TW201000395A - Linear heater - Google Patents

Linear heater Download PDF

Info

Publication number
TW201000395A
TW201000395A TW97124091A TW97124091A TW201000395A TW 201000395 A TW201000395 A TW 201000395A TW 97124091 A TW97124091 A TW 97124091A TW 97124091 A TW97124091 A TW 97124091A TW 201000395 A TW201000395 A TW 201000395A
Authority
TW
Taiwan
Prior art keywords
layer
heat source
carbon nanotube
line heat
carbon
Prior art date
Application number
TW97124091A
Other languages
Chinese (zh)
Other versions
TWI372724B (en
Inventor
Chen Feng
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097124091A priority Critical patent/TWI372724B/en
Publication of TW201000395A publication Critical patent/TW201000395A/en
Application granted granted Critical
Publication of TWI372724B publication Critical patent/TWI372724B/en

Links

Abstract

The present invention relates to a linear heater. The linear heater includes a linear substrate, a heating layer disposed on a surface of the linear substrate, at least two electrodes disposed on a surface of the heating layer separately. The at least two electrodes are electrically connected with the heating layer. The heating layer includes at least one carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes arranged along a same direction.

Description

201000395 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種線熱源,尤其涉及一種基於奈米碳管 的線熱源。 【先前技術】 熱源於人們的生產、生活、科研中起著重要的作用。 線熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外 治療儀、電暖器等領域。 °月參見圖1 ’先剷技術提供一種線熱源1 〇,其包括一 t空圓柱狀支架102; —加熱層1〇4設置於該支架1〇2表 面 絕緣保遵層設置於該加熱層1〇4表面;兩個電 極110分別設置於支架102兩端,且與加熱層1〇4電連接; 兩個夾緊件108分別將兩個電極11〇與加熱層1〇4卡固於 支架102兩端。其中,加熱層1〇4通常採用一碳纖維紙通 過纏繞或包裹的方式形成。當通過兩個電極11〇對該線熱 源10施加一電壓時,所述加熱層1〇4產生焦耳熱,並向周 圍進行熱輪射。所述碳纖維紙包括紙基材及雜亂分佈於該 、’、氏基材中的瀝青基碳纖維。其中,紙基材包括纖維素纖維 及樹如等的混合物’瀝青基碳纖維的直徑為3~6毫米,長 度為5〜20微米。 ^然而,採用碳纖維紙作為加熱層具有以下缺點:第一, ,纖維紙厚度較大’-般為幾十微米 ,使線熱源不易做成 微31、.’σ構,無法應用於微型器件的加熱。第二,由於該碳 H氏中包含紙基材’故’該碳纖維紙的密度較大,重量 6 201000395 :碳碳纖維紙的線熱源使用不便。第三,由於 的強=^瀝青基碳纖維雜亂分佈,&,該碳纖維紙 第四:二维f性較差,容易破裂’限制了其應有範圍。 右=維紙的電熱轉換效率較低,不利於節能環保。 器件此提供—種重I小,強度大,適應用於微型 源1電熱轉換效率較低,利於節能環保的線熱 你耳馬必要。 【發明内容】 種線熱源包括一線狀基底,一加熱層設置於線狀基 底的表面’以及至少兩個電極間隔設置於加熱層的表面, 所逑的至少兩個電極與該加熱層電連接,#中,所述的加 熱層包括至少—奈米碳管薄膜,且同-奈来碳管薄膜中的 奈米碳管沿同一方向排列。 先刖技術相比較,所述的線熱源具有以下優點:第 一’奈米碳管的直徑較小,使得奈米碳管層具有較小的厚 度二可製備微型線熱源,應用於微型器件的加熱。第二, 不米碳官比碳纖維具有更小的密度,故,採用奈米碳管層 的線熱源具有更輕的重量,使用方便。第三,所述的奈米 石反官層包括至少一奈米碳管薄膜,同一奈米碳管薄膜中的 不米碳官沿同一方向排列,具有較低的電阻,且奈米碳管 的電熱轉換效率高,熱阻率低,故,該線熱源具有升溫迅 速、熱滯後小、熱交換速度快的特點。 【實施方式】 以下將結合附圖詳細說明本技術方案的線熱源。 201000395 請參閱圖2至圖4,本技術方案實施例提供一種線熱 源20 ’該線熱源20包括一線狀基底2〇2 ;—反射層21〇 設置於該線狀基底202的表面;一加熱層204設置於所述 反射層210表面;至少兩個電極206間隔設置於該加熱層 204的表面,且與該加熱層204電連接;以及一絕緣保護 層208設置於該加熱層204的外表面。所述線熱源2〇的直 徑為0.1微米〜1.5厘米。本實施例的線熱源2〇的直徑優選 為1.1毫米〜1.1厘米。 ' 所述線狀基底202用於支撐加熱層2〇4,其材料可為 硬性材料,如:陶瓷、玻璃、樹脂或石英等,亦可選擇柔 性材料,如:塑膠或柔性纖維等,用以使該線熱源2〇使用 時根據需要彎折成任意形狀。所述線狀基底2〇2的長度、 直徑以及形狀不限,可依據實際需要進行選擇。本實施例 優選的線狀基底202為一陶瓷桿,其直徑為丄毫米〜丨厘米。 所述反射層210的材料為一白色絕緣材料,如:金屬 氧化物、金屬鹽或陶瓷等。本實施例中,反射層2ι〇的材 料優選二氧化二鋁,其厚度為1〇〇微米〜〇5毫米。該反射 層210通過濺射的方法沈積於該線狀基底2〇2表面^所述 反射層210絲更好的反射加熱層2〇4所發的熱量盆 有效的散發到外界空間去。可以理解,該反射層Μ — 可馮煜鈷谌。 % 所述加熱層204包括一奈米碳管層。該奈米碳管層可 包衷或纏繞於所述反射層21〇的表面。該奈米碳管層^ 用本身的黏性與該反射層21〇連接,也可通過黏結; 8 201000395 射層210連接。所述的黏結劑為矽膠。可以理解,當該線 熱源20不包括反射層210時,加熱層2〇4可直接包裹或纏 繞於所述線狀基底202的表面。所述奈米碳管層的厚度為 1微米〜1宅米。 所述奈米碳官層包括至少一奈米碳管薄膜。請參閱圖 5’該奈米碳管薄膜可通過直接拉伸—奈米碳管陣列獲得。 j奈米碳f薄膜包括複數個沿拉伸方向定向排列的奈米碳 官。所述奈米碳管均勻分佈,且平行于奈米碳管薄膜表面。 具體地,請參閱圖6,所述奈米碳管薄膜包括複數個首尾 相連且長度相等的奈米碳管束162。所述奈米碳管束162 的兩端通過凡德瓦爾力相互連接。每個奈米碳管束162包 括複數個長度相等且平行排列的奈米碳管163。所述相鄰 的奈米碳管163之間通過凡德瓦爾力緊密結合。故,該奈 米碳管薄膜具有—定的柔韌性’可彎曲折疊成任意形狀而 不破裂’且採用該奈米碳管薄膜的線熱源2()具有較長的使 用哥命。 所述奈米碳管薄膜中的奈米碳管包括單壁夺米碳管、 雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁 奈米碳管的直徑為0.5奈米〜1〇奈米,雙壁奈来碳管的直 徑為ίο奈米~15奈米,多壁奈米破管的直徑& 15奈米〜% 奈米。該奈米碳管的長度為2〇〇 〜400微米。 所述奈米碳管薄膜係由奈米碳管陣列經進一步處理得 到的,故其長度不限,寬度與奈米碳管陣列所生長的基底 的尺寸有關,可根據實際需求制得。本實施例中,採用氣 9 201000395 相沈積法於4英寸的基底生長超順排奈米碳管陣列。所述 奈米碳管薄膜的寬度可為0.01厘米〜1〇厘米,厚度為〇〇1 微米〜100微米。奈米碳管薄膜的厚度優選為0.1微米〜10 微米。 所述奈米碳管層包括至少兩層重疊設置的奈米碳管薄 膜知,相鄰的奈米碳管薄膜之間通過凡德瓦爾力緊密結 合。進一步,該奈米碳管層中的奈米碳管薄膜的層數不限, 且相鄰兩層奈米碳管薄膜之間具有一交叉角度α,叱“卯 度具體可依據實際需求製備。可以理解,通過控制奈米 碳管薄膜的層數可控制奈米碳管層的厚度。奈米碳管層的 熱回應速度與其厚度有關。相同面積的情況下,奈米碳管 層的厚度越大,熱回應速度越慢;反之,奈米碳管層的厚 度越小,熱回應速度越快。本實施例中,所述奈米碳管層 的厚度為1微米〜1毫米,奈米碳管層於小於i秒的時間内 就可達到最高溫度。本實施例中,奈米碳管單層膜於01 毫秒時間内就可達到最高溫度。故,該線熱源2 0適用於對 物體快速加熱。 本實施例中,加熱層204採用重疊且交叉設置的 層奈米礙管薄膜,相鄰兩層奈米碳管薄膜之間交叉的角度 為90度。該奈米碳管層中奈米碳管薄膜的長度為$厘米, ,米碳管薄膜的寬度為3厘米,奈米碳管薄膜的厚度為5〇 微米。利用奈米碳管層本身的黏性,將該奈米碳管層包裹 於所述反射層210的表面。 所述電極206可設置於加熱層2〇4的同一表面上也可 201000395 設置於加熱層204的不同表面上。所述電極206可通過奈 .米碳管層的黏性或導電黏結劑(圖未示)設置於該加熱層 204的表面上。導電黏結劑實現電極2〇6與奈米碳管層電 接觸的同時,還可將電極206更好地固定于奈米碳管層的 表面上。通過該兩個電極2〇6可對加熱層204施加電壓。 其中’兩個電極206之間相隔設置,以使採用奈米碳管層 的加熱層204通電發熱時接入一定的阻值避免短路現象產 生。優選地,將電極206環繞設置於加熱層2〇4的表面。 由於加熱層204中的奈米碳管薄膜於沿奈米碳管的方向具 有較低的電阻率,故,該加熱層204的設置與所述電極206 的設置有關。優選地,該加熱層2〇4中部分奈米碳管的排 列方向沿著中一個電極2〇6向另一個電極2〇6的方向延伸。 、所述電極206為導電薄膜、金屬片或者金屬引線。該 導電薄膜的材料可為金屬、合金、銦錫氧化物(ITO)、銻 錫氧化物(細)、導電銀谬、導電聚合物等。該導電薄膜 可通過物理氣相沈積法,化學氣相沈積法或其他方法形成 於加熱層204表面。該金屬片可為銅片或銘片冑。該金屬 片了通過導電黏結劑固定於力口熱層204表面。 —所述電極206還可為一金屬性奈来碳管結構。該奈米 碳管結構設置於加熱層綱的表面。該奈米碳管結構可通 過其自身的黏性或導電黏結劑固定於加熱層204的表面。 ί奈St結構包括定向排列且均勾分佈的金屬性奈米碳 丨,该奈米碳管結構包括至少一有序奈米碳管薄 膜或至少一奈米碳管長線。 11 201000395 ,ϋίΓΓ彳中,優選地,將兩個有序奈米碳管薄膜分別 "又;/η、’’狀基底2〇2長度方向的兩端作為電極鳩。該 兩:有序奈米碳管薄膜環繞於加熱層2〇4的内表面,並通 2電黏結劑與加熱層綱之間形成電接觸。所述導電黏 …劑優選為銀膠。由於本實施例中的加熱層綱採用重爲 且^叉設置的奈求碳管薄膜,故,電極2〇6與加熱層^ ^用奈米碳管結構,可降低電極鹰與加熱層撕之間 姆接觸電阻’從而提高線熱源2G對電能的利用率。 =述絕緣保護層雇的材料為—絕緣材料,如:橡谬、 二曰#二述絕緣保護層2〇8厚度不限,可根據實際情況 ί 中’該絕緣保護層208的材料採用橡膠, ^度為〇.5〜2毫米。該絕緣保護層208可通過塗敷或包 =方法形成於加熱層2()4的外表面。所述絕緣保護層施 防止該線熱源2〇使用時與外界形成電接觸,同時還可 防止加熱層204中的奈米碳管層吸附外界雜質。可以理 解,该絕緣保護層208為一可選擇結構。 奈米碳管具有良好的導電性能以及熱穩定性,作為一 2想的黑體結構’且具有比較高的熱㈣效率。本實施例 ,對由100層奈米碳管交叉膜組成的奈米碳管層 該奈米碳管層長5厘米,寬3厘米。將該 不未石厌g層包袭於-直徑為i厘米的線狀基底规上,且 其位於兩個電極206之間的長度為3厘米 的長測量儀器㈣仏㈣= 號為RAYTEK RAYNER IP_M與紅㈣溫儀測量儀器, 12 201000395 .型號為AZ-8859。請參見圖7,當加熱功率為%瓦時,其 表面溫度已經達到37(TC。可見’該奈米碳管層具有較/高 的電熱轉換效率。 將該線熱源20連接導線接入電源電壓後,通過於1〇 伏〜30伏之間調節電源電壓的大小,該線熱源汕可輻射出 波長較長的電磁波。通過溫度測量儀發現該線熱源2〇的溫 度為50°C〜50(TC。對於具有黑體結構的物體來說,其所對 應的溫度為20(TC〜450。(:時就能發出人眼看不見的熱輻射 (紅外線),此時的熱輻射最穩定、效率最高,所產生的熱 輻射熱量最大。 ” 該線熱源20使用時,可將其設置於所要加熱的物體表 面或將其與被加熱的物體間隔設置,利用其熱輕射即可進 行加熱。另,還可將複數個該線熱源2〇排列成各種預定的 圖形使用。該線熱源20可應用於電加熱器、紅外治療儀、 電暖器等領域。 广本實施例提供的線熱源2〇中,奈米碳管具有奈米級的 直& ’使知製備的奈米碳管層可具有較小的厚度,故,採 用小直徑的線狀基底可製備微型線熱源。奈米碳管具有強 的抗腐純,使其可於酸性環境中工作。另,奈米碳管比 :體積,度高⑽倍,重量卻只有其1/6,故,採用 /丁、米石反吕的線熱源2〇具有更高的強度及更輕的重量。 、’’τ上所述本發明確已符合發明專利之要件,遂依法 f出專射請。惟,以上所述者料本發日狀較佳實施例, 不月b以此限制本案之申請專利範圍。舉凡熟悉本案技藝 13 201000395 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為先前技術的線熱源的結構示意圖。 圖2為本技術方案實施例的線熱源的結構示意圖 圖3為圖2的線熱源沿線m -m的剖面示意圖。 圖4為圖3的線熱源沿線jy _jy的的剖面示意圖。 圖5為本技術方案實施例的奈米碳管薄膜的掃描電鏡 圖6為本技術方 示意圖。 圖7為本技術方 功率的關係圖。 案實施例的奈米碳管薄臈的局部結構 案實施例的線熱源的表面溫度與加熱 10, 20 102 104, 204 106 108 110, 206 202 208 210 【主要元件符號說明】 線熱源 支架 加熱層 保護層 夾緊件 電極 線狀基底 絕緣保護層 反射層201000395 IX. Description of the Invention: [Technical Field] The present invention relates to a line heat source, and more particularly to a line heat source based on a carbon nanotube. [Prior Art] Heat plays an important role in people's production, life, and scientific research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heaters. Referring to FIG. 1 'the first shovel technology provides a line heat source 1 〇, which includes a t-cylindrical bracket 102; - a heating layer 1 〇 4 is disposed on the bracket 1 〇 2 surface insulation layer is disposed on the heating layer 1 The two electrodes 110 are respectively disposed at two ends of the bracket 102 and electrically connected to the heating layer 1〇4; the two clamping members 108 respectively fix the two electrodes 11〇 and the heating layer 1〇4 to the bracket 102. Both ends. Among them, the heating layer 1〇4 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the line heat source 10 through the two electrodes 11 ,, the heating layer 1 〇 4 generates Joule heat and performs heat bombing around. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers randomly distributed in the substrate. Among them, the paper substrate comprises a mixture of cellulose fibers and trees, etc. The pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm. ^ However, the use of carbon fiber paper as a heating layer has the following disadvantages: First, the thickness of the fiber paper is relatively large - tens of micrometers, making the line heat source difficult to be made into micro 31, .'σ structure, which cannot be applied to micro devices. heating. Second, since the carbon substrate contains a paper substrate, the carbon fiber paper has a high density, and the weight 6 201000395: the carbon heat source of the carbon fiber paper is inconvenient to use. Third, due to the strong distribution of the pitch-based carbon fiber, &, the carbon fiber paper fourth: two-dimensional f-poor, easy to rupture 'limits its due range. Right=dimensional paper has low electrothermal conversion efficiency, which is not conducive to energy saving and environmental protection. This device provides - the weight I is small, the intensity is large, and it is suitable for the micro-source 1 electrothermal conversion efficiency is low, which is conducive to energy saving and environmental protection. SUMMARY OF THE INVENTION A seed line heat source includes a linear substrate, a heating layer is disposed on a surface of the linear substrate and at least two electrodes are spaced apart from the surface of the heating layer, and at least two electrodes of the plurality of electrodes are electrically connected to the heating layer. In #, the heating layer comprises at least a carbon nanotube film, and the carbon nanotubes in the same-namina carbon nanotube film are arranged in the same direction. Compared with the prior art, the line heat source has the following advantages: the first 'nano carbon tube has a small diameter, so that the carbon nanotube layer has a small thickness, and a microwire heat source can be prepared for use in a micro device. heating. Second, the non-carbon carbon has a smaller density than the carbon fiber. Therefore, the line heat source using the carbon nanotube layer has a lighter weight and is convenient to use. Third, the nano-stone anti-official layer comprises at least one carbon nanotube film, and the carbon nanotubes in the same carbon nanotube film are arranged in the same direction, have low electrical resistance, and the carbon nanotubes are The electrothermal conversion efficiency is high and the thermal resistivity is low. Therefore, the line heat source has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange rate. [Embodiment] Hereinafter, a line heat source of the present technical solution will be described in detail with reference to the accompanying drawings. 201000395 Referring to FIG. 2 to FIG. 4, the embodiment of the present invention provides a line heat source 20'. The line heat source 20 includes a linear substrate 2〇2; a reflective layer 21 is disposed on a surface of the linear substrate 202; and a heating layer 204 is disposed on the surface of the reflective layer 210; at least two electrodes 206 are spaced apart from the surface of the heating layer 204 and electrically connected to the heating layer 204; and an insulating protective layer 208 is disposed on the outer surface of the heating layer 204. The linear heat source 2 has a diameter of 0.1 μm to 1.5 cm. The diameter of the line heat source 2 of the present embodiment is preferably 1.1 mm to 1.1 cm. The linear substrate 202 is used to support the heating layer 2〇4, and the material thereof may be a hard material such as ceramic, glass, resin or quartz, or a flexible material such as plastic or flexible fiber. When the wire heat source 2 is used, it is bent into an arbitrary shape as needed. The length, diameter and shape of the linear substrate 2〇2 are not limited, and may be selected according to actual needs. The preferred linear substrate 202 of the present embodiment is a ceramic rod having a diameter of 丄 mm to 丨 cm. The material of the reflective layer 210 is a white insulating material such as a metal oxide, a metal salt or a ceramic. In the present embodiment, the material of the reflective layer 2 ι is preferably alumina, and has a thickness of from 1 μm to 5 mm. The reflective layer 210 is deposited on the surface of the linear substrate 2〇2 by sputtering. The reflective layer 210 is better to reflect the heat generated by the heating layer 2〇4 and is effectively emitted to the external space. It can be understood that the reflective layer Μ - can be 煜 煜 cobalt 谌. % The heating layer 204 comprises a carbon nanotube layer. The carbon nanotube layer may be wrapped or wound around the surface of the reflective layer 21〇. The carbon nanotube layer is connected to the reflective layer 21 by its own viscosity, and can also be bonded by bonding; 8 201000395 The shot layer 210 is connected. The binder is silicone. It can be understood that when the line heat source 20 does not include the reflective layer 210, the heating layer 2〇4 can be directly wrapped or wrapped around the surface of the linear substrate 202. The carbon nanotube layer has a thickness of 1 μm to 1 house square. The nanocarbon layer comprises at least one carbon nanotube film. Referring to Figure 5', the carbon nanotube film can be obtained by direct stretching - a carbon nanotube array. The j nanocarbon f film comprises a plurality of nanocarbons oriented in the direction of stretching. The carbon nanotubes are evenly distributed and parallel to the surface of the carbon nanotube film. Specifically, referring to Fig. 6, the carbon nanotube film comprises a plurality of carbon nanotube bundles 162 that are connected end to end and of equal length. Both ends of the carbon nanotube bundle 162 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 162 includes a plurality of carbon nanotubes 163 of equal length and arranged in parallel. The adjacent carbon nanotubes 163 are tightly bonded by van der Waals force. Therefore, the carbon nanotube film has a constant flexibility 'flexible folding into an arbitrary shape without cracking' and the line heat source 2 () using the carbon nanotube film has a long use life. The carbon nanotubes in the carbon nanotube film include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 1 〇 nanometer, the diameter of the double-walled carbon nanotube is ίο nanometer to 15 nm, and the diameter of the multi-walled nanotube is & 15 nm. ~% nano. The carbon nanotubes have a length of 2 〜 to 400 μm. The carbon nanotube film is further processed by the carbon nanotube array, so the length is not limited, and the width is related to the size of the substrate on which the carbon nanotube array is grown, and can be prepared according to actual needs. In this example, a super-sequential carbon nanotube array was grown on a 4-inch substrate using a gas 9 201000395 phase deposition method. The carbon nanotube film may have a width of from 0.01 cm to 1 cm and a thickness of from 1 μm to 100 μm. The thickness of the carbon nanotube film is preferably from 0.1 μm to 10 μm. The carbon nanotube layer comprises at least two layers of carbon nanotube membranes arranged in an overlapping manner, and the adjacent carbon nanotube membranes are tightly bonded by van der Waals force. Further, the number of layers of the carbon nanotube film in the carbon nanotube layer is not limited, and the adjacent two layers of carbon nanotube film have a crossing angle α, and the enthalpy can be prepared according to actual needs. It can be understood that the thickness of the carbon nanotube layer can be controlled by controlling the number of layers of the carbon nanotube film. The thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the thickness of the carbon nanotube layer is higher. Large, the slower the thermal response speed; conversely, the smaller the thickness of the carbon nanotube layer, the faster the thermal response speed. In this embodiment, the thickness of the carbon nanotube layer is 1 micrometer to 1 mm, and the carbon is nano carbon. The tube layer can reach the maximum temperature in less than i seconds. In this embodiment, the carbon nanotube single layer film can reach the maximum temperature in 01 milliseconds. Therefore, the line heat source 20 is suitable for fast objects. In this embodiment, the heating layer 204 adopts an overlapping and intersecting layer of nano-barrier film, and the angle between the adjacent two layers of carbon nanotube film is 90 degrees. The nano-carbon nanotube layer is in the middle of the carbon nanotube layer. The carbon tube film has a length of $cm, and the carbon nanotube film The thickness is 3 cm, and the thickness of the carbon nanotube film is 5 μm. The carbon nanotube layer is wrapped on the surface of the reflective layer 210 by the viscosity of the carbon nanotube layer itself. The same surface disposed on the heating layer 2〇4 may also be disposed on different surfaces of the heating layer 204. The electrode 206 may be disposed on the surface of the heating layer 204 by a viscous or conductive adhesive (not shown). On the surface of the heating layer 204, the conductive adhesive can make the electrode 206 be in electrical contact with the carbon nanotube layer, and the electrode 206 can be better fixed on the surface of the carbon nanotube layer. The electrode 2〇6 can apply a voltage to the heating layer 204. Wherein the two electrodes 206 are spaced apart to allow a certain resistance to be avoided when the heating layer 204 using the carbon nanotube layer is energized and heated to avoid short circuit. The electrode 206 is disposed around the surface of the heating layer 2〇 4. Since the carbon nanotube film in the heating layer 204 has a lower resistivity in the direction of the carbon nanotube, the heating layer 204 is disposed. Related to the setting of the electrode 206. Preferably, the The arrangement direction of the partial carbon nanotubes in the heating layer 2〇4 extends along the direction of the middle electrode 2〇6 toward the other electrode 2〇6. The electrode 206 is a conductive film, a metal piece or a metal lead. The material of the film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (fine), conductive silver antimony, conductive polymer, etc. The conductive film can be obtained by physical vapor deposition, chemical vapor deposition Or other methods are formed on the surface of the heating layer 204. The metal piece may be a copper piece or a slab 胄. The metal piece is fixed to the surface of the heat absorbing layer 204 by a conductive adhesive. - The electrode 206 may also be a metallic The carbon nanotube structure is disposed on the surface of the heating layer. The carbon nanotube structure can be fixed to the surface of the heating layer 204 by its own viscous or conductive adhesive. The St St structure includes a directionally aligned and uniformly branched metallic nanocarbon ruthenium comprising at least one ordered carbon nanotube film or at least one nanocarbon long line. In the case of the 201000395, preferably, the two ends of the two ordered carbon nanotube films are respectively used as the electrode 鸠 in the longitudinal direction of the substrate 2〇2. The two: an ordered carbon nanotube film surrounds the inner surface of the heating layer 2〇4, and makes electrical contact between the electric bonding agent and the heating layer. The conductive adhesive is preferably a silver paste. Since the heating layer in this embodiment adopts a carbon nanotube film which is provided with a weight and a cross, the electrode 2〇6 and the heating layer are made of a carbon nanotube structure, which can reduce the tearing of the electrode eagle and the heating layer. The m-ohm contact resistance' thus increases the utilization of electric energy by the line heat source 2G. = The material used for the insulation protection layer is - insulation material, such as: rubber, two 曰 # 二 insulation protection layer 2 〇 8 thickness is not limited, according to the actual situation ί 'the insulation protection layer 208 material is rubber, The degree is 〇.5~2 mm. The insulating protective layer 208 may be formed on the outer surface of the heating layer 2 () 4 by a coating or a package method. The insulating protective layer prevents the line heat source 2 from making electrical contact with the outside when in use, and also prevents the carbon nanotube layer in the heating layer 204 from adsorbing foreign impurities. It can be understood that the insulating protective layer 208 is an optional structure. The carbon nanotubes have good electrical conductivity and thermal stability, and have a relatively high thermal (four) efficiency. In this embodiment, a carbon nanotube layer composed of a 100-layer carbon nanotube cross-film is formed. The carbon nanotube layer is 5 cm long and 3 cm wide. The non-stone layer is encased on a linear substrate having a diameter of i cm, and a long measuring instrument having a length of 3 cm between the two electrodes 206 (four) 仏 (4) = No. RAYTEK RAYNER IP_M With the red (four) thermometer measuring instrument, 12 201000395 . Model AZ-8859. Referring to Figure 7, when the heating power is % watt, the surface temperature has reached 37 (TC. It can be seen that the carbon nanotube layer has a higher/high electrothermal conversion efficiency. Connect the line heat source 20 to the power supply voltage. After that, by adjusting the power supply voltage between 1 volt and 30 volts, the line heat source 辐射 can radiate electromagnetic waves having a long wavelength. The temperature of the line heat source is found to be 50 ° C to 50 by a temperature measuring instrument ( TC. For an object with a black body structure, the corresponding temperature is 20 (TC~450. (: When it can emit heat radiation (infrared) that is invisible to the human eye, the heat radiation at this time is the most stable and efficient. The heat generated by the heat radiation is the largest." When the line heat source 20 is used, it can be placed on the surface of the object to be heated or placed at an interval from the object to be heated, and can be heated by the heat of the heat. A plurality of the line heat sources 2 can be arranged in various predetermined patterns. The line heat source 20 can be applied to the fields of electric heaters, infrared therapeutic devices, electric heaters, etc. In the line heat source provided by the present embodiment, Nano carbon tube has The rice-level straight & 'make the carbon nanotube layer prepared can have a small thickness, so a micro-wire heat source can be prepared by using a small-diameter linear substrate. The carbon nanotube has a strong anti-corrosion purity, so that It can work in an acidic environment. In addition, the ratio of carbon nanotubes is: volume, degree is high (10) times, and weight is only 1/6. Therefore, the line heat source of 丁, 米石反吕 has higher Strength and lighter weight. The invention described in ''τ' has already met the requirements of the invention patent, and the special invention is required according to law. However, the above-mentioned materials are preferred embodiments of the present invention. b. This is to limit the scope of the patent application in this case. Any equivalent modifications or variations made by persons familiar with the skill of the present invention 13 201000395 in accordance with the spirit of the present invention shall be covered by the following patents. [Simplified illustration] Figure 1 2 is a schematic structural view of a line heat source according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of the line heat source of FIG. 2 along line m - m. FIG. 4 is a line heat source along line jy of FIG. Schematic diagram of _jy. Figure 5 is the technical side The scanning electron micrograph of the carbon nanotube film of the embodiment is a schematic diagram of the technology of the present invention. Fig. 7 is a diagram showing the relationship between the power of the present invention and the local structure of the carbon nanotube thin film of the embodiment. Surface temperature and heating 10, 20 102 104, 204 106 108 110, 206 202 208 210 [Main component symbol description] Line heat source bracket heating layer protective layer clamping member electrode linear substrate insulating protective layer reflective layer

Claims (1)

201000395 十、申請專利範圍 1. 一種線熱源包括一線狀基底,一加熱層設置於線狀基底 的表面,以及至少兩個電極間隔設置於加熱層的表面, 所述的至少兩個電極與該加熱層電連接,其改良在於, 所述的加熱層包括至少一奈米碳管薄膜,且該奈米碳管 薄膜中的奈米碳管沿同一方向排列。 2·如申請專利範圍第丨項所述的線熱源,其甲,所述奈米 ,管薄膜包括複數個首尾相連且擇優取向排列的奈:碳 管束,相鄰的奈米碳管束之間通過凡德瓦爾力連接。 3.tr青專利範圍第2項所述的線熱源’其中,所述奈米 石反官束包括複數個具有相同長戶 π 我度且相互平订排列的奈米 範圍第3項所述的線熱源,其中, 的長度為200〜400微米,直徑小於50奈米。、 範圍第1項所述的線熱源,#中,所述夸 Hi少兩個重疊設置的奈米碳管薄膜,ί: 兩個不米石反官薄膜之間通過 、 6.如申社R & < 尥凡德瓦爾力緊密連接。 碳匕=太?項所述的線熱源,其中,所述夸 反e層中相鄰奈米碳管薄 k不 〇$〇^90度。 、<間具有一交又角度c 7·如申請專利範u帛i項所述的 碳管薄膜的厚度為001微、、I熱源,其中,所述奈米 8,如申請專利範圍第丄項所述:::米。 碳管層的厚度為i微米〜:亳々熱源,其中,所述奈米 15 201000395 .專利範圍第1項所述的線熱源,其中,所述奈米 厌&層纏繞或包裹設置於緣狀 • 10.如申請專利範m s 底的表面。 為-夺線_,其巾,所述電極 勻分;::r:米且均 層的表面。 ° ”;、反管結構设置於加熱 n.如申請專利範圍第10項所 米碳管結構通過其自身的黏性或導;:::中,所述奈 層的表面。 導電黏結劑固定於加熱 12·如申請專利範圍第1〇項 米碳管結構包括至少—有 、錢源,其中,所述奈 碳管長線。 有序不水碳管薄膜或至少一奈米 A如申請專利範圍第1項所述的線埶、s 基底的材料為柔性材料或硬性源,其中,所述線狀 塑膠或柔性纖維,所述硬 ^ ’且所㈣性材料為 , 石英。 料為陶瓷、玻璃、樹脂或 14d=:所述的線熱源,其中,所述線熱 &如申請專利範圍第 射層的材料為金屬氧化物、二、線熱源,其中,所述反 16.如申請專利範圍第14項所述::陶竞。 射層的厚度為100微米〜05 *的線熱源,其中,所述反 17·如申請專利範圍第1項所述的1 源進-步包括-絕緣保護層4 其中,所述線熱 9 %置於所述加熱層的外表 16 201000395 面。 18.如申請專利範圍第1項所述的線熱源,其中,所述線熱 源的直徑為0.1微米〜1.5厘米。 17201000395 X. Patent Application Range 1. A line heat source includes a linear substrate, a heating layer is disposed on a surface of the linear substrate, and at least two electrodes are spaced apart from the surface of the heating layer, the at least two electrodes and the heating The layer is electrically connected, and the improvement is that the heating layer comprises at least one carbon nanotube film, and the carbon nanotubes in the carbon nanotube film are arranged in the same direction. 2. The line heat source according to claim 2, wherein the nano tube film comprises a plurality of end-to-end and preferentially oriented naphthalene bundles, and the adjacent carbon nanotube bundles pass between Van der Valli is connected. 3. The line heat source according to item 2 of the patent scope of the present invention, wherein the nanostone anti-official bundle includes a plurality of nanometers having the same length π I degree and which are arranged in a mutually aligned manner. A line heat source, wherein the length is 200 to 400 microns and the diameter is less than 50 nm. In the line heat source described in the first item of the first item, in the #, the two carbon nanotube films are arranged in an overlapping manner, and the two carbon nanotube films are passed between the two non-meter stone anti-official films, 6. &< 尥凡德瓦尔力 is tightly connected. Carbon 匕 = too? The line heat source according to the item, wherein the adjacent carbon nanotubes in the k-th layer are thinner than k 90. < Between the intersection and the angle c 7 · The thickness of the carbon tube film described in the patent application 帛u帛i is 001 micro, I heat source, wherein the nanometer 8, as claimed in the patent scope Item::: meters. The carbon tube layer has a thickness of 1 micrometer to: a heat source, wherein the nanometer 15 201000395. The line heat source according to claim 1, wherein the nano anaesthetic layer is wound or wrapped around the edge. Shape • 10. If you apply for the surface of the patent. For the wire, the electrode is evenly divided;::r: the surface of the layer and the layer. °";, the anti-tube structure is set to heat n. As in the scope of claim 10, the carbon tube structure passes through its own viscosity or conductivity;:::, the surface of the naphthalene layer. The conductive adhesive is fixed to Heating 12·If the scope of the patent application is the first item, the carbon tube structure includes at least one, the source of money, wherein the carbon nanotube long line. The ordered non-aqueous carbon tube film or at least one nanometer A as claimed in the patent scope The material of the wire 埶, s base of the item 1 is a flexible material or a hard source, wherein the linear plastic or flexible fiber, the hard material and the (four) material are quartz. The material is ceramic, glass, Resin or 14d=: the line heat source, wherein the line heat & the material of the first shot layer of the patent application is a metal oxide, a second line heat source, wherein the counter is as claimed in the patent scope Item 14:: Tao Jing. A line heat source having a thickness of 100 μm to 05 *, wherein the reverse source includes a 1-insulation protective layer as described in claim 1 4 wherein the wire heat is 9% placed on the outer surface of the heating layer 1 The line heat source of claim 1, wherein the line heat source has a diameter of 0.1 μm to 1.5 cm.
TW097124091A 2008-06-27 2008-06-27 Linear heater TWI372724B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097124091A TWI372724B (en) 2008-06-27 2008-06-27 Linear heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097124091A TWI372724B (en) 2008-06-27 2008-06-27 Linear heater

Publications (2)

Publication Number Publication Date
TW201000395A true TW201000395A (en) 2010-01-01
TWI372724B TWI372724B (en) 2012-09-21

Family

ID=44824511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097124091A TWI372724B (en) 2008-06-27 2008-06-27 Linear heater

Country Status (1)

Country Link
TW (1) TWI372724B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478860B (en) * 2012-10-12 2015-04-01 Hon Hai Prec Ind Co Ltd Method for making heating elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478860B (en) * 2012-10-12 2015-04-01 Hon Hai Prec Ind Co Ltd Method for making heating elements

Also Published As

Publication number Publication date
TWI372724B (en) 2012-09-21

Similar Documents

Publication Publication Date Title
TWI420954B (en) Heater and method for making the same
TWI486090B (en) Hollow heating source
CN101610613B (en) Line heat source
CN101616513B (en) Linear heat source
TW201000395A (en) Linear heater
CN101636004B (en) Plane heat source
TWI462630B (en) Planar heating source
CN101616514B (en) Linear heat source
TWI448417B (en) Linear heater
TWI380729B (en) Linear heater
TWI386363B (en) Linear heater
TWI380728B (en) Linear heater
TWI360521B (en) Planar heat source
CN101616512B (en) Line heat source
TWI380733B (en) Planar heating source
TWI427027B (en) Hollow heating source
TWI462628B (en) Planar heating source
TWI513357B (en) Three-dimensional heat source
TWI380734B (en) Linear heater
TWI380731B (en) Planar heating source
TWI380732B (en) Planar heating source
TWI462627B (en) Hollow heating source
TWI380730B (en) Planar heating source
TWI473524B (en) Hollow heating source
TWI465145B (en) Hollow heating source