另外,該加熱元件130設置於所述絕緣基底102時,要使得所述第二表面1364靠近所述絕緣基底102設置。 Referring to FIG. 3 together, the heating element 130 is a planar film-like structure having a length and a width. Degree and thickness can be set according to actual needs. In this embodiment, the heating element 130 is a rectangular sheet of 2 mm thick, 1 cm long and 0.5 cm wide. The heating element 130 includes a carbon nanotube film structure 134 and a flexible polymer matrix 136. The carbon nanotube film structure 134 is embedded in the flexible polymer matrix 136. The carbon nanotube film structure 134 is combined with the flexible polymer matrix 136 to form a unitary structure. The thickness ratio of the carbon nanotube film structure 134 to the flexible polymer matrix 136 is 1:2 to 1:300. Preferably, the thickness ratio of the carbon nanotube film structure 134 to the flexible polymer matrix 136 is 1:20. The flexible polymer matrix 136 has a first surface 1362 remote from the insulating substrate 102 and a second surface 1364 adjacent the insulating substrate 102. The first surface 1362 is parallel to the second surface 1364. The carbon nanotube film structure 134 is disposed in the flexible polymer matrix 136 and disposed adjacent to the second surface 1364. The carbon nanotube membrane structure 134 is parallel to the second surface 1364. Specifically, the distance from the carbon nanotube film structure 134 to the first surface 1362 is greater than the distance from the carbon nanotube film structure 134 to the second surface. It can also be understood that the position of the carbon nanotube film structure 134 in the flexible polymer matrix 136 is asymmetric with respect to the first surface 1362 and the second surface 1364. Alternatively, the distance from the carbon nanotube film structure 134 to the first surface 1362 and the second surface 1364 is unequal. Preferably, the carbon nanotube film structure 134 is at a distance of 10 micrometers or more and 1 millimeter or less from the second surface 1364. On the one hand, it can be ensured that the first surface 1362 of the heating element 130 is not electrically conductive, thereby avoiding leakage; on the other hand, the carbon nanotube film structure 134 is asymmetrically disposed in the flexible polymer substrate 136, the distance range It is also possible to ensure that the coefficient of thermal expansion of the portion between the carbon nanotube film structure 134 and the first surface 1362 is greater than the coefficient of thermal expansion of the portion between the carbon nanotube film structure 134 and the second surface 1364. The length of the carbon nanotube film structure 134 is greater than or equal to the length of the flexible polymer matrix 136, the so-called "length" system Refers to the largest dimension of the carbon nanotube film structure 134 in a direction parallel to the second surface 1364. Thus, a portion of the carbon nanotube film structure 134 is exposed at opposite ends of the heating element 130. Since the two ends of the heating element 130 are respectively adhered to the first electrode 110 and the second electrode 112 through the conductive adhesive 160, the portion of the carbon nanotube film structure 134 exposed at both ends of the heating element 130 can pass through the conductive adhesive 160 and the The first electrode 110 and the second electrode 112 are electrically connected. In addition, when the heating element 130 is disposed on the insulating substrate 102, the second surface 1364 is disposed adjacent to the insulating substrate 102.

另外,所述奈米碳管膜結構134還可以直接設置於所述柔性高分子基體136的第二表面1364。 In addition, the carbon nanotube film structure 134 may also be directly disposed on the second surface 1364 of the flexible polymer matrix 136.

請參考圖4,所述柔性高分子基體136為具有一定厚度的片材,該片材的形狀不限,可以為長方形、圓形,或根據實際應用製成各種形狀。所述柔性高分子基體136為柔性材料構成。所述柔性高分子基體136的材料為矽橡膠、聚甲基丙烯酸甲酯、聚氨脂、環氧樹脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩等中的一種或幾種的組合。本實施例中,所述柔性高分子基體136為一矽橡膠薄膜,該矽橡膠薄膜為厚度為2毫米厚的一長方形薄片。所述奈米碳管膜結構134為一膜結構,其厚度為10微米~1毫米,其寬度與所述柔性高分子基體136完全相同,長度略大於所述柔性高分子基體136的長度。該奈米碳管膜結構134平行於所述柔性高分子基體136並靠近柔性高分子基體136的第二表面1364設置。具體地,該奈米碳管膜結構134係在柔性高分子基體136未完全固化呈液態時鋪設於該柔性高分子基體136。該奈米碳管膜結構134係由複數個奈米碳管 132通過凡得瓦力結合構成,複數個奈米碳管132之間存在間隙。液態的高分子基體材料可以滲透進入該奈米碳管膜結構134中的奈米碳管132之間的間隙當中,並將該奈米碳管膜結構134完全包覆,從而該柔性高分子基體136的材料與奈米碳管膜結構134中的奈米碳管132緊密結合在一起。奈米碳管膜結構134可以很好地靠近所述第二表面1364固定於該柔性高分子基體136中或者固定於該柔性高分子基體136的第二表面1364。該加熱元件130不會因為複數次使用,影響奈米碳管膜結構134與柔性高分子基體136之間介面的結合性,從而壽命較長。 Referring to FIG. 4, the flexible polymer matrix 136 is a sheet having a certain thickness, and the shape of the sheet is not limited, and may be rectangular, circular, or various shapes according to practical applications. The flexible polymer matrix 136 is constructed of a flexible material. The material of the flexible polymer matrix 136 is ruthenium rubber, polymethyl methacrylate, polyurethane, epoxy resin, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene, polyacrylonitrile. A combination of one or more of polyaniline, polypyrrole, and polythiophene. In this embodiment, the flexible polymer substrate 136 is a ruthenium rubber film which is a rectangular sheet having a thickness of 2 mm. The carbon nanotube film structure 134 is a film structure having a thickness of 10 micrometers to 1 millimeter, a width identical to that of the flexible polymer matrix 136, and a length slightly larger than the length of the flexible polymer matrix 136. The carbon nanotube film structure 134 is disposed parallel to the flexible polymer matrix 136 and adjacent to the second surface 1364 of the flexible polymer matrix 136. Specifically, the carbon nanotube film structure 134 is laid on the flexible polymer matrix 136 when the flexible polymer matrix 136 is not fully cured in a liquid state. The carbon nanotube membrane structure 134 is composed of a plurality of carbon nanotubes 132 is formed by a combination of van der Waals forces, and a gap exists between the plurality of carbon nanotubes 132. The liquid polymer matrix material can penetrate into the gap between the carbon nanotubes 132 in the carbon nanotube film structure 134, and completely coat the carbon nanotube film structure 134, thereby the flexible polymer matrix The material of 136 is tightly bonded to the carbon nanotubes 132 in the carbon nanotube membrane structure 134. The carbon nanotube film structure 134 can be fixed in the flexible polymer substrate 136 or fixed to the second surface 1364 of the flexible polymer substrate 136. The heating element 130 does not affect the interface between the carbon nanotube film structure 134 and the flexible polymer matrix 136 because of the multiple use, and thus has a long life.

該奈米碳管膜結構134為一自支撐結構。所謂“自支撐結構”即該奈米碳管膜結構134無需通過一支撐體支撐,也能保持自身特定的形狀。該自支撐結構的奈米碳管膜結構134包括複數個奈米碳管132,該複數個奈米碳管132通過凡得瓦力相互吸引,從而使奈米碳管膜結構134具有特定的形狀。該奈米碳管膜結構134的厚度大於10微米,小於2毫米。所述奈米碳管膜結構134中的奈米碳管132為單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或複數種。所述單壁奈米碳管的直徑為0.5奈米~50奈米,所述雙壁奈米碳管的直徑為1.0奈米~50奈米,所述多壁奈米碳管的直徑為1.5奈米~50奈米。該奈米碳管膜結構134為層狀或線狀結構。由於該奈米碳管膜結構134具有自支撐性,在不通過支撐體支撐時仍可保持層狀或線狀結構。該奈米碳管膜結構134中奈米碳管132之間具有大量間隙,從而使該奈米碳管膜結構具有大量微孔。所述奈米碳管膜結構134的單位面積熱容小於2×10-4焦耳每平方厘米開爾文。優選地,所述奈米碳管膜結構134的單位面積熱容可以小於等於1.7×10-6焦耳每平方厘米開爾文。由於奈米碳管132 的熱容較小,所以由該奈米碳管膜結構134複合在柔性高分子基體136中而構成的加熱元件130具有較快的熱響應速度,可用於對物體進行快速加熱。 The carbon nanotube membrane structure 134 is a self-supporting structure. The so-called "self-supporting structure" means that the carbon nanotube film structure 134 can maintain its own specific shape without being supported by a support. The self-supporting structure of the carbon nanotube membrane structure 134 includes a plurality of carbon nanotubes 132 that are attracted to each other by van der Waals forces, thereby causing the carbon nanotube membrane structure 134 to have a specific shape. . The carbon nanotube film structure 134 has a thickness greater than 10 microns and less than 2 mm. The carbon nanotubes 132 in the carbon nanotube membrane structure 134 are one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5. Nano ~ 50 nm. The carbon nanotube film structure 134 is a layered or linear structure. Since the carbon nanotube film structure 134 is self-supporting, a layered or linear structure can be maintained without being supported by the support. The carbon nanotube film structure 134 has a large amount of gaps between the carbon nanotubes 132, so that the carbon nanotube film structure has a large number of micropores. The carbon nanotube membrane structure 134 has a heat capacity per unit area of less than 2 x 10 -4 joules per square centimeter Kelvin. Preferably, the carbon nanotube membrane structure 134 has a heat capacity per unit area of less than or equal to 1.7 x 10 -6 joules per square centimeter Kelvin. Since the heat capacity of the carbon nanotubes 132 is small, the heating element 130 composed of the carbon nanotube film structure 134 composited in the flexible polymer matrix 136 has a fast thermal response speed and can be used for fast moving objects. heating.

所述奈米碳管膜結構134包括至少一奈米碳管膜、至少一奈米碳管線狀結構或其組合。所述奈米碳管膜由複數個均勻分佈的奈米碳管組成。該奈米碳管膜中的複數個奈米碳管可以做有序排列或無序排列。當奈米碳管膜由無序排列的奈米碳管組成時,奈米碳管相互纏繞;當奈米碳管膜為有序排列的奈米碳管組成時,奈米碳管沿一個方向或者複數個方向擇優取向排列。當奈米碳管膜結構134中的複數個奈米碳管基本沿同一方向有序排列時,該複數個奈米碳管從第一電極110向第二電極112延伸。具體地,該奈米碳管膜可為奈米碳管絮化膜、奈米碳管碾壓膜或奈米碳管拉膜。該奈米碳管線狀結構包括至少一非扭轉的奈米碳管線、至少一扭轉的奈米碳管線或其組合。當所述奈米碳管線狀結構包括複數根非扭轉的奈米碳管線或扭轉的奈米碳管線時,該非扭轉的奈米碳管線或扭轉的奈米碳管線可以相互平行呈一束狀結構,或相互扭轉呈一絞線結構。 The carbon nanotube membrane structure 134 includes at least one carbon nanotube membrane, at least one nanocarbon line-like structure, or a combination thereof. The carbon nanotube membrane is composed of a plurality of uniformly distributed carbon nanotube tubes. The plurality of carbon nanotubes in the carbon nanotube film can be arranged in an ordered or disordered arrangement. When the carbon nanotube membrane is composed of disordered carbon nanotubes, the carbon nanotubes are intertwined; when the carbon nanotube membrane is composed of ordered carbon nanotubes, the carbon nanotubes are in one direction Or a plurality of directions to select the preferred orientation. When a plurality of carbon nanotubes in the carbon nanotube film structure 134 are arranged substantially in the same direction, the plurality of carbon nanotubes extend from the first electrode 110 to the second electrode 112. Specifically, the carbon nanotube film may be a carbon nanotube film, a carbon nanotube film or a carbon nanotube film. The nanocarbon line-like structure includes at least one non-twisted nanocarbon line, at least one twisted nanocarbon line, or a combination thereof. When the nanocarbon line-like structure comprises a plurality of non-twisted nano carbon pipelines or twisted nanocarbon pipelines, the non-twisted nanocarbon pipeline or the twisted nanocarbon pipeline may be parallel to each other in a bundle structure. , or twisted to each other in a twisted line structure.

請參閱圖5及圖6,具體地,所述奈米碳管拉膜具有複數個連續且定向排列的奈米碳管片段143。該複數個奈米碳管片段143通過凡得瓦力首尾相連。每一奈米碳管片段143包括複數個相互平行的奈米碳管132,該複數個相互平行的奈米碳管132通過凡得瓦力緊密結合。該奈米碳管片段143具有任意的寬度、厚度、均勻性及形狀。該奈米碳管拉膜中的奈米碳管132沿同一方向擇優取向排列。可以理解,在由複數個奈米碳管拉膜組成的奈米碳管膜結構 134中,相鄰兩個奈米碳管拉膜中的奈米碳管的排列方向有一夾角α,且0°≦α≦90°,從而使相鄰兩層奈米碳管拉膜中的奈米碳管相互交叉組成一網狀結構,該網狀結構包括複數個微孔,該複數個微孔均勻且規則分佈於奈米碳管膜結構中,其中,該微孔直徑為1奈米~0.5微米。所述奈米碳管拉膜的厚度為0.01微米~100微米。所述奈米碳管拉膜可以通過拉取一奈米碳管陣列直接獲得。該奈米碳管拉膜的製備方法請參見范守善等人於民國96年2月12日申請的,於民國97年8月16日公開的第96105016號台灣公開專利申請“奈米碳管膜結構及其製備方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用於此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。所述奈米碳管碾壓膜由複數個均勻分佈的奈米碳管組成。該複數個奈米碳管可沿同一方向擇優取向排列,也可沿不同方向擇優取向排列。優選地,所述奈米碳管碾壓膜中的奈米碳管平行於奈米碳管碾壓膜的表面。所述奈米碳管碾壓膜中的奈米碳管相互交疊,且通過凡得瓦力相互吸引,緊密結合,使得該奈米碳管碾壓膜具有很好的柔韌性,可以彎曲折疊成任意形狀而不破裂。且由於奈米碳管碾壓膜中的奈米碳管之間通過凡得瓦力相互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐的結構,可無需基底支撐。所述奈米碳管碾壓膜可通過碾壓一奈米碳管陣列獲得。所述奈米碳管碾壓膜中的奈米碳管與形成奈米碳管陣列的基底的表面形成一夾角α,其中,α大於等於0度且小於等於15度(0≦α≦15°),該夾角α與施加在奈米碳管陣列上的壓力有關,壓力越大,該夾角越小。所述奈米碳管碾壓膜的長度和寬度不限。所述碾壓膜包括複數個微孔結構,該微孔結構均勻且規則分佈於奈米碳管碾壓膜中,其 中微孔直徑為1奈米~0.5微米。所述奈米碳管碾壓膜及其製備方法請參見范守善等人於民國96年6月29日申請的,於民國98年1月1日公開的第200900348號台灣公開專利申請“奈米碳管薄膜的製備方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用於此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 Referring to FIG. 5 and FIG. 6, in particular, the carbon nanotube film has a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of mutually parallel carbon nanotubes 132 that are tightly coupled by van der Waals forces. The carbon nanotube segment 143 has any width, thickness, uniformity, and shape. The carbon nanotubes 132 in the carbon nanotube film are arranged in a preferred orientation in the same direction. It can be understood that the carbon nanotube film structure composed of a plurality of carbon nanotube films is formed. In 134, the arrangement direction of the carbon nanotubes in the adjacent two carbon nanotube films has an angle α, and 0°≦α≦90°, so that the adjacent two layers of carbon nanotubes are pulled in the film. The carbon nanotubes intersect each other to form a network structure, the network structure includes a plurality of micropores, and the plurality of micropores are uniformly and regularly distributed in the carbon nanotube membrane structure, wherein the micropore diameter is 1 nm~ 0.5 micron. The carbon nanotube film has a thickness of 0.01 μm to 100 μm. The carbon nanotube film can be directly obtained by pulling an array of carbon nanotubes. For the preparation method of the carbon nanotube film, please refer to the patent application "Nano Carbon Tube Membrane Structure", which was filed on February 12, 1996, in the Republic of China, No. 96105016, published on August 16, 1997. And its preparation method", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application. The carbon nanotube rolled film is composed of a plurality of uniformly distributed carbon nanotubes. The plurality of carbon nanotubes may be arranged in a preferred orientation along the same direction, or may be arranged in a preferred orientation in different directions. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube film are overlapped with each other and are attracted to each other by the van der Waals force, so that the carbon nanotube film has good flexibility and can be bent and folded. In any shape without breaking. Moreover, since the carbon nanotubes in the carbon nanotube rolled film are mutually attracted by the van der Waals force and tightly combined, the carbon nanotube film is a self-supporting structure, and the substrate support can be eliminated. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotubes in the carbon nanotube rolled film form an angle α with the surface of the substrate forming the carbon nanotube array, wherein α is greater than or equal to 0 degrees and less than or equal to 15 degrees (0≦α≦15°) The angle α is related to the pressure applied to the carbon nanotube array, and the larger the pressure, the smaller the angle. The length and width of the carbon nanotube rolled film are not limited. The rolled film comprises a plurality of microporous structures which are uniformly and regularly distributed in a carbon nanotube rolled film, The mesopores have a diameter of 1 nm to 0.5 μm. The carbon nanotube rolling film and the preparation method thereof are described in Fan Shoushan et al., which was filed on June 29, 1996, and published in the Republic of China on January 1, 1998, No. 200900348 Taiwan Patent Application "Nano Carbon" Method for preparing tube film", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application.

所述奈米碳管絮化膜的長度、寬度和厚度不限,可根據實際需要選擇。本發明實施例提供的奈米碳管絮化膜的長度為1~10厘米,寬度為1~10厘米,厚度為1微米~2毫米。所述奈米碳管絮化膜包括相互纏繞的奈米碳管,奈米碳管的長度大於10微米。所述奈米碳管之間通過凡得瓦力相互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜中的奈米碳管均勻分佈,無規則排列,使該奈米碳管絮化膜各向同性,所述奈米碳管絮化膜中的奈米碳管之間形成大量的微孔,微孔孔徑為1奈米~0.5微米。所述奈米碳管絮化膜及其製備方法請參見范守善等人於民國96年5月11日申請的,於民國97年11月16日公開的第200844041號台灣公開專利申請“奈米碳管薄膜的製備方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用於此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 The length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube flocculation film provided by the embodiment of the invention has a length of 1 to 10 cm, a width of 1 to 10 cm, and a thickness of 1 to 2 mm. The carbon nanotube flocculation membrane comprises intertwined carbon nanotubes having a length greater than 10 microns. The carbon nanotubes are attracted and entangled with each other by van der Waals force to form a network structure. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and arranged irregularly, so that the carbon nanotube flocculation membrane is isotropic, and the carbon nanotubes in the carbon nanotube flocculation membrane are isotactic. A large number of micropores are formed between them, and the pore diameter of the micropores is from 1 nm to 0.5 μm. For the carbon nanotube flocculation membrane and the preparation method thereof, please refer to the patent application "Nano Carbon" of the No. 200844041 published by Fan Shoushan et al. on May 11, 1996 in the Republic of China on November 16, 1997. Method for preparing tube film", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application.

請參閱圖7,該非扭轉的奈米碳管線包括複數個沿該非扭轉的奈米碳管線長度方向排列的奈米碳管。具體地,該非扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、 厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。非扭轉的奈米碳管線為將奈米碳管拉膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管拉膜中的相互平行的複數個奈米碳管通過凡得瓦力緊密結合,從而使奈米碳管拉膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,黏性降低。 Referring to FIG. 7, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length direction of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segment has an arbitrary length, Thickness, uniformity and shape. The non-twisted nano carbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. The non-twisted nano carbon pipeline is obtained by treating the carbon nanotube film with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, a plurality of nano carbons parallel to each other in the carbon nanotube film are drawn. The tube is tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent.

所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管拉膜兩端沿相反方向扭轉獲得。請參閱圖8,該扭轉的奈米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。 The twisted nanocarbon pipeline is obtained by twisting both ends of the carbon nanotube film in the opposite direction by a mechanical force. Referring to FIG. 8, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes axially arranged around the twisted nanocarbon pipeline. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted nanocarbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength.

所述奈米碳管線及其製備方法請參見范守善等人於2002年11月05日申請的,於2008年11月21日公告的第I303239號台灣公告專利 “一種奈米碳管繩及其製造方法”,專利權人:鴻海精密工業股份有限公司,以及於2009年7月21日公告的第I312337號台灣公告專利“奈米碳管絲及其製作方法”,專利權人:鴻海精密工業股份有限公司。為節省篇幅,僅引用於此,但上述申請所有技術揭露也應視為本發明申請所揭露的一部分。 For the nano carbon pipeline and its preparation method, please refer to the patent No. I303239 announced by Fan Shoushan et al. on November 5, 2002, announced on November 21, 2008. "A carbon nanotube rope and its manufacturing method", patentee: Hon Hai Precision Industry Co., Ltd., and Taiwan No. I312337 announced on July 21, 2009, "Nano Carbon Tube Wire and Its Manufacturing Method" ", the patentee: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the present application.

請參見圖9,所述加熱元件130也可以直接設置於所述絕緣基底102的表面,該加熱元件130的兩端固定於所述絕緣基底102。所述第一電極110以及第二電極112分別設置在所述加熱元件的兩端,並通過導電膠分別與所述加熱元件130電連接。 Referring to FIG. 9 , the heating element 130 may also be directly disposed on the surface of the insulating substrate 102 . Both ends of the heating element 130 are fixed to the insulating substrate 102 . The first electrode 110 and the second electrode 112 are respectively disposed at two ends of the heating element, and are electrically connected to the heating element 130 respectively by a conductive adhesive.

請參見圖10,所述熱理療器10在使用時,可將熱理療器20的設置有加熱元件一側貼敷於人體上,電壓通過所述第一電極110以及所述第二電極112施加在該加熱元件130的奈米碳管膜結構134的兩端,電流可通過上述奈米碳管132所形成的導電網路進行傳輸。由於奈米碳管132的自身熱容較高,使得奈米碳管膜結構134溫度快速升高,熱量在靠近奈米碳管132的周圍快速地擴散,從而將熱量傳遞至與加熱元件130對應的人體。 Referring to FIG. 10, when the thermal therapy device 10 is in use, the side of the thermal therapy device 20 on which the heating element is disposed may be applied to the human body, and a voltage is applied through the first electrode 110 and the second electrode 112. At both ends of the carbon nanotube film structure 134 of the heating element 130, current can be transferred through the conductive network formed by the carbon nanotubes 132 described above. Due to the high heat capacity of the carbon nanotubes 132, the temperature of the carbon nanotube membrane structure 134 is rapidly increased, and the heat is rapidly diffused near the periphery of the carbon nanotubes 132, thereby transferring heat to the heating element 130. Human body.

本實施例的加熱元件130中,所述柔性高分子基體136的熱膨脹係數大於奈米碳管膜結構134的熱膨脹係數。所述奈米碳管膜結構134靠近所述柔性高分子基體136的第二表面1364設置,並且所述第二表面1364靠近所述絕緣基底102。由於所述奈米碳管膜結構在柔性高分子基體136中,相對於第一表面1362以及第二表面1364係非對稱設置的,因此該加熱元件130的設有奈米碳管膜結構134的一側熱膨脹係數小於沒有設置奈米碳管膜結構134一側。當該加熱元件130通電發熱時,該加熱元件130中的奈米碳管膜結 構134到第一表面1362之間的部分的膨脹形變將大於加熱元件130中的奈米碳管膜結構134到第二表面1364之間的部分。加熱後的加熱元件130的熱膨脹係數大的部分將會凸起,從而該加熱元件的第一表面1362可以推壓與加熱元件130對應或接觸的人體,起到一定的按摩作用。當斷電時,該加熱元件130又將恢復原來的形狀,離開加熱元件130所對應的人體的理療部位。因此,當該加熱元件130被週期性通斷電時,其可以實現週期性的凸起與恢復,從而實現按摩人體的功能。由於奈米碳管132具有導電性好、熱容小的特點,所述奈米碳管膜結構134在短時間能就可以發出大量的熱,從而使該加熱元件130在較小的電壓驅動下,就可以較快的達到較高的溫度。 In the heating element 130 of the present embodiment, the flexible polymer matrix 136 has a thermal expansion coefficient greater than that of the carbon nanotube film structure 134. The carbon nanotube film structure 134 is disposed adjacent to the second surface 1364 of the flexible polymer matrix 136, and the second surface 1364 is adjacent to the insulating substrate 102. Since the carbon nanotube film structure is asymmetrically disposed in the flexible polymer matrix 136 with respect to the first surface 1362 and the second surface 1364, the heating element 130 is provided with the carbon nanotube film structure 134. The coefficient of thermal expansion on one side is smaller than the side on which the carbon nanotube film structure 134 is not disposed. When the heating element 130 is energized and heated, the carbon nanotube film junction in the heating element 130 The expansion deformation of the portion between the structure 134 and the first surface 1362 will be greater than the portion between the carbon nanotube film structure 134 in the heating element 130 to the second surface 1364. The portion of the heating element 130 that has a large coefficient of thermal expansion will be convex, so that the first surface 1362 of the heating element can push the human body corresponding to or in contact with the heating element 130 to provide a certain massage effect. When the power is turned off, the heating element 130 will return to its original shape, leaving the physiotherapy part of the human body corresponding to the heating element 130. Therefore, when the heating element 130 is periodically turned on and off, it can achieve periodic protrusion and recovery, thereby achieving the function of massaging the human body. Since the carbon nanotube 132 has the characteristics of good electrical conductivity and low heat capacity, the carbon nanotube film structure 134 can emit a large amount of heat in a short time, so that the heating element 130 is driven by a small voltage. , you can reach higher temperatures faster.

可以理解,上述實施例中加熱元件130的相對兩端通過所述第一電極110和第二電極112固定在絕緣基底102,係為了讓加熱元件130受熱後向遠離所述絕緣基底102的方向凸起。為此,加熱元件130的相對兩端也可以通過其他方式固定在絕緣基底102,比如黏結、卡扣、螺鎖等等。所述第一電極110和第二電極112可以間隔設置於加熱元件130上,並與加熱元件130中的奈米碳管膜結構134電連接。另外,第一電極110和第二電極112也可以集成到加熱元件130中,並與所述奈米碳管膜結構134電鏈結即可。 It can be understood that the opposite ends of the heating element 130 in the above embodiment are fixed to the insulating substrate 102 through the first electrode 110 and the second electrode 112, so that the heating element 130 is heated and protruded away from the insulating substrate 102. Start. To this end, the opposite ends of the heating element 130 can also be secured to the insulating substrate 102 by other means, such as bonding, snapping, screwing, and the like. The first electrode 110 and the second electrode 112 may be disposed on the heating element 130 at intervals and electrically connected to the carbon nanotube film structure 134 in the heating element 130. In addition, the first electrode 110 and the second electrode 112 may also be integrated into the heating element 130 and electrically coupled to the carbon nanotube film structure 134.

請參閱圖11及圖12,本發明第二實施例提供一種熱理療器20。本實施例與第一實施例的區別在於:本實施包括複數個設置成陣列形式的加熱單元120。該熱理療器20包括一絕緣基底102、複數個行電極204、複數個列電極206以及複數個加熱單元120。所述複數個行電極204相互平行間隔設置在絕緣基底102的一表面。所述 複數個列電極206相互平行間隔設置在該絕緣基底102的表面上。所述複數個行電極204與複數個列電極206相互交叉設置,並且在行電極204與列電極206交叉處設置有絕緣介質層216,該絕緣介質層216可確保行電極204與列電極206之間電絕緣,以防止短路。每兩個相鄰的行電極204與兩個相鄰的列電極206交叉形成一網格214。每個網格214定位一個加熱單元120,即加熱單元120與網格214一一對應。複數個行電極204或列電極206之間可以等間距設置,也可以不等間距設置。優選地,複數個行電極204或列電極206之間等間距設置。所述行電極204與列電極206可以為導電材料或塗有導電材料層的絕緣材料,或者為柔性的導電橡膠。本實施例中,該複數個行電極204與複數個列電極206優選為採用金屬絲構成的平面導電體,該複數個金屬絲可以通過高分子黏結劑黏結於所述絕緣基底102的表面。所述行電極204之間的行間距,以及所述列電極206之間的列間距,可以根據實際需要設置。本實施例中,該複數個行電極204的行間距為0.5厘米~3厘米,複數個列電極206的列間距為0.5厘米~3厘米。該行電極204與列電極206的寬度為300微米~5毫米微米,厚度為0.5毫米~0.5厘米。本實施例中,該行電極204與列電極206的交叉角度為10度到90度,優選為90度。 Referring to Figures 11 and 12, a second embodiment of the present invention provides a thermal therapy device 20. The difference between this embodiment and the first embodiment is that the present embodiment includes a plurality of heating units 120 arranged in an array form. The thermal therapy device 20 includes an insulating substrate 102, a plurality of row electrodes 204, a plurality of column electrodes 206, and a plurality of heating cells 120. The plurality of row electrodes 204 are disposed in parallel with each other on a surface of the insulating substrate 102. Said A plurality of column electrodes 206 are disposed on the surface of the insulating substrate 102 in parallel with each other. The plurality of row electrodes 204 and the plurality of column electrodes 206 are disposed to intersect each other, and an insulating dielectric layer 216 is disposed at a intersection of the row electrode 204 and the column electrode 206, and the insulating dielectric layer 216 can ensure the row electrode 204 and the column electrode 206. Electrically insulated to prevent short circuits. Each two adjacent row electrodes 204 intersect with two adjacent column electrodes 206 to form a grid 214. Each grid 214 positions a heating unit 120, that is, the heating unit 120 has a one-to-one correspondence with the grid 214. The plurality of row electrodes 204 or the column electrodes 206 may be disposed at equal intervals or may be disposed at unequal intervals. Preferably, a plurality of row electrodes 204 or column electrodes 206 are equally spaced apart. The row electrode 204 and the column electrode 206 may be a conductive material or an insulating material coated with a conductive material layer, or a flexible conductive rubber. In this embodiment, the plurality of row electrodes 204 and the plurality of column electrodes 206 are preferably planar conductors formed of wires, and the plurality of wires may be adhered to the surface of the insulating substrate 102 by a polymer binder. The row spacing between the row electrodes 204 and the column spacing between the column electrodes 206 can be set according to actual needs. In this embodiment, the row spacing of the plurality of row electrodes 204 is 0.5 cm to 3 cm, and the column spacing of the plurality of column electrodes 206 is 0.5 cm to 3 cm. The row electrode 204 and the column electrode 206 have a width of 300 micrometers to 5 millimeters and a thickness of 0.5 mm to 0.5 cm. In this embodiment, the intersection angle of the row electrode 204 and the column electrode 206 is 10 degrees to 90 degrees, preferably 90 degrees.

所述複數個加熱單元120分別一一對應設置於上述複數個網格214中。可以理解,該複數個加熱單元120按照行列式排布形成一個加熱點陣列。每個加熱單元120對應一個獨立的加熱點。 The plurality of heating units 120 are respectively disposed in the plurality of grids 214 in a one-to-one correspondence. It can be understood that the plurality of heating units 120 are arranged in an array to form an array of heating points. Each heating unit 120 corresponds to a separate heating point.

本實施例中,該第一電極110可以係行電極204的延伸部分,該第二電極112可以係列電極206的延伸部分。第一電極110和行電極 204可以一體成型,第二電極112和列電極206也可一體成型。本實施例中,該第一電極110與第二電極112均為平面導電體,其尺寸由網格214的尺寸決定。該第一電極110直接與行電極204電連接,該第二電極112直接與列電極206電連接。所述第一電極110與第二電極112的長度為20微米~1.5厘米,寬度為30微米~1厘米,厚度為0.4毫米~0.5厘米。優選地,所述第二電極112與第一電極110的長度為0.5厘米~1厘米,寬度為0.1厘米~0.5厘米,厚度為0.5毫米~0.5厘米。本實施例中,該第一電極110與第二電極112的材料為金屬絲,與行電極204和列電極206相同。 In this embodiment, the first electrode 110 may be an extension of the electrode 204, and the second electrode 112 may be an extension of the series of electrodes 206. First electrode 110 and row electrode The 204 may be integrally formed, and the second electrode 112 and the column electrode 206 may also be integrally formed. In this embodiment, the first electrode 110 and the second electrode 112 are both planar conductors, and the size thereof is determined by the size of the grid 214. The first electrode 110 is directly electrically connected to the row electrode 204, and the second electrode 112 is directly electrically connected to the column electrode 206. The first electrode 110 and the second electrode 112 have a length of 20 micrometers to 1.5 centimeters, a width of 30 micrometers to 1 centimeter, and a thickness of 0.4 millimeters to 0.5 centimeters. Preferably, the second electrode 112 and the first electrode 110 have a length of 0.5 cm to 1 cm, a width of 0.1 cm to 0.5 cm, and a thickness of 0.5 mm to 0.5 cm. In this embodiment, the material of the first electrode 110 and the second electrode 112 is a wire, which is the same as the row electrode 204 and the column electrode 206.

由於本實施例中的加熱元件130係通過複數個行電極204以及複數個列電極206通電控制,因此可以通過上述複數個行電極204和列電極206控制每一個加熱元件130的加熱,以及按摩,從而可以有選擇性的實現定點的理療。 Since the heating element 130 in the embodiment is electrically controlled by the plurality of row electrodes 204 and the plurality of column electrodes 206, the heating of each of the heating elements 130 and the massage can be controlled by the plurality of row electrodes 204 and the column electrodes 206. Thereby, the targeted therapy can be selectively implemented.

請參見圖13,所述加熱單元120還可以進一步包括複數個固定元件224設置於第一電極110與第二電極112上。每一個固定元件224對應於一個第一電極110或一個第二電極112。該固定元件224形狀大小以及材料與第一電極110與第二電極112的形狀大小以及材料相同。具體地,所述加熱元件130的一端夾設於一個固定元件224與第一電極110之間,所述加熱元件130的另一端夾設於另一個固定元件224與第二電極112之間。該固定元件224可確保將加熱元件130更牢固地固定。所述固定元件224與第一電極110以及第二電極112之間的固定方式不限,可以通過導電膠,也可以通過螺絲,或者卡扣的方式實現。 Referring to FIG. 13 , the heating unit 120 may further include a plurality of fixing elements 224 disposed on the first electrode 110 and the second electrode 112 . Each of the fixing members 224 corresponds to one first electrode 110 or one second electrode 112. The fixing member 224 has the same shape and material as the shape and material of the first electrode 110 and the second electrode 112. Specifically, one end of the heating element 130 is sandwiched between one fixing element 224 and the first electrode 110, and the other end of the heating element 130 is sandwiched between the other fixing element 224 and the second electrode 112. This fixing element 224 ensures that the heating element 130 is more securely fixed. The fixing manner between the fixing member 224 and the first electrode 110 and the second electrode 112 is not limited, and may be implemented by a conductive adhesive or by a screw or a snap.

可以理解,進一步,所述熱理療器20還可以包括一絕緣保護層( 圖未示)以覆蓋所述行電極204、列電極206、第一電極110與第二電極112,防止該熱理療器20在直接接觸人的皮膚時,產生漏電從而影響使用效果。所述絕緣保護層的材料為一絕緣材料,如:橡膠、樹脂等。所述絕緣保護層厚度不限,可以根據實際情況選擇。本實施例中,該絕緣保護層的材料採用樹脂,其厚度為0.5毫米~2毫米。該絕緣保護層可通過塗敷或沉積的方法形成於加熱單元120。 It can be understood that, further, the thermal therapy device 20 can further comprise an insulating protective layer ( The figure is not shown) to cover the row electrode 204, the column electrode 206, the first electrode 110 and the second electrode 112 to prevent the thermal therapy device 20 from leaking when directly contacting human skin, thereby affecting the use effect. The material of the insulating protective layer is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer is not limited and can be selected according to actual conditions. In this embodiment, the insulating protective layer is made of a resin having a thickness of 0.5 mm to 2 mm. The insulating protective layer may be formed on the heating unit 120 by a method of coating or deposition.

可以理解,所述熱理療器20的在使用時,可進一步包括一驅動電路和控制器,可選擇性地對行電極204和列電極206通入電流,使與該行電極204和列電極206電連接的加熱單元120工作,即可實現熱理療器20的局部加熱,可控加熱。 It can be understood that the thermal therapy device 20 can further include a driving circuit and a controller for selectively applying current to the row electrode 204 and the column electrode 206 to make the row electrode 204 and the column electrode 206. The electrically connected heating unit 120 operates to achieve local heating and controllable heating of the thermal therapy device 20.

請參閱圖14及15,本發明第三實施例提供一種熱理療器30。本實施例與第二實施例的區別在於,加熱元件130與絕緣基底102之間沒有間隙,加熱元件130直接設置在絕緣基底102的表面並與絕緣基底102接觸,從而加熱元件130使用時不易被破壞。由於加熱元件130與絕緣基底102直接接觸,因此為了降低熱量損失,所述絕緣基底102材料優選導熱性較差材料。 Referring to Figures 14 and 15, a third embodiment of the present invention provides a thermal therapy device 30. The difference between this embodiment and the second embodiment is that there is no gap between the heating element 130 and the insulating substrate 102, and the heating element 130 is directly disposed on the surface of the insulating substrate 102 and is in contact with the insulating substrate 102, so that the heating element 130 is not easily used when used. damage. Since the heating element 130 is in direct contact with the insulating substrate 102, the material of the insulating substrate 102 is preferably a material having poor thermal conductivity in order to reduce heat loss.

該熱理療器在使用時,利用其熱輻射進行加熱,其具有以下優點:第一,奈米碳管膜結構具有較高的電熱轉換效率以及比較高的熱輻射效率,所以該熱理療器的電熱轉換效率及熱輻射效率較高。第二,由於奈米碳管膜結構的熱容較小,所以該加熱元件具有較快的熱響應速度,可實先前效地局部控制加熱。第三,由於加熱元件奈米碳管膜結構以及柔性高分子基體構成,並且所述奈米碳管膜結構靠近柔性高分子基體的一個表面設置於該柔性高分子 基體之中,由於奈米碳管膜結構於柔性高分子基體的熱膨脹係數不同,從而使得該加熱元件在加熱的同時還可以具有相當的形變,進一步還可以實現按摩的功能。第四,奈米碳管的密度較小,使該熱理療器的質量較輕,便於攜帶,可廣泛應用於各種領域。 The thermal therapy device is heated by its heat radiation when used, and has the following advantages: First, the carbon nanotube film structure has high electrothermal conversion efficiency and relatively high heat radiation efficiency, so the thermal therapy device Electrothermal conversion efficiency and heat radiation efficiency are high. Second, since the heat capacity of the carbon nanotube membrane structure is small, the heating element has a relatively fast thermal response speed, and can locally control the heating locally. Third, due to the heating element carbon nanotube film structure and the flexible polymer matrix, and the carbon nanotube film structure is disposed on the surface of the flexible polymer substrate on the flexible polymer Among the substrates, since the thermal expansion coefficient of the carbon nanotube film structure on the flexible polymer matrix is different, the heating element can be deformed while being heated, and the massage function can be further realized. Fourth, the density of the carbon nanotubes is small, so that the thermal therapy device is light in weight, easy to carry, and can be widely used in various fields.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧熱理療器 10‧‧‧Hot physiotherapy

102‧‧‧絕緣基底 102‧‧‧Insulation base

110‧‧‧第一電極 110‧‧‧First electrode

112‧‧‧第二電極 112‧‧‧second electrode

120‧‧‧加熱單元 120‧‧‧heating unit

130‧‧‧加熱元件 130‧‧‧heating elements

Claims (19)

一種熱理療器,包括:一絕緣基底具有一表面;複數個行電極與複數個列電極設置於絕緣基底的表面,該複數個行電極與複數個列電極相互交叉設置,每兩個相鄰的行電極以及與該兩個行電極交叉的兩個相鄰的列電極形成一個網格,且行電極與列電極之間電絕緣;以及複數個加熱單元,每個加熱單元對應一個網格設置,每個加熱單元包括一第一電極、一第二電極和一加熱元件,該第一電極與第二電極間隔設置,該第一電極與第二電極分別與所述行電極和列電極電連接,所述加熱元件與所述第一電極和第二電極電連接;所述加熱元件包括一奈米碳管膜結構以及一柔性高分子基體,所述柔性高分子基體具有一遠離所述絕緣基底的第一表面,以及一靠近所述絕緣基底的第二表面,所述奈米碳管膜結構設置於所述柔性高分子基體中且與所述第一表面的距離大於與所述第二表面的距離。 A thermal therapy device comprising: an insulating substrate having a surface; a plurality of row electrodes and a plurality of column electrodes disposed on a surface of the insulating substrate, the plurality of row electrodes and the plurality of column electrodes being disposed to cross each other, each two adjacent a row electrode and two adjacent column electrodes crossing the two row electrodes form a grid, and the row electrode and the column electrode are electrically insulated; and a plurality of heating units, each heating unit corresponding to a grid setting, each The heating unit includes a first electrode, a second electrode and a heating element, the first electrode is spaced apart from the second electrode, and the first electrode and the second electrode are electrically connected to the row electrode and the column electrode, respectively. The heating element is electrically connected to the first electrode and the second electrode; the heating element comprises a carbon nanotube film structure and a flexible polymer matrix, the flexible polymer substrate having a distance away from the insulating substrate a surface, and a second surface adjacent to the insulating substrate, the carbon nanotube film structure being disposed in the flexible polymer matrix and spaced from the first surface At a distance from the second surface. 如申請專利範圍第1項所述的熱理療器,其中,所述第一電極與行電極一體成型,第二電極與列電極一體成型。 The thermal therapy device according to claim 1, wherein the first electrode is integrally formed with the row electrode, and the second electrode is integrally formed with the column electrode. 如申請專利範圍第1項所述的熱理療器,其中,所述加熱元件的相對兩端通過所述第一電極和第二電極固定於所述絕緣基底。 The thermal therapy device of claim 1, wherein the opposite ends of the heating element are fixed to the insulating substrate by the first electrode and the second electrode. 如申請專利範圍第3項所述的熱理療器,其中,所述加熱元件通過所述第一電極以及第二電極與所述絕緣基底間隔設置。 The thermal therapy device of claim 3, wherein the heating element is spaced apart from the insulating substrate by the first electrode and the second electrode. 如申請專利範圍第1項所述的熱理療器,其中,所述第一表面與第二表面相互平行,所述奈米碳管膜結構平行與所述第二表面。 The thermal therapy device of claim 1, wherein the first surface and the second surface are parallel to each other, and the carbon nanotube film structure is parallel to the second surface. 如申請專利範圍第5項所述的熱理療器,其中,所述奈米碳管膜結構與第二表面的距離大於等於10微米且小於等於1毫米。 The thermal therapy device according to claim 5, wherein the carbon nanotube film structure has a distance from the second surface of 10 μm or more and 1 mm or less. 如申請專利範圍第1項所述的熱理療器,其中,所述奈米碳管膜結構的熱膨脹係數小於所述柔性高分子基體的熱膨脹係數。 The thermal therapy device of claim 1, wherein the carbon nanotube film structure has a thermal expansion coefficient smaller than a thermal expansion coefficient of the flexible polymer matrix. 如申請專利範圍第1項所述的熱理療器,其中,所述奈米碳管膜結構包括至少一奈米碳管膜、至少一奈米碳管線狀結構或兩者之組合。 The thermal therapy device of claim 1, wherein the carbon nanotube membrane structure comprises at least one carbon nanotube membrane, at least one nanocarbon pipeline structure, or a combination of the two. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管膜結構包括至少兩個層疊設置的奈米碳管膜,相鄰兩個奈米碳管膜之間通過凡得瓦力緊密連接。 The thermal therapy device of claim 8, wherein the carbon nanotube membrane structure comprises at least two laminated carbon nanotube membranes, and between two adjacent carbon nanotube membranes The watts are tightly connected. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管膜包括複數個奈米碳管,該複數個奈米碳管首尾相連且基本沿同一方向擇優取向排列。 The thermal therapy device of claim 8, wherein the carbon nanotube film comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being connected end to end and arranged in a preferred orientation substantially in the same direction. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管膜結構中的複數個奈米碳管基本沿第一電極向第二電極方向延伸。 The thermal therapy device of claim 8, wherein the plurality of carbon nanotubes in the carbon nanotube membrane structure extend substantially along the first electrode toward the second electrode. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管膜包括複數個奈米碳管沿不同方向擇優取向排列。 The thermal therapy device of claim 8, wherein the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in different directions. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管膜包括複數個奈米碳管相互纏繞。 The thermal therapy device of claim 8, wherein the carbon nanotube film comprises a plurality of carbon nanotubes intertwined with each other. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管線狀結構包括至少一非扭轉的奈米碳管線,所述非扭轉的奈米碳管線包括複數個奈米碳管軸向平行於該非扭轉的奈米碳管線長度方向排列。 The thermal therapy device of claim 8, wherein the nanocarbon line-like structure comprises at least one non-twisted nanocarbon pipeline, the non-twisted nanocarbon pipeline comprising a plurality of nanocarbons The tubes are axially aligned parallel to the length of the non-twisted nanocarbon line. 如申請專利範圍第8項所述的熱理療器,其中,所述奈米碳管線狀結構包括至少一扭轉的奈米碳管線,所述扭轉的奈米碳管線包括複數個奈米碳管沿該扭轉的奈米碳管線長度方向呈螺旋狀排列。 The thermal therapy device of claim 8, wherein the nanocarbon line-like structure comprises at least one twisted nanocarbon line, and the twisted nanocarbon line comprises a plurality of carbon nanotube tubes The twisted nanocarbon line is arranged in a spiral shape in the longitudinal direction. 如申請專利範圍第1項所述的熱理療器,其中,所述熱理療器進一步包括 複數個固定元件,該複數個固定元件分別對應設置於第一電極和第二電極,所述加熱元件的相對兩端分別設置於第一電極、第二電極與固定元件之間。 The thermal therapy device of claim 1, wherein the thermal therapy device further comprises And a plurality of fixing elements respectively disposed on the first electrode and the second electrode, wherein opposite ends of the heating element are respectively disposed between the first electrode, the second electrode and the fixing element. 如申請專利範圍第1項所述的熱理療器,其中,所述絕緣基底為柔性高分子材料構成。 The thermal therapy device according to claim 1, wherein the insulating substrate is made of a flexible polymer material. 如申請專利範圍第1項所述的熱理療器,其中,所述奈米碳管膜結構與所述柔性高分子基體的厚度比為1:2~1:300。 The thermal therapy device according to claim 1, wherein a thickness ratio of the carbon nanotube film structure to the flexible polymer matrix is 1:2 to 1:300. 一種熱理療器,包括:一絕緣基底以及設置於所述絕緣基底上的至少一加熱單元,該加熱單元包括一第一電極、一第二電極以及一加熱元件,所述第一電極與第二電極間隔設置並與加熱元件電連接,該加熱元件的相對兩端分別固定於所述絕緣基底,所述加熱元件包括一柔性高分子基體以及一奈米碳管膜結構包埋於所述柔性高分子基體中,所述柔性高分子基體具有一遠離所述絕緣基底的第一表面,以及一靠近所述絕緣基底的第二表面,所述奈米碳管膜結構與所述第一表面的距離大於與所述第二表面的距離。 A thermal therapy device comprising: an insulating substrate and at least one heating unit disposed on the insulating substrate, the heating unit comprising a first electrode, a second electrode and a heating element, the first electrode and the second The electrodes are spaced apart and electrically connected to the heating element, the opposite ends of the heating element are respectively fixed to the insulating substrate, and the heating element comprises a flexible polymer matrix and a carbon nanotube film structure embedded in the flexible high In the molecular matrix, the flexible polymer matrix has a first surface away from the insulating substrate, and a second surface adjacent to the insulating substrate, the distance between the carbon nanotube film structure and the first surface Greater than the distance from the second surface.
TW100100250A 2011-01-05 2011-01-05 Heat device TWI462734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100250A TWI462734B (en) 2011-01-05 2011-01-05 Heat device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100250A TWI462734B (en) 2011-01-05 2011-01-05 Heat device

Publications (2)

Publication Number Publication Date
TW201228649A TW201228649A (en) 2012-07-16
TWI462734B true TWI462734B (en) 2014-12-01

Family

ID=46933735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100250A TWI462734B (en) 2011-01-05 2011-01-05 Heat device

Country Status (1)

Country Link
TW (1) TWI462734B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832302B (en) * 2012-11-22 2016-06-08 清华大学 Automotive seat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
CN101848564A (en) * 2009-03-27 2010-09-29 清华大学 Heating element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
CN101848564A (en) * 2009-03-27 2010-09-29 清华大学 Heating element

Also Published As

Publication number Publication date
TW201228649A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
CN102038569B (en) Thermal physiotherapy device
US8841588B2 (en) Heater
JP5406141B2 (en) Carbon nanotube fabric and heater using the same
TWI420954B (en) Heater and method for making the same
US20100200568A1 (en) Carbon nanotube heater
US20100108664A1 (en) Carbon nanotube heater
CN102012061B (en) Electric warmer
CN102044627A (en) Electrostrictive composite material and electrostrictive element
TWI574578B (en) Thermal cusion
US20130041434A1 (en) Pad for thermotheraphy
CN101610613B (en) Line heat source
EP2136603A2 (en) Heater and method for making the same
TWI462734B (en) Heat device
TW201135997A (en) Electrostrictive material and actuator using the same
TWI394303B (en) Electrostrictive material and actuator using the same
CN101616514B (en) Linear heat source
TWI381989B (en) Heating device
CN101616516B (en) Line heat source
CN101636006B (en) Plane heat source
TWI462630B (en) Planar heating source
TWI400985B (en) Method for making planar heater
TWI462628B (en) Planar heating source
TWI380728B (en) Linear heater
TW201000395A (en) Linear heater
TWI380733B (en) Planar heating source