TWI380733B - Planar heating source - Google Patents

Planar heating source Download PDF

Info

Publication number
TWI380733B
TWI380733B TW97128266A TW97128266A TWI380733B TW I380733 B TWI380733 B TW I380733B TW 97128266 A TW97128266 A TW 97128266A TW 97128266 A TW97128266 A TW 97128266A TW I380733 B TWI380733 B TW I380733B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
heat source
surface heat
heating layer
substrate
Prior art date
Application number
TW97128266A
Other languages
Chinese (zh)
Other versions
TW201006299A (en
Inventor
Chen Feng
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97128266A priority Critical patent/TWI380733B/en
Publication of TW201006299A publication Critical patent/TW201006299A/en
Application granted granted Critical
Publication of TWI380733B publication Critical patent/TWI380733B/en

Links

Description

1380733 101年10月18日修正替换頁1380733 October 18, 101 revised replacement page

發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種面熱源,尤其涉及一種基於奈米碳管的 面熱源。 【先前技術】 [0002] 熱源在人們的生產、生活、科研中起著重要的作用。面 熱源係熱源的一種,其特點為面熱源具有一平面結構, 將待加熱物體置於該平面結構的上方對物體進行加熱, 故,面熱源可對待加熱物體的各個部位同時加熱,加熱 面廣、加熱均勻且效率較高。面熱源已成功用於工業領 域、科研領域或生活領域等,如電加熱器、紅外治療儀 、電暖器等。 [0003] 先前面熱源一般包括一加熱層和至少兩個電極,該至少 兩個電極設置於該加熱層的表面,並與該加熱層的表面 電連接。當連接加熱層上的電極通入低電壓電流時,熱 量立刻從加熱層釋放出來。現在市售的面熱源通常採用 金屬製成的電熱絲作為加熱層進行電熱轉換。然而,電 熱絲的強度不高易於折斷,特別係彎曲或繞折成一定角 度時,故應用受到限制。另,以金屬製成的電熱絲所產 生的熱量係以普通波長向外II射的,其電熱轉換效率不 高不利於節省能源。 [0004] 非金屬碳纖維導電材料的發明為面熱源的發展帶來了突 破。採用碳纖維的加熱層通常在碳纖維外部塗覆一層防 水的絕緣層用作電熱轉換的元件以代替金屬電熱絲。由 於碳纖維具有較好的韌性,這在一定程度上解決了電熱 09712826#單編號 A〇101 第3頁/共20頁 1013399291-0 1380733 101年.10月18曰修正替換頁 絲強度不高易折斷的缺點。然而,由於碳纖維仍係以普 通波長向外散熱,故並未解決電熱轉換率低的問題。為 解決上述問題,採用碳纖維的加熱層一般包括多根碳纖 維熱源線鋪設而成。該碳纖維熱源線為一外表包裹有化 纖或者棉線的導電芯線。該化纖或者棉線的外面浸塗一 層防水阻燃絕緣材料。所述導電芯線由多根碳纖維與多 根表面黏塗有遠紅外塗料的棉線纏繞而成。導電芯線中 加入黏塗有遠紅外塗料的棉線,一來可增強芯線的強度 ,二來可使通電後碳導纖維發出的熱量能以紅外波長向 外輻射8 [0005] 然而,採用碳纖維紙作為加熱層具有以下缺點:第一, 碳纖維強度不夠大,柔性不夠好,容易破裂,需要加入 棉線提高碳纖維的強度,限制了其應有範圍;第二,碳 纖維本身的電熱轉換效率較低,需加入黏塗有遠紅外塗 料的棉線提高電熱轉換效率,不利於節能環保;第三, 需先製成碳纖維熱源線再製成加熱層,不利於大面積製 作,不利於均勻性的要求,同時,不利於微型面熱源的 製作。 [0006] 有鑒於此,提供一種具有強度大,電熱轉換效率較高, 有利於節省能源且發熱均勻,大小可控,可製成大面積 或者微型的面熱源實為必要。 【發明内容】 [0007] —種面熱源,該面熱源包括一第一電極、一第二電極和 一加熱層。所述第一電極和第二電極間隔設置於該加熱 層上,並與該加熱層電接觸。該加熱層包括複數個線狀 ό麵26产單编號A〇101 第4頁/共20頁 1013399291-0 1380733 101年10月18日修正替換頁 奈米碳管結構。 [0008] 相較於先前技術,所述之面熱源具有以下優點:第一, 由於奈米碳管具有較好的強度及韌性,線狀奈米碳管結 構的強度較大,柔性較好,不易破裂,使其具有較長的 使用壽命。第二,線狀奈米碳管結構中的奈米碳管均勻 分佈,因此具有均勻的厚度及電阻,發熱均勻,奈米碳 管的電熱轉換效率高,故該面熱源具有升溫迅速、熱滯 後小、熱交換速度快的特點。第三,奈米碳管的直徑較 小,使得線狀奈米碳管結構具有較小的厚度,可製備微 型面熱源,應用於微型器件的加熱。 【實施方式】 [0009] 以下將結合附圖詳細說明本技術方案面熱源。 [0010] 請參閱圖1及圖2,本技術方案實施例提供一種面熱源10 ,該面熱源10包括一基底18、一反射層17、一加熱層16 、一第一電極12、一第二電極14和一絕緣保護層15。所 述反射層17設置於基底18的表面。所述加熱層16設置於 所述反射層17的表面。所述第一電極12和第二電極14間 隔設置於所述加熱層16的表面,並與該加熱層16電接觸 ,用於使所述加熱層16中流過電流。所述絕緣保護層15 設置於所述加熱層16的表面,並將所述第一電極12和第 二電極14覆蓋,用於避免所述加熱層16吸附外界雜質。 [0011] 所述基底18形狀不限,其具有一表面用於支撐加熱層16 或者反射層17。優選地,所述基底18為一板狀基底,其 材料可為硬性材料,如:陶竞、玻璃、樹脂、石英等, 亦可選擇柔性材料,如:塑膠或柔性纖維等。當為柔性 1013399291-0 09712826#單編號A〇1〇l 第5頁/共20頁 1380733 r—- 101年.10月18日核正替换頁 材料時,該面熱源10在使用時可根據需要彎折成任意形 狀。其中,基底18的大小不限,可依據實際需要進行改 變。本實施例優選的基底18為一陶瓷基板。另,當加熱 層16具有一定的自支撐性及穩定性時,所述面熱源10中 的基底18為一可選擇的結構。 [0012] 所述反射層17的設置用來反射加熱層16所發的熱量,從 而控制加熱的方向,用於單面加熱,並進一步提高加熱 的效率。所述反射層17的材料為一白色絕緣材料,如: 金屬氧化物、金屬鹽或陶瓷等。本實施例中,反射層17 為三氧化二鋁層,其厚度為100微米~0. 5毫米。該反射層 17可通過濺射或其他方法形成於該基底18表面。可以理 解,所述反射層17也可設置在基底18遠離加熱層16的表 面,即所述基底18設置於所述加熱層16和所述反射層17 之間,進一步加強反射層17反射熱量的作用。所述反射 層17為一可選擇的結構。所述加熱層16可直接設置在基 底18的表面,此時面熱源10的加熱方向不限,可用於雙 面加熱。 [0013] 所述加熱層16包括複數個線狀奈米碳管結構160。所述複 數個線狀奈米碳管結構160平行鋪設,或者交叉鋪設於所 述支撐體18表面。其中,線狀奈米碳管結構160之間交叉 的角度不限。所述相鄰兩個平行的線狀奈米碳管結構160 之間的距離為0微米〜30微米。本實施例中,優選相鄰兩 個平行的線狀奈米碳管結構160間隔的距離為20微米。可 以理解,所述複數個線狀奈米碳管結構160排列或者鋪設 的方式不限,只需確保形成一均勻的加熱層16即可。進 _282一單编號 A〇101 第6頁/共20頁 1013399291-0 1380733 101年10月18日梭正替換頁 一步地,所述加熱層16中至少部分線狀奈米碳管結構160 沿從所述第一電極22向第二電極24延伸的方向鋪設於所 述支撐體18表面,以確保流經線狀奈米碳管結構160的電 流最大。所述交叉鋪設的線狀奈米碳管結構160具有很好 的韌性與自支撐性,無需基底18。當面熱源10不包括基 底18時,所述反射層17可直接設置於所述加熱層16的表 面。所述加熱層16的厚度為3毫米〜25毫米。 [0014] 所述線狀奈米碳管結構160包括至少一根奈米碳管長線 161。諳參閱圖3及圖4,優選地所述線狀奈米碳管結構 160係由多根奈米碳管長線161組成的束狀結構或者由多 根奈米碳管長線161組成的絞線結構。所述線狀奈米碳管 結構160的直徑為20微米〜2毫米,其大小由奈米碳管長線 161的根數及直徑大小決定,奈米碳管長線161的直徑越 大,根數越多,線狀奈米碳管結構160的直徑越大,反之 ,線狀奈米碳管結構160的直徑越小。所述線狀奈米碳管 結構160的長度大小由奈米碳管長線161的長度大小決定 。本實施例中所述線狀奈米碳管結構160係由多根奈米碳 管長線161組成的束狀結構,直徑為50微米。 « [0015] 請參閱圖5及圖6,所述奈米碳管長線161係由複數個首尾 相連的奈米碳管束組成的束狀結構或者絞線結構。所述 奈米碳管長線包括沿奈米碳管長線1 61的軸向方向擇優取 向排列的奈米碳管。具體地,所述束狀結構的奈米碳管 長線161可通過有機溶劑處理所述奈米碳管薄膜,或者通 過直接拉取較窄寬度的奈米碳管陣列獲得。該奈米碳管 長線1 61中奈米碳管沿奈米碳管長線的軸向方向平行排列 097麗單編號A_ 1013399291-0 第7頁/共20頁 1380733 _ 101年10月18日修正替换頁 。所述絞線結構奈米碳管長線161可通過對束狀結構的奈 米碳管長線161施加機械外力扭轉獲得。扭轉後該奈米碳 管長線161中奈米碳管沿奈米碳管長線的軸向方向螺旋排 列。 [0016] 所述奈米碳管長線161的直徑與長度和奈米碳管陣列所生 長的基底的尺寸有關。可根據實際需求制得。本實施例 中,採用氣相沈積法在4英寸的基底生長超順排奈米碳管 陣列。所述奈米碳管長線161的直徑為1微米〜100微米, 長度為50毫米〜100毫米。 [0017] 所述線狀奈米碳管結構160中的奈米碳管為單壁奈米碳管 、雙壁奈米碳管或者多壁奈米碳管。當所述線狀奈米碳 管結構160中的奈米碳管為單壁奈米碳管時,該單壁奈米 碳管的直徑為0.5奈米~50奈米。當所述線狀奈米碳管結 構160中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管 的直徑為1.0奈米〜50奈米。當所述線狀奈米碳管結構 160中的奈米碳管為多壁奈米碳管時,該多壁奈米碳管的 直徑為1.5奈来〜50奈米。 [0018] 所述第一電極12和第二電極14由導電材料組成,該第一 電極12和第二電極14的形狀不限,可為導電薄膜、金屬 - 片或者金屬引線。優選地,第一電極12和第二電極14均 為一層導電薄膜。該導電薄膜的厚度為0.5奈米〜100微米 。該導電薄膜的材料可為金屬、合金、銦錫氧化物(I TO )、銻錫氧化物(ΑΤΟ)、導電銀膠、導電聚合物或導電 性奈米碳管等。該金屬或合金材料可為铭、銅、鶴、钥 、金、鈦、鉉、鈀、鉋或其任意組合的合金。本實施例 謝脳产單编號Α0101 第8頁/共20頁 1013399291-0 1380733 101年.10月18日梭正替换頁 中,所述第一電極12和第二電極14的材料為金屬鈀膜, 厚度為5奈米。所述金屬鈀與奈米碳管具有較好的潤濕效 果,有利於所述第一電極12及第二電極14與所述加熱層 16之間形成良好的電接觸,減少歐姆接觸電阻。 [0019] 所述之第一電極12和第二電極14可設置在加熱層16的同 一表面上也可設置在加熱層16的不同表面上。其中,第 一電極12和第二電極14間隔設置,以使加熱層16應用於 面熱源10時接入一定的阻值避免短路現象產生。所述第 一電極12和第二電極14的設置位置與線狀奈米碳管結構 160的排列相關,至少部分線狀奈米碳管結構160的兩端 分別與所述第一電極12和第二電極14電連接。 [0020] 另,所述之第一電極12和第二電極14也可通過一導電黏 結劑(圖未示)設置於該加熱層16的表面上,導電黏結劑 在實現第一電極12和第二電極14與加熱層16電接觸的同 時,還可將所述第一電極12和第二電極14更好地固定於 加熱層16的表面上。本實施例優選的導電黏結劑為銀膠 〇 [0021] 可以理解,第一電極12和第二電極14的結構和材料均不 限,其設置目的係為了使所述加熱層16中流過電流。因 此,所述第一電極12和第二電極14只需要導電,並與所 述加熱層16之間形成電接觸都在本發明的保護範圍内。 [0022] 所述絕緣保護層15為一可選擇結構,其材料為一絕緣材 料,如:橡膠、樹脂等。所述絕緣保護層15厚度不限, 可根攄實際情況選擇。所述絕緣保護層15覆蓋於所述第 09712826#單編號 A〇101 第9頁/共20頁 1013399291-0 1380733 101年10月18日修正替换頁 一電極12、第二電極14和加熱層16之上,可使該面熱源 10在絕緣狀態下使用,同時還可避免所述加熱層16中的 奈米碳管吸附外界雜質。本實施例中,該絕緣保護層15 的材料為橡膠,其厚度為0. 5〜2毫米。 [0023] 本技術方案實施例的面熱源10在使用時,可先將面熱源 10的第一電極12和第二電極14連接導線後接入電源。在 接入電源後熱源10中的線狀奈米碳管結構160即可輻射出 一定波長範圍的電磁波。所述面熱源20可與待加熱物體 的表面直接接觸。或者’由於本實施例中作為加熱層16 的線狀奈米碳管結構160中的奈米碳管具有良好的導電性 能’且該線狀奈米碳管結構160本身已經具有一定的自支 撐性及穩定性,所述面熱源20可與待加熱物體相隔一定 的距離設置。 [0024] 本技術方案實施例中的面熱源1 〇線上狀奈米碳管結構1 6 〇 的面積大小一定時,可通過調節電源電壓大小和加熱層 16的厚度’可輕射出不同波長範圍的電磁波。電源電壓 的大小一定時’加熱層16的厚度和面熱源1〇輻出電磁波 的波長的變化趨勢相反。即當電源電壓大小一定時,加 熱層16的厚度越厚,面熱源1〇輻出電磁波的波長越短, 該面熱源10可產生一可見光熱輻射;加熱層16的厚度越 /專,面熱源1 〇輻出電磁波的波長越長,該面熱源1 〇可產 生一紅外線熱轄射。加熱層16的厚度一定時’電源電壓 的大小和面熱源10輻出電磁波的波長成反比。即當加熱 層16的厚度一定時,電源電壓越大,面熱源10輻出電磁 波的波長越短,該面熱源1〇可產生一可見光熱輻射;電 09712826#單編號A0101 第10.頁/共20頁 1013399291-0 1380733 101年.10月18日修正替换頁 源電壓越小,面熱源10輻出電磁波的波長越長,該面熱 源10可產生一紅外熱輕射。 [0025] 奈米碳管具有良好的導電性能以及熱穩定性,且作為一 理想的黑體結構,具有比較高的熱輻射效率。將該面熱 源10暴露在氧化性氣體或者大氣的環境中,其中線狀奈 米碳管結構的厚度為5毫米,通過在10伏-30伏調節電源 電壓,該面熱源10可輻射出波長較長的電磁波。通過溫 度測量儀發現該面熱源10的溫度為50°C〜500°C。對於具 有黑體結構的物體來說,其所對應的溫度為200°C~450°C 時就能發出人眼看不見的熱輻射(紅外線),此時的熱 輻射最穩定、效率最高。應用該線狀奈米碳管結構製成 的發熱元件,可應用於電加熱器、紅外治療儀、電暖器 等領域。 [0026] 進一步地,將本技術方案實施例中的面熱源10放入一真 空裝置中,通過在80伏〜150伏調節電源電壓,該面熱源 10可輻射出波長較短的電磁波。當電源電壓大於150伏時 ,該面熱源10陸續會發出紅光、黃光等可見光。通過溫 度測量儀聲現該面熱源10的溫度可達到1 500°C以上,此 時會產生一普通熱輻射。隨著電源電壓的進一步增大, 該面熱源10還能產生殺死細菌的人眼看不見的射線(紫 外光),可應用於光源、顯示器件等領域。 [0027] 所述之面熱源具有以下優點:第一,由於奈米碳管具有 較好的強度及韌性,線狀奈米碳管結構的強度較大,柔 性較好,不易破裂,使其具有較長的使用壽命。第二, 線狀奈米碳管結構中的奈米碳管均勻分佈,因此具有均 隱腿#單編號A0101 第11頁/共20頁 1013399291-0 1380733 - 101年10月18日梭正替換頁 勻的厚度及電阻,發熱均勻,奈米碳管的電熱轉換效率 高,故該面熱源具有升溫迅速、熱滯後小、熱交換速度 快、輻射效率高的特點。第三,奈米碳管的直徑較小, 使得線狀奈米碳管結構具有較小的厚度,可製備微型面 熱源,應用於微型器件的加熱。第四,複數個線狀奈米 碳管結構交叉形成一多層結構以提供一定的支撐作用, 使奈米碳管複合結構具有更好的韌性。第五,線狀奈米 碳管結構可通過從奈米碳管陣列中拉取後作進一步處理 得到,方法簡單且有利於大面積面熱源的製作。 [0028] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0029] 圖1係本技術方案實施例的面熱源的結構示意圖。 [0030] 圖2係圖1的Π - Π剖面示意圖。 [0031] 圖3係本技術方案實施例束狀結構的線士奈米碳管結構的 結構示意圖。 [0032] 圖4係本技術方案實施例絞線狀結構的線狀奈米碳管結構 的結構示意圖。 [0033] 圖5係本技術方案實施例束狀結構的奈米碳管長線的掃描 電鏡照片。 · [0034] 圖6係本技術方案實施例絞線狀結構的奈米碳管長線的掃 09712826#單编號 A〇101 第 12 頁 / 共 20 頁 1013399291-0 1380733 101年.10月18日修正替換頁 描電鏡照片。 【主要元件符號說明】 [0035] 面熱源:10 [0036] 第一電極:1 2 [0037] 第二電極:14 [0038] 絕緣保護層:15 [0039] 加熱層:16 [0040] 線狀奈米碳管結構:160 [0041] 奈米碳管長線:161 [0042] 反射層:17 [0043] 基底:18 09712826#單編號 A〇101 第13頁/共20頁 1013399291-0[Description of the Invention] [0001] The present invention relates to a surface heat source, and more particularly to a surface heat source based on a carbon nanotube. [Prior Art] [0002] Heat sources play an important role in people's production, life, and research. The surface heat source is a heat source, which is characterized in that the surface heat source has a planar structure, and the object to be heated is placed above the planar structure to heat the object, so that the surface heat source can simultaneously heat various parts of the object to be heated, and the heating surface is wide. Uniform heating and high efficiency. Surface heat sources have been successfully used in industrial fields, scientific research fields or living areas, such as electric heaters, infrared therapeutic devices, and electric heaters. The front front heat source generally includes a heating layer and at least two electrodes disposed on a surface of the heating layer and electrically connected to a surface of the heating layer. When the electrode connected to the heating layer is supplied with a low voltage current, the heat is immediately released from the heating layer. Commercially available surface heat sources are usually electrothermally converted using a heating wire made of metal as a heating layer. However, the strength of the heating wire is not high and it is easy to break, especially when it is bent or folded into a certain angle, so the application is limited. In addition, the heat generated by the heating wire made of metal is emitted at a normal wavelength to the outside, and the electrothermal conversion efficiency is not high, which is disadvantageous for saving energy. [0004] The invention of non-metallic carbon fiber conductive materials has brought about a breakthrough in the development of surface heat sources. A heating layer using carbon fibers is usually coated with a water-repellent insulating layer on the outside of the carbon fibers as an electrothermal conversion element instead of the metal heating wire. Due to the good toughness of carbon fiber, this solves the electric heating to a certain extent. 09712826#Single number A〇101 Page 3/Total 20 pages 1013399291-0 1380733 101. October 18曰 Correction replacement page strength is not easy to break Shortcomings. However, since the carbon fiber is still radiated outward at a normal wavelength, the problem of low electrothermal conversion rate is not solved. In order to solve the above problems, the heating layer using carbon fiber generally comprises a plurality of carbon fiber heat source lines. The carbon fiber heat source line is a conductive core wire wrapped with a chemical fiber or a cotton thread. The outer surface of the chemical fiber or cotton thread is dip coated with a waterproof and flame-retardant insulating material. The conductive core wire is formed by winding a plurality of carbon fibers and a plurality of cotton wires coated with a far-infrared coating. The cotton wire coated with far-infrared coating is added to the conductive core wire to enhance the strength of the core wire. Secondly, the heat generated by the carbon fiber after the energization can be radiated outward at the infrared wavelength. [0005] However, carbon fiber paper is used as the carbon fiber paper. The heating layer has the following disadvantages: First, the carbon fiber is not strong enough, the flexibility is not good enough, and it is easy to be broken. It is necessary to add cotton wire to increase the strength of the carbon fiber, which limits its proper range; secondly, the carbon fiber itself has low electrothermal conversion efficiency and needs to be added. The cotton wire coated with far-infrared coating improves the electrothermal conversion efficiency, which is not conducive to energy conservation and environmental protection. Thirdly, it is necessary to first make a carbon fiber heat source line and then make a heating layer, which is not conducive to large-area production, which is not conducive to uniformity requirements, and at the same time, disadvantageous. The production of miniature surface heat sources. [0006] In view of the above, it is necessary to provide a surface heat source with large strength, high electrothermal conversion efficiency, favorable energy saving, uniform heat generation, and controllable size, and can be made into a large area or a miniature surface. SUMMARY OF THE INVENTION [0007] A seed surface heat source includes a first electrode, a second electrode, and a heating layer. The first electrode and the second electrode are disposed on the heating layer at intervals and are in electrical contact with the heating layer. The heating layer includes a plurality of linear surfaces. 26 Production No. A 〇 101 Page 4 / Total 20 pages 1013399291-0 1380733 October 18, 2011 Revision Replacement Page Carbon nanotube structure. Compared with the prior art, the surface heat source has the following advantages: First, since the carbon nanotube has better strength and toughness, the linear carbon nanotube structure has higher strength and better flexibility. Not easy to break, making it have a long service life. Second, the carbon nanotubes in the linear carbon nanotube structure are evenly distributed, so that the thickness and resistance are uniform, the heat is uniform, and the electrothermal conversion efficiency of the carbon nanotubes is high, so the surface heat source has rapid heating and thermal hysteresis. Small, fast heat exchange features. Third, the diameter of the carbon nanotubes is small, so that the linear carbon nanotube structure has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. [Embodiment] [0009] The surface heat source of the present technical solution will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , the embodiment of the present invention provides a surface heat source 10 including a substrate 18 , a reflective layer 17 , a heating layer 16 , a first electrode 12 , and a second surface . The electrode 14 and an insulating protective layer 15. The reflective layer 17 is disposed on the surface of the substrate 18. The heating layer 16 is disposed on the surface of the reflective layer 17. The first electrode 12 and the second electrode 14 are disposed on the surface of the heating layer 16 and are in electrical contact with the heating layer 16 for flowing a current in the heating layer 16. The insulating protective layer 15 is disposed on the surface of the heating layer 16 and covers the first electrode 12 and the second electrode 14 for preventing the heating layer 16 from adsorbing external impurities. [0011] The substrate 18 is not limited in shape, and has a surface for supporting the heating layer 16 or the reflective layer 17. Preferably, the substrate 18 is a plate-shaped substrate, and the material thereof may be a hard material such as ceramics, glass, resin, quartz, etc., and a flexible material such as plastic or flexible fiber may also be selected. When it is flexible 1013399291-0 09712826#单号A〇1〇l Page 5 of 20 pages 1380733 r—- 101 years. October 18th, when the replacement page material is verified, the surface heat source 10 can be used as needed. Bend into any shape. The size of the substrate 18 is not limited and can be changed according to actual needs. The preferred substrate 18 of this embodiment is a ceramic substrate. In addition, the substrate 18 in the surface heat source 10 is an optional structure when the heating layer 16 has a certain degree of self-supportingness and stability. [0012] The reflective layer 17 is arranged to reflect the heat generated by the heating layer 16, thereby controlling the direction of heating for single-sided heating and further improving the efficiency of heating. The material of the reflective layer 17 is a white insulating material such as a metal oxide, a metal salt or a ceramic. 5毫米。 The thickness of the layer is from 100 microns to 0. 5 mm. The reflective layer 17 can be formed on the surface of the substrate 18 by sputtering or other methods. It can be understood that the reflective layer 17 can also be disposed on the surface of the substrate 18 away from the heating layer 16, that is, the substrate 18 is disposed between the heating layer 16 and the reflective layer 17, further enhancing the reflective layer 17 to reflect heat. effect. The reflective layer 17 is an alternative structure. The heating layer 16 can be directly disposed on the surface of the substrate 18, and the heating direction of the surface heat source 10 is not limited, and can be used for double-sided heating. [0013] The heating layer 16 includes a plurality of linear carbon nanotube structures 160. The plurality of linear carbon nanotube structures 160 are laid in parallel or cross-laid on the surface of the support 18. Among them, the angle of intersection between the linear carbon nanotube structures 160 is not limited. The distance between the adjacent two parallel linear carbon nanotube structures 160 is from 0 micrometers to 30 micrometers. In this embodiment, it is preferred that the adjacent two parallel linear carbon nanotube structures 160 are spaced apart by a distance of 20 microns. It can be understood that the manner in which the plurality of linear carbon nanotube structures 160 are arranged or laid is not limited, and it is only necessary to ensure that a uniform heating layer 16 is formed. _282一单编号A〇101 Page 6/Total 20 Page 1013399291-0 1380733 On October 18, 101, the shuttle is replacing the page, at least part of the linear carbon nanotube structure 160 in the heating layer 16 The surface of the support 18 is laid in a direction extending from the first electrode 22 to the second electrode 24 to ensure maximum current flow through the linear carbon nanotube structure 160. The cross-laid linear carbon nanotube structure 160 has good toughness and self-supportability without the need for the substrate 18. When the surface heat source 10 does not include the substrate 18, the reflective layer 17 may be disposed directly on the surface of the heating layer 16. The heating layer 16 has a thickness of 3 mm to 25 mm. [0014] The linear carbon nanotube structure 160 includes at least one nano carbon tube long line 161. Referring to FIG. 3 and FIG. 4, preferably, the linear carbon nanotube structure 160 is a bundle structure composed of a plurality of carbon nanotube long wires 161 or a strand structure composed of a plurality of carbon nanotube long wires 161. . The diameter of the linear carbon nanotube structure 160 is 20 micrometers to 2 millimeters, and the size thereof is determined by the number and diameter of the long carbon nanotubes 161. The larger the diameter of the long carbon nanotubes 161, the greater the number of the roots. The diameter of the linear carbon nanotube structure 160 is larger, and conversely, the diameter of the linear carbon nanotube structure 160 is smaller. The length of the linear carbon nanotube structure 160 is determined by the length of the carbon nanotube long line 161. The linear carbon nanotube structure 160 in the present embodiment is a bundle structure composed of a plurality of carbon nanotube long wires 161 having a diameter of 50 μm. [0015] Referring to FIG. 5 and FIG. 6, the carbon nanotube long line 161 is a bundle structure or a stranded structure composed of a plurality of carbon nanotube bundles connected end to end. The long carbon nanotube line includes carbon nanotubes which are preferentially aligned along the axial direction of the long carbon nanotube 1 61. Specifically, the carbon nanotube long line 161 of the bundle structure can be obtained by treating the carbon nanotube film with an organic solvent or by directly pulling a narrow-width carbon nanotube array. The carbon nanotube long line 1 61 carbon nanotubes are arranged in parallel along the axial direction of the long carbon nanotube line. 097 丽 单号 A_ 1013399291-0 Page 7 of 20 pages 1380733 _ October 18, 101 revised replacement page. The stranded structure carbon nanotube long wire 161 can be obtained by twisting a mechanical external force applied to the carbon nanotube long wire 161 of the bundle structure. After twisting, the carbon nanotubes in the long carbon wire 161 of the nanotube are spirally arranged along the axial direction of the long carbon nanotube line. [0016] The diameter of the carbon nanotube long wire 161 is related to the length and the size of the substrate grown by the carbon nanotube array. Can be made according to actual needs. In this embodiment, a super-sequential carbon nanotube array was grown on a 4-inch substrate by vapor deposition. The carbon nanotube long wire 161 has a diameter of 1 micrometer to 100 micrometers and a length of 50 mm to 100 mm. [0017] The carbon nanotubes in the linear carbon nanotube structure 160 are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotubes in the linear carbon nanotube structure 160 are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotubes in the linear carbon nanotube structure 160 are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is from 1.0 nm to 50 nm. When the carbon nanotubes in the linear carbon nanotube structure 160 are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nanometers to 50 nanometers. [0018] The first electrode 12 and the second electrode 14 are composed of a conductive material, and the shapes of the first electrode 12 and the second electrode 14 are not limited and may be a conductive film, a metal sheet or a metal lead. Preferably, the first electrode 12 and the second electrode 14 are each a conductive film. The conductive film has a thickness of from 0.5 nm to 100 μm. The material of the conductive film may be a metal, an alloy, an indium tin oxide (I TO ), a bismuth tin oxide (ITO), a conductive silver paste, a conductive polymer or a conductive carbon nanotube. The metal or alloy material may be an alloy of Ming, Copper, Crane, Key, Gold, Titanium, Tantalum, Palladium, Planer or any combination thereof. In the present embodiment, the material of the first electrode 12 and the second electrode 14 is metal palladium. The material of the first electrode 12 and the second electrode 14 is the material of the first electrode 12 and the second electrode 14 in the first page of the page. Membrane, thickness 5 nanometers. The metal palladium and the carbon nanotubes have better wetting effect, which facilitates good electrical contact between the first electrode 12 and the second electrode 14 and the heating layer 16, and reduces ohmic contact resistance. [0019] The first electrode 12 and the second electrode 14 may be disposed on the same surface of the heating layer 16 or on different surfaces of the heating layer 16. The first electrode 12 and the second electrode 14 are spaced apart to allow a certain resistance to be applied when the heating layer 16 is applied to the surface heat source 10 to avoid short circuit. The arrangement positions of the first electrode 12 and the second electrode 14 are related to the arrangement of the linear carbon nanotube structure 160, and the two ends of the at least partially linear carbon nanotube structure 160 are respectively associated with the first electrode 12 and The two electrodes 14 are electrically connected. [0020] In addition, the first electrode 12 and the second electrode 14 may also be disposed on the surface of the heating layer 16 through a conductive adhesive (not shown), and the conductive adhesive is used to realize the first electrode 12 and the first electrode The first electrode 12 and the second electrode 14 may also be better fixed to the surface of the heating layer 16 while the second electrode 14 is in electrical contact with the heating layer 16. The preferred conductive adhesive of the present embodiment is a silver paste. [0021] It can be understood that the structure and material of the first electrode 12 and the second electrode 14 are not limited, and the purpose is to make a current flow in the heating layer 16. Therefore, it is within the scope of the present invention that the first electrode 12 and the second electrode 14 need only be electrically conductive and form electrical contact with the heating layer 16. [0022] The insulating protective layer 15 is an optional structure, and the material thereof is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer 15 is not limited and can be selected according to actual conditions. The insulating protective layer 15 is covered by the first electrode 12, the second electrode 14 and the heating layer 16 on October 18, 2010. Above, the surface heat source 10 can be used in an insulated state, and at the same time, the carbon nanotubes in the heating layer 16 can be prevented from adsorbing foreign impurities. 5〜2毫米。 The thickness of the thickness of 0. 5~2 mm. [0023] When the surface heat source 10 of the embodiment of the present invention is used, the first electrode 12 and the second electrode 14 of the surface heat source 10 may be connected to a power source after being connected to a power source. The linear carbon nanotube structure 160 in the heat source 10 after being connected to the power source can radiate electromagnetic waves of a certain wavelength range. The surface heat source 20 can be in direct contact with the surface of the object to be heated. Or 'because the carbon nanotubes in the linear carbon nanotube structure 160 as the heating layer 16 in the present embodiment have good electrical conductivity' and the linear carbon nanotube structure 160 itself has a certain self-supporting property. And stability, the surface heat source 20 can be disposed at a certain distance from the object to be heated. [0024] In the embodiment of the present embodiment, when the area of the surface heat source 1 〇 line-shaped carbon nanotube structure 16 6 一定 is constant, the size of the power supply voltage and the thickness of the heating layer 16 can be adjusted to lightly emit different wavelength ranges. Electromagnetic waves. When the magnitude of the power supply voltage is constant, the thickness of the heating layer 16 and the wavelength of the electromagnetic wave radiated by the surface heat source 1 are opposite to each other. That is, when the power supply voltage is constant, the thicker the thickness of the heating layer 16, the shorter the wavelength of the electromagnetic wave radiated by the surface heat source 1 ,, the surface heat source 10 can generate a visible light heat radiation; the thickness of the heating layer 16 is more specific, the surface heat source 1 The longer the wavelength of the electromagnetic wave radiated from the 〇, the heat source 1 该 can generate an infrared heat ray. When the thickness of the heating layer 16 is constant, the magnitude of the power supply voltage is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source 10. That is, when the thickness of the heating layer 16 is constant, the larger the power supply voltage is, the shorter the wavelength of the electromagnetic wave radiated from the surface heat source 10 is, and the surface heat source 1 〇 can generate a visible light heat radiation; the electric 09712826# single number A0101 page 10. 20 pages 1013399291-0 1380733 101. October 18 Correction of the replacement page The smaller the source voltage, the longer the wavelength of the electromagnetic wave emitted by the surface heat source 10, the surface heat source 10 can generate an infrared heat light. [0025] The carbon nanotubes have good electrical conductivity and thermal stability, and have an excellent heat radiation efficiency as an ideal black body structure. The surface heat source 10 is exposed to an oxidizing gas or an atmosphere, wherein the thickness of the linear carbon nanotube structure is 5 mm, and the surface heat source 10 can radiate a wavelength by adjusting the power supply voltage at 10 volts to 30 volts. Long electromagnetic waves. The temperature of the surface heat source 10 was found to be 50 ° C to 500 ° C by a temperature measuring instrument. For objects with a black body structure, the corresponding temperature of 200 ° C ~ 450 ° C can emit heat radiation (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient. The heating element made of the linear carbon nanotube structure can be applied to electric heaters, infrared therapeutic devices, electric heaters and the like. Further, the surface heat source 10 in the embodiment of the present technical solution is placed in a vacuum device, and the surface heat source 10 can radiate electromagnetic waves having a short wavelength by adjusting the power supply voltage at 80 volts to 150 volts. When the power supply voltage is greater than 150 volts, the surface heat source 10 gradually emits visible light such as red light or yellow light. The temperature of the heat source 10 can be reached by the temperature measuring instrument to reach a temperature of more than 1 500 ° C, and a normal heat radiation is generated. As the power supply voltage is further increased, the surface heat source 10 can also generate rays (violet light) that are invisible to the human eye that kill bacteria, and can be applied to fields such as light sources and display devices. [0027] The surface heat source has the following advantages: First, since the carbon nanotube has good strength and toughness, the linear carbon nanotube structure has high strength, good flexibility, and is not easily broken, so that it has Long service life. Second, the carbon nanotubes in the linear carbon nanotube structure are evenly distributed, so they have a uniform leg #单编号A0101 Page 11 / Total 20 pages 1013399291-0 1380733 - October 18, 2011 Shuttle replacement page Uniform thickness and resistance, uniform heat generation, high thermal conversion efficiency of carbon nanotubes, so the surface heat source has the characteristics of rapid temperature rise, small thermal hysteresis, fast heat exchange rate and high radiation efficiency. Third, the diameter of the carbon nanotubes is small, so that the linear carbon nanotube structure has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. Fourth, a plurality of linear carbon nanotube structures intersect to form a multi-layer structure to provide a certain supporting effect, so that the carbon nanotube composite structure has better toughness. Fifth, the linear carbon nanotube structure can be further processed by drawing from the carbon nanotube array, and the method is simple and favorable for the production of a large-area surface heat source. [0028] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0029] FIG. 1 is a schematic structural view of a surface heat source according to an embodiment of the present technical solution. 2 is a cross-sectional view of the Π-Π of FIG. 1. 3 is a schematic structural view of a wire mesh carbon nanotube structure of a bundle structure according to an embodiment of the present technical solution. 4 is a schematic structural view of a linear carbon nanotube structure of a stranded structure according to an embodiment of the present technical solution. [0033] FIG. 5 is a scanning electron micrograph of a long carbon nanotube tube of a bundle structure according to an embodiment of the present technology. [0034] FIG. 6 is a diagram of a twisted-line structure of a carbon nanotube long line of the embodiment of the present invention. 99712826#单号A〇101 Page 12 of 20 1013399291-0 1380733 101. October 18 Correct the photo of the replacement page. [Main component symbol description] [0035] Surface heat source: 10 [0036] First electrode: 1 2 [0037] Second electrode: 14 [0038] Insulating protective layer: 15 [0039] Heating layer: 16 [0040] Linear Nano carbon tube structure: 160 [0041] Nano carbon tube long line: 161 [0042] Reflective layer: 17 [0043] Substrate: 18 09712826# Single number A〇101 Page 13 / Total 20 pages 1013399291-0

Claims (1)

101年10月18日核正替換頁 七、申請專利範圍: 1 . 一種面熱源的裝置,其包括: 一加熱層;以及 至少兩電極,該至少兩個電極間隔設置並與該加熱層電接 觸; 其改良在於’所述加熱層由複數個線狀奈米碳管結構組成 〇 如申明專利範圍第1項所述之面熱源的裝置,其中,所述 複數個線狀奈米碳管結構平行設置。 如申明專利範圍第2項所述之面熱源的裝置,其中,所述 相鄰兩個線狀奈米碳管結構之間的距離小於3〇微米。 4 .如申請專利範圍第丨項所述之面熱源的裝置,其中,所述 複數個線狀奈米碳管結構交又設置。 5·如申請專利範圍第丨項所述之面熱源的裝置,其中,所述 線狀奈米碳管結構包括至少一奈米碳管長線。 6 .如申請專利範圍第5項所述之面熱源的裝置,其中,所述 線狀奈米碳管結構為由多根奈米碳管長線組成的束狀結構 或絞線結構。 ?.如申請專利範圍第6項所述之面熱源的裝置,其中,所述 奈米碳管長線包括複數個首尾相連且擇優取向排列的奈米 . 礙管。 .如申凊專利範圍第7項所述之面熱源的裝置,其中,所述 奈米碳管長線令的奈米碳管沿奈米碳管長線的軸向方向平 行排列。 .如申請專利範圍第7項所述之面熱源的裝置,其中,所述 〇9712826#單編號 ΑΟίοι 第14頁/共20頁 1013399291-0 10 10 奈米碳管長線中 旋排列。 的奈米瑞管沿奈米碳管長線_向方向螺 如申请專利範圍第1項所述之面熱源的裝置其中,所述 至少兩電極的材料為金屬、合金、觸氧化物、錄錫氧化 11 物、導電銀勝電聚合物或導電性奈米碳管。 如申請專利範圍第1項所述之面熱源的裝置,其中,所述 至少兩電極設置線狀奈求碳管結構的同—表面或者不同表 面〇 .如申請專利範圍第1項所述之面熱源的裝置,其中,進一 步包括-導電黏結劑設置在所述之至少兩電極和線狀奈米 碳管結構之間。 13 .如申請專利範圍第1項所述之面熱源的裝置,其中,所述 面熱源進一步包括一板狀基底,所述線狀奈米碳管結構設 置在該板狀基底表面。 14 ·如申請專利範圍第13項所述之面熱源的裝置,其中,所述 基底的材料為柔性材料或硬性材料,且所述柔性材料為塑 膠或柔性纖維,所述硬性材料為陶瓷、玻璃'樹脂或石英 〇 5 .如申請專利範圍第1項所述之面熱源的裝置,其中,所述 面熱源進一步包括一反射層,該反射層設置於加熱層表面 16 如申請專利範圍第15項所述之面熱源的裝置,其中,所述 面熱源進一步包括一基底,所述線狀奈米碳管結構設置在 該基底表面,所述反射層設置在所述加熱層與基底之間或 17 者设置在所述基底遠離加熱層的表面。 1013399291-0 如申请專利範圍第1 5項所述之面熱源的裝置,豈中,所述 〇97128一單編號第15頁/共20頁 1380733 -- 101年10月18日修正替换頁 反射層的材料為金屬氧化物、金屬鹽或陶瓷,厚度為100 微米〜0. 5毫米。 18 .如申請專利範圍第1項所述之面熱源的裝置,其中,所述 面熱源進一步包括一絕緣保護層設置於所述加熱層表面。 09712826夢單编號 A〇101 第16頁/共20頁 1013399291-0October 18, 101 nuclear replacement page VII, the scope of application for patents: 1. A device for surface heat source, comprising: a heating layer; and at least two electrodes, the at least two electrodes are spaced apart and in electrical contact with the heating layer The improvement is that the heating layer is composed of a plurality of linear carbon nanotube structures, such as the surface heat source described in claim 1, wherein the plurality of linear carbon nanotube structures are parallel Settings. A device for a surface heat source according to claim 2, wherein the distance between the adjacent two linear carbon nanotube structures is less than 3 μm. 4. The apparatus according to claim 5, wherein the plurality of linear carbon nanotube structures are disposed again. 5. The apparatus of claim 2, wherein the linear carbon nanotube structure comprises at least one carbon nanotube long line. 6. The apparatus according to claim 5, wherein the linear carbon nanotube structure is a bundle structure or a stranded structure composed of a plurality of long carbon nanotube tubes. The apparatus of claim 5, wherein the long carbon nanotube line comprises a plurality of nanometers connected end to end and in a preferred orientation. The apparatus for surface heat source according to claim 7, wherein the carbon nanotube long-line carbon nanotubes are arranged in parallel along the axial direction of the long carbon nanotube line. The apparatus for applying the surface heat source according to claim 7, wherein the 〇9712826#单号 ΑΟίοι Page 14 of 20 1013399291-0 10 10 The carbon nanotubes are arranged in a long line. The apparatus for applying the surface heat source according to the first aspect of the invention, wherein the at least two electrodes are made of a metal, an alloy, a contact oxide, or a tin-plated oxide. 11 substances, conductive silver power polymer or conductive carbon nanotubes. The apparatus for applying the surface heat source according to claim 1, wherein the at least two electrodes are provided with the same surface or different surfaces of the linear carbon nanotube structure. The surface of the first aspect of the patent application is as described in claim 1. The apparatus of the heat source, further comprising - a conductive adhesive disposed between the at least two electrodes and the linear carbon nanotube structure. 13. The apparatus of claim 1, wherein the surface heat source further comprises a plate-like substrate, the linear carbon nanotube structure being disposed on a surface of the plate-like substrate. The device of claim 5, wherein the material of the substrate is a flexible material or a rigid material, and the flexible material is a plastic or a flexible fiber, and the hard material is ceramic or glass. A device for a surface heat source according to claim 1, wherein the surface heat source further comprises a reflective layer disposed on the surface of the heating layer 16 as claimed in claim 15 The device for surface heat source, wherein the surface heat source further comprises a substrate, the linear carbon nanotube structure is disposed on the surface of the substrate, and the reflective layer is disposed between the heating layer and the substrate or The person is disposed on a surface of the substrate away from the heating layer. 1013399291-0 As for the device for applying the surface heat source described in item 15 of the patent scope, 〇97128 一单第第15页/20 pages 1380733 - October 18, 101 revised replacement page reflective layer 5毫米。 The material is a metal oxide, metal salt or ceramic, a thickness of 100 microns ~ 0. 5 mm. 18. The apparatus of claim 1, wherein the surface heat source further comprises an insulating protective layer disposed on a surface of the heating layer. 09712826梦单号 A〇101 Page 16 of 20 1013399291-0
TW97128266A 2008-07-25 2008-07-25 Planar heating source TWI380733B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128266A TWI380733B (en) 2008-07-25 2008-07-25 Planar heating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128266A TWI380733B (en) 2008-07-25 2008-07-25 Planar heating source

Publications (2)

Publication Number Publication Date
TW201006299A TW201006299A (en) 2010-02-01
TWI380733B true TWI380733B (en) 2012-12-21

Family

ID=44826619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128266A TWI380733B (en) 2008-07-25 2008-07-25 Planar heating source

Country Status (1)

Country Link
TW (1) TWI380733B (en)

Also Published As

Publication number Publication date
TW201006299A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
TWI420954B (en) Heater and method for making the same
CN101626639B (en) Plane heat source
TW201008362A (en) Hollow heating source
CN101636005B (en) Plane heat source
CN101610613B (en) Line heat source
CN101616513B (en) Linear heat source
CN101636004B (en) Plane heat source
TWI380733B (en) Planar heating source
CN101636007B (en) Plane heat source
TWI462628B (en) Planar heating source
TWI360521B (en) Planar heat source
CN101616514B (en) Linear heat source
TWI462630B (en) Planar heating source
TWI448417B (en) Linear heater
TWI380730B (en) Planar heating source
CN101636008B (en) Plane heat source
TWI400985B (en) Method for making planar heater
TWI473524B (en) Hollow heating source
TWI427027B (en) Hollow heating source
TW201000395A (en) Linear heater
TWI380732B (en) Planar heating source
TWI380731B (en) Planar heating source
TWI380734B (en) Linear heater
TWI380729B (en) Linear heater
TWI462627B (en) Hollow heating source