TW201135997A - Electrostrictive material and actuator using the same - Google Patents

Electrostrictive material and actuator using the same Download PDF

Info

Publication number
TW201135997A
TW201135997A TW99110262A TW99110262A TW201135997A TW 201135997 A TW201135997 A TW 201135997A TW 99110262 A TW99110262 A TW 99110262A TW 99110262 A TW99110262 A TW 99110262A TW 201135997 A TW201135997 A TW 201135997A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electrically actuated
power receiving
nanotube film
carbon
Prior art date
Application number
TW99110262A
Other languages
Chinese (zh)
Other versions
TWI441366B (en
Inventor
Lu-Zhou Chen
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99110262A priority Critical patent/TWI441366B/en
Publication of TW201135997A publication Critical patent/TW201135997A/en
Application granted granted Critical
Publication of TWI441366B publication Critical patent/TWI441366B/en

Links

Abstract

The present invention relates to an electrostrictive material. The electrostrictive material is a sheet. The electrostrictive material includes a flexible polymer matrix and a carbon nanotube film structure. The carbon nanotube film strucctrue comprises a plurality of carbon nanotubes connected to each other from end to end by a Van der Valls attractive force. The carbon nanotube film structure includes at least one first conductive section, at least one second conductive section and a joint. The at least one first conductive section and the at least one second conductive section are apartly located at the same side of the joint. The at least one first conductive is connected with the at least one second conductive section via the joint. The at least one first conductive section, at least one second conductive section and a joint are line shaped. The present invention also relates to an actuator using the electrostrictive material.

Description

201135997 六、發明說明: 【發明所屬之技術領域1 [0001] 本發明涉及一種電致動材料及電致動元件,尤其涉及一 種具有可彎曲特性的電致動材料及電致動元件。 【先前技術】 [0002] 致動器的工作原理為將其他能量轉換為機械能,實現這 一轉換經常採用的途徑有三種:通過靜電場轉化為靜電 力,即靜電驅動;通過電磁場轉化為磁力,即磁驅動; 利用材料的熱膨脹或其他熱特性實現能量的轉換,即熱 驅動。 [0003] 靜電驅動的致動器一般包括兩個電極及設置在兩個電極 之間的電致動元件,其工作過程為在兩俩電極上分別注 入電荷,利用電荷間的相互吸引和排斥,通過控制電荷 數量和電負性來控制電極間電致動元件的相對運動。但 由於靜電力反比於電容板之間距離的平方,因此一般只 . ..... ... ... ...... . . :... 有在電極間距很小時靜電力才比較顯著,該距離的要求 . . ; 使該致動器的結構設計較為*複雜。蹲驅動的致動器一般 包括兩個磁極及設置在兩個磁極之間的電致動元件,其 工作係通過磁場的相互吸引和排斥作用使兩磁極之間的 電致動元件產生相對的運動,但磁驅動的缺點和靜電驅 動相同,即由於磁場作用範圍有限,導致電致動元件的 上下兩個表面必須保持較小的距離,該結構的設計要求 嚴格且也限制了該致動器的應用範圍。 而利用熱驅動的致動器克服了上述靜電驅動和磁驅動致 動器的缺點,該致動器結構只要能夠保證獲得一定的熱 099110262 表單編號A0101 第4頁/共30頁 0992018062-0 [0004] 201135997 能就能產生相應的形變,另外,相對於靜電力和磁場力 ,熱驅動力較大。先前技術公開一種電熱式致動器,請 參閱“基於熱膨脹效應的微執行器進展”,匡一寧等, 電子器件,vol 22,ρ1 62 (1999)。該電熱式致動器採 用兩片熱膨脹係數不同的金屬結合成雙層結構作為電致 動元件,當通入電流受熱時,由於一片金屬的熱膨脹量 大於另一片,雙金屬片將向熱膨脹量小的一方彎曲。然 而,由於上述電致動材料採用金屬結構,其柔性較差, 導致整個電熱式致動器熱回應速度較慢。 Ο [0005] [0006]BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically actuated material and an electrically actuated element, and more particularly to an electrically actuated material and an electrically actuated element having bendable characteristics. [Prior Art] [0002] The working principle of an actuator is to convert other energy into mechanical energy. There are three ways to achieve this conversion: the electrostatic field is converted into an electrostatic force, that is, the electrostatic drive; the electromagnetic field is converted into a magnetic force. , that is, magnetic drive; the use of thermal expansion or other thermal properties of the material to achieve energy conversion, that is, thermal drive. [0003] An electrostatically driven actuator generally includes two electrodes and an electrically actuated element disposed between the two electrodes, the operation of which is to inject a charge on each of the two electrodes, utilizing mutual attraction and repulsion between the charges, The relative motion of the electrically actuated elements between the electrodes is controlled by controlling the amount of charge and electronegativity. However, since the electrostatic force is inversely proportional to the square of the distance between the capacitive plates, generally only ....................... :: There is an electrostatic force at a very small electrode spacing. More significant, the requirements of the distance. . . make the structural design of the actuator more complex. A 蹲-actuated actuator generally includes two magnetic poles and an electrically actuated element disposed between the two magnetic poles, the operation of which causes relative motion of the electrically actuated elements between the two magnetic poles by mutual attraction and repulsion of the magnetic fields. However, the disadvantage of the magnetic drive is the same as that of the electrostatic drive, that is, due to the limited range of the magnetic field, the upper and lower surfaces of the electric actuating element must be kept at a small distance. The design of the structure is strict and the actuator is also limited. Application range. The use of a thermally driven actuator overcomes the above disadvantages of the electrostatic drive and the magnetic drive actuator, as long as the actuator structure can guarantee a certain heat 099110262 Form No. A0101 Page 4 / Total 30 Page 0992018062-0 [0004 ] 201135997 can produce corresponding deformation, and the thermal driving force is larger than the electrostatic force and the magnetic field force. The prior art discloses an electrothermal actuator, see "Progress in Microactuators Based on Thermal Expansion Effect", Yan Yining et al., Electronic Devices, vol 22, ρ1 62 (1999). The electrothermal actuator adopts two pieces of metal with different thermal expansion coefficients to form a two-layer structure as an electric actuating element. When the electric current is heated, since the amount of thermal expansion of one piece of metal is larger than the other piece, the bimetal piece will have a small amount of thermal expansion. One side is bent. However, since the above-mentioned electrically actuated material adopts a metal structure, its flexibility is poor, resulting in a slow thermal response of the entire electrothermal actuator. Ο [0005] [0006]

[0007] 【發明内容】 有鑒於此,提供一種具有彎曲特性熱回應速度快的的電 致動材料及電致動元件實為必要。 一種電致動材料,包括一片狀柔性高分子基體以及一奈 米碳管膜結構,其中,所述奈米碳管膜結構至少部分包 埋於所述柔性高分子基體一表面,所述奈米碳管膜結構 為複數個奈米碳管通過凡德瓦爾力結合而成,所述奈米 碳管膜結構包括至少一第一接電部、至少一第二接電部 及連接所述至少一第一接電部和至少一第二接電部而形 成長條狀導電通路的一連接部,所述至少一第一接電部 與至少一第二接電部相互間隔設置並位於所述連接部的 同一側。 一種電致動元件,其包括:一電致動材料,該電致動材 料為片材,該電致動材料包括一柔性高分子基體,以及 一奈米碳管膜結構,所述奈米碳管膜結構與所述柔性高 分子基體具有不同的熱膨脹係數;以及至少一第一電極 099110262 表單編號Α0101 第5頁/共30頁 0992018062-0 201135997 與至少一第二電極,所述至少一第一電極與至少一第二 電極間隔設置於所述電致動材料,並與所述電致動材料 電連接;其中,所述奈米碳管膜結構至少部分包埋於柔 性高分子基體的表面,所述奈米碳管膜結構包括至少一 第一接電部、至少一第二接電部及連接所述第一接電部 和第二接電部而形成長條狀導電通路的一連接部,所述 至少一第一接電部與至少一第二接電部相互間隔設置並 位於所述連接部的同一側,所述至少一第一電極與所述 至少一第一接電部電連接,所述至少一第二接電部與所 述至少一第二接電部電連接。 [0008] 與先前技術相比較,本發明提供的電致動材料及電致動 元件,其包括柔性高分子基體,以及靠近該柔性高分子 基體表面,並且至少部分包埋於高分子基體的奈米碳管 膜結構。該奈米碳管膜結構包括複數個奈米碳管,該複 數個奈米碳管由凡德瓦爾力結合形成一個整體,該複數 個奈米碳管相互連接並形成導電網路,使得該高分子膜 結構具有較好的導電性,可以快速加熱該電致動材料, 使得該電致動材料也相應具有較高的導電和導熱性,且 熱回應速率較快。 【實施方式】 [0009] 以下將結合附圖詳細說明本發明提供的電致伸縮複合元 件。 [0010] 請參考圖1及圖2,本發明第一實施例提供一種電致動材 料10,所述電致動材料10為片材,其包括:一柔性高分 子基體14,以及一奈米碳管膜結構12。所述奈米碳管膜 099110262 表單編號A0101 第6頁/共30頁 0992018062-0 201135997 結構12與所述柔性高分子基體14具有不同的熱膨脹係數 ,其中,所述奈米碳管膜結構12靠近柔性高分子基體14 的表面設置,至少部分包埋於柔性高分子基體14中,所 述奈米碳管膜結構12為複數個奈米碳管122通過凡德瓦爾 力結合而成。 [0011] 所述柔性高分子基體14為具有一定厚度的片材,該片材 的形狀不限,可以為長方形、圓形,或根據實際應用製 成各種形狀。所述柔性高分子基體14為柔性材料構成, 該柔性材料為絕緣材料,只要具有柔性並且熱膨脹係數 大於奈米碳管膜結構12即可。所述柔性高分子基體14的 材料為矽橡膠、聚甲基丙烯酸曱酯、聚氨脂、環氧樹脂 、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯 、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩等中的一種或幾 種的組合。本實施例中,所述柔性高分子基體14為一矽 橡膠薄膜,該矽橡膠薄膜為厚度為0. 7毫米厚的一長方形 薄片,長為6釐米,寬為3釐米。 [0012] 該奈米碳管膜結構12平行於所述柔性高分子基體14並鋪 設於柔性高分子基體14的表面。該奈米碳管膜結構12係 在柔性高分子基體14未完全固化呈黏稠的液態時鋪設。 由於該奈米碳管膜結構12係由複數個奈米碳管122通過凡 德瓦爾力結合構成,複數個奈米碳管122之間存在間隙, 液態的柔性高分子基體材料可以滲透進入該奈米碳管膜 結構12中的奈米碳管122之間的間隙當中,該柔性高分子 基體14的材料與奈米碳管膜結構12中的奈米碳管122緊密 結合在一起。所述奈米碳管膜結構12與柔性高分子基體 099110262 表單編號A0101 第7頁/共30頁 0992018062-0 201135997 14接觸的表面部分包埋於所述柔性高分子基體14中,所 述奈米碳管膜結構12也可以完全設置於所述柔性高分子 基體14中,但仍然靠向整個柔性高分子基體14的一表面 設置。由於液態的柔性高分子基體材料可以滲透進入該 奈米碳管膜結構12中的奈米碳管122之間的間隙當中,從 而奈米碳管膜結構12可以很好地被固定在該柔性高分子 基體14的表面,與該柔性高分子基體14具有很好的結合 性能。該電致動材料10不會因為複數次使用,影響奈米 碳管膜結構12與柔性高分子基體14之間介面的結合性。 該奈米碳管膜結構12的厚度小於與柔性高分子基體14的 厚度,且該奈米碳管膜結構12靠近該柔性高分子基體14 的表面設置,從而使得該電致動材料10具有一非對稱結 構。該奈米碳管膜結構12與該柔性高分子基體14的厚度 比為1 : 5〜1 : 200,優選地該奈米碳管膜結構12與柔性 高分子基體14的厚度比為1 : 20〜1 : 25。 [0013] 請參見圖3,所述奈米碳管膜結構12呈“ ”形。該奈米 碳管膜結構12包括一第一接電部124,一第二接電部126 以及一連接部125。所述連接部125連接所述第一接電部 124和第二接電部126,從而形成一彎折延伸的長條形整 體結構。所述第一接電部124,第二接電部126相互間隔 設置並位於所述連接部125的同一側,從而形成“ ”形 β的導電通路。奈米碳管膜結構12中的奈米碳管相互結合 形成一個整體,該奈米碳管膜結構12係以一個整體的形 成複合於所述柔性高分子基體14的一個表面,並被柔性 高分子基體14包裹其中。 099110262 表單編號Α0101 第8頁/共30頁 0992018062-0 201135997 [0014] 所述奈米碳管膜結構12為將一個奈米碳管膜或複數個奈 米碳管膜重疊後剪切形成。例如,可以將複數個奈米碳 管膜相互層疊設置後,再將其剪切從而獲得一個“ ” 形片狀結構的奈米碳管膜結構1 2。該奈米碳管膜可以為 奈米碳管拉膜、奈米碳管碾壓膜、奈米碳管絮化膜中的 一種或複數種的組合。 [0015] 請參閱圖4,所述奈米碳管拉膜包括複數個奈米碳管,且 該複數個奈米碳管基本相互平行且平行於奈米碳管拉膜 的表面。具體地,該奈米碳管膜中的複數個奈米碳管通 ◎ 過凡德瓦爾力首尾相連,且所述複數個奈米碳管的軸向 基本沿同一方向擇優取向排列。.所述奈米碳管拉膜之中 的奈米碳管之間存在間隙,當使用該複數個奈米碳管拉 膜層疊後剪切製成的奈米碳管膜結構12與柔性高分子基 體14結合時,該複數個奈米碳管拉膜可以交叉後重疊, 從而使得剪切後獲得的奈米碳管膜結構12中的奈米碳管 交叉排列;另外,還可以使該複數個奈米碳管拉膜平行 0 重疊,從而使剪切後獲得的奈米碳管膜結構12中的奈米 碳管的軸向基本沿同一方向擇優取向排列。該奈米碳管 拉膜的厚度為0.01微米〜100微米,其中的奈米碳管為單 壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或 幾種。當該奈米碳管膜中的奈米碳管為單壁奈米碳管時 ,該單壁奈米碳管的直徑為0. 5奈米〜10奈米。當該奈米 碳管膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳 管的直徑為1.0奈米〜20奈米。當該奈米碳管膜中的奈米 碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為1. 5奈 099110262 表單編號A0101 第9頁/共30頁 0992018062-0 201135997 米〜50奈米。所述奈米碳管拉膜的面積不限,可根據實際 需求製備。 [0016] 月參閱圖5 ’所述奈米碳管礙壓膜包括均勻分佈的奈米石炭 官。所述奈米碳管無序排列,或者沿同_方向或不同方 向擇優取向排列。所述奈米碳管碾壓膜中的奈米碳管相 互邛分交疊,並通過凡德瓦爾力相互吸引緊密結合, 使得該奈米碳管碾壓膜具有很好的柔韌性,可以彎曲折 疊成任意形狀而不破裂。且由於奈米碳管碾壓膜中的奈 米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使奈 米奴s礙壓膜為-自支撑的結構^所述奈米碳管礙壓膜 可通過犧壓—奈米碳管陣列獲得。所述奈米碳管碾壓膜 中的奈米碳管與形成奈米碳管陣列的生長基底的表面形 成一夹角万,其中,召大於等於〇度且小於等於15度⑶ yS 15 ),該夾角召與施加在奈米碳管陣列上的壓力有 關,壓力越大,該夾角越小,優選地,該奈米碳管碾壓 膜中的奈米碳管平行於該生長基底排列。該奈米碳管碾 壓膜為通過雙一奈求碳管陣猶獲舞,依據㈣的方式 不同,該奈米碳管碾壓膜中的奈米碳管具有不同的排列 形式。當沿不同方向碾壓時,奈米碳管沿不同方向擇優 取向排列。當沿同一方向碾壓時,奈米碳管沿_固定方 向擇優取向排列。另外,當碾壓方向為垂直該奈米碳管 陣列表面時’該奈米碳管可以無序排列。該奈米碳管碾 壓膜中奈米碳管的長度大於50微米。 該奈米碳管㈣膜的面積和厚度獨,可根據實際需要 選擇。該奈米碳管碾壓膜的面積與奈米碳管陣列的尺寸 099110262 表單編號A0101 第10頁/共30頁 0992018062-0 [0017] 201135997 _ [0018] ❹ 0 基本相同。該奈米碳管碾壓膜厚度與奈米碳管陣列的高 度以及碾壓的壓力有關,可為1微米〜1毫米。可以理解, 奈米碳管陣列的高度越大而施加的壓力越小,則製備的 奈米碳管碾壓膜的厚度越大;反之,奈米碳管陣列的高 度越小而施加的壓力越大,則製備的奈米碳管碾壓膜的 厚度越小。所述奈米碳管碾壓膜之中的相鄰的奈米碳管 之間具有一定間隙,從而在奈米碳管碾壓膜中形成複數 個孔隙,孔隙的孔徑約小於10微米。 請參閱圖6,所述奈米碳管絮化膜包括複數個相互纏繞且 均勻分佈的奈米碳管。奈米碳管的長度大於10微米,優 選為200〜900微米,從而使所述奈米碳管相互纏繞在一起 。所述奈米碳管之間通過凡德瓦爾力相互吸引、纏繞, 形成網路狀結構,以形成一自支撐的奈米碳管絮化膜。 所述奈米碳管絮化膜各向同性。所述奈米碳管絮化膜中 的奈米碳管為均勻分佈,無規則排列,形成大量的孔隙 結構,孔隙孔徑約小於10微米。所述奈米碳管絮化膜的 長度和寬度不限。由於在奈米碳管絮化膜中,奈米碳管 相互纏繞,因此該奈米碳管絮化膜具有很好的柔韌性, 且為一自支撐結構,可以彎曲折疊成任意形狀而不破裂 。所述奈米碳管絮化膜的面積及厚度均不限,厚度為1微 米〜1毫米,優選為100微米。 [0019] 請參閱圖3,本實施例中,所述奈米碳管膜結構12優選為 複數個奈米碳管拉膜相互層疊後再剪切形成“ ”形結 構。該複數個相互層疊的奈米碳管拉膜中,奈米碳管122 的軸向具有相同的擇優取向,即該奈米碳管膜結構12中 099110262 表單編號A0101 第11頁/共30頁 0992018062-0 201135997 的奈米碳管122的軸向基本沿通一方向擇優取向排列。當 剪切複數個相互層疊的奈米碳管膜時,要使得形成的奈 米碳管膜結構12中的第一接電部124與第二接電部126沿 著奈米碳管膜結構12中的奈米碳管122的擇優取向排列方 向延伸。 [0020] 所述電致動材料1 0在應用時,將電壓通過所述奈米碳管 膜結構12的第一接電部124和第二接電部126施加於該電 致動材料10,電流可通過所述奈米碳管膜結構12中通過 凡德瓦爾力相互結合的奈米碳管122所形成的導電網路進 行傳輸。由於奈米碳管122的熱導率很高,從而使得所述 電致動材料10的溫度快速升高,熱量從所述電致動材料 10中奈米碳管122的周圍快速地向整個電致動材料10擴散 ,即奈米碳管膜結構12可迅速加熱柔性高分子基體14。 由於熱膨脹量與材料的體積及熱膨脹係數成正比,且本 實施例的電致動材料10由兩層具有不同熱膨脹係數的奈 米碳管膜結構12和柔性高分子基體14複合而成,從而使 得加熱後的電致動材料10將向熱膨脹係數小的奈米碳管 膜結構12彎曲。由於奈米碳管膜結構12中的第一接電部 124和第二接電部126設置於連接部125的同一側,當該 電致動材料10的第一接電部124和第二接電部126的一端 固定時,所述電致動材料10具有連接部125的一端向設有 奈米碳管膜結構12的表面的方向彎曲。由於奈米碳管膜 結構12中的第一接電部124和第二接電部126設置於連接 部125的同一侧,從而該電致動材料1 0可以實現在所述電 致動材料10的同一側控制另一側實現彎曲,可以使該電 099110262 表單編號A0101 第12頁/共30頁 0992018062-0 201135997 致動材料10在實際應用中具有更廣泛的應用。此外,由 於奈米碳管12 2具有導電性好、熱容小的特點,所以使該 電致動材料1 0的熱回應速率快。 [0021] 本實施例中的電致動材料10為長34毫米,寬5毫米,厚度 0.7毫米的長方體片材。施加一 40伏特的電壓2分鐘後, 在該電致動材料1 0的連接部12 5的一端將朝向奈米碳管膜 結構12的一面彎曲的位移AS為16毫米左右。 [0022] ❹ 可以理解本發明實施例中的柔性高分子基體14可以設置 成與所述奈米碳管膜結構12形狀相同的“ ”形片狀材 料。該奈米碳管膜結構12平行於所述柔性高分子基體14 並鋪設於柔性高分子基體14的表面,從而形成一具有“ ”形片狀結構的電致動材料10。 [0023] ❹ 可以理解,為了提高本發明電致動材料10的奈米碳管膜 結構12的連接部125的導電性,可以在奈米碳管膜結構12 的連接部125遠離所述#第一接電部124及第二接電部126 的一側設置一導電增強層128,該導電增強層128至少部 分覆蓋所述連接部125,導電增強層128增強了所述連接 部125的導電能力,降低了連接部125的電阻,從而進一 步提高了該電致動材料10的熱回應速率。該導電增強層 可以為金屬材料,如金、舶、把、銀、銅、鐵、鎳等導 電性較好的金屬,可以通過沉積的方法將一金屬材料沉 積在所述連接部125,形成一定厚度的金屬薄膜。該導電 增強層也可以為導電膠,如銀膠,通過印刷的方法形成 099110262 表單編號A0101 第13頁/共30頁 0992018062-0 201135997 [0024] 請參閱圖7,本發明實施例中的電致動材料10的奈米碳管 膜結構12可以包括複數個第一接電部124及複數個第二接 電部126,該複數個第一接電部124與該複數個第二接電 部126交替間隔設置於連接部125的同一侧。使用時,可 以在第一接電部1 24及第二接電部126之間分別連接電源 的正、負極,通過連接部125使得整個奈米碳管膜結構12 中形成回路。採用複數個第一接電部124及複數個第二接 電部126,可以降低該電致動材料10的驅動電壓,有利於 實際應用。 [0025] 請參閱圖8,本發明第二實施例提供一種電致動材料30與 第一實施例的電致動材料10的結構基本相同,主要區別 在於第二實施例的奈米碳管膜結構32與第一實施例的奈 米碳管膜結構12不同。請參閱圖8,本實施中,奈米碳管 膜結構32中的奈米碳管首尾相連沿著由第一接電部124到 連接部125,再到第二接電部126排列。本實施例的電致 伸縮材料可以將圖4所示的奈米碳管拉膜直接連續鋪設在 液態柔性高分子基體14表面依次形成連續的第一接電部 124,連接部125以及第二接電部126。奈米碳管拉膜中 的奈米碳管具有相同的擇優取向排列方向,該奈米碳管 膜中的複數個奈米碳管通過凡德瓦爾力首尾相連,且所 述複數個奈米碳管的軸向基本沿同一方向擇優取向排列 。本實施例的電致動材料30中的奈米碳管膜結構32中的 奈米碳管沿著由第一接電部124,連接部125及第二接電 部126的方向首尾相連排列。由於奈米碳管軸向的導電性 較強,該電致動材料30由第一接電部124到第二接電部 099110262 表單編號A0101 第14頁/共30頁 0992018062-0 201135997 126的電卩且較小,從而進提高了該電致動材料3〇的熱回應 速率。 [0026] 請參閱圖9 ’本發明實施例提供一種採用所述電致動材料 10的電致動元件20,其包括:一電致動材料10、至少一 第一電極22以及至少一第二電極24。所述至少第一電極 22與至少第二電極24間隔設置,並與所述電致動材料10 電連接。所述電致動材料10為具有一定厚度的片材。 [0027] Ο ο 所述至少第—電極22及至少第二電極24間隔設置,並與 所述電致動材料10中的奈米碳管膜結構12電連接。具體 地’所述第一電極22及第二電極24為長條形金屬,間隔 設置於電致動材料1〇設置有第一接電部丨24及第二接電部 126的端部’所述第一電極22與所述第一接電部124的端 部電連接’所述第二電極24與所述第二接電部126的端部 電連接°本實施例中,所述電致動材料10為為長34毫米 ’寬5毫米’厚度〇. 7毫米的長方雖片材,所述第一電極 22及第二電極24為鋼片,所述銅片設置於所述電致動材 料1 0兩端並分別與所述第一接電部1 24及第二接電部126 電連接°當該電致動材料1〇中的奈米碳管膜結構丨2包括 複數個第一接電部124及複數個第二接電部126時,該電 致動元件20包括複數個第一電極22及複數個第二電極24 ,每個第一電極22與一個第一接電部124電連接,每一個 第二電極24與第二接電部126電連接。 [0028] 具體應用時’將電壓施加於該電致動元件2〇中的第一電 極22及第二電極24,電流可通過奈米碳管膜結構12所形 成的導電網路進行傳輸。由於所述第一電極22及第二電 099110262 表單編號Α0101 第15頁/共30頁 0992018062-0 201135997 極24設置於該電致動元件2〇的同一側,當通過該第一電 極22及第二電極24通電時,該電致動元件20與所述第一 電極22及第二電極24相對的另一侧將發生彎曲。因此, 本發明提供的電致動元件20可以通過固定一側,通電後 ,使得該電致動元件2 0的另一側發生彎曲,從而可以更 好的控制該電致動元件20的彎曲,應用時更加方便。 [0029] [0030] 可以理解’本發明實施例所提供的電致伸縮材料的制動 方式不局限於通電加熱後膨脹,只要能使該電致伸縮材 料受熱升溫的方法均可以應用於該電致伸縮材料。如, 將該電致伸縮材料直接放置於溫控平臺,通過熱傳遞使 之升溫’從而實現其彎曲膨膝。另外,還可以採用近紅 外鐳射照射’進行光致加熱使其升溫’從而實現其彎曲 膨脹。 本發明實施例所述的電致伸縮材料及電致動元件具有以 下優點:本發明提供的電致伸縮材料及電致動元件,其 包括柔性高分子基體,以及靠近柔性高分子基體表面設 置於柔性高分子基體的奈米碳管膜結構。由於奈米碳管 膜結構包括複數個間隙,高分子基體材料浸潤入間隙當 中,使得奈米碳管膜結構與紐高分子基體之間具有: 好的結合性’增加了該電致伸縮材料及電致動元件使用 壽命。該奈米碳管膜結構為由複數個奈米碳管由凡德瓦 爾力結合形成-個純奈米碳管組成的整體結構,該複數 個奈米碳管相互連接並形成導電網路,相對於其他僅包 含奈米碳管的複合材料,純奈米碳營_構具有較好的 導電性’可以快速加熱該電致伸縮#料,從而使其且有 099110262 表單编號A0101 第16頁/共30頁 °992〇18〇62-〇 201135997 較快的回應速度。該電致伸縮材料及電致動元件熱膨脹 具有可彎曲性,從而可以應用於精確控制器件中。 [0031] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0032] 圖1為本發明第一實施例提供的電致動材料的立體結構示 意圖。 [0033] 圖2為圖1所示的電致動材料沿II-II線的剖視圖。 [0034] 圖3為圖2中電致動材料中的奈米碳管膜結構的立體結構 示意圖。 [0035] 圖4為本發明第一實施例提供的電致動材料中採用的奈米 碳管拉膜的掃描電鏡照片。 [0036] 圖5為本發明第一實施例提供的電致動材料中採用的奈米 碳管碾壓膜的掃描電鏡照片。 [0037] 圖6為本發明第一實施例提供的電致動材料中採用的奈米 碳管絮化膜的掃描電鏡照片。 [0038] 圖7為本發明第一實施例提供的電致動材料中的奈米碳管 薄膜結構的立體結構示意圖。 [0039] 圖8為本發明第二實施例提供的電致動材料的結構示意圖 099110262 表單編號A0101 第17頁/共30頁 0992018062-0 201135997 [0040] 圖9為本發明實施例提供的電致動元件的立體結構示意圖 【主要元件符號說明】 [0041] 電致動材料:10、 30 [0042] 奈米碳管膜結構: 12 ' 32 [0043] 奈米碳管:122 [0044] 第一接電部:124 [0045] 第二接電部:126 [0046] 連接部:125 [0047] 導電增強層:128 [0048] 柔性高分子基體: 14 [0049] 電致動元件:20 [0050] 第一電極:22 [0051] 第二電極:24 099110262 表單編號A0101 第18頁/共30頁 0992018062-0SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an electrically actuated material and an electrically actuated element having a bending characteristic with a fast thermal response speed. An electroactive material comprising a sheet of flexible polymer matrix and a carbon nanotube membrane structure, wherein the carbon nanotube membrane structure is at least partially embedded on a surface of the flexible polymer matrix, The carbon nanotube film structure is formed by combining a plurality of carbon nanotubes by a van der Waals force, and the carbon nanotube film structure comprises at least a first electrical connection portion, at least a second electrical connection portion, and a connection a first power receiving portion and at least one second power receiving portion form a connecting portion of the elongated conductive path, wherein the at least one first power receiving portion and the at least one second power receiving portion are spaced apart from each other and located at the The same side of the connection. An electrically actuated component comprising: an electrically actuated material, the electrically actuated material comprising a sheet, the electrically actuated material comprising a flexible polymeric matrix, and a carbon nanotube membrane structure, the nanocarbon The tubular film structure and the flexible polymer matrix have different thermal expansion coefficients; and at least one first electrode 099110262 Form No. 1010101 5th page/Total 30 pages 0992018062-0 201135997 and at least one second electrode, the at least one first An electrode is disposed between the electrode and the at least one second electrode and electrically connected to the electrically actuated material; wherein the carbon nanotube film structure is at least partially embedded on a surface of the flexible polymer substrate, The carbon nanotube film structure includes at least a first electrical connection portion, at least one second electrical connection portion, and a connecting portion connecting the first electrical connection portion and the second electrical connection portion to form an elongated conductive path. The at least one first power receiving portion and the at least one second power receiving portion are spaced apart from each other and located on the same side of the connecting portion, and the at least one first electrode is electrically connected to the at least one first power receiving portion At least one Electrical connection portion with said at least one second electrical connection portion electrically connected. [0008] Compared with the prior art, the present invention provides an electrically actuated material and an electrically actuated element comprising a flexible polymer matrix, and a naphthalene adjacent to the surface of the flexible polymer matrix and at least partially embedded in the polymer matrix. Carbon tube membrane structure. The carbon nanotube membrane structure comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are combined by a van der Waals force to form a whole, the plurality of carbon nanotubes are connected to each other and form a conductive network, so that the height is high. The molecular film structure has good electrical conductivity, and the electro-actuating material can be rapidly heated, so that the electro-actuating material has correspondingly high electrical and thermal conductivity, and the thermal response rate is fast. [Embodiment] The electrostrictive composite member provided by the present invention will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides an electrically actuated material 10, which is a sheet comprising: a flexible polymer matrix 14, and a nanometer. Carbon tube membrane structure 12. The carbon nanotube film 099110262 Form No. A0101 Page 6 / Total 30 page 0992018062-0 201135997 Structure 12 and the flexible polymer matrix 14 have different coefficients of thermal expansion, wherein the carbon nanotube film structure 12 is close to The surface of the flexible polymer matrix 14 is at least partially embedded in the flexible polymer matrix 14, and the carbon nanotube membrane structure 12 is formed by combining a plurality of carbon nanotubes 122 by van der Waals force. [0011] The flexible polymer substrate 14 is a sheet having a certain thickness, and the shape of the sheet is not limited, and may be rectangular or circular, or may be formed into various shapes according to practical applications. The flexible polymer matrix 14 is made of a flexible material which is an insulating material as long as it has flexibility and a coefficient of thermal expansion greater than that of the carbon nanotube film structure 12. The material of the flexible polymer matrix 14 is ruthenium rubber, polymethyl methacrylate, polyurethane, epoxy resin, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene, polyacrylonitrile. A combination of one or more of polyaniline, polypyrrole, and polythiophene. In this embodiment, the flexible polymer substrate 14 is a ruthenium rubber film having a thickness of 0.77 mm and a rectangular sheet having a length of 6 cm and a width of 3 cm. [0012] The carbon nanotube film structure 12 is parallel to the flexible polymer matrix 14 and is laid on the surface of the flexible polymer matrix 14. The carbon nanotube film structure 12 is laid when the flexible polymer matrix 14 is not fully cured in a viscous liquid state. Since the carbon nanotube membrane structure 12 is composed of a plurality of carbon nanotubes 122 and a van der Waals force, a gap exists between the plurality of carbon nanotubes 122, and the liquid flexible polymer matrix material can penetrate into the nai. Among the gaps between the carbon nanotubes 122 in the carbon nanotube film structure 12, the material of the flexible polymer matrix 14 is tightly bonded to the carbon nanotubes 122 in the carbon nanotube film structure 12. The surface of the carbon nanotube film structure 12 and the flexible polymer matrix 099110262 Form No. A0101, page 7 / 30 pages 0992018062-0 201135997 14 are partially embedded in the flexible polymer matrix 14, the nano The carbon tubular film structure 12 may also be completely disposed in the flexible polymer matrix 14, but still disposed on a surface of the entire flexible polymer substrate 14. Since the liquid flexible polymer matrix material can penetrate into the gap between the carbon nanotubes 122 in the carbon nanotube film structure 12, the carbon nanotube film structure 12 can be well fixed at the flexibility. The surface of the molecular matrix 14 has a good bonding property with the flexible polymer matrix 14. The electrically actuated material 10 does not affect the interface between the carbon nanotube film structure 12 and the flexible polymer matrix 14 because it is used multiple times. The thickness of the carbon nanotube film structure 12 is smaller than the thickness of the flexible polymer substrate 14, and the carbon nanotube film structure 12 is disposed close to the surface of the flexible polymer substrate 14, so that the electrically actuated material 10 has a Asymmetrical structure. The thickness ratio of the carbon nanotube film structure 12 to the flexible polymer matrix 14 is 1:5 to 1:200, preferably the thickness ratio of the carbon nanotube film structure 12 to the flexible polymer matrix 14 is 1:20. ~1: 25. [0013] Referring to FIG. 3, the carbon nanotube film structure 12 has a "" shape. The carbon nanotube film structure 12 includes a first electrical connection portion 124, a second electrical connection portion 126, and a connection portion 125. The connecting portion 125 connects the first electrical connecting portion 124 and the second electrical connecting portion 126 to form a bent and extended elongated overall structure. The first power receiving portion 124 and the second power receiving portion 126 are spaced apart from each other and located on the same side of the connecting portion 125, thereby forming a "" shaped conductive path of β. The carbon nanotubes in the carbon nanotube membrane structure 12 are combined to form a unitary body, and the carbon nanotube membrane structure 12 is integrally formed on one surface of the flexible polymer matrix 14 and is highly flexible. The molecular matrix 14 is wrapped therein. 099110262 Form No. Α0101 Page 8 of 30 0992018062-0 201135997 [0014] The carbon nanotube film structure 12 is formed by laminating a carbon nanotube film or a plurality of carbon nanotube films. For example, a plurality of carbon nanotube films may be laminated on each other and then sheared to obtain a carbon nanotube film structure 1 of a "" shape. The carbon nanotube film may be one or a combination of a carbon nanotube film, a carbon nanotube film, and a carbon nanotube film. [0015] Referring to FIG. 4, the carbon nanotube film comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are substantially parallel to each other and parallel to the surface of the carbon nanotube film. Specifically, the plurality of carbon nanotubes in the carbon nanotube film are connected end to end by a van der Waals force, and the axial directions of the plurality of carbon nanotubes are substantially aligned in the same direction. a gap exists between the carbon nanotubes in the carbon nanotube film, and the carbon nanotube film structure 12 and the flexible polymer are cut after lamination using the plurality of carbon nanotube films When the substrate 14 is combined, the plurality of carbon nanotube films may be overlapped and overlapped, so that the carbon nanotubes in the carbon nanotube film structure 12 obtained after the shearing are cross-aligned; in addition, the plurality of carbon nanotubes may be arranged. The carbon nanotube film is overlapped by 0 in parallel, so that the axial directions of the carbon nanotubes in the carbon nanotube film structure 12 obtained after shearing are substantially aligned in the same direction. The carbon nanotube film has a thickness of 0.01 μm to 100 μm, and the carbon nanotubes are one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. 5纳米〜10纳米。 When the carbon nanotubes in the carbon nanotubes are a single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is 0. 5 nanometers ~ 10 nanometers. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the double-walled carbon nanotube has a diameter of 1.0 nm to 20 nm. When the carbon nanotube in the carbon nanotube film is a multi-walled carbon nanotube, the diameter of the multi-walled carbon nanotube is 1. 5奈 099110262 Form No. A0101 Page 9 of 30 0992018062-0 201135997 meters ~ 50 nm. The area of the carbon nanotube film is not limited and can be prepared according to actual needs. [0016] Referring to FIG. 5', the carbon nanotube pressure blocking film includes a uniformly distributed nanocarbon charcoal. The carbon nanotubes are arranged in disorder, or in a preferred orientation along the same direction or in different directions. The carbon nanotubes in the carbon nanotube rolled film overlap each other and are closely attracted to each other by van der Waals force, so that the carbon nanotube rolled film has good flexibility and can be bent. Fold into any shape without breaking. And because the carbon nanotubes in the carbon nanotube film are attracted to each other through the van der Waals force, and the tight combination, the nanotube s block the film is a self-supporting structure. The film can be obtained by sacrificing a carbon nanotube array. The carbon nanotubes in the carbon nanotube rolled film form an angle with the surface of the growth substrate forming the carbon nanotube array, wherein the sum is greater than or equal to 15 degrees (3) yS 15 ), The angle is related to the pressure applied to the carbon nanotube array. The larger the pressure, the smaller the angle. Preferably, the carbon nanotubes in the carbon nanotube film are aligned parallel to the growth substrate. The carbon nanotube rolled film is danced through the double-nano carbon fiber array. According to the method of (4), the carbon nanotubes in the carbon nanotube rolled film have different arrangement forms. When rolled in different directions, the carbon nanotubes are arranged in different orientations. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along the _ fixed direction. Further, the carbon nanotubes may be disorderly arranged when the rolling direction is perpendicular to the surface of the carbon nanotube array. The length of the carbon nanotubes in the carbon nanotube rolled film is greater than 50 microns. The area and thickness of the carbon nanotube (four) membrane are unique and can be selected according to actual needs. The area of the carbon nanotube rolled film and the size of the carbon nanotube array 099110262 Form No. A0101 Page 10 of 30 0992018062-0 [0017] 201135997 _ [0018] ❹ 0 is basically the same. The thickness of the carbon nanotube film is related to the height of the carbon nanotube array and the pressure of the rolling, and may be 1 μm to 1 mm. It can be understood that the larger the height of the carbon nanotube array and the smaller the applied pressure, the larger the thickness of the prepared carbon nanotube rolled film; on the contrary, the smaller the height of the carbon nanotube array, the more the applied pressure Large, the smaller the thickness of the prepared carbon nanotube rolled film. There is a gap between adjacent carbon nanotubes in the carbon nanotube rolled film, thereby forming a plurality of pores in the carbon nanotube rolled film, and the pore diameter of the pores is less than about 10 μm. Referring to Figure 6, the carbon nanotube flocculation membrane comprises a plurality of inter-twisted and uniformly distributed carbon nanotubes. The carbon nanotubes have a length of more than 10 μm, preferably 200 to 900 μm, so that the carbon nanotubes are entangled with each other. The carbon nanotubes are attracted and entangled by van der Waals force to form a network structure to form a self-supporting carbon nanotube flocculation film. The carbon nanotube flocculation membrane is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed, randomly arranged, and form a large number of pore structures, and the pore diameter is less than about 10 μm. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without breaking. . The area and thickness of the carbon nanotube flocculation film are not limited, and the thickness is from 1 μm to 1 mm, preferably 100 μm. Referring to FIG. 3, in the embodiment, the carbon nanotube film structure 12 is preferably a plurality of carbon nanotube film laminated on each other and then sheared to form a "" shape. In the plurality of mutually stacked carbon nanotube films, the carbon nanotubes 122 have the same preferred orientation in the axial direction, that is, the 099110262 in the carbon nanotube film structure 12, Form No. A0101, Page 11 of 30, 0992018062 The axial direction of the carbon nanotubes 122 of -0 201135997 is substantially aligned in a preferred orientation in the direction of passage. When a plurality of mutually stacked carbon nanotube films are sheared, the first electrical connection portion 124 and the second electrical connection portion 126 in the formed carbon nanotube film structure 12 are formed along the carbon nanotube film structure 12 The preferred orientation of the carbon nanotubes 122 in the direction of alignment extends. [0020] The electrically actuated material 10 applies a voltage to the electrically actuated material 10 through the first electrical connection portion 124 and the second electrical connection portion 126 of the carbon nanotube film structure 12 when applied. Current can be transmitted through the conductive network formed by the carbon nanotubes 122 in the carbon nanotube membrane structure 12 that are bonded to each other by the van der Waals force. Since the thermal conductivity of the carbon nanotubes 122 is high, so that the temperature of the electrically actuated material 10 is rapidly increased, heat is rapidly transferred from the periphery of the carbon nanotubes 122 in the electrically actuated material 10 to the entire electricity. The actuating material 10 diffuses, i.e., the carbon nanotube film structure 12 rapidly heats the flexible polymer matrix 14. Since the amount of thermal expansion is proportional to the volume of the material and the coefficient of thermal expansion, and the electrically actuated material 10 of the present embodiment is composed of two layers of a carbon nanotube film structure 12 having different coefficients of thermal expansion and a flexible polymer matrix 14, thereby The heated electro-active material 10 will be bent toward the carbon nanotube film structure 12 having a small coefficient of thermal expansion. Since the first power receiving portion 124 and the second power receiving portion 126 in the carbon nanotube film structure 12 are disposed on the same side of the connecting portion 125, when the first power receiving portion 124 and the second connecting portion of the electrically actuating material 10 are When one end of the electric portion 126 is fixed, the electro-active material 10 has one end of the connecting portion 125 bent in a direction in which the surface of the carbon nanotube film structure 12 is provided. Since the first power receiving portion 124 and the second power receiving portion 126 in the carbon nanotube film structure 12 are disposed on the same side of the connecting portion 125, the electrically actuated material 10 can be realized in the electrically actuated material 10 The same side controls the other side to achieve bending, which can make the electric 099110262 Form No. A0101 Page 12 / Total 30 Page 0992018062-0 201135997 The actuating material 10 has a wider application in practical applications. In addition, since the carbon nanotube 12 2 has the characteristics of good electrical conductivity and low heat capacity, the thermal response rate of the electrically actuated material 10 is fast. [0021] The electrically actuated material 10 in this embodiment is a rectangular parallelepiped sheet having a length of 34 mm, a width of 5 mm, and a thickness of 0.7 mm. After applying a voltage of 40 volts for 2 minutes, the displacement AS toward the one side of the carbon nanotube film structure 12 at one end of the connecting portion 12 5 of the electroactive material 10 is about 16 mm. [0022] It is understood that the flexible polymer matrix 14 in the embodiment of the present invention may be disposed in the same shape as the carbon nanotube film structure 12. The carbon nanotube film structure 12 is parallel to the flexible polymer substrate 14 and laid on the surface of the flexible polymer substrate 14, thereby forming an electrically actuated material 10 having a "" shaped sheet structure. [0023] ❹ It can be understood that in order to improve the conductivity of the connection portion 125 of the carbon nanotube film structure 12 of the electroactive material 10 of the present invention, the connection portion 125 of the carbon nanotube film structure 12 may be away from the #第A conductive enhancement layer 128 is disposed on a side of the electrical connection portion 124 and the second electrical connection portion 126. The conductive enhancement layer 128 at least partially covers the connection portion 125. The conductive enhancement layer 128 enhances the conductivity of the connection portion 125. The resistance of the connecting portion 125 is lowered, thereby further increasing the thermal response rate of the electrically actuated material 10. The conductive reinforcing layer may be a metal material, such as a metal having good conductivity such as gold, silver, silver, copper, iron, nickel, etc., and a metal material may be deposited on the connecting portion 125 by a deposition method to form a certain Thick metal film. The conductive enhancement layer may also be a conductive paste, such as silver paste, formed by printing. 099110262 Form No. A0101 Page 13 / Total 30 Page 0992018062-0 201135997 [0024] Please refer to FIG. 7 , the electro-electrode in the embodiment of the present invention The carbon nanotube film structure 12 of the moving material 10 may include a plurality of first electrical connecting portions 124 and a plurality of second electrical connecting portions 126, and the plurality of first electrical connecting portions 124 and the plurality of second electrical connecting portions 126 The alternating intervals are provided on the same side of the connecting portion 125. In use, the positive and negative electrodes of the power source may be respectively connected between the first power receiving portion 1 24 and the second power receiving portion 126, and a loop is formed in the entire carbon nanotube film structure 12 through the connecting portion 125. The plurality of first power receiving portions 124 and the plurality of second power receiving portions 126 can reduce the driving voltage of the electrically actuated material 10, which is advantageous for practical use. [0025] Referring to FIG. 8, a second embodiment of the present invention provides an electrically actuated material 30 having substantially the same structure as the electrically actuated material 10 of the first embodiment, the main difference being the carbon nanotube film of the second embodiment. The structure 32 is different from the carbon nanotube film structure 12 of the first embodiment. Referring to Fig. 8, in the present embodiment, the carbon nanotubes in the carbon nanotube membrane structure 32 are connected end to end along the first electrical connection portion 124 to the connection portion 125 and then to the second electrical connection portion 126. The electrostrictive material of the present embodiment can directly and continuously lay the carbon nanotube film shown in FIG. 4 on the surface of the liquid flexible polymer substrate 14 to form a continuous first electrical connection portion 124, the connecting portion 125 and the second connection. Electrical part 126. The carbon nanotubes in the carbon nanotube film have the same preferred orientation direction, and the plurality of carbon nanotubes in the carbon nanotube film are connected end to end by Van der Waals force, and the plurality of nano carbons The axial directions of the tubes are arranged substantially in the same orientation. The carbon nanotubes in the carbon nanotube film structure 32 of the electrically actuated material 30 of the present embodiment are arranged end to end along the direction of the first electrical connection portion 124, the connecting portion 125 and the second electrical connection portion 126. Due to the strong electrical conductivity of the carbon nanotubes in the axial direction, the electrically actuated material 30 is electrically connected from the first electrical connection portion 124 to the second electrical connection portion 099110262. Form No. A0101 Page 14 of 30 pages 0992018062-0 201135997 126 It is smaller and thus increases the rate of thermal response of the electrically actuated material 3〇. Referring to FIG. 9 , an embodiment of the present invention provides an electrically actuated component 20 using the electrically actuated material 10 , comprising: an electrically actuated material 10 , at least a first electrode 22 , and at least a second Electrode 24. The at least first electrode 22 is spaced apart from the at least second electrode 24 and is electrically coupled to the electrically actuated material 10. The electrically actuated material 10 is a sheet having a certain thickness. [0027] The at least first electrode 22 and at least the second electrode 24 are spaced apart from each other and electrically connected to the carbon nanotube film structure 12 in the electrically actuated material 10. Specifically, the first electrode 22 and the second electrode 24 are elongated metal, and are disposed at intervals of the end portion of the first electrification portion 24 and the second power receiving portion 126. The first electrode 22 is electrically connected to the end of the first electrical connection portion 124. The second electrode 24 is electrically connected to the end of the second electrical connection portion 126. In this embodiment, the electro-induced The moving material 10 is a sheet having a length of 34 mm 'width 5 mm' thickness 〇. 7 mm, and the first electrode 22 and the second electrode 24 are steel sheets, and the copper sheet is disposed on the electro The two ends of the movable material 10 are electrically connected to the first power receiving portion 1 24 and the second power receiving portion 126 respectively. When the carbon nanotube film structure 丨 2 in the electroactive material 1 包括 includes a plurality of The electric actuating element 20 includes a plurality of first electrodes 22 and a plurality of second electrodes 24, each of the first electrodes 22 and a first electrical connection portion, when the electrical connection portion 124 and the plurality of second electrical connection portions 126 are 124 is electrically connected, and each of the second electrodes 24 is electrically connected to the second power receiving portion 126. [0028] In a specific application, a voltage is applied to the first electrode 22 and the second electrode 24 of the electro-active element 2, and current can be transmitted through the conductive network formed by the carbon nanotube film structure 12. Since the first electrode 22 and the second electric 099110262 form number Α 0101 page 15 / total 30 page 0992018062-0 201135997 pole 24 is disposed on the same side of the electric actuating element 2 , when passing the first electrode 22 and When the two electrodes 24 are energized, the other side of the electrically actuated element 20 opposite the first electrode 22 and the second electrode 24 will be bent. Therefore, the electric actuating element 20 provided by the present invention can be bent on the fixed side, and the other side of the electric actuating element 20 is bent after being energized, so that the bending of the electric actuating element 20 can be better controlled. It is more convenient to use. [0030] It can be understood that the braking mode of the electrostrictive material provided by the embodiment of the present invention is not limited to the expansion after the electric heating, as long as the method capable of heating the electrostrictive material can be applied to the electrophoresis. Telescopic material. For example, the electrostrictive material is placed directly on a temperature-controlled platform, and is heated by heat transfer to achieve a curved knee. Alternatively, it is also possible to use a near-infrared laser irradiation to perform photothermal heating to raise the temperature to achieve its bending expansion. The electrostrictive material and the electro-actuating element according to the embodiments of the present invention have the following advantages: the electrostrictive material and the electro-actuating element provided by the present invention comprise a flexible polymer matrix, and are disposed adjacent to the surface of the flexible polymer substrate. A carbon nanotube film structure of a flexible polymer matrix. Since the carbon nanotube membrane structure comprises a plurality of gaps, the polymer matrix material is infiltrated into the gap, so that the carbon nanotube membrane structure and the new polymer matrix have: good bonding' increases the electrostrictive material and Electrically actuated component life. The carbon nanotube membrane structure is a monolithic structure composed of a plurality of carbon nanotubes combined with a van der Waals force to form a pure carbon nanotube, and the plurality of carbon nanotubes are connected to each other to form a conductive network, and the opposite For other composite materials containing only carbon nanotubes, the pure nanocarbon camp has a good conductivity 'can quickly heat the electrostrictive material, so that it has 099110262 Form No. A0101 Page 16 / A total of 30 pages °992〇18〇62-〇201135997 Faster response speed. The electrostrictive material and the electrically actuated element are thermally expandable to be bendable so that they can be used in precision control devices. [0031] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0032] FIG. 1 is a perspective view showing the structure of an electrically actuated material according to a first embodiment of the present invention. 2 is a cross-sectional view of the electrically actuated material shown in FIG. 1 taken along line II-II. 3 is a schematic perspective view showing the structure of a carbon nanotube film in the electrically actuated material of FIG. 2. 4 is a scanning electron micrograph of a carbon nanotube film used in an electrically actuated material according to a first embodiment of the present invention. 5 is a scanning electron micrograph of a carbon nanotube rolled film used in an electrically actuated material according to a first embodiment of the present invention. 6 is a scanning electron micrograph of a carbon nanotube flocculation film used in an electroactive material according to a first embodiment of the present invention. 7 is a perspective structural view showing a structure of a carbon nanotube film in an electrically actuated material according to a first embodiment of the present invention. 8 is a schematic structural view of an electrically actuated material according to a second embodiment of the present invention. 099110262 Form No. A0101 Page 17/Total 30 Page 0992018062-0 201135997 [0040] FIG. 9 is an electro-electroscope according to an embodiment of the present invention. Schematic diagram of the three-dimensional structure of the moving element [Key element symbol description] [0041] Electroactive material: 10, 30 [0042] Nano carbon tube membrane structure: 12 ' 32 [0043] Nano carbon tube: 122 [0044] Power-on part: 124 [0045] Second power-on part: 126 [0046] Connection part: 125 [0047] Conductive enhancement layer: 128 [0048] Flexible polymer matrix: 14 [0049] Electrically actuated element: 20 [0050 ] First electrode: 22 [0051] Second electrode: 24 099110262 Form number A0101 Page 18/Total 30 page 0992018062-0

Claims (1)

201135997 七、申請專利範圍: 1 . 一種電致動材料,包括一片狀柔性高分子基體以及一奈米 碳管膜結構,其改進在於,所述奈米碳管膜結構至少部分 包埋於所述柔性高分子基體一表面,所述奈米碳管膜結構 為複數個奈米碳管通過凡德瓦爾力結合而成,所述奈米碳 管膜結構包括至少一第一接電部、至少一第二接電部及連 接所述至少一第一接電部和至少一第二接電部而形成長條 狀導電通路的一連接部,所述至少一第一接電部與至少一 第二接電部相互間隔設置並位於所述連接部的同一側。 ^ 2 .如申請專利範圍第1項所述的電致動材料,其中,所述奈 米碳管膜結構為將一個奈米碳管膜或複數個層疊的奈米碳 管膜剪切形成。 3 .如申請專利範圍第2項所述的電致動材料,其中,所述奈 米碳管膜包括複數個奈米碳管,該奈米碳管膜中的複數個 奈米碳管通過凡德瓦爾力首尾相連,所述複數個奈米碳管 的軸向基本沿同一方向擇優取向排列。 4 .如申請專利範圍第3項所述的電致動材料,其中,所述至 ❹ 少一第一接電部與至少一第二接電部沿著奈米碳管膜結構 中的奈米碳管的擇優取向排列方向延伸。 5 .如申請專利範圍第4項所述的電致動材料,其中,該電致 動材料進一步包括一導電增強層,該導電增強層設置於所 述連接部遠離所述至少一第一接電部及至少一第二接電部 的一側,並與所述連接部電連接。 6.如申請專利範圍第5項所述的電致動材料,其中,該導電 增強層的材料為銀膠。 099110262 表單編號A0101 第19頁/共30頁 0992018062-0 201135997 7 .如申請專利範圍第2項所述的電致動材料,其中,所述奈 米碳管膜包括均勻分佈的奈米碳管,所述奈米碳管無序, 沿同一方向或不同方向擇優取向排列。 8 .如申請專利範圍第2項所述的電致動材料,其中,所述奈 米碳管膜包括複數個奈米碳管,該複數個奈米碳管之間通 過凡德瓦爾力相互吸引、纏繞,形成網路狀結構。 9 .如申請專利範圍第1項所述的電致動材料,其中,所述奈 米碳管膜結構的該奈米碳管膜結構與該柔性高分子基體的 厚度比為1 : 5~1 : 200。 10.如申請專利範圍第1項所述的電致動材料,其中,所述奈 米碳管膜結構中的複數個奈米碳管之間存在間隙,所述柔 性高分子基體的部分材料滲透進入所述間隙當中,使得柔 性高分子基體與奈米碳管膜結構緊密結合。 11 .如申請專利範圍第1項所述的電致動材料,其中,所述奈 米碳管膜結構與柔性高分子基體接觸的表面全部包埋於柔 性高分子基體中,並靠近所述柔性高分子基體的表面。 12 .如申請專利範圍第1項所述的電致動材料,其中,所述柔 性高分子基體的材料為矽橡膠、聚曱基丙烯酸曱酯、聚氨 脂、環氧樹脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯 、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩中的一 種或幾種的組合。 13 .如申請專利範圍第1項所述的電致動材料,其中,奈米碳 管膜結構包括複數個奈米碳管,該複數個奈米碳管首尾相 連沿著由至少一第一接電部到連接部,再到至少一第二接 電部方向排列。 14 . 一種電致動元件,其包括: 099110262 表單編號A0101 第20頁/共30頁 0992018062-0 201135997 如申請專利範圍第1至13項中任一項所述的電致動材料; 以及 至少一第一電極與至少一第二電極,所述至少一第一電極 與至少一第二電極間隔設置於所述電致動材料,並與所述 電致動材料電連接; 其中,所述至少一第一電極與所述至少一第一接電部電連 接,所述至少一第二電極與所述至少一第二接電部電連接 〇 15 .如申請專利範圍第14項所述的電致動元件,其中,所述電 〇 致動材料在通過所述第一接電部及第二接電部通電時,所 述電致動材料設置有連接部的一端向設置有奈米碳管膜結 構的表面方向彎曲。 16 .如申請專利範圍第14項所述的電致動元件,其中,所述電 致動材料包括複數個第一電極、複數個第二電極、複數個 第一接電部以及複數個第二接電部,該複數個第一接電部 及複數個第二接電部交替間隔設置,每個第一電極與一個 第一接電部電連接,每一個第二電極與第二接電部電連接 〇 。 17 .如申請專利範圍第14項所述的電致動元件,其中,所述柔 性高分子基體為與奈米碳管膜結構相同的片狀材料。 099110262 表單編號A0101 第21頁/共30頁 0992018062-0201135997 VII. Patent application scope: 1. An electroactive material comprising a sheet of flexible polymer matrix and a carbon nanotube membrane structure, the improvement being that the carbon nanotube membrane structure is at least partially embedded in the a surface of the flexible polymer substrate, wherein the carbon nanotube film structure is formed by combining a plurality of carbon nanotubes by a van der Waals force, the carbon nanotube film structure comprising at least a first electrical connection portion, at least a second power receiving portion and a connecting portion connecting the at least one first power receiving portion and the at least one second power receiving portion to form an elongated conductive path, the at least one first power receiving portion and at least one first The two power receiving portions are spaced apart from each other and are located on the same side of the connecting portion. The electroactive material according to claim 1, wherein the carbon nanotube film structure is formed by shearing a carbon nanotube film or a plurality of laminated carbon nanotube films. 3. The electrically actuated material of claim 2, wherein the carbon nanotube membrane comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes in the carbon nanotube membrane pass through Dewar force is connected end to end, and the axial directions of the plurality of carbon nanotubes are arranged substantially in the same direction. 4. The electrically actuated material of claim 3, wherein the at least one first electrical connection and the at least one second electrical connection are along a nanometer in the carbon nanotube membrane structure. The preferred orientation of the carbon tubes extends in the direction of alignment. 5. The electrically actuated material of claim 4, wherein the electrically actuated material further comprises a conductive enhancement layer disposed on the connecting portion away from the at least one first electrical connection And a side of the at least one second power receiving portion and electrically connected to the connecting portion. 6. The electrically actuated material of claim 5, wherein the material of the electrically conductive reinforcing layer is silver paste. The electroactive material of claim 2, wherein the carbon nanotube membrane comprises a uniformly distributed carbon nanotube tube, the method of claim 5, the method of claim 2, the method of claim 2, wherein the carbon nanotube membrane comprises a uniformly distributed carbon nanotube tube, The carbon nanotubes are disordered and arranged in the same direction or in different directions. 8. The electrically actuated material of claim 2, wherein the carbon nanotube membrane comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are attracted to each other by van der Waals force , entangled, forming a network structure. 9. The electroactive material according to claim 1, wherein the carbon nanotube film structure has a thickness ratio of the carbon nanotube film structure to the flexible polymer matrix of 1: 5~1. : 200. 10. The electroactive material according to claim 1, wherein a gap exists between a plurality of carbon nanotubes in the carbon nanotube membrane structure, and a part of the material of the flexible polymer matrix penetrates Entering into the gap, the flexible polymer matrix is tightly bonded to the carbon nanotube membrane structure. 11. The electrically actuated material of claim 1, wherein the surface of the carbon nanotube film structure in contact with the flexible polymer matrix is entirely embedded in the flexible polymer matrix and is adjacent to the flexible The surface of the polymer matrix. The electroactive material according to claim 1, wherein the flexible polymer matrix is made of ruthenium rubber, ruthenium acrylate, polyurethane, epoxy resin or polyethyl acrylate. A combination of one or more of polybutyl acrylate, polystyrene, polybutadiene, polyacrylonitrile, polyaniline, polypyrrole, and polythiophene. 13. The electrically actuated material of claim 1, wherein the carbon nanotube membrane structure comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being connected end to end along at least one first connection The electric parts are connected to the connecting part and then to the at least one second electric connecting part. An electrically actuated component, comprising: 099110262, a form number A0101, a page 20, a total of 30, and a ninth aspect of the invention, wherein the electrically actuated material of any one of claims 1 to 13; a first electrode and at least one second electrode, the at least one first electrode and the at least one second electrode being spaced apart from the electrically actuated material and electrically connected to the electrically actuated material; wherein the at least one The first electrode is electrically connected to the at least one first electrical connection portion, and the at least one second electrical electrode is electrically connected to the at least one second electrical connection portion. The electrical circuit is as described in claim 14 a moving element, wherein the electric actuation material is provided with a carbon nanotube film at one end of the connecting portion when the first power receiving portion and the second power receiving portion are energized The surface direction of the structure is curved. The electrically actuated component of claim 14, wherein the electrically actuated material comprises a plurality of first electrodes, a plurality of second electrodes, a plurality of first electrical connections, and a plurality of second In the power receiving portion, the plurality of first power receiving portions and the plurality of second power receiving portions are alternately arranged, and each of the first electrodes is electrically connected to one first power receiving portion, and each of the second electrodes and the second power receiving portion Electrical connection. The electroactive element according to claim 14, wherein the flexible polymer matrix is a sheet material having the same structure as the carbon nanotube film. 099110262 Form No. A0101 Page 21 of 30 0992018062-0
TW99110262A 2010-04-02 2010-04-02 Electrostrictive material and actuator using the same. TWI441366B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99110262A TWI441366B (en) 2010-04-02 2010-04-02 Electrostrictive material and actuator using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99110262A TWI441366B (en) 2010-04-02 2010-04-02 Electrostrictive material and actuator using the same.

Publications (2)

Publication Number Publication Date
TW201135997A true TW201135997A (en) 2011-10-16
TWI441366B TWI441366B (en) 2014-06-11

Family

ID=46752083

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99110262A TWI441366B (en) 2010-04-02 2010-04-02 Electrostrictive material and actuator using the same.

Country Status (1)

Country Link
TW (1) TWI441366B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553921B (en) * 2014-07-23 2016-10-11 鴻海精密工業股份有限公司 Actuator
TWI565648B (en) * 2014-07-23 2017-01-11 鴻海精密工業股份有限公司 Electrostrictive material and actuator using the same
TWI565875B (en) * 2014-07-23 2017-01-11 鴻海精密工業股份有限公司 Method for producing electrothermic actuator
TWI565874B (en) * 2014-07-23 2017-01-11 鴻海精密工業股份有限公司 Electrothermic actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726971A (en) 2016-08-11 2018-02-23 清华大学 Strain transducer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553921B (en) * 2014-07-23 2016-10-11 鴻海精密工業股份有限公司 Actuator
TWI565648B (en) * 2014-07-23 2017-01-11 鴻海精密工業股份有限公司 Electrostrictive material and actuator using the same
TWI565875B (en) * 2014-07-23 2017-01-11 鴻海精密工業股份有限公司 Method for producing electrothermic actuator
TWI565874B (en) * 2014-07-23 2017-01-11 鴻海精密工業股份有限公司 Electrothermic actuator
US9862155B2 (en) 2014-07-23 2018-01-09 Tsinghua University Method for making electrothermal actuators
US9869304B2 (en) 2014-07-23 2018-01-16 Tsinghua University Electrothermal composite material and electrothermal actuator using the same
US9890770B2 (en) 2014-07-23 2018-02-13 Tsinghua University Electrothermal actuators

Also Published As

Publication number Publication date
TWI441366B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
CN102201532B (en) Electric actuating material and electric actuating element
JP5539837B2 (en) Electrostrictive composite structure and actuator
CN101913130B (en) Electrically-actuated clamp holder
JP5679733B2 (en) Actuator
CN101840991B (en) Electrical actuating structure and electrical actuating element
JP5959807B2 (en) Actuator and actuator structure
CN105206738B (en) Electro-active material and electric actuator
TWI553921B (en) Actuator
TWI565648B (en) Electrostrictive material and actuator using the same
TWI565874B (en) Electrothermic actuator
TWI441366B (en) Electrostrictive material and actuator using the same.
TWI565875B (en) Method for producing electrothermic actuator
Chang et al. Soft actuators based on carbon nanomaterials
CN105355776A (en) Electro-mechanical material and preparation method thereof and actuator employing electro-mechanical material
US8533885B2 (en) Cleaning device incorporating carbon nanotubes
TWI387516B (en) Actuator
TWI394303B (en) Electrostrictive material and actuator using the same
TWI485896B (en) Electrostrictive structure and actuator using the same.
TWI451912B (en) Cleaning device