TWI380728B - Linear heater - Google Patents

Linear heater Download PDF

Info

Publication number
TWI380728B
TWI380728B TW97128293A TW97128293A TWI380728B TW I380728 B TWI380728 B TW I380728B TW 97128293 A TW97128293 A TW 97128293A TW 97128293 A TW97128293 A TW 97128293A TW I380728 B TWI380728 B TW I380728B
Authority
TW
Taiwan
Prior art keywords
heat source
carbon nanotube
source device
layer
line heat
Prior art date
Application number
TW97128293A
Other languages
Chinese (zh)
Other versions
TW201006295A (en
Inventor
Chang-Hong Liu
Ding Wang
Shou-Shan Fan
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97128293A priority Critical patent/TWI380728B/en
Publication of TW201006295A publication Critical patent/TW201006295A/en
Application granted granted Critical
Publication of TWI380728B publication Critical patent/TWI380728B/en

Links

Description

1380728 101年10月17日按正替換百 、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種線熱源,尤其涉及一種基於奈米碳管的 線熱源。 【先前技術】 [0002] 熱源於人們的生產、生活、科研中起著重要的作用。線 熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外 治療儀、電暖器等領域。 [0003] 請參見圖1,先前技術提供一種線熱源10,其包括一中空 圓柱狀支架102 ; —加熱層104設置於該支架102表面, 一絕緣保護層106設置於該加熱層104表面;兩個電極 110分別設置於支架102兩端,且與加熱層104電連接; 兩個夾緊件108分別將兩個電極110與加熱層104卡固於 支架102兩端。其中,加熱層104通常採用一碳纖維紙通 過纏繞或包裹的方式形成。當通過兩個電極110對該線熱 源10施加一電壓時,所述加熱層104產生焦耳熱,並向周 圍進行熱輻射。所述碳纖維紙包括紙基材及雜亂分佈於 該紙基材中的瀝青基碳纖維。其t,紙基材包括纖維素 纖維及樹脂等的混合物,瀝青基碳纖維的直徑為3~6毫米 ,長度為5~20微米。 [0004] 然而,採用碳纖維紙作為加熱層具有以下缺點:第一, 碳纖維紙厚度較大,一般為幾十微米,使線熱源不易做 成微型結構,無法應用於微型器件的加熱。第二,由於 該碳纖維紙中包含纸基材,故,該碳纖維紙的密度較大 ,重量大,使得採用該碳纖維紙的線熱源使用不便。第 腺#4編號漏1 第3頁/共19頁 1013396799-0 1380728 _ 101年10月17日梭正替換頁 三,由於該碳纖維紙中的瀝青基碳纖維雜亂分佈,故, r 該碳纖維紙的強度較小,柔性較差,容易破裂,限制其 應有範圍。第四,碳纖維紙的電熱轉換效率較低,不利 於節能環保。 [0005] 有鑒於此,提供一種重量小,強度大,適應用於微型器 件的加熱,且電熱轉換效率較低,利於節能環保的線熱 源實為必要。 【發明内容】 [0006] 一種線熱源包括一線狀基底;一加熱層設置於線狀基底 的表面;及兩個電極間隔設置於加熱層的表面,並分別 與該加熱層電連接,其中,所述的加熱層包括一奈米碳 管層,且該奈米碳管層包括各向同性、沿一固定方向取 向或不同方向取向擇優排列的複數個奈米碳管。 [0007] 相較於先前技術,所述的線熱源具有以下優點:第一, 奈米碳管可方便地製成任意尺寸的奈米碳管層,既可應 用於宏觀領域也可應用於微觀領域。第二,奈米碳管比 碳纖維具有更小的密度,故,採用奈米碳管層的線熱源 具有更輕的重量,使用方便。第三,奈米碳管層的電熱 轉換效率高,熱阻率低,故,該線熱源具有升溫迅速、 熱滯後小、熱交換速度快的特點。第四,所述的奈米碳 管層可通過碾壓奈米碳管陣列直接獲得,易於製備,成 本較低。 【實施方式】 [0008] 以下將結合附圖詳細說明本技術方案線熱源。 09712829#單编號 A〇101 第4頁/共19頁 1013396799-0 T380728 101年10月17日修正替換頁 [00剛 請參閱圖2至圖4,本技術方案實施例提供一種線熱源20 ’該線熱源20包括一線狀基底202 ; —反射層210設置於 該線狀基底202的表面;一加熱層204設置於所述反射層 210表面;兩個電極206間隔設置於該加熱層204的表面 ,且與該加熱層204電連接;及一絕缘保護層208設置於 該加熱層204的表面。所述線熱源2〇的長度不限,直徑為 0. 1微米~1. 5厘米。本實施例的線熱源2〇的直徑優選為 1. 1毫米~ 1. 1厘米。 [0010] 所述線狀基底202起支撐作用,其材料可為硬性材料,如 . :陶瓷、玻璃、樹脂、石英_,亦可選擇柔性材料,如 :塑膠或柔性纖維等。當線狀基底2〇2為柔性材科時,該 線熱源20使用時可根據需要彎折成任意形狀。所述線狀 . 基底202的長度、直徑及形狀不限,可依據實際需要進行 選擇。本實施例優選的線狀基底202為一陶瓷桿,其直徑 為1毫米~1厘米。 [0011] 所述反射層210的材料為一白色絕緣材料,如:食屬氧化 物、金屬鹽或陶免等。本實施例令,反射層2i〇的材料優 選為三氧化二鋁,其厚度為1〇〇微米〜〇 5毫米。該反射層 210通過濺射的方法沈積於該線狀基底2〇2表面。所述反 射層210用來反射加熱層2〇4所發的熱量,使其有姝的散 發到外界空間去,故,該反射層21〇為一可選擇結構。 [0012] 所述加熱層包括一奈米碳管層。該奈米碳管膺 < 包裹 或纏繞於所述反射層21〇的表面。該奈米碳管層町利用本 身的黏性與該反射層21〇連接,也可進一步通過黏結劑與 反射層210連接。所述的黏結劑為矽膠。可以理解,當該 09712829# 單編號 Α〇101 第 5 頁 / 共 19 頁 1013396799-0 1380728 [ιοί年.10月17日修正替換q 線熱源20不包括反射層210時,加熱層204可直接包裹或 纏繞於所述線狀基底202的表面。 [0013]所述奈米碳管層包括均勻分佈的奈米碳管《該奈米碳管 層中的奈米碳管與奈米碳管層的表面成一夾角α,其中 ,α大於等於零度且小於等於15度(0$ α $15。)。優選 地,所述奈米碳管層中的奈米碳管平行於奈米碳管層的 表面。該奈米碳管層可通過碾壓一奈米碳管陣列製備, 依據礙麼的方式不同,該奈米碳管層中的奈米碳管具有 不同的排列形式。具體地,奈米碳管可各向同性排列; 或沿不同方向擇優取向排列,請參閱圖5 ;或沿一固定方 向擇優取向排列,請參閱圖6。所述奈米碳管層中的奈米 碳管部分交疊。所述奈米碳管層中奈米碳管之間通過凡 德瓦爾力相互吸引,緊密結合,使得該奈米碳管層具有 很好的柔韌性,可彎曲折疊成任意形狀而不破裂。 [0014]該奈米碳管層中的奈米碳管包括單壁奈米碳管、雙壁奈 求碳管及多壁奈米碳管中的一種或多種。所述單壁奈米 碳管的直徑為〇.5奈米〜10奈米,雙壁奈米碳管的直控為i 奈米~15奈米,多壁奈米碳管的直徑為15奈米~5〇奈米 。該奈来碳管的長度大於50微米。本實施例中,奈米碳 管的長度優選為200〜900微米。 [0015] t来碳f層的面積和厚度不限,可根據實際需要選擇 。該奈米碳管層的面積與奈米碳管陣列所生長的基底的 尺寸有關。該奈米碳管層厚度與奈米碳管陣列的高度及 碾壓的壓力有關,可為i微米至! 兔管陣列的高度越大而施加的壓 09712829#·^^^ A0101 帛 6 頁 / 共 lg 頁 毫米。可以理解,奈米 力越小’則製備的奈米 1013396799-0 1380728 101年10月17日核正替换頁 碳管層的厚度越大;反之,奈米碳管陣列的高度越小而 施加的壓力越大,則製備的奈米碳管層的厚度越小。可 以理解,奈米碳管層的熱响應速度與其厚度有關。相同 面積的情況下,奈米碳管層的厚度越大,熱响應速度越 慢;反之,奈米碳管層的厚度越小,熱响應速度越快。 [0016] 本實施例中,加熱層204採用厚度為100微米的奈米碳管 層。該奈米碳管層的長度為5厘米,奈米碳管薄膜的寬度 為3厘米。利用奈米碳管層本身的黏性,將該奈米碳管層 包裹於所述反射層210的表面。 [0017] 所述電極206可設置於加熱層204的同一表面上也可設置 於加熱層2 04的不同表面上。所述電極206可通過奈米碳 管層的黏性或導電黏結劑(圖未示)設置於該加熱層204的 表面上。導電黏結劑實現電極206與奈米碳管層電接觸的 同時,還可將電極206更好地固定於奈米碳管層的表面上 。通過該兩個電極206可對加熱層204施加電壓。其中, 兩個電極206之間相隔設置,以使採用奈米碳管層的加熱 層204通電發熱時接入一定的阻值避免短路現象產生。優 選地,由於線狀基底202直徑較小,兩個電極206間隔設 置於線狀基底202的兩端,並環繞設置於加熱層204的表 面。 [0018] 所述電極206為導電薄膜、金屬片或者金屬引線。該導電 薄膜的材料可為金屬、合金、銦錫氧化物(ITO)、銻錫 氧化物(ΑΤΟ)、導電銀膠、導電聚合物等。該導電薄膜 可通過物理氣相沈積法、化學氣相沈積法或其他方法形 成於加熱層204表面。該金屬片或者金屬引線的材料可為 0971鹏:Αϋ1()1 第7頁/共19頁 1013396799-0 1380728 [0019] [0020] [0021] [0022] 101年10月17日按正替換頁 銅片或鋁片等。該金屬片可通過導電黏結劑固定於加熱 層204表面。 所述電極206還可為一奈米碳管結構。該奈米碳管結構包 裹或纏繞於反射層210的表面。該奈米碳管結構可通過其 自身的黏性或導電黏結劑固定於反射層210的表面。該奈 米碳管結構包括定向排列且均勻分佈的金屬性奈米碳管 。具體地,該奈米碳管結構包括至少一有序奈米碳管薄 膜或至少一奈米碳管長線。 本實施例中,優選地,將兩個有序奈米碳管薄膜分別設 4 置於沿線狀基底202長度方向的兩端作為電極206。該兩 個有序奈米碳管薄膜環繞於加熱層204的内表面,並通過 導電黏結劑與加熱層204之間形成電接觸。所述導電黏結 劑優選為銀膠。由於本實施例中的加熱層204也採用奈米 碳管層,故,電極206與加熱層204之間具有較小的歐姆 接觸電阻,可提高線熱源20對電能的利用率。 所述絕緣保護層208的材料為一絕緣材料,如:橡膠、樹 脂等。所述絕緣保護層208厚度不限,可根據實際情況選 擇。本實施例中,該絕緣保護層208的材料採用橡膠,其 厚度為0. 5~2毫米。該絕緣保護層208可通過塗敷或包裹 的方法形成於加熱層204的表面。所述絕緣保護層208用 來防止該線熱源20使用時與外界形成電接觸,同時還可 防止加熱層204中的奈米碳管層吸附外界雜質。該絕緣保 護層208為一可選擇結構。 本實施例中,對厚度為100微米的奈米碳管層進行電熱性 .097酬严職A0101 第8頁/共19頁 1013396799-0 101年10月17日按正替換頁 能測量。該奈米碳管層長5厘米,寬3厘米。將該奈米碳 營層包裹於一直徑為1厘米的線狀基底202上,且其位於 兩個電極206之間的長度為3厘米。電流沿著線狀基底202 的長度方向流入。測量儀器為紅外測溫儀ΑΖ-8859 »當施 加電壓於1伏~20伏,加熱功率為1瓦〜40瓦時,奈米碳管 層的表面溫度為5(TC~500eC。可見,該奈米碳管層具有 較高的電熱轉換效率《對於具有黑體結構的物體來說, 其所對應的溫度為200°C〜450eC時就能發出人眼看不見的 熱輻射(紅外線)’此時的熱輻射最穩定、效率最高, 所產生的熱輕射熱量最大》 [0023] 該線熱源20使用時,可將其設置於所要加熱的物體表面 或將其與被加熱的物體間隔設置,利用其熱輻射即可進 行加熱。另,還可將複數個該線熱源20排列成各種預定 的圖形使用。該線熱源20可廣泛應用於電加熱器、紅外 治療儀、電暖器等領域。 [0024] 本實施例中,由於奈米碳管具有奈米級的直徑,使得製 備的奈米碳管結構可具有較小的厚度,故,採用小直徑 的線狀基底可製備微型線熱源。奈米碳管具有強的抗腐 钮性,使其可於酸性環境中工作。。而且,奈米碳管具有 極強的穩定性’即使於3〇〇〇°c以上高溫的真空環境下工 作而不會分解,使該線熱源2〇適合於真空高溫下工作。 另’奈米碳管比同體積的鋼強度高1〇〇倍,重量卻只有其 1/6 ’故’採用奈米破管的線熱源2〇具有更高的強度及更 輕的重量。 [0025] 09712829^^^^ 综上所述,本發明確已符合發明專利之要件,遂依法提 A0101 第9頁/共19頁 1013396799-0 1380728 101年10月17日核正替换頁 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0026] 圖1為先前技術的線熱源的結構示意圖。 [0027] 圖2為本技術方案實施例的線熱源的結構示意圖 [0028] 圖3為圖2的線熱源沿線ΠΙ-ΙΕ的剖面示意圖。 [0029] 圖4為圖3的線熱源沿線IV-IV的剖面示意圖。 [0030] 圖5為本技術方案實施例採用的包括沿不同方向擇優取向 排列的奈米碳管的奈米碳管層的掃描電鏡照片。 [0031] 圖6為本技術方案實施例採用的包括沿同一方向擇優取向 排列的奈米碳管的奈米碳管層的掃描電鏡照片。 【主要元件符號說明】 [0032] 線熱源:10,20 [0033] 支架:102 [0034] 加熱層:104,£04 [0035] 保護層:106 [0036] 夾緊件:108 [0037] 電極:110,206 [0038] 線狀基底:202 09712829产單编號 Α〇101 第10頁/共19頁 1013396799-0 1380728 [0039] 絕緣保護層:208 101年10月17日梭正巷換頁 [0040]反射層:210 09712829#單編# A〇101 第11頁/共19頁 1013396799-01380728 On October 17, 101, according to the positive replacement, the invention is as follows: [Technical Field of the Invention] [0001] The present invention relates to a line heat source, and more particularly to a line heat source based on a carbon nanotube. [Prior Art] [0002] Heat plays an important role in people's production, life, and scientific research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heaters. [0003] Referring to FIG. 1, the prior art provides a line heat source 10 including a hollow cylindrical bracket 102; a heating layer 104 is disposed on the surface of the bracket 102, and an insulating protective layer 106 is disposed on the surface of the heating layer 104; The electrodes 110 are respectively disposed at two ends of the bracket 102 and electrically connected to the heating layer 104. The two clamping members 108 respectively fix the two electrodes 110 and the heating layer 104 to both ends of the bracket 102. Among them, the heating layer 104 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the line heat source 10 through the two electrodes 110, the heating layer 104 generates Joule heat and performs thermal radiation to the periphery. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers randomly distributed in the paper substrate. The paper substrate comprises a mixture of cellulose fibers and a resin. The pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm. [0004] However, the use of carbon fiber paper as a heating layer has the following disadvantages: First, the thickness of the carbon fiber paper is large, generally several tens of micrometers, making the line heat source difficult to be a micro structure and cannot be applied to the heating of micro devices. Second, since the carbon fiber paper contains a paper substrate, the carbon fiber paper has a large density and a large weight, which makes the use of the carbon fiber paper line heat source inconvenient. No. #4号漏1 Page 3/19 pages 1013396799-0 1380728 _ October 17th, 2011 Shuttle replacement page 3, due to the disorderly distribution of pitch-based carbon fibers in the carbon fiber paper, r, the carbon fiber paper The strength is small, the flexibility is poor, and it is easy to break, limiting its proper range. Fourth, carbon fiber paper has low electrothermal conversion efficiency, which is not conducive to energy conservation and environmental protection. [0005] In view of the above, it is necessary to provide a line heat source that is small in weight, high in strength, suitable for heating of a micro device, and has low electrothermal conversion efficiency, and is advantageous for energy saving and environmental protection. SUMMARY OF THE INVENTION [0006] A line heat source includes a linear substrate; a heating layer is disposed on the surface of the linear substrate; and two electrodes are spaced apart from the surface of the heating layer, and are electrically connected to the heating layer, respectively, The heating layer comprises a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes which are isotropic, oriented in a fixed direction or oriented in different directions. Compared with the prior art, the line heat source has the following advantages: First, the carbon nanotube can be conveniently fabricated into a carbon nanotube layer of any size, which can be applied to both macroscopic and microscopic applications. field. Second, the carbon nanotubes have a smaller density than the carbon fibers. Therefore, the line heat source using the carbon nanotube layer has a lighter weight and is convenient to use. Third, the carbon nanotube layer has high electrothermal conversion efficiency and low thermal resistance. Therefore, the line heat source has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange rate. Fourth, the carbon nanotube layer can be directly obtained by rolling a carbon nanotube array, which is easy to prepare and has a low cost. [Embodiment] [0008] Hereinafter, a line heat source of the present technical solution will be described in detail with reference to the accompanying drawings. 09712829#单单A〇101 Page 4/Total 19 Page 1013396799-0 T380728 October 17th, 2011 Revision Replacement Page [00] Please refer to FIG. 2 to FIG. 4, the embodiment of the present technical solution provides a line heat source 20' The line heat source 20 includes a linear substrate 202; a reflective layer 210 is disposed on the surface of the linear substrate 202; a heating layer 204 is disposed on the surface of the reflective layer 210; and two electrodes 206 are spaced apart from the surface of the heating layer 204. And electrically connected to the heating layer 204; and an insulating protective layer 208 is disposed on the surface of the heating layer 204. 5厘米。 The length of the line is 0. 1 micron ~ 1.5 centimeters. The diameter of the line heat source 2A of the present embodiment is preferably from 1. 1 mm to 1. 1 cm. [0010] The linear substrate 202 serves as a supporting material, and the material thereof may be a hard material such as ceramic, glass, resin, quartz, or a flexible material such as plastic or flexible fiber. When the linear substrate 2〇2 is a flexible material, the linear heat source 20 can be bent into an arbitrary shape as needed. The length of the substrate 202 is not limited, and may be selected according to actual needs. The preferred linear substrate 202 of this embodiment is a ceramic rod having a diameter of from 1 mm to 1 cm. [0011] The material of the reflective layer 210 is a white insulating material such as a food oxide, a metal salt or a pottery. In this embodiment, the material of the reflective layer 2i is preferably aluminum oxide, and has a thickness of from 1 μm to 5 mm. The reflective layer 210 is deposited on the surface of the linear substrate 2〇2 by sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 2〇4 so that the enthalpy is emitted to the external space. Therefore, the reflective layer 21 is an optional structure. [0012] The heating layer comprises a carbon nanotube layer. The carbon nanotubes are < wrapped or wound around the surface of the reflective layer 21〇. The carbon nanotube layer is connected to the reflective layer 21 by its own viscous property, and may be further connected to the reflective layer 210 by a binder. The binder is silicone. It can be understood that when the 09712829# single number Α〇101 page 5 / 19 pages 1013396799-0 1380728 [ιοί年. October 17 modified replacement q line heat source 20 does not include the reflective layer 210, the heating layer 204 can be directly wrapped Or wound on the surface of the linear substrate 202. [0013] The carbon nanotube layer comprises a uniformly distributed carbon nanotube "the carbon nanotubes in the carbon nanotube layer form an angle α with the surface of the carbon nanotube layer, wherein α is greater than or equal to zero degrees and Less than or equal to 15 degrees (0$ α $15.). Preferably, the carbon nanotubes in the carbon nanotube layer are parallel to the surface of the carbon nanotube layer. The carbon nanotube layer can be prepared by rolling a carbon nanotube array, and the carbon nanotubes in the carbon nanotube layer have different arrangements depending on the manner of the interference. Specifically, the carbon nanotubes may be isotropically aligned; or arranged in different orientations, see Figure 5; or in a preferred orientation, see Figure 6. The carbon nanotubes in the carbon nanotube layer partially overlap. The carbon nanotubes in the carbon nanotube layer are attracted to each other by the van der Waals force, and the carbon nanotube layer has a good flexibility, and can be bent and folded into an arbitrary shape without breaking. [0014] The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon tube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 〇.5 nm to 10 nm, the double-walled carbon nanotube has a direct control of i nanometer to 15 nm, and the multi-walled carbon nanotube has a diameter of 15 奈. m ~ 5 〇 nano. The length of the carbon nanotubes is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm. [0015] The area and thickness of the carbon-f layer are not limited, and may be selected according to actual needs. The area of the carbon nanotube layer is related to the size of the substrate on which the carbon nanotube array is grown. The thickness of the carbon nanotube layer is related to the height of the carbon nanotube array and the pressure of the rolling, which can be up to 1 micron! The height of the rabbit tube array is larger and the applied pressure is 09712829#·^^^ A0101 帛 6 pages / total lg page mm. It can be understood that the smaller the nano-force is, the nano 1013396799-0 1380728 is prepared. On October 17, 101, the thickness of the carbon nanotube layer is larger; on the contrary, the smaller the height of the carbon nanotube array is applied. The greater the pressure, the smaller the thickness of the prepared carbon nanotube layer. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the greater the thickness of the carbon nanotube layer, the slower the thermal response speed; conversely, the smaller the thickness of the carbon nanotube layer, the faster the thermal response. [0016] In the present embodiment, the heating layer 204 is a carbon nanotube layer having a thickness of 100 μm. The carbon nanotube layer has a length of 5 cm and the carbon nanotube film has a width of 3 cm. The carbon nanotube layer is wrapped around the surface of the reflective layer 210 by the viscosity of the carbon nanotube layer itself. [0017] The electrodes 206 may be disposed on the same surface of the heating layer 204 or on different surfaces of the heating layer 204. The electrode 206 may be disposed on the surface of the heating layer 204 through a viscous or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive allows the electrode 206 to be in electrical contact with the carbon nanotube layer while also better securing the electrode 206 to the surface of the carbon nanotube layer. A voltage can be applied to the heating layer 204 through the two electrodes 206. Wherein, the two electrodes 206 are spaced apart to allow a certain resistance to be avoided when the heating layer 204 using the carbon nanotube layer is energized and heated to avoid short circuit. Preferably, since the linear substrate 202 has a small diameter, the two electrodes 206 are spaced apart from each other at both ends of the linear substrate 202 and surround the surface of the heating layer 204. [0018] The electrode 206 is a conductive film, a metal sheet or a metal lead. The material of the conductive film may be a metal, an alloy, indium tin oxide (ITO), antimony tin oxide (yttrium), a conductive silver paste, a conductive polymer or the like. The electroconductive thin film may be formed on the surface of the heating layer 204 by physical vapor deposition, chemical vapor deposition or the like. The material of the metal piece or the metal lead may be 0971 Peng: Αϋ 1 () 1 Page 7 / 19 pages 1013396799-0 1380728 [0020] [0021] [0022] October 17, 101, according to the replacement page Copper or aluminum sheet. The metal sheet can be fixed to the surface of the heating layer 204 by a conductive adhesive. The electrode 206 can also be a carbon nanotube structure. The carbon nanotube structure is wrapped or wound around the surface of the reflective layer 210. The carbon nanotube structure can be fixed to the surface of the reflective layer 210 by its own viscous or conductive adhesive. The carbon nanotube structure includes aligned and uniformly distributed metallic carbon nanotubes. Specifically, the carbon nanotube structure comprises at least one ordered carbon nanotube film or at least one nanocarbon tube long line. In the present embodiment, preferably, two ordered carbon nanotube films are respectively disposed at both ends along the longitudinal direction of the linear substrate 202 as the electrode 206. The two ordered carbon nanotube films surround the inner surface of the heating layer 204 and are in electrical contact with the heating layer 204 by a conductive bonding agent. The conductive adhesive is preferably a silver paste. Since the heating layer 204 in this embodiment also uses a carbon nanotube layer, the electrode 206 and the heating layer 204 have a small ohmic contact resistance, which can improve the utilization of the electric energy by the line heat source 20. The material of the insulating protective layer 208 is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer 208 is not limited and may be selected according to actual conditions. 5〜2毫米。 The thickness of the material is 0. 5~2 mm. The insulating protective layer 208 can be formed on the surface of the heating layer 204 by a coating or wrapping method. The insulating protective layer 208 is used to prevent the line heat source 20 from making electrical contact with the outside when in use, and also prevents the carbon nanotube layer in the heating layer 204 from adsorbing foreign impurities. The insulating protective layer 208 is an optional structure. In this embodiment, the carbon nanotube layer having a thickness of 100 μm is electrically heated. 097 paid for the job A0101 Page 8 of 19 1013396799-0 October 17, 2011 Press the positive replacement page. The carbon nanotube layer is 5 cm long and 3 cm wide. The nanocarbon battalion was wrapped on a linear substrate 202 having a diameter of 1 cm and its length between the two electrodes 206 was 3 cm. Current flows in the length direction of the linear substrate 202. The measuring instrument is an infrared thermometer ΑΖ-8859. When the voltage is applied at 1 volt to 20 volts and the heating power is 1 watt to 40 watts, the surface temperature of the carbon nanotube layer is 5 (TC~500eC. The carbon nanotube layer has a high electrothermal conversion efficiency. For an object with a black body structure, the corresponding temperature of 200 ° C ~ 450 eC can emit heat radiation (infrared) that is invisible to the human eye. The radiation is the most stable and efficient, and the heat generated by the heat is the highest. [0023] When the line heat source 20 is used, it can be placed on the surface of the object to be heated or spaced from the object to be heated, and the heat is utilized. The radiation can be heated. In addition, a plurality of the line heat sources 20 can be arranged in various predetermined patterns. The line heat source 20 can be widely used in the fields of electric heaters, infrared therapeutic devices, electric heaters, and the like. In this embodiment, since the carbon nanotube has a nanometer diameter, the prepared carbon nanotube structure can have a small thickness, so that a microwire heat source can be prepared by using a small diameter linear substrate. Tube has strong anti-corrosion Sex, so that it can work in an acidic environment. Moreover, the carbon nanotubes have a very strong stability 'even if working in a vacuum environment above 3 ° ° c high temperature does not decompose, so that the line heat source 2 〇It is suitable for working under vacuum high temperature. Another 'nano carbon tube is 1 times higher than the same volume of steel, but its weight is only 1/6'. Therefore, the line heat source with nano tube is higher. Strength and lighter weight [0025] 09712829^^^^ In summary, the present invention has indeed met the requirements of the invention patent, and is legally mentioned A0101 page 9 / 19 pages 1013396799-0 1380728 101 October 101 The Japanese nucleus is replacing the patent application. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Anyone familiar with the skill of the present invention will be assisted by the spirit of the present invention. Equivalent modifications or variations are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0026] Figure 1 is a schematic diagram of the structure of a prior art line heat source. [0027] Figure 2 is a line of an embodiment of the present technical solution Schematic diagram of the heat source [0028] Figure 3 is Figure 2 [0029] Figure 4 is a cross-sectional view of the line heat source of Figure 3 taken along line IV-IV. [0030] Figure 5 is an embodiment of the present invention comprising a preferred orientation along different directions Scanning electron micrograph of the carbon nanotube layer of the carbon nanotubes. [0031] FIG. 6 is a scanning electron microscope of a carbon nanotube layer including carbon nanotubes arranged in a preferred orientation in the same direction. Photo [Main component symbol description] [0032] Line heat source: 10,20 [0033] Bracket: 102 [0034] Heating layer: 104, £04 [0035] Protective layer: 106 [0036] Clamping member: 108 [0037] ] Electrode: 110, 206 [0038] Linear base: 202 09712829 Production order number Α〇 101 Page 10 / Total 19 pages 1013396799-0 1380728 [0039] Insulation protection layer: 208 October 17th, 2011 PAGE [0040] Reflective layer: 210 09712829#单编# A〇101 Page 11/Total 19 Page 1013396799-0

Claims (1)

1380728 101年10月17日梭正替換i 七、申請專利範圍: 1 . 一種線熱源裝置,其包括:—維線狀基底;一加熱層設 置於線狀基底的表面;及兩個電極間隔設置,並分別與該 加熱層電連接,其改良在於,所述的加熱層包括一奈米碳 管層’且該奈米碳管層包括各向同性、沿一固定方向擇優 取向排列或不同方向擇優取向排列的複數個奈米碳管。 2 ·如申請專利範圍第丨項所述的線熱源裝置,其中,所述奈 米碳管層中的奈米碳管與奈米碳管層的表面成一夾角α, 且 OS α $15°。 3. 如申請專利範圍第丨項所述的線熱源裝置,其中,所述奈 米碳管層中的奈米碳管部分交疊,並通過凡德瓦爾力相互 吸引,緊密結合》 4. 如申請專利範圍第1項所述的線熱源裝置,其中,所述奈 米碳管層的厚度為1微米至1毫米。 5 .如申請專利範園第1項所述的線熱源裝置,其中,所述奈 米碳管的長度大於50微米,直徑小於5〇奈米。 6 .如申請專利範圍第1項所述的線熱源裝置,其中,所述奈 米碳管層纏繞或包裹設置於線狀基底的表面。 7 ·如申請專利範圍第1項所述的線熱源裝置,其中,所述奈 米碳管層通過黏結劑或自身的黏性固定於線狀基底的表面 Q 8. 如申請專利範圍第1項所述的線熱源裝置,其中,所述兩 個電極設置於加熱層的表面。 9. 如申請專利範圍第1項所述的線熱源裝置,其中,所述電 極為一導電薄膜、金屬片、金屬引線或奈米碳管結構。 卯712829#單編號Α0101 第12頁/共19頁 1013396799-0 丄柳728 .如申請專利範圍第9項所述的線熱源裝置,其中,㈣奈一 ~~~ 米碳管结構包括定向排列且均勻分佈的金屬性奈米碳管。 1 ’如申請專利範圍第9項所述的線熱源裝置,其中,所述奈 米碳管結構包括至少一有序奈米碳管薄膜或至少一奈米碳 管長線。 12 ·如申請專利範圍第9項所述的線熱源裝置,其中,所述該 奈米碳管結構包裹或纏繞於加熱層的表面。 13 .如申請專利範圍第9項所述的線熱源裝置,其中,所述奈 米碳管結構通過其自身的黏性或導電黏結劑固定於加熱層 的表面。 I A .如申請專利範圍第1項所述的線熱源裝置,其中,所述線 狀基底的材料為柔性材料或硬性材料,且所述柔性材料為 塑膠或柔性纖維,所述硬性材料為陶瓷、玻璃、樹脂、石 英。 15 .如申請專利範圍第1項所述的線熱源裝置,其中,所述線 熱源進一步包括一反射層設置於加熱層與線狀基底之間, 且該反射層的材料為金屬氧化物、金屬鹽或陶瓷,厚度為 100微米〜0. 5毫米。 16 .如申請專利範圍第1項所述的線熱源裝置,其中,所述線 熱源進一步包括一絕緣保護層設置於所述加熱層的外表面 〇 Η .如申請專利範圍第!項所述的線熱源裝置,其中,所述線 熱源的直徑為0.1微米〜1.5厘米。 第13頁/共19頁 09712829^^^^* A0101 1013396799-01380728 On October 17, 101, Shuttle is replacing i. Patent application scope: 1. A line heat source device comprising: a linear line substrate; a heating layer disposed on the surface of the linear substrate; and two electrode spacing arrangements And electrically connected to the heating layer respectively, the improvement is that the heating layer comprises a carbon nanotube layer 'and the carbon nanotube layer comprises isotropic, preferential orientation along a fixed direction or different directions A plurality of carbon nanotubes arranged in an orientation. 2. The line heat source device of claim 2, wherein the carbon nanotubes in the carbon nanotube layer are at an angle α to the surface of the carbon nanotube layer, and OS α is $15°. 3. The line heat source device according to claim 2, wherein the carbon nanotubes in the carbon nanotube layer partially overlap and are attracted to each other by van der Waals force, and are closely combined. The line heat source device of claim 1, wherein the carbon nanotube layer has a thickness of from 1 micrometer to 1 millimeter. 5. The line heat source device of claim 1, wherein the carbon nanotubes have a length greater than 50 microns and a diameter less than 5 nanometers. 6. The line heat source device of claim 1, wherein the carbon nanotube layer is wound or wrapped around a surface of the linear substrate. 7. The line heat source device according to claim 1, wherein the carbon nanotube layer is fixed to the surface of the linear substrate by a bonding agent or its own viscous Q 8. As claimed in claim 1 The line heat source device, wherein the two electrodes are disposed on a surface of the heating layer. 9. The line heat source device according to claim 1, wherein the electric material is a conductive film, a metal piece, a metal lead or a carbon nanotube structure.卯712829#单单Α0101第12页/19 pages 1013396799-0 丄柳728. The wire heat source device according to claim 9, wherein the (four) nai~~~ m carbon tube structure comprises an orientation and Uniformly distributed metallic carbon nanotubes. The line heat source device of claim 9, wherein the carbon nanotube structure comprises at least one ordered carbon nanotube film or at least one nanotube long wire. The line heat source device of claim 9, wherein the carbon nanotube structure is wrapped or wound around a surface of the heating layer. The line heat source device according to claim 9, wherein the carbon nanotube structure is fixed to a surface of the heating layer by its own viscous or conductive adhesive. The wire heat source device of claim 1, wherein the material of the linear substrate is a flexible material or a rigid material, and the flexible material is a plastic or a flexible fiber, and the hard material is ceramic, Glass, resin, quartz. The line heat source device of claim 1, wherein the line heat source further comprises a reflective layer disposed between the heating layer and the linear substrate, and the material of the reflective layer is metal oxide or metal. 5毫米。 Salt or ceramic, a thickness of 100 microns ~ 0. 5 mm. The wire heat source device of claim 1, wherein the wire heat source further comprises an insulating protective layer disposed on an outer surface of the heating layer. The line heat source device according to the invention, wherein the line heat source has a diameter of 0.1 μm to 1.5 cm. Page 13 of 19 09712829^^^^* A0101 1013396799-0
TW97128293A 2008-07-25 2008-07-25 Linear heater TWI380728B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128293A TWI380728B (en) 2008-07-25 2008-07-25 Linear heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128293A TWI380728B (en) 2008-07-25 2008-07-25 Linear heater

Publications (2)

Publication Number Publication Date
TW201006295A TW201006295A (en) 2010-02-01
TWI380728B true TWI380728B (en) 2012-12-21

Family

ID=44826615

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128293A TWI380728B (en) 2008-07-25 2008-07-25 Linear heater

Country Status (1)

Country Link
TW (1) TWI380728B (en)

Also Published As

Publication number Publication date
TW201006295A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
TWI486090B (en) Hollow heating source
CN101610613B (en) Line heat source
CN101616513B (en) Linear heat source
CN101636001B (en) Cubic heat source
TWI380728B (en) Linear heater
TWI386363B (en) Linear heater
TWI380729B (en) Linear heater
CN101616512B (en) Line heat source
TWI448417B (en) Linear heater
CN101616514B (en) Linear heat source
TWI462630B (en) Planar heating source
CN101616516B (en) Line heat source
TWI465145B (en) Hollow heating source
TWI462627B (en) Hollow heating source
TW201000395A (en) Linear heater
TWI466585B (en) Hollow heating source
TWI427027B (en) Hollow heating source
TWI380731B (en) Planar heating source
TWI380734B (en) Linear heater
TWI380730B (en) Planar heating source
TWI473524B (en) Hollow heating source
TWI360521B (en) Planar heat source
CN101626642B (en) Hollow heat source
TWI462628B (en) Planar heating source
CN101636006A (en) Plane heat source