TW201228649A - Heat device - Google Patents

Heat device Download PDF

Info

Publication number
TW201228649A
TW201228649A TW100100250A TW100100250A TW201228649A TW 201228649 A TW201228649 A TW 201228649A TW 100100250 A TW100100250 A TW 100100250A TW 100100250 A TW100100250 A TW 100100250A TW 201228649 A TW201228649 A TW 201228649A
Authority
TW
Taiwan
Prior art keywords
electrode
carbon nanotube
thermal therapy
therapy device
heating element
Prior art date
Application number
TW100100250A
Other languages
Chinese (zh)
Other versions
TWI462734B (en
Inventor
Lu-Zhou Chen
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100100250A priority Critical patent/TWI462734B/en
Publication of TW201228649A publication Critical patent/TW201228649A/en
Application granted granted Critical
Publication of TWI462734B publication Critical patent/TWI462734B/en

Links

Abstract

The present invention relates to a heating device. The heating device includes an insulating substrate; a plurality of row electrodes and a plurality of column electrodes located on the insulated substrate, and a plurality of heating units located on the insulated substrate. The row electrodes and the column electrodes are insulated from each other. Each two adjacent row electrodes and two neighboring column electrodes cooperatively form a grid having a heating unit located thereat. Each of the heating units includes a first electrode, a second electrode and a heating element. The first electrode and the second electrode are electrically connected to the row electrodes and the column electrodes respectively. The heating element includes a carbon nanotube film structure and a polymer matrix. The polymer matrix has a surface adjacent to the insulated substrate. The carbon nanotube film structure is disposed in the polymer matrix and is adjacent to the surface of the polymer matrix.

Description

201228649 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種熱理療器,尤其涉及一種基於奈米碳管 的熱理療器。 【先前技術·】 [0002] 先前技術中有採用熱理療的方式來做熱保健按摩、治療 關節炎、風濕類風濕等疾病的醫療保健方法。熱理療的 一種係在人體上敷上一熱源,由熱源的熱力經皮膚及皮 下組織使肌肉或筋骨感受到熱度,來減輕或消除疼痛, 更有以熱源的熱度來促進人們局部的血液迴圈,達到保 健治病的功能。 [0003] 先前技術中的熱理療器,通常係採用金屬電熱元件(例 如鎢絲或者鉬片等)為基本的發熱單元構成。然而,由 於金屬電熱元件的熱容較高,熱響應較遲純,能量轉換 效率較低。並且,金屬發熱元件會因為複數次熱脹冷縮 以及曲折等機械外力而容易受損疲勞,功能下降,影響 產品壽命。 【發明内容】 [0004] 有鑒於此,提供一種發熱效率高,使用壽命長的熱理療 器實為必要。 [0005] 一種熱理療器,其包括:一絕緣基底具有一表面;複數 個行電極與複數個列電極設置於絕緣基底的表面,該複 數個行電極與複數個列電極相互交叉設置,每兩個相鄰 的行電極以及與該兩個行電極交叉的兩個相鄰的列電極 形成一個網格,且行電極與列電極之間電絕緣;以及複 iuOiuuzou 表單編號A0101 第4頁/共41頁 1002000415-0 201228649201228649 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a thermal therapy device, and more particularly to a thermal therapy device based on a carbon nanotube. [Prior Art] [0002] In the prior art, there is a medical treatment method that uses thermal therapy to perform heat health massage, treatment of arthritis, rheumatoid rheumatism and the like. One type of thermal therapy is applied to a heat source on the human body. The heat of the heat source causes the muscles or bones to feel the heat through the skin and the subcutaneous tissue to relieve or eliminate the pain, and the heat of the heat source is used to promote the local blood circulation. Achieve the function of health care. [0003] Prior art thermal physiotherapy devices are generally constructed using a metal electric heating element (e.g., a tungsten wire or a molybdenum sheet, etc.) as a basic heat generating unit. However, due to the higher heat capacity of the metal electric heating element, the thermal response is later and the energy conversion efficiency is lower. Further, the metal heating element is likely to be damaged and fatigued due to a plurality of mechanical external forces such as thermal expansion and contraction and tortuosity, and the function is degraded, which affects the life of the product. SUMMARY OF THE INVENTION [0004] In view of the above, it is necessary to provide a thermal therapy device having high heat generation efficiency and long service life. [0005] A thermal therapy device comprising: an insulating substrate having a surface; a plurality of row electrodes and a plurality of column electrodes disposed on a surface of the insulating substrate, the plurality of row electrodes and the plurality of column electrodes being disposed to cross each other, each two Two adjacent row electrodes and two adjacent column electrodes crossing the two row electrodes form a grid, and the row electrode and the column electrode are electrically insulated; and the complex iuOiuuzou form number A0101 Page 4 of 41 1002000415-0 201228649

[0006] 〇 [0007] 數個加熱單元,每個加熱單元對應一個網格設置,每個 加熱單元包括一第一電極、一第二電極和一加熱元件, 該第一電極與第二電極間隔設置,該第一電極與第二電 極分別與所述行電極和列電極電連接,所述加熱元件與 所述第一電極和第二電極電連接;所述加熱元件包括一 奈米碳管膜結構以及一柔性高分子基體,所述柔性高分 子基體具有一靠近所述絕緣基底的表面,所述奈米碳管 膜結構設置於所述柔性高分子基體中且靠近該高分子基 體靠近所述絕緣基底的表面。 一種熱理療器,其包括:一絕緣基底以及設置於所述絕 緣基底上的至少一加熱單元,.該加熱單元包括一第一電 極、一第二電極以及一加熱元件.。所述第一電極與第二 電極間隔設置並與加熱元件電連接,該加熱元件的相對 兩端分別固定於所述絕緣基底。所述加熱元件包括一柔 性高分子基體以及一奈米碳管膜結構包埋於所述柔性高 分子基體中,所述柔性高分子基體具有一靠近所述絕緣 基底的表面,所述奈米碳管膜結構靠近所述柔性高分子 基體的靠近絕緣基底的表面設置。 相較於先前技術,所述的熱理療器中的加熱元件將奈米 碳管膜結構複合於柔性高分子基體中。由於奈米碳管膜 結構的熱容較小,具有較高的發熱效率和較快的熱響應 速度,因此該熱理療器的發熱效率高、熱響應快。該加 熱元件的奈米碳管膜結構具有較好的柔性,不會因為複 數次彎曲影響使用壽命,從而該加熱元件具有較長的使 用壽命。另外,本發明的加熱元件中的奈米碳管膜結構 100100250 表單編號Α0101 第5頁/共41頁 1002000415-0 201228649 靠近該柔性高分子基體靠近所述絕緣基底的表面設置, 從而使得該加熱元件具有非對稱的熱膨脹係數分佈。當 該熱理療器通電加熱時,所述加熱元件會朝向遠離所述 絕緣基底的方向凸起,從而還可以起到一定的按摩作用 0 【實施方式】 [0008] 以下將結合附圖對本發明的熱理療器作進一步的詳細說 明。 [0009] 請參考圖1及圖2,本發明第一實施例提供一種熱理療器 10,其包括一絕緣基底102,以及至少一個加熱單元120 設置於該絕緣基底1 0 2。該加熱單元12 0包括一第一電極 110,一第二電極112,以及一加熱元件130。該第一電 極110與所述第二電極112間隔設置於所述絕緣基底102 。該加熱元件130設置於所述第一電極110與第二電極 112之間,並固定於所述絕緣基底102。該加熱元件130 與所述第一電極110和第二電極112電連接。 [0010] 所述絕緣基底102可以為硬性或柔性絕緣材料構成。當該 絕緣基底102選擇硬性材料時,其可以為陶瓷、玻璃、樹 脂、石英、塑膠等中的一種或幾種。當該絕緣基底102選 擇柔性材料時,其可以為樹脂、橡膠、塑膠或柔性纖維 等中的一種或幾種。當該絕緣基底102為硬性材料構成時 ,其可以為管狀、球狀、長方體狀,或者也可以根據人 體具體理療部位的外部形狀進行設計。所述絕緣基底102 可以做成橫截面為半圓或C字形的管狀,從而套在膝關節 ,對膝關節理療。當該絕緣基底102選擇柔性材料時,可 1 λλί r\ r~ η ιυυιυυζου 表單編號AOlOi 第6頁/共41頁 1 ΛΛΟΛΛΛ Λ 1 r Λ ιυυζ,υυυ^ΐϋ-υ 201228649 〇 [0011] 〇 根據實際需要彎折成任意形狀,可以很好的貼合在人體 需要理療的部位,從而具有更好的理療效果。所述絕緣 基底102的大小與厚度不限,本領域技術人員可以根據實 際需要(如根據熱理療器10的預定大小),設置絕緣基底 102的尺寸。本實施例中,所述絕緣基底102為由柔性材 料製成的平面橡膠基板’該平面橡膠基板為厚度約5¾米 ,邊長為10厘米的正方形薄膜。可以理解,所述絕緣基 底102的材料不應僅僅局限於本說明書中記載的範圍,可 以根據實際需要任意選擇。 所述第一電極110以及第二電極112可為金屬導電材料、 表面塗有導電材料層的其他材料或者導電橡膠構成。所 述第一電極110與第二電極112間隔且平行設置在所述絕 緣基底102表面。該第一電極110與第二電極112均為平 面導電體,其尺寸可以根據所述加熱元件130的尺寸進行 設置。本實施例中,該第一電極110以及第二電極112優 選為採用金屬絲構成的平面導電體。該金屬絲通過高分 子黏結劑黏結於所述絕緣基底102的表面。所述第一電極 110與第二電極112的長度為20微米〜1.5厘米,寬度為30 微米〜1厘米,厚度為0. 4毫米~0. 5厘米。 [0012] 所述加熱元件130具有相對的兩端。該加熱元件130的一 端可以通過導電膠160黏結在所述第一電極110的表面。 所述加熱元件130的另一端通過導電膠160黏結在所述第 二電極112的表面。所述加熱元件130通過所述第一電極 110,以及所述第二電極112支撐,從而與所述絕緣基底 102間隔設置。所述加熱元件130黏附於所述第一電極 100100250 表單編號A0101 第7頁/共41頁 1002000415-0 201228649 lio的一端通過導電膠160與所述第一電極11〇電連接; 所述加熱元件130黏附於第二電極u 2的一端通過導電膠 160與所述第二電極112電連接。使用時,可以通過第一 %極110及第二電極112施加電壓於所述加熱元件的 兩端。 [0013] 請一併參見圖3,該加熱元件130為平面薄膜狀結構,其 長度、寬度、厚度可以根據實際需要設置。本實施例中 ,該加熱το件130為2毫米厚的一長方形薄片,長為丨厘米 ,寬為0. 5厘米。所述加熱元件13〇包括一奈米碳管膜結 構134以及一柔性高分子基體136。所述奈米碳管膜結構 134包埋於柔性高分子基體中。該奈米碳管膜結構 134與該柔性高分子基體136結合成一個整體結構。所述 奈米碳管臈結構134與所述柔性高分子基體136的厚度比 為1 : 2~1 : 300。優選地’所述奈米碳管膜結構134與所 述柔性高分子基體136的厚度比為1 : 20。該柔性高分子 基體136具有一遠離所述絕緣墓底丨〇2的第一表面1362, 以及一靠近所述絕緣基底丨〇2的第二表面1 364。所述第一 表面1362平行於所述第二表面1 364 .所述奈米碳管膜結 構134設置於所述柔性高分子基體136之中,並靠近第二 表面1364設置。所述奈米碳管膜結構134平行於所述第二 表面1364 °具體地’奈米碳管膜結構134到第一表面 1362的距離大於奈米碳管膜結構134到第二表面的距離。 也可以理解為’所述奈来碳管膜結構134在所述柔性高分 子基體136中的位置,相對於所述第一表面1362以及第二 表面1364係非對稱的。或者,所述奈米碳管膜結構134到 100100250 表單編號A01G1 第8頁/共41頁 1002000415-0 201228649[0006] 0007[0007] a plurality of heating units, each heating unit corresponding to a grid arrangement, each heating unit comprising a first electrode, a second electrode and a heating element, the first electrode being spaced apart from the second electrode Providing that the first electrode and the second electrode are electrically connected to the row electrode and the column electrode, respectively, the heating element is electrically connected to the first electrode and the second electrode; and the heating element comprises a carbon nanotube film And a flexible polymer matrix having a surface adjacent to the insulating substrate, wherein the carbon nanotube film structure is disposed in the flexible polymer matrix and adjacent to the polymer matrix The surface of the insulating substrate. A thermal therapy device comprising: an insulating substrate; and at least one heating unit disposed on the insulating substrate. The heating unit includes a first electrode, a second electrode, and a heating element. The first electrode is spaced apart from the second electrode and electrically connected to the heating element, and opposite ends of the heating element are respectively fixed to the insulating substrate. The heating element includes a flexible polymer matrix and a carbon nanotube film structure embedded in the flexible polymer matrix, the flexible polymer matrix having a surface adjacent to the insulating substrate, the nanocarbon The tubular film structure is disposed adjacent to a surface of the flexible polymer substrate adjacent to the insulating substrate. In contrast to the prior art, the heating element in the thermal therapy device composites the carbon nanotube membrane structure into a flexible polymeric matrix. Since the carbon nanotube membrane structure has a small heat capacity, high heat generation efficiency and fast thermal response speed, the heat treatment device has high heat generation efficiency and fast thermal response. The carbon nanotube film structure of the heating element has good flexibility and does not affect the service life due to the multiple bending, so that the heating element has a long service life. In addition, the carbon nanotube film structure 100100250 in the heating element of the present invention is exemplified by a number Α0101, a fifth page, a total of 41 pages, 1002000415-0, 201228649, adjacent to the surface of the flexible polymer substrate near the insulating substrate, thereby making the heating element Has an asymmetric coefficient of thermal expansion distribution. When the thermal therapy device is electrically heated, the heating element is convex toward a direction away from the insulating substrate, so that a certain massage effect can also be achieved. [Embodiment] [0008] Hereinafter, the present invention will be described with reference to the accompanying drawings. The thermal therapy device is further detailed. Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a thermal therapy device 10 including an insulating substrate 102, and at least one heating unit 120 is disposed on the insulating substrate 102. The heating unit 120 includes a first electrode 110, a second electrode 112, and a heating element 130. The first electrode 110 and the second electrode 112 are spaced apart from the insulating substrate 102. The heating element 130 is disposed between the first electrode 110 and the second electrode 112 and is fixed to the insulating substrate 102. The heating element 130 is electrically connected to the first electrode 110 and the second electrode 112. [0010] The insulating substrate 102 may be constructed of a rigid or flexible insulating material. When the insulating substrate 102 is selected from a hard material, it may be one or more of ceramics, glass, resin, quartz, plastic, and the like. When the insulating substrate 102 is selected from a flexible material, it may be one or more of a resin, a rubber, a plastic or a flexible fiber. When the insulating substrate 102 is made of a hard material, it may be tubular, spherical, or rectangular, or may be designed according to the external shape of the specific physical treatment site of the human body. The insulating substrate 102 may be formed into a tubular shape having a semicircular or C-shaped cross section so as to be fitted over the knee joint and to the knee joint. When the insulating substrate 102 selects a flexible material, it can be 1 λλί r\ r~ η ιυυιυυζου Form No. AOlOi Page 6 / Total 41 Page 1 ΛΛΟΛΛΛ Λ 1 r Λ ιυυζ, υυυ^ΐϋ-υ 201228649 〇[0011] 〇According to the actual It needs to be bent into any shape, which can be well adhered to the part of the human body that needs physical therapy, so as to have better physical therapy effect. The size and thickness of the insulating substrate 102 are not limited, and those skilled in the art can set the size of the insulating substrate 102 according to actual needs (e.g., according to a predetermined size of the thermal therapy device 10). In the present embodiment, the insulating substrate 102 is a planar rubber substrate made of a flexible material. The planar rubber substrate is a square film having a thickness of about 53⁄4 m and a side length of 10 cm. It is to be understood that the material of the insulating substrate 102 should not be limited to the range described in the specification, and may be arbitrarily selected according to actual needs. The first electrode 110 and the second electrode 112 may be made of a metal conductive material, other materials coated with a conductive material layer, or conductive rubber. The first electrode 110 is spaced apart from the second electrode 112 and disposed in parallel on the surface of the insulating substrate 102. The first electrode 110 and the second electrode 112 are both planar conductors, and the size thereof can be set according to the size of the heating element 130. In this embodiment, the first electrode 110 and the second electrode 112 are preferably planar conductors formed of wires. The wire is bonded to the surface of the insulating substrate 102 by a high molecular bonding agent. 4毫米至0. 5厘米。 The first electrode and the second electrode 112, the length of the second electrode is 0. 4 mm ~ 0. 5 cm. [0012] The heating element 130 has opposite ends. One end of the heating element 130 may be bonded to the surface of the first electrode 110 by a conductive paste 160. The other end of the heating element 130 is bonded to the surface of the second electrode 112 by a conductive paste 160. The heating element 130 is supported by the first electrode 110 and the second electrode 112 so as to be spaced apart from the insulating substrate 102. The heating element 130 is adhered to the first electrode 100100250. One end of the form number A0101, page 7 / 41 page 1002000415-0 201228649 lio is electrically connected to the first electrode 11A through a conductive adhesive 160; the heating element 130 One end adhered to the second electrode u 2 is electrically connected to the second electrode 112 through a conductive paste 160. In use, a voltage can be applied across the heating element through the first % pole 110 and the second electrode 112. [0013] Referring to FIG. 3 together, the heating element 130 is a flat film-like structure, and its length, width and thickness can be set according to actual needs. 5厘米。 In this embodiment, a rectangular sheet of 2 mm thick, a length of 丨 cm, a width of 0. 5 cm. The heating element 13A includes a carbon nanotube film structure 134 and a flexible polymer matrix 136. The carbon nanotube film structure 134 is embedded in a flexible polymer matrix. The carbon nanotube film structure 134 is combined with the flexible polymer matrix 136 to form a unitary structure. The thickness ratio of the carbon nanotube structure 134 to the flexible polymer matrix 136 is 1:2 to 1:300. Preferably, the thickness ratio of the carbon nanotube film structure 134 to the flexible polymer matrix 136 is 1:20. The flexible polymer matrix 136 has a first surface 1362 remote from the insulating tomb sill 2 and a second surface 1 364 adjacent the insulating substrate 丨〇2. The first surface 1362 is parallel to the second surface 1 364. The carbon nanotube film structure 134 is disposed in the flexible polymer substrate 136 and disposed adjacent to the second surface 1364. The carbon nanotube film structure 134 is parallel to the second surface 1364°, specifically the distance from the carbon nanotube film structure 134 to the first surface 1362 is greater than the distance from the carbon nanotube film structure 134 to the second surface. It is also understood that the position of the carbon nanotube membrane structure 134 in the flexible polymer matrix 136 is asymmetric with respect to the first surface 1362 and the second surface 1364. Alternatively, the carbon nanotube film structure 134 to 100100250 Form No. A01G1 Page 8 of 41 1002000415-0 201228649

第表面1362以及第二表面1364的距離係不相等的。 選地,所述奈米碳管膜結構134距離所述第二表面 距離大於等於10微米且小於等於丨毫米。一方面,可確 叇加熱元件130的第一表面1 362不導電,從而避免漏電保 另—方面,該奈米碳管膜結構134非對稱的設置於所述灵 眭向分子基體136中,上述距離範圍還可以保證奈米喂技 骐結構134到第一表面1 362之間的部分的熱膨脹係數1 = 奈米碳管膜結構134到第二表面1364之間的部分的熱膨脹 係數。該奈米碳管膜結構134的長度要大於或等於所述穴 性高分子基體136的長度,所謂“長度,,係指,所述奈米 碳管膜結構134在平行於所述第二表面丨364的方向的最大 尺寸。從而在該加熱元件130的相對兩端都有部分奈米碳 官膜結構134露出。由於加熱元件130的兩端通過導電膠 16〇分別黏附於第一電極110以及第二電極112,因此該 奈米碳管膜結構134在加熱元件130的兩端露出的部分可The distance between the first surface 1362 and the second surface 1364 is unequal. Optionally, the carbon nanotube film structure 134 is at least 10 microns from the second surface and less than or equal to 丨 mm. In one aspect, it can be determined that the first surface 1 362 of the heating element 130 is non-conductive, thereby avoiding leakage, and the carbon nanotube film structure 134 is asymmetrically disposed in the scorpion-oriented molecular matrix 136, The range of distance also ensures a coefficient of thermal expansion of the portion between the nano-feeding structure 134 to the first surface 1 362 1 = the coefficient of thermal expansion of the portion between the carbon nanotube film structure 134 and the second surface 1364. The length of the carbon nanotube film structure 134 is greater than or equal to the length of the matrix polymer matrix 136. The term "length" means that the carbon nanotube film structure 134 is parallel to the second surface. The maximum dimension of the direction of the crucible 364. Thus, a portion of the carbon nanotube film structure 134 is exposed at opposite ends of the heating element 130. Since both ends of the heating element 130 are adhered to the first electrode 110 through the conductive paste 16 The second electrode 112, and thus the portion of the carbon nanotube film structure 134 exposed at both ends of the heating element 130

以通過導電膠160與所述第一電極no和第二電極u2電 連接。另外,該加熱元件130設置於所述絕緣基底1〇2時 ’要使得所述第二表面1364靠近所述絕緣基底102設置。 [〇〇14] 另外,所述奈米碳管膜結構134還可以直接設置於所述柔 性高分子基體136的第二表面1364。 [〇〇15] 請參考圖4,所述柔性高分子基體136為具有一定厚度的 片材,該片材的形狀不限,可以為長方形 '圓形,或根 據實際應用製成各種形狀。所述柔性高分子基體136為柔 性材料構成。所述柔性高分子基體丨36的材料為矽橡膠、 聚甲基丙烯酸甲酯、聚氨脂、環氡樹脂、聚丙烯酸乙酯 100100250 表單編號Α0101 第9頁/共41頁 1002000415-0 201228649 、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚 苯胺、聚吡咯及聚噻吩等中的一種或幾種的組合。本實 施例中,所述柔性高分子基體136為一矽橡膠薄膜,該矽 橡膠薄膜為厚度為2毫米厚的一長方形薄片。所述奈米碳 管膜結構134為一膜結構,其厚度為10微米〜1毫米,其 寬度與所述柔性高分子基體136完全相同,長度略大於所 述柔性高分子基體136的長度。該奈米碳管膜結構134平 行於所述柔性高分子基體136並靠近柔性高分子基體136 的第二表面1364設置。具體地,該奈米碳管膜結構134係 在柔性高分子基體1 3 6未完全固化呈液態時鋪設於該柔性 高分子基體136。該奈米碳管膜結構134係由複數個奈米 碳管132通過凡得瓦力結合構成,複數個奈米碳管132之 間存在間隙。液態的高分子基體材料可以滲透進入該奈 米碳管膜結構134中的奈米碳管132之間的間隙當中,並 將該奈米碳管膜結構134完全包覆,從而該柔性高分子基 體136的材料與奈米碳管膜結構134中的奈米碳管132緊 密結合在一起。奈米碳管膜結構134可以很好地靠近所述 第二表面1 364固定於該柔性高分子基體136中或者固定於 該柔性高分子基體136的第二表面1364。該加熱元件130 不會因為複數次使用,影響奈米碳管膜結構134與柔性高 分子基體136之間介面的結合性,從而壽命較長。 [0016] 該奈米碳管膜結構134為一自支撐結構。所謂“自支撐結 構”即該奈米碳管膜結構134無需通過一支撐體支撐,也 能保持自身特定的形狀。該自支撐結構的奈米碳管膜結 構134包括複數個奈米碳管132,該複數個奈米碳管132 1 ΛΛ1 ΛΛΠΓ Λ ιυυιυυ^υυ 表單編號AGlOi 第 10 頁/共41 頁 1002000415 201228649 ❹ 通過凡得瓦力相互吸引,從而使奈米碳管膜結構134具有 特定的形狀。該奈米碳管膜結構1 34的厚度大於1 0微米, 小於2毫米。所述奈米碳管膜結構134中的奈米碳管132為 單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種 或複數種。所述單壁奈米碳管的直徑為0.5奈米~50奈米 ,所述雙壁奈米碳管的直徑為1. 0奈米〜50奈米,所述多 壁奈米碳管的直桂為1. 5奈米〜50奈米。該奈米碳管膜結 構134為層狀或線狀結構。由於該奈米碳管膜結構134具 有自支撐性,在不通過支撐體支撐時仍可保持層狀或線 狀結構。該奈米碳管膜結構134中奈米碳管132之間具有 大量間隙,從而使該奈米碳管膜結構具有大量微孔。所 述奈米碳管膜結構134的單位面積熱容小於2x1 0_4焦耳每 平方厘来開爾文。優選地,所述奈米碳管膜結構134的單 位面積熱容可以小於等於1. 7x1 (Γ6焦耳每平方厘米開爾 文。由於奈米碳管132的熱容較小,所以由該奈米碳管膜 結構134複合在柔性高分子基體136中而構成的加熱元件 ❹ 130具有較快的熱響應速度,可用於對物體進行快速加熱 〇 [0017] 所述奈米碳管膜結構134包括至少一奈米碳管膜、至少一 奈米碳管線狀結構或其組合。所述奈米碳管膜由複數個 均勻分佈的奈米碳管組成。該奈米碳管膜中的複數個奈 米碳管可以做有序排列或無序排列。當奈米碳管膜由無 序排列的奈米碳管組成時,奈米碳管相互纏繞;當奈米 碳管膜為有序排列的奈米碳管組成時,奈米碳管沿一個 方向或者複數個方向擇優取向排列。當奈米碳管膜結構 100100250 表單編號A0101 第11頁/共41頁 1002000415-0 201228649 134中的複數個奈米碳管基本沿同一方向有序排列時,該 複數個奈米碳管從第一電極110向第二電極Π2延伸。具 體地,該奈米碳管膜可為奈米碳管絮化膜、奈米碳管碾 壓膜或奈米碳管拉膜。該奈米碳管線狀結構包括至少一 非扭轉的奈米碳管線、至少一扭轉的奈米碳管線或其組 合。當所述奈米碳管線狀結構包括複數根非扭轉的奈米 碳管線或扭轉的奈米碳管線時,該非扭轉的奈米碳管線 或扭轉的奈米碳管線可以相互平行呈一束狀結構,或相 互扭轉呈一絞線結構。 [0018] 請參閱圖5及圖6,具體地,所述奈米碳管拉膜具有複數 個連續且定向排列的奈米碳管片段1 43。該複數個奈米碳 管片段143通過凡得瓦力首尾相連。每一奈米碳管片段 143包括複數個相互平行的奈米碳管132,該複數個相互 平行的奈米碳管132通過凡得瓦力緊密結合。該奈米碳管 片段143具有任意的寬度、厚度、均勻性及形狀。該奈米 碳管拉膜中的奈米碳管132沿同一方向擇優取向排列。可 以理解,在由複數個奈米碳管拉膜組成的奈米碳管膜結 構134中,相鄰兩個奈米碳管拉膜中的奈米碳管的排列方 向有一夾角α,且0° a 90°,從而使相鄰兩層奈米 碳管拉膜中的奈米碳管相互交叉組成一網狀結構,該網 狀結構包括複數個微孔,該複數個微孔均勻且規則分佈 於奈米碳管膜結構中,其中,該微孔直徑為1奈米~〇. 5微 米。所述奈米碳管拉膜的厚度為0. 01微米〜100微米。所 述奈米碳管拉膜可以通過拉取一奈米碳管陣列直接獲得 。該奈米碳管拉膜的製備方法請參見范守善等人於民國The first electrode no and the second electrode u2 are electrically connected by a conductive paste 160. Further, when the heating element 130 is disposed on the insulating substrate 1'2, the second surface 1364 is disposed adjacent to the insulating substrate 102. Further, the carbon nanotube film structure 134 may be directly disposed on the second surface 1364 of the flexible polymer matrix 136. Referring to FIG. 4, the flexible polymer substrate 136 is a sheet having a certain thickness, and the shape of the sheet is not limited, and may be a rectangular shape or a variety of shapes according to practical applications. The flexible polymer matrix 136 is constructed of a flexible material. The material of the flexible polymer matrix 丨36 is ruthenium rubber, polymethyl methacrylate, polyurethane, cyclic oxime resin, polyethyl acrylate 100100250. Form No. 1010101 Page 9 / 41 pages 1002000415-0 201228649 A combination of one or more of butyl acrylate, polystyrene, polybutadiene, polyacrylonitrile, polyaniline, polypyrrole, and polythiophene. In the embodiment, the flexible polymer substrate 136 is a ruthenium rubber film which is a rectangular sheet having a thickness of 2 mm. The carbon nanotube film structure 134 is a film structure having a thickness of 10 μm to 1 mm and a width identical to that of the flexible polymer matrix 136 and a length slightly larger than the length of the flexible polymer matrix 136. The carbon nanotube film structure 134 is disposed parallel to the flexible polymer matrix 136 and adjacent to the second surface 1364 of the flexible polymer matrix 136. Specifically, the carbon nanotube film structure 134 is laid on the flexible polymer substrate 136 when the flexible polymer matrix 136 is not completely cured in a liquid state. The carbon nanotube membrane structure 134 is composed of a plurality of carbon nanotubes 132 combined by van der Waals force, and a gap exists between the plurality of carbon nanotubes 132. The liquid polymer matrix material can penetrate into the gap between the carbon nanotubes 132 in the carbon nanotube film structure 134, and completely coat the carbon nanotube film structure 134, thereby the flexible polymer matrix The material of 136 is tightly bonded to the carbon nanotubes 132 in the carbon nanotube membrane structure 134. The carbon nanotube film structure 134 can be fixed in the flexible polymer substrate 136 or fixed to the second surface 1364 of the flexible polymer substrate 136. The heating element 130 does not affect the interface between the carbon nanotube film structure 134 and the flexible polymer matrix 136 because of the multiple use, and thus has a long life. [0016] The carbon nanotube membrane structure 134 is a self-supporting structure. The so-called "self-supporting structure" means that the carbon nanotube film structure 134 can maintain its own specific shape without being supported by a support. The self-supporting structure of the carbon nanotube membrane structure 134 includes a plurality of carbon nanotubes 132, the plurality of carbon nanotubes 132 1 ΛΛ1 ΛΛΠΓ Λ ιυυιυυ^υυ Form No. AGlOi Page 10 of 41 1002000415 201228649 ❹ The van der Waals force attracts each other so that the carbon nanotube film structure 134 has a specific shape. The carbon nanotube film structure 134 has a thickness greater than 10 microns and less than 2 mm. The carbon nanotubes 132 in the carbon nanotube membrane structure 134 are one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube is straight. Gui is 1. 5 nm ~ 50 nm. The carbon nanotube film structure 134 is a layered or linear structure. Since the carbon nanotube film structure 134 is self-supporting, it can maintain a layered or linear structure without being supported by the support. The carbon nanotube membrane structure 134 has a large amount of gaps between the carbon nanotubes 132, so that the carbon nanotube membrane structure has a large number of micropores. The carbon nanotube membrane structure 134 has a heat capacity per unit area of less than 2 x 10 0 4 joules per square centimeter to Kelvin. Preferably, the heat capacity per unit area of the carbon nanotube film structure 134 may be less than or equal to 1. 7x1 (Γ6 joules per square centimeter Kelvin. Since the heat capacity of the carbon nanotubes 132 is small, the carbon nanotubes are The heating element ❹ 130, which is formed by laminating the film structure 134 in the flexible polymer matrix 136, has a relatively fast thermal response speed and can be used for rapid heating of the object. [0017] The carbon nanotube film structure 134 includes at least one a carbon nanotube film, at least one nano carbon line structure or a combination thereof. The carbon nanotube film is composed of a plurality of uniformly distributed carbon nanotubes. The plurality of carbon nanotubes in the carbon nanotube film It can be ordered or disordered. When the carbon nanotube membrane is composed of disordered carbon nanotubes, the carbon nanotubes are intertwined; when the carbon nanotube membrane is an ordered carbon nanotube When composed, the carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. When the carbon nanotube membrane structure 100100250 Form No. A0101 Page 11 / 41 page 1002000415-0 201228649 134, the plurality of carbon nanotubes are basically Ordered in the same direction The plurality of carbon nanotubes extend from the first electrode 110 to the second electrode Π 2. Specifically, the carbon nanotube film may be a carbon nanotube film, a carbon nanotube film or a nano carbon. The carbon nanotube-like structure comprises at least one non-twisted nanocarbon line, at least one twisted nanocarbon line, or a combination thereof. When the nanocarbon line-like structure comprises a plurality of non-twisted nai When the carbon carbon pipeline or the twisted carbon carbon pipeline is used, the non-twisted nano carbon pipeline or the twisted nanocarbon pipeline may be parallel to each other in a bundle structure or twisted to each other in a twisted line structure. [0018] 5 and 6, in particular, the carbon nanotube film has a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals. The carbon nanotube segment 143 includes a plurality of mutually parallel carbon nanotubes 132, and the plurality of mutually parallel carbon nanotubes 132 are tightly coupled by van der Waals force. The carbon nanotube segments 143 have an arbitrary width, Thickness, uniformity and shape. The carbon nanotube film The carbon nanotubes 132 are arranged in a preferred orientation along the same direction. It can be understood that in the carbon nanotube membrane structure 134 composed of a plurality of carbon nanotube membranes, the naphthalene in the adjacent two carbon nanotube membranes The arrangement direction of the carbon nanotubes has an angle α and 0° a 90°, so that the carbon nanotubes in the adjacent two layers of carbon nanotubes are mutually intersected to form a network structure, and the network structure includes a plurality of The micropores are uniformly and regularly distributed in the structure of the carbon nanotube membrane, wherein the micropores have a diameter of from 1 nm to 5 μm, and the thickness of the carbon nanotube film is 0. 01 micron to 100 micron. The carbon nanotube film can be directly obtained by pulling a carbon nanotube array. For the preparation method of the carbon nanotube film, please refer to Fan Shoushan and others in the Republic of China.

λ f\r\ λ r\ r\r\r r> lUOiUU^DU 表單編號AO 101 第12頁/共41頁 1002000415-0 201228649 96年2月12曰申請的,於民國97年8月16曰公開的第 961 050 1 6號台灣公開專利申請“奈米碳管膜結構及其製 備方法”,申請人:鴻海精密工業股份有限公司。為節 省篇幅,僅引用於此,但上述申請所有技術揭露也應視 為本發明申請技術揭露的一部分。所述奈米碳管碾壓膜 由複數個均勻分佈的奈米碳管組成。該複數個奈米碳管 可沿同一方向擇優取向排列,也可沿不同方向擇優取向 排列。優選地,所述奈米碳管碾壓膜中的奈米碳管平行 於奈米碳管碾壓膜的表面。所述奈米碳管碾壓膜中的奈 米碳管相互交疊,且通過凡得瓦力相互吸引,緊密結合 ,使得該奈米碳管碾壓膜具有很好的柔韌性,可以彎曲 折疊成任意形狀而不破裂。且由於奈米碳管碾壓膜中的 奈米碳管之間通過凡得瓦力相互吸引,緊密結合,使奈 米碳管碾壓膜為一自支撐的結構,可無需基底支撐。所 述奈米碳管碾壓膜可通過碾壓一奈米碳管陣列獲得。所 述奈米碳管碾壓膜中的奈米碳管與形成奈米碳管陣列的 基底的表面形成一夾角α,其中,α大於等於0度且小於 等於15度(0 a 15°),該夾角α與施加在奈米碳管陣 列上的壓力有關,壓力越大,該夾角越小。所述奈米碳 管碾壓膜的長度和寬度不限。所述碾壓膜包括複數個微 孔結構,該微孔結構均勻且規則分佈於奈米碳管碾壓膜 中,其中微孔直徑為1奈米〜0. 5微米。所述奈米碳管碾壓 膜及其製備方法請參見范守善等人於民國96年6月29曰申 請的,於民國98年1月1日公開的第200900348號台灣公 開專利申請“奈米碳管薄膜的製備方法”,申請人:鴻 海精密工業股份有限公司。為節省篇幅,僅引用於此, 100100250 表單編號Α0101 第13頁/共41頁 1002000415-0 201228649 但上述申請所有技術揭露也應視為本發明申請技術揭露 的一部分。 [0019] 所述奈米碳管絮化膜的長度、寬度和厚度不限,可根據 實際需要選擇。本發明實施例提供的奈米碳管絮化膜的 長度為卜10厘米,寬度為卜10厘米,厚度為1微米〜2毫 米。所述奈米碳管絮化膜包括相互纏繞的奈米碳管,奈 米碳管的長度大於10微米。所述奈米碳管之間通過凡得 瓦力相互吸引、纏繞,形成網路狀結構。所述奈米碳管 絮化膜中的奈米碳管均勻分佈,無規則排列,使該奈米 碳管絮化膜各向同性,所述奈米碳管絮化膜中的奈米碳 管之間形成大量的微孔,微孔孔徑為1奈米〜0. 5微米。所 述奈米碳管絮化膜及其製備方法請參見范守善等人於民 國96年5月11日申請的,於民國97年11月16日公開的第 200844041號台灣公開專利申請“奈米碳管薄膜的製備 方法”,申請人:鴻海精密工業股份有限公司。為節省 篇幅,僅引用於此,但上述申請所有技術揭露也應視為 本發明申請技術揭露的一部分。 [0020] 請參閱圖7,該非扭轉的奈米碳管線包括複數個沿該非扭 轉的奈米碳管線長度方向排列的奈米碳管。具體地,該 非扭轉的奈米碳管線包括複數個奈米碳管片段,該複數 個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管 片段包括複數個相互平行並通過凡得瓦力緊密結合的奈 米碳管。該奈米碳管片段具有任意的長度、厚度、均勻 性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0. 5 奈米〜1 0 0微米。非扭轉的奈米碳管線為將奈米碳管拉膜 1ηηιηηηΓΛ 丄υυιϋυ乙ου 士 si 〇上 * λ 1 rv 1 衣單編现Λΐηυι fds 1 A "S' / li. A 1 百 第 14 M /兴貝 1002000415-0 201228649 通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述 奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產 生的表面張力的作用下,奈米碳管拉膜中的相互平行的 複數個奈米碳管通過凡得瓦力緊密結合,從而使奈米碳 管拉膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮 發性有機溶劑,如乙醇、曱醇、丙酮、二氯乙烷或氯仿 ,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的 奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比 表面積減小,黏性降低。 Ο [0021] Ο 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 拉膜兩端沿相反方向扭轉獲得。請參閱圖8,該扭轉的奈 米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排 列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數 個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力 首尾相連,每一奈米碳管片段包括複數個相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管 線長度不限,直徑為0. 5奈米〜100微米。進一步地,可採 用一揮發性有機溶劑處理該扭轉的奈求碳管線。在揮發 性有機溶劑揮發時產生的表面張力的作用下,處理後的 扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密 結合,使扭轉的奈米碳管線的比表面積減小,密度及強 度增大。 所述奈米碳管線及其製備方法請參見范守善等人於2002 年11月05日申請的,於2008年11月21日公告的第 100100250 表單編號Α0101 第15頁/共41頁 1002000415-0 [0022] 201228649 I 303239號台灣公告專利“一種奈米碳管繩及其製造方 法”,專利權人:鴻海精密工業股份有限公司,以及於 2009年7月21日公告的第1 31 2337號台灣公告專利“奈 米碳管絲及其製作方法”,專利權人:鴻海精密工業股 份有限公司。為節省篇幅,僅引用於此,但上述申請所 有技術揭露也應視為本發明申請所揭露的一部分。 [0023] 請參見圖9,所述加熱元件130也可以直接設置於所述絕 緣基底102的表面,該加熱元件130的兩端固定於所述絕 緣基底102。所述第一電極110以及第二電極112分別設 置在所述加熱元件的兩端,並通過導電膠分別與所述加 熱元件130電連接。 [0024] 請參見圖10,所述熱理療器10在使用時,可將熱理療器 20的設置有加熱元件一側貼敷於人體上,電壓通過所述 第一電極110以及所述第二電極112施加在該加熱元件 130的奈米碳管膜結構134的兩端,電流可通過上述奈米 碳管132所形成的導電網路進行傳輸。由於奈米碳管132 的自身熱容較高,使得奈米碳管膜結構134溫度快速升高 ,熱量在靠近奈米碳管132的周圍快速地擴散,從而將熱 量傳遞至與加熱元件130對應的人體。 [0025] 本實施例的加熱元件130中,所述柔性高分子基體136的 熱膨脹係數大於奈米碳管膜結構134的熱膨脹係數。所述 奈米碳管膜結構1 34靠近所述柔性高分子基體136的第二 表面1 364設置,並且所述第二表面1 364靠近所述絕緣基 底102。由於所述奈米碳管膜結構在柔性高分子基體136 中,相對於第一表面1 362以及第二表面1 364係非對稱設 100100250 表单編號A0101 第16頁/共41頁 1 ΑΛΟΛΛΛ 4 1 f Λ iuuzuuu4id-u 201228649 置的,因此該加熱元件130的設有奈米碳管膜結構134的 一側熱膨脹係數小於沒有設置奈米碳管膜結構134—側。 當該加熱元件130通電發熱時,該加熱元件130中的奈米 碳管膜結構134到第一表面1 362之間的部分的膨脹形變將 大於加熱元件130中的奈米碳管膜結構134到第二表面 1 364之間的部分。加熱後的加熱元件130的熱膨脹係數大 的部分將會凸起,從而該加熱元件的第一表面1362可以 推壓與加熱元件130對應或接觸的人體,起到一定的按摩 作用。當斷電時,該加熱元件130又將恢復原來的形狀, 離開加熱元件130所對應的人體的理療部位。因此,當該 加熱元件130被週期性通斷電時,其可以實現週期性的凸 起與恢復,從而實現按摩人體的功能。由於奈米碳管132 具有導電性好、熱容小的特點,所述奈米碳管膜結構134 在短時間能就可以發出大量的熱,從而使該加熱元件130 在較小的電壓驅動下,就可以較快的達到較高的溫度。 [0026] 可以理解,上述實施例中加熱元件130的相對兩端通過所 述第一電極110和第二電極112固定在絕緣基底102,係 為了讓加熱元件130受熱後向遠離所述絕緣基底102的方 向凸起。為此,加熱元件130的相對兩端也可以通過其他 方式固定在絕緣基底102,比如黏結、卡扣、螺鎖等等。 所述第一電極110和第二電極112可以間隔設置於加熱元 件130上,並與加熱元件130中的奈米碳管膜結構134電 連接。另外,第一電極110和第二電極112也可以集成到 加熱元件130中,並與所述奈米碳管膜結構134電鏈結即 〇 100100250 表單編號A0101 第17頁/共41頁 1002000415-0 201228649 [0027]請參閱圖11及圖12,本發明第二實施例提供—種熱理療 器20。本實施例與第一實施例的區別在於:本實施包括 複數個設置成陣列形式的加熱單元12〇。該熱理療器2〇包 括—絕緣基底102、複數個行電極2〇4、複數個列電極 2〇6以及複數個加熱單元12〇。所述複數個行電極2〇4相 互平行間隔a又置在絕緣基底1 〇 2的一表面。所述複數個列 電極206相互平行間隔設置在該絕緣基底1〇2的表面上。 所述複數個行電極204與複數個列電極2〇6相互交叉設置 ,並且在行電極204與列電極206交叉處設置有絕緣介質 層216 ’該絕緣介質層216可確保行電極204與列電極206 之間電絕緣,以防止短路》每兩個相鄰的行電極2〇4與兩 個相鄰的列電極206交叉形成一網格214。每個網格214 定位一個加熱單元12〇,即加熱單元丨2〇與網格214一一 對應。複數個行電極2 〇 4或列電極2 〇 6之間可以等間距設 置,也可以不等間距設置。優選地,複數個行電極2〇4或 列電極206之間等間距設置。所述行電極2〇4與列電極 206可以為導電材料或塗有導零材料層的絕緣材料,或者 為柔性的導電橡膠。本實施例中,該複數個行電極2〇4與 複數個列電極206優選為採用金屬絲構成的平面導電體, °亥複數個金屬絲可以通過高分子黏結劑黏結於所述絕緣 基底1 0 2的表面。所述行電極2 〇 4之間的行間矩,以及所 述列電極206之間的列間距,可以根據實際需要設置。本 實施例中’該複數個行電極204的行間距為〇. 5厘米〜3厘 米’複數個列電極206的列間距為〇. 5厘米〜3厘米。該行 電極204與列電極206的寬度為300微米~5毫米微米,厚 !n〇1〇〇Q5n 度為〇· 5毫米〜0. 5厘米。本實施例中,該行電極204與列 ^ 料魏麵 ^ IB ,/^ 41 , 10〇2〇〇〇415_〇 201228649 [0028] 電極206的父叉角度為10度到90度,優選為g〇度。 所述複數個加熱單元120分別一一對應設置於上述複數個 網格214中。可以理解’該複數個加熱單元12〇按照行列 式排布形成一個加熱點陣列。每個加熱單元丨2〇對應一個 獨立的加熱點。 [0029] Ο 本實施例中,該第一電極110可以係行電極2 〇 4的延伸部 分’該第二電極112可以係列電極206的延伸部分。第一 電極110和行電極204可以一體成型,第二電極η〗和列 電極206也可一體成型。本實施例中,該第一電極no與 第二電極112均為平面導電體其尺寸由網格214的尺寸 決定。該第一電極110直接與行電極204電連接,該第二 電極112直接與列電極206電連接。所述第一電極no與 第二電極112的長度為20微米〜1.5厘米,寬度為30微米 〜1厘米,厚度為〇· 4毫米〜0. 5厘米。優選地,所述第二 電極112與第一電極110的長度為0.5厘米〜1厘米,寬度 ο 為0. 1厘米~0· 5厘米,厚度今5毫身〜0. 5厘米。本實施 例t,該第一電極110與第2霄極1〗2的材料為金屬絲, 與行電極204和列電極206相同。 [0030] 由於本實施例中的加熱元件130係通過複數個行電極2〇4 以及複數個列電極2 0 6通電控制,因此可以通過上述複數 個行電極204和列電極206控制每一個加熱元件130的加 熱,以及按摩,從而可以有選擇性的實現定點的理療。 請參見圖13,所述加熱單元120還可以進一步包括複數個 固定元件224設置於第一電極110與第二電極112上。每 100100250 表單編號A0101 第19頁/共41頁 1002000415-0 [0031] 201228649 一個固定元件224對應於一個第一電極110或一個第二電 極112。該固定元件224形狀大小以及材料與第一電極 110與第二電極11 2的形狀大小以及材料相同。具體地, 所述加熱元件130的一端夾設於一個固定元件224與第一 電極110之間,所述加熱元件130的另一端夾設於另一個 固定元件224與第二電極11 2之間。該固定元件224可確 保將加熱元件130更牢固地固定。所述固定元件224與第 一電極110以及第二電極112之間的固定方式不限,可以 通過導電膠,也可以通過螺絲,或者卡扣的方式實現。 [0032] 可以理解,進一步,所述熱理療器20還可以包括一絕緣 保護層(圖未示)以覆蓋所述行電極204、列電極2 06、 第一電極110與第二電極112,防止該熱理療器20在直接 接觸人的皮膚時,產生漏電從而影響使用效果。所述絕 緣保護層的材料為一絕緣材料,如:橡膠、樹脂等。所 述絕緣保護層厚度不限,可以根據實際情況選擇。本實 施例中,該絕緣保護層的材料採用樹脂,其厚度為0. 5毫 米〜2毫米。該絕緣保護層可通過塗敷或沉積的方法形成 於加熱單元120。 [0033] 可以理解,所述熱理療器20的在使用時,可進一步包括 一驅動電路和控制器,可選擇性地對行電極204和列電極 206通入電流,使與該行電極204和列電極206電連接的 加熱單元120工作,即可實現熱理療器20的局部加熱,可 控加熱。 [0034] 請參閱圖14及15,本發明第三實施例提供一種熱理療器 30。本實施例與第二實施例的區別在於,加熱元件130與λ f\r\ λ r\ r\r\r r> lUOiUU^DU Form No. AO 101 Page 12 of 41 1002000415-0 201228649 Application for February 12, 96, in the Republic of China, August 16, 1997 Published Japanese Patent Application No. 961 050 1 6 "Nano Carbon Tube Membrane Structure and Preparation Method", Applicant: Hon Hai Precision Industry Co., Ltd. For the sake of saving space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application. The carbon nanotube rolled film is composed of a plurality of uniformly distributed carbon nanotubes. The plurality of carbon nanotubes may be arranged in a preferred orientation along the same direction, or may be arranged in different orientations. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube film are overlapped with each other and are attracted to each other by the van der Waals force, so that the carbon nanotube film has good flexibility and can be bent and folded. In any shape without breaking. Moreover, since the carbon nanotubes in the carbon nanotube film are mutually attracted by the van der Waals force and tightly combined, the carbon nanotube film is a self-supporting structure, and the substrate support can be eliminated. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotubes in the carbon nanotube rolled film form an angle α with the surface of the substrate forming the carbon nanotube array, wherein α is greater than or equal to 0 degrees and less than or equal to 15 degrees (0 a 15°), The angle α is related to the pressure exerted on the carbon nanotube array, and the larger the pressure, the smaller the angle. The length and width of the carbon nanotube rolled film are not limited. 5微米。 The micro-porous membrane having a diameter of from 1 nanometer to 0. 5 micrometers. The carbon nanotube rolling film and the preparation method thereof are described in Fan Shoushan et al., June 29, 1996, published in the Republic of China on January 1, 1998, Taiwan Patent Application No. 200900348 Taiwan Patent Application "Nano Carbon" Method for preparing tube film", applicant: Hon Hai Precision Industry Co., Ltd. To save space, reference is made only to this, 100100250 Form No. 1010101 Page 13 of 41 1002000415-0 201228649 However, all the technical disclosure of the above application is also considered to be part of the technical disclosure of the present application. [0019] The length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube film of the embodiment of the present invention has a length of 10 cm, a width of 10 cm, and a thickness of 1 μm to 2 mm. The carbon nanotube flocculation membrane comprises intertwined carbon nanotubes having a length greater than 10 microns. The carbon nanotubes are attracted and entangled with each other by van der Waals to form a network structure. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and arranged irregularly, so that the carbon nanotube flocculation membrane is isotropic, and the carbon nanotubes in the carbon nanotube flocculation membrane are isotactic. 5微米。 A large number of micropores, a micropore diameter of 1 nm ~ 0. 5 microns. For the carbon nanotube flocculation membrane and the preparation method thereof, please refer to the patent application "Nano Carbon" of the No. 200844041 published by Fan Shoushan et al. on May 11, 1996 in the Republic of China on November 16, 1997. Method for preparing tube film", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. [0020] Referring to FIG. 7, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length direction of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米微米〜1 0微米微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nm ~ 1 0 0 microns. The non-twisted nano carbon pipeline is a nano carbon tube drawn film 1ηηιηηηΓΛ 丄υυιϋυ E υ si si si υ υ f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f / Xingbei 1002000415-0 201228649 Obtained by organic solvent treatment. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, a plurality of nano carbons parallel to each other in the carbon nanotube film are drawn. The tube is tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, decyl alcohol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated with the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which has not been treated with the organic solvent. 002 [0021] The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 8, the twisted carbon nanotube line includes a plurality of carbon nanotubes arranged in an axial spiral arrangement around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted carbon nanotubes are not limited in length, the diameter is 0. 5 nanometers ~ 100 microns. Further, the twisted carbon nanotubes can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. For the nano carbon pipeline and its preparation method, please refer to the application of Fan Shoushan et al. on November 5, 2002, and the 100100250 announced on November 21, 2008, Form No. 1010101, Page 15 of 41, 1002000415-0 [ 0022] 201228649 I 303239 Taiwan Announcement Patent "A Nano Carbon Pipe Rope and Its Manufacturing Method", Patentee: Hon Hai Precision Industry Co., Ltd., and Taiwan Notice No. 1 31 2337 announced on July 21, 2009 Patent "Nano Carbon Tube and Its Manufacturing Method", patentee: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the present application. Referring to FIG. 9, the heating element 130 may also be directly disposed on the surface of the insulating substrate 102, and both ends of the heating element 130 are fixed to the insulating substrate 102. The first electrode 110 and the second electrode 112 are respectively disposed at two ends of the heating element, and are electrically connected to the heating element 130 through conductive pastes, respectively. [0024] Referring to FIG. 10, when the thermal therapy device 10 is in use, the side of the thermal therapy device 20 provided with the heating element may be applied to the human body, and the voltage passes through the first electrode 110 and the second. Electrodes 112 are applied across the carbon nanotube membrane structure 134 of the heating element 130, and current can be transferred through the conductive network formed by the carbon nanotubes 132 described above. Due to the high heat capacity of the carbon nanotubes 132, the temperature of the carbon nanotube membrane structure 134 is rapidly increased, and the heat is rapidly diffused near the periphery of the carbon nanotubes 132, thereby transferring heat to the heating element 130. Human body. [0025] In the heating element 130 of the present embodiment, the flexible polymer matrix 136 has a thermal expansion coefficient greater than that of the carbon nanotube film structure 134. The carbon nanotube film structure 134 is disposed adjacent to the second surface 1 364 of the flexible polymeric substrate 136, and the second surface 1 364 is adjacent to the insulating substrate 102. Since the carbon nanotube film structure is in the flexible polymer matrix 136, it is asymmetric with respect to the first surface 1 362 and the second surface 1 364. 100100250 Form No. A0101 Page 16 / Total 41 Page 1 ΑΛΟΛΛΛ 4 1 f Λ iuuzuuu4id-u 201228649 is disposed, so that the side of the heating element 130 having the carbon nanotube film structure 134 has a thermal expansion coefficient smaller than that of the side where the carbon nanotube film structure 134 is not disposed. When the heating element 130 is energized, the expansion deformation of the portion between the carbon nanotube film structure 134 and the first surface 1 362 in the heating element 130 will be greater than the carbon nanotube film structure 134 in the heating element 130. A portion between the second surface 1 364. The portion of the heated heating element 130 having a large coefficient of thermal expansion will be convex, so that the first surface 1362 of the heating element can push the human body corresponding to or in contact with the heating element 130 to provide a certain massage effect. When the power is turned off, the heating element 130 will return to its original shape, leaving the physical therapy portion of the human body corresponding to the heating element 130. Therefore, when the heating element 130 is periodically turned off and on, it can achieve periodic bulging and recovery, thereby achieving the function of massaging the human body. Since the carbon nanotube 132 has the characteristics of good electrical conductivity and low heat capacity, the carbon nanotube film structure 134 can emit a large amount of heat in a short time, so that the heating element 130 is driven by a small voltage. , you can reach higher temperatures faster. It can be understood that the opposite ends of the heating element 130 in the above embodiment are fixed to the insulating substrate 102 through the first electrode 110 and the second electrode 112, so that the heating element 130 is heated away from the insulating substrate 102. The direction is raised. To this end, the opposite ends of the heating element 130 can also be secured to the insulating substrate 102 by other means, such as bonding, snapping, screwing, and the like. The first electrode 110 and the second electrode 112 may be disposed on the heating element 130 at intervals and electrically connected to the carbon nanotube film structure 134 in the heating element 130. In addition, the first electrode 110 and the second electrode 112 may also be integrated into the heating element 130 and electrically coupled with the carbon nanotube film structure 134, ie, 100100250, Form No. A0101, Page 17 of 41, 1002000415-0 201228649 [0027] Referring to Figures 11 and 12, a second embodiment of the present invention provides a thermal therapy device 20. The difference between this embodiment and the first embodiment is that the present embodiment includes a plurality of heating units 12A arranged in an array form. The thermal therapy device 2 includes an insulating substrate 102, a plurality of row electrodes 2〇4, a plurality of column electrodes 2〇6, and a plurality of heating units 12A. The plurality of row electrodes 2〇4 are disposed in parallel with each other on a surface of the insulating substrate 1 〇 2 . The plurality of column electrodes 206 are disposed in parallel with each other on the surface of the insulating substrate 1〇2. The plurality of row electrodes 204 and the plurality of column electrodes 2〇6 are disposed to intersect each other, and an insulating dielectric layer 216 is disposed at a intersection of the row electrode 204 and the column electrode 206. The insulating dielectric layer 216 can ensure the row electrode 204 and the column electrode. Electrically insulated between 206 to prevent short circuits. Each two adjacent row electrodes 2〇4 intersect two adjacent column electrodes 206 to form a grid 214. Each grid 214 positions a heating unit 12, i.e., the heating unit 丨2〇 corresponds to the grid 214 one-to-one. A plurality of row electrodes 2 〇 4 or column electrodes 2 〇 6 may be arranged at equal intervals or may be arranged at unequal intervals. Preferably, a plurality of row electrodes 2〇4 or column electrodes 206 are equally spaced apart. The row electrode 2〇4 and the column electrode 206 may be an electrically conductive material or an insulating material coated with a layer of a zero-conducting material, or a flexible conductive rubber. In this embodiment, the plurality of row electrodes 2〇4 and the plurality of column electrodes 206 are preferably planar conductors formed of wires, and the plurality of wires may be bonded to the insulating substrate by a polymer binder. 2 the surface. The inter-row moment between the row electrodes 2 〇 4 and the column spacing between the column electrodes 206 can be set according to actual needs. In the present embodiment, the row spacing of the plurality of row electrodes 204 is 〇. 5 cm to 3 cm. The column pitch of the plurality of column electrodes 206 is 厘米5 cm to 3 cm. 5厘米。 The width of the row of the electrode 204 and the column electrode 206 is 300 micrometers to 5 millimeters, and the thickness is 〇·5 mm~0. 5 cm. In this embodiment, the row electrode 204 and the column surface IB, /^41, 10〇2〇〇〇415_〇201228649 [0028] the parent fork angle of the electrode 206 is 10 degrees to 90 degrees, preferably g width. The plurality of heating units 120 are respectively disposed in the plurality of grids 214 in a one-to-one correspondence. It will be understood that the plurality of heating units 12 are arranged in an array to form an array of heating points. Each heating unit 丨2〇 corresponds to a separate heating point. [0029] In the present embodiment, the first electrode 110 may be an extension of the electrode 2 〇 4 'the second electrode 112 may be an extension of the series of electrodes 206. The first electrode 110 and the row electrode 204 may be integrally formed, and the second electrode η and the column electrode 206 may also be integrally formed. In this embodiment, the first electrode no and the second electrode 112 are both planar conductors whose size is determined by the size of the grid 214. The first electrode 110 is directly electrically connected to the row electrode 204, and the second electrode 112 is directly electrically connected to the column electrode 206. 5厘米。 The first electrode no and the second electrode 112 having a length of 20 μm to 1.5 cm, a width of 30 μm to 1 cm, a thickness of 〇 · 4 mm ~ 0. 5 cm. 5厘米。 The second electrode 112 and the first electrode 110 having a length of 0.5 cm to 1 cm, a width ο of 0. 1 cm ~ 0 · 5 cm, the thickness of 5 millimeters ~ 0. 5 cm. In the present embodiment t, the material of the first electrode 110 and the second drain 1 is a wire, which is the same as the row electrode 204 and the column electrode 206. [0030] Since the heating element 130 in this embodiment is electrically controlled by a plurality of row electrodes 2〇4 and a plurality of column electrodes 206, each heating element can be controlled by the plurality of row electrodes 204 and column electrodes 206 described above. 130 heating, as well as massage, so that selective treatment can be achieved. Referring to FIG. 13, the heating unit 120 may further include a plurality of fixing elements 224 disposed on the first electrode 110 and the second electrode 112. Per 100100250 Form No. A0101 Page 19 of 41 1002000415-0 [0031] 201228649 A fixed component 224 corresponds to a first electrode 110 or a second electrode 112. The fixing member 224 has the same shape and material as the shape and material of the first electrode 110 and the second electrode 112. Specifically, one end of the heating element 130 is sandwiched between one fixing element 224 and the first electrode 110, and the other end of the heating element 130 is sandwiched between the other fixing element 224 and the second electrode 112. The securing member 224 ensures that the heating element 130 is more securely secured. The fixing manner between the fixing member 224 and the first electrode 110 and the second electrode 112 is not limited, and may be implemented by a conductive adhesive or by a screw or a snap. [0032] It can be understood that, further, the thermal therapy device 20 may further include an insulating protective layer (not shown) to cover the row electrode 204, the column electrode 206, the first electrode 110 and the second electrode 112, and prevent When the thermal therapy device 20 directly contacts human skin, it generates electric leakage to affect the use effect. The material of the insulating protective layer is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer is not limited and can be selected according to actual conditions. 5毫米〜2毫米。 The thickness of the material is 0. 5mm ~ 2 mm. The insulating protective layer can be formed on the heating unit 120 by a method of coating or deposition. [0033] It can be understood that the thermal therapy device 20 can further include a driving circuit and a controller for selectively applying current to the row electrode 204 and the column electrode 206 to make the row electrode 204 and The heating unit 120 electrically connected to the column electrode 206 operates to achieve local heating and controllable heating of the thermal therapy device 20. Referring to Figures 14 and 15, a third embodiment of the present invention provides a thermal therapy device 30. The difference between this embodiment and the second embodiment is that the heating element 130 and

1 ΛΛ1 ΛΛΛΓ·Λ iUUiUU^DU 表單編號A0I01 Λ* Π Λ -ST / » l t Λ ·3Γ 第ζυ貝/开41只 1 ΛΛΓ»ΑΑΑί1 r η ιυυζυυυ4ι〇-υ 201228649 絕緣基底102之間沒有間隙,加熱元件130直接設置在絕 緣基底1 0 2的表面並與絕緣基底1 〇 2接觸,從而加熱元件 130使用時不易被破壞。由於加熱元件130與絕緣基底 102直接接觸’因此為了降低熱量損失,所述絕緣基底 102材料優選導熱性較差材料。 [0035] Ο ο [0036] 該熱理療器在使用時’利用其熱輻射進行加熱,其具有 以下優點:第一’奈米碳管膜結構具有較高的電熱轉換 效率以及比較高的熱輻射效率,所以該熱理療器的電熱 轉換效率及熱輻射效率較高。第二,由於奈米碳管膜結 構的熱容較小’所以該加熱元件具有較快的熱響應速度 ,可實先前效地局部控制加熱。第三,由於加熱元件奈 米碳管膜結構以及柔性高分子基體構成,並且所述奈米 石厌官膜結構靠近柔性高分子基體的一値表面設置於該柔 性南分子基體之中,由於奈米碳管膜結構於柔性高分子 基體的熱膨脹係數不同,從而使得該加熱元件在加熱的 同時還可以具有相當的形變,進—步還可以實現按摩的 功月帛四’奈米碳管的密度較小,使該熱理療器的質 量較包,便於攜帶,可廣泛應用於各種領域。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利中請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此聞本案之申請專利範i舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例的熱理療器的俯視圖。 100100250 表單編號A0101 第21頁/共41頁 1002000415-0 [0037] 201228649 [0038] [0039] [0040] [0041] [0042] [0043] [0044] [0045] [0046] [0047] [0048] [0049] [0050] 圖2為圖1中的熱理療器沿u_n線的剖面圖。 圖3為本&明第—實施例中熱理療器的加熱元件的俯視圖 〇 圖4為圖1中的熱理療器沿IV-ΐν線的剖面圖。 圖5為本發明第_實施例熱理療器的加熱元件使用的奈米 碳笞拉膜結構的掃描電鏡照片。 圖6為圖5中的奈米碳管拉膜結構中的奈米碳管片段的結 構示意圖。 圖7為本發明第_實施例熱理_的加熱元件使用的非扭 轉的奈米碳管線的掃描電鏡照片。 圖8為本發明第—實施例熱理療器的加熱元件使用的扭轉 的奈米碳管線的掃描電鏡照片。 圖9為本發明第—實施例熱理療器中加熱it件直接設置於 絕緣基底表面的剖面圖。 圖1 0為本發明第一實施例的熱理療器在通電時的結構示 意圖。 圖11為本發明第二實施例的熱理療器的俯視圖 圖12為圖11中的熱理療器沿XI m丨線的剖面圖。 圖1 3為本發明第二實施例設置有固定元件的熱理療器的 剖面圖。 圖14為本發明第三實施例的熱理療器的俯視圖。 100100250 表單編號A0101 第22頁/共41頁 1002000415-0 201228649 [0051] 圖15為圖14中的熱理療器沿XV-XV線的剖面圖 【主要元件符號說明】 [0052] 熱理療器:10,20,30 [0053] 絕緣基底:102 [0054] 第一電極:110 [0055] 第二電極:112 [0056] 加熱單元:120 Ο [0057] 加熱元件:130 [0058] 奈米碳管:132 [0059] 奈米碳管膜結構:134 [0060] 柔性高分子基體:136 [0061] 奈米碳管片段:143 [0062] 導電膠:160 〇 [0063] 行電極:204 [0064] 列電極:206 [0065] 網格:214 [0066] 絕緣介質層:216 [0067] 固定元件:224 [0068] 第一表面:1362 [0069] 第二表面:1364 100100250 表單編號A0101 第23頁/共41頁 1002000415-01 ΛΛ1 ΛΛΛΓ·Λ iUUiUU^DU Form number A0I01 Λ* Π Λ -ST / » lt Λ ·3Γ Dim shell / open 41 1 ΛΛΓ»ΑΑΑί1 r η ιυυζυυυ4ι〇-υ 201228649 There is no gap between the insulating substrates 102, heating The element 130 is directly disposed on the surface of the insulating substrate 102 and is in contact with the insulating substrate 1 , 2, so that the heating element 130 is not easily broken when it is used. Since the heating element 130 is in direct contact with the insulating substrate 102, the insulating substrate 102 material is preferably a less thermally conductive material in order to reduce heat loss. [0035] The thermal therapy device is heated by its heat radiation in use, which has the following advantages: the first 'nanocarbon tube membrane structure has high electrothermal conversion efficiency and relatively high heat radiation. Efficiency, so the electrothermal conversion efficiency and heat radiation efficiency of the thermal therapy device are high. Second, since the heat capacity of the carbon nanotube film structure is small, the heating element has a relatively fast thermal response speed, and the heating can be locally controlled in advance. Thirdly, due to the structure of the heating element carbon nanotube film and the flexible polymer matrix, and the nano-stone surface structure of the nano-structure of the nano-fiber is disposed in the flexible southern molecular matrix, The carbon nanotube film structure has different thermal expansion coefficients in the flexible polymer matrix, so that the heating element can also have considerable deformation while heating, and the density of the power of the massage can be realized. Smaller, the quality of the thermal therapy device is more packaged, easy to carry, and can be widely used in various fields. In summary, the present invention has indeed met the requirements of the invention patent, and the patent is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention should be covered by the patent application. It is within the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a thermal therapy device according to a first embodiment of the present invention. 100100250 Form No. A0101 Page 21 / Total 41 Page 1002000415-0 [0037] [0038] [0040] [0044] [0048] [0048] [0048] [0048] [0050] FIG. 2 is a cross-sectional view of the thermal therapy device of FIG. 1 taken along line u_n. Figure 3 is a plan view of the heating element of the thermal therapy device in the & first embodiment. Figure 4 is a cross-sectional view of the thermal therapy device of Figure 1 taken along the line IV-ΐν. Fig. 5 is a scanning electron micrograph of a structure of a carbon carbon film used for a heating element of a thermal therapy device according to a first embodiment of the present invention. Fig. 6 is a view showing the structure of a carbon nanotube segment in the carbon nanotube drawn film structure of Fig. 5. Fig. 7 is a scanning electron micrograph of a non-twisted nanocarbon line used in the heating element of the heat treatment of the first embodiment of the present invention. Figure 8 is a scanning electron micrograph of a twisted nanocarbon line used in the heating element of the thermal therapy device of the first embodiment of the present invention. Figure 9 is a cross-sectional view showing the heating member of the thermal therapy device of the first embodiment of the present invention directly disposed on the surface of the insulating substrate. Fig. 10 is a schematic view showing the structure of a thermal therapy device according to a first embodiment of the present invention when it is energized. Figure 11 is a plan view of a thermal therapy device according to a second embodiment of the present invention. Figure 12 is a cross-sectional view of the thermal therapy device of Figure 11 taken along line XI m. Fig. 13 is a cross-sectional view showing a thermal therapy device provided with a fixing member according to a second embodiment of the present invention. Figure 14 is a plan view of a thermal therapy device in accordance with a third embodiment of the present invention. 100100250 Form No. A0101 Page 22 / Total 41 Page 1002000415-0 201228649 [0051] Figure 15 is a cross-sectional view of the thermal therapy device of Figure 14 taken along line XV-XV [Key element symbol description] [0052] Thermal therapy device: 10 20,30 [0053] Insulating substrate: 102 [0054] First electrode: 110 [0055] Second electrode: 112 [0056] Heating unit: 120 Ο [0057] Heating element: 130 [0058] Carbon nanotube: [0059] Nano carbon tube membrane structure: 134 [0060] Flexible polymer matrix: 136 [0061] Carbon nanotube segment: 143 [0062] Conductive adhesive: 160 〇 [0063] Row electrode: 204 [0064] Electrode: 206 [0065] Grid: 214 [0066] Insulation Medium Layer: 216 [0067] Fixing Element: 224 [0068] First Surface: 1362 [0069] Second Surface: 1364 100100250 Form No. A0101 Page 23 / Total 41 pages 1002000415-0

Claims (1)

201228649 七、申請專利範圍: 1 . 一種熱理療器,包括: 一絕緣基底具有一表面; 複數個行電極與複數個列電極設置於絕緣基底的表面,該 複數個行電極與複數個列電極相互交叉設置,每兩個相鄰 的行電極以及與該兩個行電極交叉的兩個相鄰的列電極形 成一個網格,且行電極與列電極之間電絕緣; 以及複數個加熱單元,每個加熱單元對應一個網格設置, 每個加熱單元包括一第一電極、一第二電極和一加熱元件 ,該第一電極與第二電極間隔設置,該第一電極與第二電 極分別與所述行電極和列電極電連接,所述加熱元件與所 述第一電極和第二電極電連接; 所述加熱元件包括一奈米碳管膜結構以及一柔性高分子基 體,所述柔性高分子基體具有一靠近所述絕緣基底的表面 ,所述奈米碳管膜結構設置於所述柔性高分子基體中且靠 近該高分子基體靠近所述絕緣基底的表面。 2 .如申請專利範圍第1項所述的熱理療器,其中,所述第一 電極與行電極一體成型,第二電極與列電極一體成型。 3 .如申請專利範圍第1項所述的熱理療器,其中,所述加熱 元件的相對兩端通過所述第一電極和第二電極固定於所述 絕緣基底。 4 .如申請專利範圍第3項所述的熱理療器,其中,所述加熱 元件通過所述第一電極以及第二電極與所述絕緣基底間隔 設置。 5 .如申請專利範圍第1項所述的熱理療器,其中,所述柔性 100100250 表單編號A0101 哲 Ο λ -S' / ±1 A 1 -S' 弟ώΗ:貝/六貝 1 ΛΛΟΛΛΛ Λ 1 Γ Λ ιυυ^υυυ^ΐϋ-υ 201228649 高分子基體具有相對設置的第一表面與第二表面,所述第 —表面遠離所述絕緣基底設置,所述奈米碳管膜結構與第 —表面的距離大於與第二表面的距離。 .如申請專利範圍第5項所述的熱理療器,其中,所述奈米 碳管膜結構與第二表面的距離大於等於1〇微米且小於等於 1毫米。 •如申請專利範圍第1項所述的熱理療器,其中,所述奈米 兔管膜結構的熱膨脹係數小於所述柔性高分子基體的熱膨 服係數。 8 .如申睛專利範圍第1項所述的熱理療器,其中,所述奈米 碳管膜結構包括至少一奈米碳管膜、至少一奈米碳管線狀 結構或兩者之組合。 9 .如申請專利範圍第8項所述的熱理療器,其中,所述奈米 及s膜結構包括至少兩個層疊設置的奈米碳管膜,相鄰兩 個奈米碳管膜之間通過凡得瓦力緊密連接。 10 .如申請專利範圍第8項所述的熱理療器,其中,所述奈米 呶管膜包括複數個奈米碳管,該複數個奈米碳管首尾相連 且基本沿同一方向擇優取向排列。 .如申清專利範圍第8項所述的熱理療器,其中,所述奈米 碳管膜結構中的複數個奈米碳管基本沿第一電極向第二電 極方向延伸。 100100250 12 . 13 . 14 . 如申明專利範圍第8項所述的熱理療器,其中,所述奈米 敌官膜包括複數個奈米碳管沿不同方向擇優取向排列。 如申清專利I&®第8項所述的熱理療II,其巾,所述奈米 碳管臈包括複數個奈米碳管相互纏繞。 如申μ專利範圍第8項所述的熱理療器,其巾,所述奈米 ^ 8S CLfa. i η 4 Μ - 表單編號Α0101 第25頁/共41頁 1002000415-0 201228649 碳管線狀結構包括至少一非扭轉的奈米碳管線,所述非扭 轉的奈米碳管線包括複數個奈米碳管軸向平行於該非扭轉 的奈米碳管線長度方向排列。 15 .如申請專利範圍第8項所述的熱理療器,其中,所述奈米 碳管線狀結構包括至少一扭轉的奈米碳管線,所述扭轉的 奈米碳管線包括複數個奈米碳管沿該扭轉的奈米碳管線長 度方向呈螺旋狀排列。 16 .如申請專利範圍第1項所述的熱理療器,其中,所述熱理 療器進一步包括複數個固定元件,該複數個固定元件分別 對應設置於第一電極和第二電極,所述加熱元件的相對兩 端分別設置於第一電極、第二電極與固定元件之間。 17 .如申請專利範圍第1項所述的熱理療器,其中,所述絕緣 基底為柔性南分子材料構成。 18 .如申請專利範圍第1項所述的熱理療器,其中,所述奈米 碳管膜結構與所述柔性高分子基體的厚度比為1 : 2〜1 : 300 ° 19 . 一種熱理療器,包括:一絕緣基底以及設置於所述絕緣基 底上的至少一加熱單元,該加熱單元包括一第一電極、一 第二電極以及一加熱元件,所述第一電極與第二電極間隔 設置並與加熱元件電連接,該加熱元件的相對兩端分別固 定於所述絕緣基底,所述加熱元件包括一柔性高分子基體 以及一奈米碳管膜結構包埋於所述柔性高分子基體中,所 述柔性高分子基體具有一靠近所述絕緣基底的表面,所述 奈米碳管膜結構靠近所述柔性高分子基體的靠近絕緣基底 的表面設置。 1ΛΛ1ΛΛΟΓΛ ιυυχυυζ-ϋυ 表單編號Α0101 第26頁/共41頁 1002000415-0201228649 VII. Patent application scope: 1. A thermal therapy device comprising: an insulating substrate having a surface; a plurality of row electrodes and a plurality of column electrodes disposed on a surface of the insulating substrate, the plurality of row electrodes and the plurality of column electrodes mutually Cross-arranged, each two adjacent row electrodes and two adjacent column electrodes crossing the two row electrodes form a grid, and the row electrode and the column electrode are electrically insulated; and a plurality of heating units, each The heating unit corresponds to a grid arrangement, each heating unit includes a first electrode, a second electrode and a heating element, the first electrode is spaced apart from the second electrode, and the first electrode and the second electrode are respectively associated with the The row electrode and the column electrode are electrically connected, the heating element is electrically connected to the first electrode and the second electrode; the heating element comprises a carbon nanotube film structure and a flexible polymer matrix, the flexible polymer matrix Having a surface adjacent to the insulating substrate, the carbon nanotube film structure is disposed in the flexible polymer matrix and adjacent to the polymer matrix Near the surface of the insulating substrate. The thermal therapy device according to claim 1, wherein the first electrode is integrally formed with the row electrode, and the second electrode is integrally formed with the column electrode. 3. The thermal therapy device of claim 1, wherein the opposite ends of the heating element are fixed to the insulating substrate by the first electrode and the second electrode. The thermal therapy device of claim 3, wherein the heating element is spaced apart from the insulating substrate by the first electrode and the second electrode. 5. The thermal therapy device according to claim 1, wherein the flexible 100100250 form number A0101 哲Ο λ -S' / ±1 A 1 -S' ώΗ 贝: 贝 / 六贝1 ΛΛΟΛΛΛ Λ 1高分子 υυ ιυυ^υυυ^ΐϋ-υ 201228649 The polymer matrix has a first surface and a second surface disposed opposite to each other, the first surface being disposed away from the insulating substrate, the carbon nanotube film structure and the first surface The distance is greater than the distance from the second surface. The thermal therapy device according to claim 5, wherein the carbon nanotube film structure has a distance from the second surface of 1 μm or more and 1 mm or less. The thermal therapy device of claim 1, wherein the nanotube membrane structure has a coefficient of thermal expansion that is less than a thermal expansion coefficient of the flexible polymer matrix. 8. The thermal therapy device of claim 1, wherein the carbon nanotube membrane structure comprises at least one carbon nanotube membrane, at least one nanocarbon tubular structure, or a combination of the two. 9. The thermal therapy device of claim 8, wherein the nano- and s-membrane structure comprises at least two laminated carbon nanotube membranes between adjacent two carbon nanotube membranes Tightly connected by van der Waals. 10. The thermal therapy device of claim 8, wherein the nanotube membrane comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being connected end to end and arranged in a preferred orientation in substantially the same direction. . The thermal therapy device of claim 8, wherein the plurality of carbon nanotubes in the carbon nanotube membrane structure extend substantially along the first electrode toward the second electrode. The heat physiotherapy device of claim 8, wherein the nano enemy film comprises a plurality of carbon nanotubes arranged in a preferred orientation in different directions. For example, in the thermal therapy II described in claim No. 8, the towel, the carbon nanotubes comprise a plurality of carbon nanotubes intertwined with each other. The thermal therapy device according to Item 8 of the patent application scope, the towel, the nanometer 8S CLfa. i η 4 Μ - Form No. 1010101 Page 25 / Total 41 pages 1002000415-0 201228649 Carbon pipeline structure includes At least one non-twisted nanocarbon line, the non-twisted nanocarbon line comprising a plurality of carbon nanotubes aligned axially parallel to the length of the non-twisted nanocarbon line. The thermal therapy device of claim 8, wherein the nanocarbon line-like structure comprises at least one twisted nanocarbon line, the twisted nanocarbon line comprising a plurality of nanocarbons The tubes are helically arranged along the length of the twisted nanocarbon line. The thermal therapy device of claim 1, wherein the thermal therapy device further comprises a plurality of fixing elements, wherein the plurality of fixing elements are respectively disposed on the first electrode and the second electrode, the heating The opposite ends of the element are respectively disposed between the first electrode, the second electrode and the fixing element. The thermal therapy device of claim 1, wherein the insulating substrate is a flexible southern molecular material. The thermal therapy device according to claim 1, wherein the thickness ratio of the carbon nanotube film structure to the flexible polymer matrix is 1: 2 to 1: 300 ° 19. A thermal therapy The device includes an insulating substrate and at least one heating unit disposed on the insulating substrate, the heating unit includes a first electrode, a second electrode, and a heating element, and the first electrode is spaced apart from the second electrode And electrically connected to the heating element, the opposite ends of the heating element are respectively fixed to the insulating substrate, the heating element comprises a flexible polymer matrix and a carbon nanotube film structure embedded in the flexible polymer matrix The flexible polymer matrix has a surface adjacent to the insulating substrate, and the carbon nanotube film structure is disposed adjacent to a surface of the flexible polymer substrate adjacent to the insulating substrate. 1ΛΛ1ΛΛΟΓΛ ιυυχυυζ-ϋυ Form No.Α0101 Page 26 of 41 1002000415-0
TW100100250A 2011-01-05 2011-01-05 Heat device TWI462734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100250A TWI462734B (en) 2011-01-05 2011-01-05 Heat device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100250A TWI462734B (en) 2011-01-05 2011-01-05 Heat device

Publications (2)

Publication Number Publication Date
TW201228649A true TW201228649A (en) 2012-07-16
TWI462734B TWI462734B (en) 2014-12-01

Family

ID=46933735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100250A TWI462734B (en) 2011-01-05 2011-01-05 Heat device

Country Status (1)

Country Link
TW (1) TWI462734B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504523B (en) * 2012-11-22 2015-10-21 Hon Hai Prec Ind Co Ltd Car seat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
CN101848564B (en) * 2009-03-27 2012-06-20 清华大学 Heating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504523B (en) * 2012-11-22 2015-10-21 Hon Hai Prec Ind Co Ltd Car seat

Also Published As

Publication number Publication date
TWI462734B (en) 2014-12-01

Similar Documents

Publication Publication Date Title
CN102038569B (en) Thermal physiotherapy device
US8841588B2 (en) Heater
US20100108664A1 (en) Carbon nanotube heater
US20100180429A1 (en) Carbon nanotube heater
TWI420954B (en) Heater and method for making the same
CN102044627A (en) Electrostrictive composite material and electrostrictive element
CN102012061B (en) Electric warmer
CN102147148A (en) Fluid heater and using method thereof
TWI399119B (en) Linear heater
CN101616515B (en) Linear heat source
CN101610613B (en) Line heat source
EP2136603A2 (en) Heater and method for making the same
CN101616513B (en) Linear heat source
TWI441366B (en) Electrostrictive material and actuator using the same.
TW201228649A (en) Heat device
CN101616516B (en) Line heat source
CN101616514B (en) Linear heat source
TWI394303B (en) Electrostrictive material and actuator using the same
TWI381989B (en) Heating device
TWI408990B (en) Linear heater
TWI380728B (en) Linear heater
TWI408989B (en) Linear heater
TWI448417B (en) Linear heater
TWI462628B (en) Planar heating source
TWI380733B (en) Planar heating source