TWI420954B - Heater and method for making the same - Google Patents

Heater and method for making the same Download PDF

Info

Publication number
TWI420954B
TWI420954B TW99101016A TW99101016A TWI420954B TW I420954 B TWI420954 B TW I420954B TW 99101016 A TW99101016 A TW 99101016A TW 99101016 A TW99101016 A TW 99101016A TW I420954 B TWI420954 B TW I420954B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
substrate
heating device
carbon
bonding layer
Prior art date
Application number
TW99101016A
Other languages
Chinese (zh)
Other versions
TW201125419A (en
Inventor
Jia-Ping Wang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99101016A priority Critical patent/TWI420954B/en
Publication of TW201125419A publication Critical patent/TW201125419A/en
Application granted granted Critical
Publication of TWI420954B publication Critical patent/TWI420954B/en

Links

Description

加熱器件及其製備方法 Heating device and preparation method thereof

本發明涉及一種加熱器件及其製備方法。 The invention relates to a heating device and a preparation method thereof.

現有的加熱器件一般包括一加熱元件和至少兩個電極,該至少兩電極設置於該加熱元件的表面,並與該加熱元件電連接。當通過電極向加熱元件通入電壓或電流時,由於加熱元件具有較大電阻,通入加熱元件的電能轉換成熱能,並從加熱元件釋放出來,從而實現加熱。現有技術通常採用金屬絲或碳纖維編織形成的加熱元件進行電熱轉換。然而,金屬絲的強度不高易於折斷,特別係彎曲或繞折成一定角度時更易於折斷,因此應用受到限制。另外,以金屬製成的加熱元件所產生的熱量係以普通波長向外輻射的,其電熱轉換效率不高,不利於節省能源。 Existing heating devices generally include a heating element and at least two electrodes disposed on a surface of the heating element and electrically coupled to the heating element. When a voltage or current is applied to the heating element through the electrode, since the heating element has a large electrical resistance, electrical energy that is passed into the heating element is converted into thermal energy and released from the heating element, thereby achieving heating. The prior art typically employs a heating element formed by braiding a wire or carbon fiber for electrothermal conversion. However, the strength of the wire is not easily broken, and it is more likely to be broken when bent or folded at an angle, so the application is limited. In addition, the heat generated by the heating element made of metal is radiated outward at a common wavelength, and the electrothermal conversion efficiency is not high, which is disadvantageous for saving energy.

採用碳纖維的加熱元件通常在碳纖維外部塗覆一層防水的絕緣層用作電熱轉換的元件以代替金屬電熱絲。由於與金屬相比,碳纖維具有較好的韌性,這在一定程度上解決了電熱絲強度不高易折斷的缺點。然而,由於碳纖維仍係以普通波長向外散熱,故並未解決金屬絲電熱轉換率低的問題。為解決上述問題,採用碳纖維的加熱層一般包括多根碳纖維熱源線鋪設而成。該碳纖維熱源線為一外表包裹有化纖或者棉線的導電芯線。該化纖或者棉線的外面浸塗一層防水阻燃絕緣材料。所述導電芯線由多根碳纖維與多 根表面黏塗有遠紅外塗料的棉線纏繞而成。導電芯線中加入黏塗有遠紅外塗料的棉線,一來可增強芯線的強度,二來可使通電後碳纖維發出的熱量能以紅外波長向外輻射,從而在一定程度上解決金屬絲電熱轉換率低的問題。 A heating element using carbon fiber is usually coated with a waterproof insulating layer on the outside of the carbon fiber as an electrothermal conversion element instead of the metal heating wire. Because carbon fiber has better toughness than metal, this solves the disadvantage that the heating wire is not easy to be broken. However, since the carbon fiber is still radiated outward at a normal wavelength, the problem of low electrothermal conversion rate of the wire is not solved. In order to solve the above problems, the heating layer using carbon fiber generally comprises a plurality of carbon fiber heat source lines. The carbon fiber heat source line is a conductive core wire wrapped with chemical fiber or cotton thread. The outer surface of the chemical fiber or cotton thread is dip coated with a waterproof and flame-retardant insulating material. The conductive core wire is composed of a plurality of carbon fibers and The surface of the root is coated with a cotton thread coated with a far-infrared coating. The cotton wire coated with the far-infrared coating is added to the conductive core wire to enhance the strength of the core wire. Secondly, the heat generated by the carbon fiber can be radiated outward at the infrared wavelength, thereby solving the electrothermal conversion rate of the wire to a certain extent. Low problem.

然而,碳纖維強度不夠大,容易破裂,從而導致採用該碳纖維的加熱元件的耐用性不夠好。另外,加入黏塗有遠紅外塗料的棉線提高碳纖維的電熱轉換效率,不利於節能環保。 However, the strength of the carbon fiber is not large enough to be easily broken, resulting in insufficient durability of the heating element using the carbon fiber. In addition, the addition of cotton coated with far-infrared coating improves the electrothermal conversion efficiency of carbon fiber, which is not conducive to energy saving and environmental protection.

有鑒於此,提供一種加熱器件及其製備方法實為必要,該加熱器件的耐用性好,電熱轉換效率高。 In view of the above, it is necessary to provide a heating device and a method for preparing the same, which have good durability and high electrothermal conversion efficiency.

一種加熱器件,其包括一第一電極、一第二電極以及一加熱元件,該第一電極和第二電極間隔設置;其中,所述加熱元件包括一第一基體、一第二基體、一第一黏結層、一第二黏結層及一奈米碳管結構,該奈米碳管結構設置在第一基體及第二基體之間並通過所述第一黏結層及第二黏結層分別與所述第一基體及第二基體結合,且該奈米碳管結構與所述第一電極及第二電極電連接。 A heating device comprising a first electrode, a second electrode and a heating element, wherein the first electrode and the second electrode are spaced apart; wherein the heating element comprises a first substrate, a second substrate, a first a bonding layer, a second bonding layer and a carbon nanotube structure, wherein the carbon nanotube structure is disposed between the first substrate and the second substrate and passes through the first bonding layer and the second bonding layer respectively The first substrate and the second substrate are combined, and the carbon nanotube structure is electrically connected to the first electrode and the second electrode.

一種加熱器件的製備方法,其包括以下步驟:提供一第一基體,形成一第一黏結層預製體於該第一基體的一表面;提供一奈米碳管結構,將該奈米碳管結構鋪設在所述第一基體表面覆蓋所述第一黏結層預製體;間隔設置一第一電極和一第二電極於所述奈米碳管結構表面或兩端;提供一第二基體及一第二黏結層預製體,將該第二黏結層預製體設置於所述第二基體與奈米碳管結構之間,進而形成一五層結構;以及熱壓上述五層結構。 A method for preparing a heating device, comprising the steps of: providing a first substrate to form a first bonding layer preform on a surface of the first substrate; providing a carbon nanotube structure, the carbon nanotube structure Laying on the first substrate surface to cover the first bonding layer preform; spacing a first electrode and a second electrode on the surface or both ends of the carbon nanotube structure; providing a second substrate and a first a second adhesive layer preform, the second adhesive layer preform is disposed between the second substrate and the carbon nanotube structure to form a five-layer structure; and the five-layer structure is hot pressed.

相較於先前技術,所述加熱器件及其製備方法具有以下優點:第一,由於奈米碳管結構具有較好的強度及韌性,由奈米碳管結構組成的加熱元件的強度較大,韌性較好,不易破裂,進而有利於提高所述加熱器件的耐用性。第二,由於奈米碳管具有良好的導電性能以及熱穩定性,且作為一理想的黑體結構,具有比較高的熱輻射效率,故由奈米碳管組成的奈米碳管結構無需附加遠紅外塗料,具有電熱轉換效率高,升溫迅速、熱滯後小、熱交換速度快的特點。 Compared with the prior art, the heating device and the preparation method thereof have the following advantages: First, since the carbon nanotube structure has better strength and toughness, the heating element composed of the carbon nanotube structure has higher strength and toughness. Preferably, it is not easily broken, and thus is advantageous for improving the durability of the heating device. Second, because the carbon nanotubes have good electrical conductivity and thermal stability, and as an ideal black body structure, have a relatively high heat radiation efficiency, so the carbon nanotube structure composed of carbon nanotubes does not need to add far infrared The coating has the characteristics of high electrothermal conversion efficiency, rapid temperature rise, small thermal hysteresis and fast heat exchange rate.

10‧‧‧加熱元件 10‧‧‧ heating elements

100‧‧‧加熱器件 100‧‧‧ heating device

102‧‧‧第一基體 102‧‧‧First substrate

104‧‧‧第一黏結層 104‧‧‧First bonding layer

110‧‧‧奈米碳管結構 110‧‧‧Nano carbon nanotube structure

122‧‧‧第二基體 122‧‧‧Second substrate

124‧‧‧第二黏結層 124‧‧‧Second bonding layer

130‧‧‧第一電極 130‧‧‧First electrode

140‧‧‧第二電極 140‧‧‧second electrode

圖1係本發明實施例加熱器件的結構示意圖。 1 is a schematic structural view of a heating device according to an embodiment of the present invention.

圖2係本發明實施例加熱器件中的奈米碳管膜的掃描電鏡照片。 2 is a scanning electron micrograph of a carbon nanotube film in a heating device of an embodiment of the present invention.

圖3係本發明實施例加熱器件的製備方法流程圖。 3 is a flow chart of a method for preparing a heating device according to an embodiment of the present invention.

以下將結合附圖詳細說明本發明提供的奈米碳管複合材料。 Hereinafter, the carbon nanotube composite material provided by the present invention will be described in detail with reference to the accompanying drawings.

請參閱圖1,本發明提供一種加熱器件100。該加熱器件100包括一第一電極130、一第二電極140以及一加熱元件10,該加熱元件10包括一第一基體102、一第一黏結層104、一第二基體122、一第二黏結層124及一奈米碳管結構110。該奈米碳管結構110分別通過所述第一黏結層104和第二黏結層124與所述第一基體102及第二基體122結合。所述第一電極130和第二電極140間隔設置並分別與所述奈米碳管結構110電連接。 Referring to FIG. 1, the present invention provides a heating device 100. The heating device 100 includes a first electrode 130, a second electrode 140, and a heating element 10. The heating element 10 includes a first substrate 102, a first bonding layer 104, a second substrate 122, and a second bonding layer. Layer 124 and a carbon nanotube structure 110. The carbon nanotube structure 110 is coupled to the first substrate 102 and the second substrate 122 through the first bonding layer 104 and the second bonding layer 124, respectively. The first electrode 130 and the second electrode 140 are spaced apart and electrically connected to the carbon nanotube structure 110, respectively.

所述第一基體102及第二基體122的材料可相同或不同,且均可由柔性材料或硬性材料組成。所述第一基體102及第二基體122可用 於保護所述奈米碳管結構110。優選地,所述第一基體102的材料為絕熱材料,如石英、金剛石、玻璃或陶瓷等,以利於整個加熱器件100的保溫,所述第二基體122的材料為導熱材料,如金屬等,以利於將奈米碳管結構產生的熱量傳導至被加熱物體。所述第一基體102及第二基體122的材料包括聚合物、織物、金屬、石英、金剛石、玻璃或陶瓷等。具體地,所述聚合物可包括聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)等聚酯材料,以及聚醚碸(PES)、纖維素酯、苯並環丁烯(BCB)、聚氯乙烯(PVC)及丙烯酸樹脂等中的一種或多種。所述織物可包括棉、麻、纖維、尼龍、氨綸、聚酯、聚丙烯晴、羊毛和蠶絲等的一種或者幾種的混合物。可以理解,當所述第一基體102及第二基體122中的至少一個為金屬時,須確保所述奈米碳管結構110與所述第一基體102及第二基體122電絕緣。所述第一基體102及第二基體122的厚度可為1毫米~10釐米,具體可根據實際需求而定。所述加熱器件100的熱響應速度與所述第一基體102及第二基體122的厚度有關,所述第一基體102及第二基體122的厚度越大,所述加熱器件100的熱響應速度越慢;反之,所述第一基體102及第二基體122的厚度越小,則所述加熱器件100的熱響應速度越快。所述第一基體102及第二基體122可為一平面結構或一曲面結構,具體可根據實際需求製備。本實施例中,所述第一基體102及第二基體122為一平面結構,所述第一基體102及第二基體122的材料不同,該第一基體102的材料為聚對苯二甲酸乙二醇酯,第二基體122的材料為金屬。 The materials of the first substrate 102 and the second substrate 122 may be the same or different, and may be composed of a flexible material or a hard material. The first substrate 102 and the second substrate 122 are available The carbon nanotube structure 110 is protected. Preferably, the material of the first substrate 102 is a heat insulating material such as quartz, diamond, glass or ceramic to facilitate the heat preservation of the entire heating device 100, and the material of the second substrate 122 is a heat conductive material such as metal. In order to facilitate the conduction of heat generated by the carbon nanotube structure to the object to be heated. The materials of the first substrate 102 and the second substrate 122 include polymers, fabrics, metals, quartz, diamond, glass or ceramics, and the like. Specifically, the polymer may include polyester materials such as polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyether oxime (PES). One or more of cellulose ester, benzocyclobutene (BCB), polyvinyl chloride (PVC), and acrylic resin. The fabric may comprise one or a mixture of cotton, hemp, fiber, nylon, spandex, polyester, polypropylene, wool, and silk. It can be understood that when at least one of the first substrate 102 and the second substrate 122 is a metal, it is necessary to ensure that the carbon nanotube structure 110 is electrically insulated from the first substrate 102 and the second substrate 122. The first substrate 102 and the second substrate 122 may have a thickness of 1 mm to 10 cm, which may be determined according to actual needs. The thermal response speed of the heating device 100 is related to the thicknesses of the first substrate 102 and the second substrate 122. The greater the thickness of the first substrate 102 and the second substrate 122, the thermal response speed of the heating device 100. The slower; conversely, the smaller the thickness of the first substrate 102 and the second substrate 122, the faster the thermal response speed of the heating device 100. The first base body 102 and the second base body 122 can be a planar structure or a curved surface structure, and can be prepared according to actual needs. In this embodiment, the first substrate 102 and the second substrate 122 are in a planar structure, and the materials of the first substrate 102 and the second substrate 122 are different, and the material of the first substrate 102 is polyethylene terephthalate. The glycol ester, the material of the second substrate 122 is a metal.

所述奈米碳管結構110可包括至少一奈米碳管膜、至少一奈米碳管線狀結構及其結合。所述奈米碳管結構110可包括一個奈米碳 管膜,或多個平行且無間隙鋪設或/和層疊鋪設的奈米碳管膜。所述奈米碳管結構110可包括多個平行設置、交叉設置或按一定方式編織的奈米碳管線狀結構。所述奈米碳管結構110也可包括至少一奈米碳管線狀結構設置在所述至少一奈米碳管膜表面。所述多個奈米碳管線狀結構可平行設置、交叉設置或按一定方式編織設置在所述奈米碳管膜表面。所述奈米碳管結構110中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~50奈米,所述雙壁奈米碳管的直徑為1.0奈米~50奈米,所述多壁奈米碳管的直徑為1.5奈米~50奈米。 The carbon nanotube structure 110 can include at least one carbon nanotube membrane, at least one nanocarbon line-like structure, and combinations thereof. The carbon nanotube structure 110 can include a nano carbon The tubular membrane, or a plurality of carbon nanotube membranes laid in parallel and without gaps or/and laminated. The carbon nanotube structure 110 can include a plurality of nanocarbon line-like structures disposed in parallel, intersecting, or woven in a certain manner. The carbon nanotube structure 110 may also include at least one nanocarbon line-like structure disposed on the surface of the at least one carbon nanotube film. The plurality of nanocarbon line-like structures may be disposed in parallel, crosswise, or woven in a certain manner on the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube structure 110 include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5. Nano ~ 50 nm.

所述奈米碳管膜包括均勻分佈的奈米碳管,奈米碳管之間通過凡德瓦爾力緊密結合。該奈米碳管膜中的奈米碳管為無序或有序排列。所謂無序係指奈米碳管的排列方向無規則。所謂有序係指奈米碳管的排列方向有規則。具體地,當奈米碳管結構包括無序排列的奈米碳管時,奈米碳管相互纏繞或者該奈米碳管結構為各向同性;當奈米碳管結構包括有序排列的奈米碳管時,奈米碳管的軸向沿一個方向擇優取向排列,或者奈米碳管結構包括多個部分,每個部分中的奈米碳管的軸向沿一個方向擇優取向排列,相鄰兩個部分中的奈米碳管可沿不同方向排列或相同方向排列。所謂擇優取向係指奈米碳管結構中的奈米碳管在某一方向或幾個方向上具有較大的取向幾率,即奈米碳管結構中的奈米碳管的軸向基本沿一個方向或幾個方向延伸。所述奈米碳管膜可為自支撐膜。具體地,所述奈米碳管膜可包括奈米碳管拉膜、奈米碳管絮化膜、奈米碳管碾壓膜及長奈米碳管膜中的一種或多種。 The carbon nanotube membrane comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are tightly bonded by van der Waals force. The carbon nanotubes in the carbon nanotube film are disordered or ordered. The so-called disorder means that the arrangement direction of the carbon nanotubes is irregular. The so-called ordering means that the arrangement direction of the carbon nanotubes is regular. Specifically, when the carbon nanotube structure includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or the carbon nanotube structure is isotropic; when the carbon nanotube structure includes an ordered arrangement of nai In the case of a carbon nanotube, the axial direction of the carbon nanotubes is preferentially aligned in one direction, or the carbon nanotube structure comprises a plurality of sections, and the axial direction of the carbon nanotubes in each section is aligned in one direction, and the phase is aligned. The carbon nanotubes in the two adjacent sections may be arranged in different directions or in the same direction. The preferred orientation means that the carbon nanotubes in the carbon nanotube structure have a large orientation probability in one direction or several directions, that is, the axial direction of the carbon nanotubes in the carbon nanotube structure is substantially along one Extend in direction or in several directions. The carbon nanotube membrane can be a self-supporting membrane. Specifically, the carbon nanotube film may include one or more of a carbon nanotube film, a carbon nanotube film, a carbon nanotube film, and a long carbon tube film.

所述奈米碳管拉膜係由若干奈米碳管組成的自支撐結構。所述若干奈米碳管為沿同一方向擇優取向排列。所述擇優取向是指在奈米碳管拉膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管拉膜的表面。進一步地,所述奈米碳管拉膜中多數奈米碳管係通過凡德瓦爾力首尾相連。具體地,所述奈米碳管拉膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡德瓦爾力首尾相連。當然,所述奈米碳管拉膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管拉膜中大多數奈米碳管的整體取向排列構成明顯影響。所述自支撐為奈米碳管拉膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米碳管拉膜置於(或固定於)間隔一定距離設置的兩個支撐體上時,位於兩個支撐體之間的奈米碳管拉膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管拉膜中存在連續的通過凡德瓦爾力首尾相連延伸排列的奈米碳管而實現。 The carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation means that the overall extension direction of most of the carbon nanotubes in the carbon nanotube film is substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by Van der Waals force. Specifically, each of the carbon nanotubes of the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not require a large-area carrier support, and as long as the support force is provided on both sides, it can be suspended in the whole to maintain its own film state, that is, the carbon nanotube film is placed (or When fixed on two supports arranged at a certain distance, the carbon nanotube film located between the two supports can be suspended to maintain its own film state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the ends of the van der Waals force through the carbon nanotube film.

具體地,所述奈米碳管拉膜中基本朝同一方向延伸的多數奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者並非完全按照延伸方向上排列,可以適當的偏離延伸方向。因此,不能排除奈米碳管拉膜的基本朝同一方向延伸的多數奈米碳管中併列的奈米碳管之間可能存在部分接觸。所述奈米碳管拉膜的厚度可為0.5奈米~100微米,寬度與拉取該奈米碳管拉膜的奈米碳管陣列的尺寸有關,長度不限。所述奈米碳管拉膜的掃描電鏡照片請參見圖2。可以理解,通過將多個奈米碳管拉膜平行且無間隙鋪設或/和層疊鋪設,可以製備不同面積與厚度的奈米碳管結構。當奈米碳 管結構包括多個層疊設置的奈米碳管拉膜時,相鄰的奈米碳管拉膜中的奈米碳管的排列方向形成一夾角α,0°≦α≦90°。所述奈米碳管拉膜的結構及其製備方法請參見於2008年8月16日公開的第200833862號中華民國公開專利申請。 Specifically, the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated from the extending direction. . Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending substantially in the same direction of the carbon nanotube film. The carbon nanotube film may have a thickness of 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited. See Figure 2 for a scanning electron micrograph of the carbon nanotube film. It can be understood that the carbon nanotube structures of different areas and thicknesses can be prepared by laying a plurality of carbon nanotube films in parallel and without gaps laying and/or laminating. Nano carbon When the tube structure comprises a plurality of stacked carbon nanotube film, the arrangement direction of the carbon nanotubes in the adjacent carbon nanotube film forms an angle α, 0°≦α≦90°. The structure of the carbon nanotube film and the preparation method thereof are described in the Chinese Patent Application No. 200833862, published on Aug. 16, 2008.

所述奈米碳管碾壓膜包括均勻分佈的奈米碳管。所述奈米碳管碾壓膜可為各向同性或包括多個部分,奈米碳管在每個部分中沿一個方向擇優取向排列,相鄰兩個部分中的奈米碳管可沿相同方向排列或沿不同方向排列。所述奈米碳管碾壓膜中的奈米碳管相互交疊。所述奈米碳管碾壓膜可通過碾壓一奈米碳管陣列獲得。該奈米碳管陣列形成在一基底表面,所製備的奈米碳管碾壓膜中的奈米碳管與該奈米碳管陣列的基底的表面成一夾角β,其中,β大於等於0度且小於等於15度(0≦β≦15°)。優選地,所述奈米碳管碾壓膜中的奈米碳管平行於所述基底或所述奈米碳管碾壓膜的表面。依據碾壓的方式不同,該奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。由於奈米碳管碾壓膜中的奈米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐的結構,可無需基底支撐,自支撐存在。所述奈米碳管碾壓膜及其製備方法請參見於2009年1月1日公開的第200900348號中華民國公開專利申請。 The carbon nanotube rolled film includes a uniformly distributed carbon nanotube. The carbon nanotube rolled film may be isotropic or comprise a plurality of portions, and the carbon nanotubes are arranged in a preferred orientation in one direction in each portion, and the carbon nanotubes in the adjacent two portions may be the same Oriented or arranged in different directions. The carbon nanotubes in the carbon nanotube rolled film overlap each other. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotube array is formed on a surface of the substrate, and the carbon nanotubes in the prepared carbon nanotube rolled film form an angle β with the surface of the substrate of the carbon nanotube array, wherein β is greater than or equal to 0 degrees. And less than or equal to 15 degrees (0 ≦ β ≦ 15 °). Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the substrate or the carbon nanotube rolled film. The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. Because the carbon nanotubes in the carbon nanotube film are attracted to each other through the van der Waals force, the carbon nanotube film is a self-supporting structure, which can be self-supported without substrate support. . The carbon nanotube rolled film and the preparation method thereof are described in the Chinese Patent Application No. 200900348 published on January 1, 2009.

所述奈米碳管絮化膜的長度、寬度和厚度不限,可根據實際需要選擇。所述奈米碳管絮化膜包括相互纏繞且均勻分佈的的奈米碳管,奈米碳管長度可大於10釐米。所述奈米碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜各向同性。所述奈米碳管絮化膜中的奈米碳管為均勻分佈,無規則 排列,形成大量的微孔結構,微孔孔徑為1奈米~10微米。所述奈米碳管絮化膜及其製備方法請參見於2008年11月16日公開的第200844041號中華民國公開專利申請。 The length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed, and the carbon nanotubes may have a length of more than 10 cm. The carbon nanotubes are attracted and entangled by van der Waals forces to form a network structure. The carbon nanotube flocculation membrane is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed, irregular Arranged to form a large number of microporous structures with a pore diameter of 1 nm to 10 μm. The carbon nanotube flocculation film and the preparation method thereof are described in the Chinese Patent Application No. 200844041 published on November 16, 2008.

所述長奈米碳管膜包括多個擇優取向排列的奈米碳管。所述多個奈米碳管之間相互平行,併排設置且通過凡德瓦爾力緊密結合。所述多個奈米碳管具有大致相等的長度,且其長度可達到釐米量級。奈米碳管的長度可與奈米碳管膜的長度相等,故至少有一個奈米碳管從奈米碳管膜的一端延伸至另一端,從而跨越整個奈米碳管膜。長奈米碳管膜的長度受奈米碳管的長度的限制。所述長奈米碳管膜及其製備方法請參見於2009年9月1日公開的第200936797號中華民國公開專利申請及於2008年6月13日申請的,申請號為97122118的中華民國專利申請。 The long carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation. The plurality of carbon nanotubes are parallel to each other, arranged side by side and tightly coupled by van der Waals force. The plurality of carbon nanotubes have substantially equal lengths and may be of the order of centimeters in length. The length of the carbon nanotubes can be equal to the length of the carbon nanotube membrane, so at least one carbon nanotube extends from one end of the carbon nanotube membrane to the other end, thereby spanning the entire carbon nanotube membrane. The length of the long carbon nanotube film is limited by the length of the carbon nanotube. The long carbon nanotube film and its preparation method can be found in the Republic of China public patent application No. 200936797 published on September 1, 2009 and the application for the Republic of China patent number 97122118. Application.

所述奈米碳管線狀結構包括至少一扭轉的奈米碳管線或非扭轉的奈米碳管線。所述奈米碳管線狀結構包括多個奈米碳管線平行設置組成的一束狀結構或多個奈米碳管線相互扭轉組成的一絞線結構。所述奈米碳管線可為一非扭轉的奈米碳管線或扭轉的奈米碳管線。 The nanocarbon line-like structure comprises at least one twisted nanocarbon line or a non-twisted nanocarbon line. The nanocarbon pipeline-like structure comprises a bundle structure in which a plurality of nanocarbon pipelines are arranged in parallel or a stranded structure in which a plurality of nanocarbon pipelines are twisted to each other. The nanocarbon line can be a non-twisted nano carbon line or a twisted nano carbon line.

所述非扭轉的奈米碳管線包括多個沿該非扭轉的奈米碳管線長度方向排列的奈米碳管。非扭轉的奈米碳管線可通過將奈米碳管拉膜通過有機溶劑處理得到。該非扭轉的奈米碳管線的長度不限,其直徑為0.5奈米~1毫米。具體地,可將有機溶劑浸潤所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管拉膜中的相互平行的多個奈米碳管通過凡德瓦爾力緊密結合,從而使奈米碳管拉膜收縮為一非扭轉的奈米碳 管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭轉奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,黏性降低。所述奈米碳管線及其製備方法請參見於2008年11月21日公告的,公告號為1303239的中華民國公告專利,以及於2009年7月21日公告的,公告號為1312337的中華民國公告專利。 The non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length of the non-twisted nanocarbon pipeline. The non-twisted nano carbon line can be obtained by treating the carbon nanotube film with an organic solvent. The length of the non-twisted nanocarbon pipeline is not limited, and its diameter is 0.5 nm to 1 mm. Specifically, the organic solvent may be used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, the plurality of nanometers parallel to each other in the carbon nanotube film are drawn. The carbon tube is tightly bonded by van der Waals force, so that the carbon nanotube film is shrunk into a non-twisted nano carbon Pipeline. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. The nano carbon pipeline and its preparation method can be found in the Republic of China Announcement Patent No. 1303, announced on November 21, 2008, and the Republic of China, announced on July 21, 2009, with the announcement number 1312337. Announce the patent.

所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管拉膜兩端沿相反方向扭轉獲得。該扭轉的奈米碳管線包括多個繞該扭轉的奈米碳管線軸向螺旋排列的奈米碳管。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡德瓦爾力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。 The twisted nanocarbon pipeline is obtained by twisting both ends of the carbon nanotube film in the opposite direction by a mechanical force. The twisted nanocarbon line includes a plurality of carbon nanotubes arranged axially helically around the twisted nanocarbon line. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by the van der Waals force, so that the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength.

本實施例中,所述奈米碳管結構110包括10層奈米碳管拉膜,所述奈米碳管拉膜包括多個奈米碳管通過凡德瓦爾力首尾相連且基本沿同一方向擇優取向排列,相鄰兩層奈米碳管拉膜中的奈米碳管沿同一方向排列。 In this embodiment, the carbon nanotube structure 110 includes a 10-layer carbon nanotube film, and the carbon nanotube film includes a plurality of carbon nanotubes connected end to end by van der Waals force and substantially in the same direction In the preferred orientation arrangement, the carbon nanotubes in the adjacent two layers of carbon nanotube film are arranged in the same direction.

所述第一黏結層104和第二黏結層124用於將所述奈米碳管結構與所述第一基體102或第二基體122緊密結合在一起。所述第一黏結層104和第二黏結層124可僅與奈米碳管結構110的表層結合,也可滲透入奈米碳管結構內部與奈米碳管結構110部分複合在一起,即部分第一黏結層104和第二黏結層124可滲入內部的奈米碳管結構110中。所述第一黏結層104和第二黏結層124可由低熔點材 料形成。具體地,所述第一黏結層104和第二黏結層124可為一熱熔膠或其他黏結膠,優選與所黏結的基體具有較好相容性的膠體。所述熱熔膠的材料包括乙烯-醋酸乙烯共聚物(EVA,聚乙烯醋酸乙烯酯)、聚乙烯、聚醯胺、聚酯及乙烯-丙烯酸乙酯共聚物等中的一種或多種。所述熱熔膠可為一熱熔膠膜或熱熔膠粉。具體地,可將熱熔膠膜直接鋪設在所述第一基體102及第二基體122表面或將熱熔膠粉撒在所述第一基體102表面,然後鋪設所述奈米碳管結構110至所述第一基體102表面及在奈米碳管結構110遠離第一基體102的表面撒一層熱熔膠粉後設置第二基體124於奈米碳管結構110表面,待熱壓後形成所述黏結層104,124。本實施例中,所述第一黏結層104和第二黏結層124為EVA熱熔膠膜。該EVA熱熔膠膜直接鋪設在所述第一基體102及第二基體122表面,待熱壓後形成所述黏結層104,124。 The first bonding layer 104 and the second bonding layer 124 are used to tightly bond the carbon nanotube structure with the first substrate 102 or the second substrate 122. The first bonding layer 104 and the second bonding layer 124 may be combined only with the surface layer of the carbon nanotube structure 110, or may be infiltrated into the interior of the carbon nanotube structure and partially combined with the carbon nanotube structure 110, that is, a portion. The first bonding layer 104 and the second bonding layer 124 can penetrate into the inner carbon nanotube structure 110. The first bonding layer 104 and the second bonding layer 124 may be made of a low melting point material Material formation. Specifically, the first bonding layer 104 and the second bonding layer 124 may be a hot melt adhesive or other adhesive, preferably a colloid having good compatibility with the bonded substrate. The material of the hot melt adhesive includes one or more of ethylene-vinyl acetate copolymer (EVA, polyethylene vinyl acetate), polyethylene, polyamide, polyester, and ethylene-ethyl acrylate copolymer. The hot melt adhesive can be a hot melt adhesive film or a hot melt adhesive powder. Specifically, the hot melt adhesive film may be directly laid on the surface of the first base 102 and the second base 122 or the hot melt adhesive powder may be sprinkled on the surface of the first base 102, and then the carbon nanotube structure 110 is laid. After the hot melt adhesive powder is applied to the surface of the first substrate 102 and the surface of the carbon nanotube structure 110 away from the first substrate 102, the second substrate 124 is disposed on the surface of the carbon nanotube structure 110, and is formed after being hot pressed. The bonding layers 104, 124 are described. In this embodiment, the first bonding layer 104 and the second bonding layer 124 are EVA hot melt adhesive films. The EVA hot melt adhesive film is directly laid on the surfaces of the first substrate 102 and the second substrate 122, and the adhesive layers 104, 124 are formed after being hot pressed.

所述第一電極130和第二電極140可設置在所述奈米碳管結構110的表面或兩端。所述第一電極130和第二電極140由導電材料組成,該第一電極130和第二電極140的形狀不限,可為導電薄膜、導電片或者導電線等。該導電線的材料可以為金屬、合金、銦錫氧化物(ITO)、銻錫氧化物(ATO)、導電銀膠、導電聚合物或導電性奈米碳管等。該金屬或合金材料可以為鋁、銅、鎢、鉬、金、鈦、釹、鈀、銫、銀或其任意組合的合金。所述第一電極130和第二電極140間隔設置,以使奈米碳管結構110應用於加熱器件100時接入一定的阻值避免短路現象產生。另外,所述第一電極130和第二電極140的熔點需大於所述加熱器件100的工作溫度。所述第一電極130和第二電極140的設置位置與奈米碳管結構110中的奈米碳管的排列相關,優選地,奈米碳管結構110中的奈米 碳管的排列方向沿所述第一電極130和第二電極140的方向延伸。本實施例中,所述第一電極130和第二電極140為條帶狀銀電極且其設置在所述奈米碳管結構110的表面與所述奈米碳管結構110電連接。所述奈米碳管結構110中的奈米碳管大致沿所述第一電極130至第二電極140的方向延伸。 The first electrode 130 and the second electrode 140 may be disposed on a surface or both ends of the carbon nanotube structure 110. The first electrode 130 and the second electrode 140 are made of a conductive material, and the shapes of the first electrode 130 and the second electrode 140 are not limited, and may be a conductive film, a conductive sheet or a conductive wire or the like. The material of the conductive wire may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer or conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, titanium, rhodium, palladium, iridium, silver, or any combination thereof. The first electrode 130 and the second electrode 140 are spaced apart to allow the carbon nanotube structure 110 to be applied to the heating device 100 to access a certain resistance value to avoid short circuit. In addition, the melting points of the first electrode 130 and the second electrode 140 need to be greater than the operating temperature of the heating device 100. The arrangement positions of the first electrode 130 and the second electrode 140 are related to the arrangement of the carbon nanotubes in the carbon nanotube structure 110, preferably, the nanotubes in the carbon nanotube structure 110 The arrangement direction of the carbon tubes extends in the direction of the first electrode 130 and the second electrode 140. In this embodiment, the first electrode 130 and the second electrode 140 are strip-shaped silver electrodes and are disposed on the surface of the carbon nanotube structure 110 to be electrically connected to the carbon nanotube structure 110. The carbon nanotubes in the carbon nanotube structure 110 extend substantially in the direction of the first electrode 130 to the second electrode 140.

另外,所述第一電極130和第二電極140也可通過一導電黏結劑(圖未示)設置於該奈米碳管結構110的表面上,導電黏結劑在實現第一電極130和第二電極140與奈米碳管結構110電接觸的同時,還可以將所述第一電極130和第二電極140更好地固定於奈米碳管結構110的表面上。本實施例優選的導電黏結劑為銀膠。 In addition, the first electrode 130 and the second electrode 140 may also be disposed on the surface of the carbon nanotube structure 110 through a conductive adhesive (not shown), and the conductive adhesive implements the first electrode 130 and the second While the electrode 140 is in electrical contact with the carbon nanotube structure 110, the first electrode 130 and the second electrode 140 may be better fixed to the surface of the carbon nanotube structure 110. The preferred conductive adhesive of this embodiment is a silver paste.

進一步地,可在所述第一基體102與第一黏結層104之間進一步設置有一紅外反射層(圖未示)。所述紅外反射層的設置為用來反射奈米碳管結構110所發出的熱量,從而控制加熱的方向,用於單面加熱,並進一步提高加熱的效率。所述紅外反射層的材料可為一白色絕緣材料,如:金屬氧化物、金屬鹽或陶瓷等。本實施例中,所述紅外反射層為三氧化二鋁層,其厚度為100微米~0.5毫米。可以理解,所述紅外反射層也可設置在第一基體102遠離奈米碳管結構110的表面,即所述第一基體102設置於所述奈米碳管結構110和所述紅外反射層之間,進一步加強紅外反射層反射熱量的作用。所述紅外反射層為一可選擇的結構。 Further, an infrared reflective layer (not shown) may be further disposed between the first substrate 102 and the first adhesive layer 104. The infrared reflecting layer is arranged to reflect the heat emitted by the carbon nanotube structure 110, thereby controlling the direction of heating, for single-sided heating, and further improving the efficiency of heating. The material of the infrared reflective layer may be a white insulating material such as a metal oxide, a metal salt or a ceramic. In this embodiment, the infrared reflective layer is a layer of aluminum oxide having a thickness of 100 micrometers to 0.5 millimeters. It can be understood that the infrared reflective layer can also be disposed on the surface of the first substrate 102 away from the carbon nanotube structure 110, that is, the first substrate 102 is disposed on the carbon nanotube structure 110 and the infrared reflective layer. In between, further enhance the effect of the infrared reflective layer reflecting heat. The infrared reflective layer is an optional structure.

本發明實施例的加熱器件100在使用時,可先將第一電極130和第二電極140連接導線後接入電源。該電源可為普通的充電電池。在接入電源後加熱元件10中的奈米碳管結構110即可輻射出一定波長範圍的電磁波。所述加熱元件10可以與待加熱物體的表面直 接接觸。或者,由於本實施例中奈米碳管結構110中的奈米碳管具有良好的導電性能,且該奈米碳管結構110本身已經具有一定的自支撐性及穩定性,所述加熱元件10也可以與待加熱物體相隔一定的距離設置。 When the heating device 100 of the embodiment of the present invention is used, the first electrode 130 and the second electrode 140 may be connected to a wire before being connected to a power source. The power source can be a normal rechargeable battery. The carbon nanotube structure 110 in the heating element 10 after the power source is connected can radiate electromagnetic waves of a certain wavelength range. The heating element 10 can be straight to the surface of the object to be heated Contact. Alternatively, since the carbon nanotubes in the carbon nanotube structure 110 of the present embodiment have good electrical conductivity, and the carbon nanotube structure 110 itself has a certain self-supporting property and stability, the heating element 10 It can also be set at a certain distance from the object to be heated.

所述奈米碳管具有良好的導電性能以及熱穩定性,且作為一理想的黑體結構,具有比較高的熱輻射效率。將該加熱元件10暴露在氧化性氣體或者大氣的環境中,通過在10伏~30伏調節電源電壓,該加熱元件10可以輻射出波長較長的電磁波。通過溫度測量儀發現該加熱元件10的溫度為50℃~500℃。對於具有黑體結構的物體來說,其所對應的溫度為200℃~450℃時就能發出人眼看不見的熱輻射(紅外線),此時的熱輻射最穩定、效率最高。 The carbon nanotube has good electrical conductivity and thermal stability, and has an excellent heat radiation efficiency as an ideal black body structure. The heating element 10 is exposed to an oxidizing gas or atmosphere, and the heating element 10 can radiate a longer wavelength electromagnetic wave by adjusting the power supply voltage at 10 volts to 30 volts. The temperature of the heating element 10 was found to be 50 ° C to 500 ° C by a temperature measuring instrument. For an object with a black body structure, the corresponding temperature of 200 ° C ~ 450 ° C can emit heat radiation (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient.

請參閱圖3,本發明提供一種上述加熱器件100的製備方法,該方法包括以下步驟: Referring to FIG. 3, the present invention provides a method for fabricating the above heating device 100, the method comprising the following steps:

步驟一:提供一第一基體102,形成一第一黏結層預製體於該第一基體102的一表面。 Step 1: A first substrate 102 is provided to form a first bonding layer preform on a surface of the first substrate 102.

當所述第一黏結層預製體的材料為熱熔膠膜時,所述第一黏結層預製體可通過將熱熔膠膜直接鋪設在所述第一基體102表面而製備。當所述第一黏結層預製體的材料為熱熔膠粉時,該熱熔膠粉可撒在所述第一基體102表面形成一第一黏結層預製體。可選擇地,可在所述第一基體102的一表面通過濺射或蒸鍍等方法形成一紅外反射層。所述紅外反射層可形成在所述第一基體102和第一黏結層預製體之間或設置在所述第一基體102遠離第一黏結層預製體的表面。 When the material of the first adhesive layer preform is a hot melt adhesive film, the first adhesive layer preform can be prepared by directly laying a hot melt adhesive film on the surface of the first base 102. When the material of the first adhesive layer preform is a hot melt adhesive powder, the hot melt adhesive powder may be sprinkled on the surface of the first base 102 to form a first adhesive layer preform. Alternatively, an infrared reflective layer may be formed on one surface of the first substrate 102 by sputtering or evaporation. The infrared reflective layer may be formed between the first substrate 102 and the first adhesive layer preform or on a surface of the first substrate 102 away from the first adhesive layer preform.

本實施例中,所述第一黏結層預製體的材料為EVA熱熔膠膜。該EVA熱熔膠膜可直接鋪設在所述第一基體102表面形成第一黏結層預製體。 In this embodiment, the material of the first adhesive layer preform is an EVA hot melt adhesive film. The EVA hot melt adhesive film can be directly laid on the surface of the first substrate 102 to form a first adhesive layer preform.

步驟二:提供一奈米碳管結構110,將該奈米碳管結構110鋪設在所述第一基體102表面覆蓋所述第一黏結層預製體。 Step 2: providing a carbon nanotube structure 110, and laying the carbon nanotube structure 110 on the surface of the first substrate 102 to cover the first bonding layer preform.

所述奈米碳管結構110包括至少一奈米碳管膜、至少一奈米碳管線狀結構及其結合。本實施例中,所述奈米碳管結構110包括10層奈米碳管拉膜。奈米碳管拉膜可通過從一奈米碳管陣列中拉取獲得,其具體包括以下步驟:(a)從一奈米碳管陣列中選定一個或具有一定寬度的多個奈米碳管,本實施例優選為採用具有一定寬度的膠帶、鑷子或夾子接觸奈米碳管陣列以選定一個或具有一定寬度的多個奈米碳管;(b)以一定速度拉伸該選定的奈米碳管,從而形成首尾相連的多個奈米碳管片段,進而形成一連續的奈米碳管膜。該拉取方向沿基本垂直於奈米碳管陣列的生長方向。 The carbon nanotube structure 110 includes at least one carbon nanotube film, at least one nanocarbon line structure, and combinations thereof. In this embodiment, the carbon nanotube structure 110 comprises a 10-layer carbon nanotube film. The carbon nanotube film can be obtained by drawing from a carbon nanotube array, and specifically includes the following steps: (a) selecting one or a plurality of carbon nanotubes having a certain width from an array of carbon nanotubes. Preferably, the embodiment uses a tape, a tweezers or a clip having a certain width to contact the array of carbon nanotubes to select one or a plurality of carbon nanotubes having a certain width; (b) stretching the selected nanometer at a certain speed The carbon tubes form a plurality of carbon nanotube segments connected end to end, thereby forming a continuous carbon nanotube film. The pull direction is substantially perpendicular to the growth direction of the nanotube array.

在上述拉伸過程中,該多個奈米碳管片段在拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的多個奈米碳管片段分別與其他奈米碳管片段首尾相連地連續地被拉出,從而形成一連續、均勻且具有一定寬度的奈米碳管拉膜。該奈米碳管拉膜包括多個首尾相連的奈米碳管,該奈米碳管基本沿拉伸方向排列。請參閱圖2,該奈米碳管拉膜包括多個擇優取向排列的奈米碳管。進一步地,所述奈米碳管拉膜包括多個首尾相連且沿同一方向即拉伸方向擇優取向排列的奈米碳管片段,奈米碳管片段兩端通過凡德瓦爾力相互連接。該奈米碳管片段包括多個基 本相互平行排列的奈米碳管。該直接拉伸獲得的擇優取向的奈米碳管拉膜比無序的奈米碳管膜具有更好的均勻性及導電性能。同時該直接拉伸獲得奈米碳管拉膜的方法簡單快速,適宜進行工業化應用。 During the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction by the tensile force, and the selected plurality of carbon nanotube segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a continuous, uniform, and wide-width carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotubes connected end to end, and the carbon nanotubes are arranged substantially in the stretching direction. Referring to FIG. 2, the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation. Further, the carbon nanotube film comprises a plurality of carbon nanotube segments which are connected end to end and arranged in a preferred orientation in the same direction, that is, a stretching direction, and the carbon nanotube segments are connected to each other by a van der Waals force. The carbon nanotube segment includes a plurality of bases The carbon nanotubes arranged in parallel with each other. The preferentially oriented carbon nanotube film obtained by the direct stretching has better uniformity and electrical conductivity than the disordered carbon nanotube film. At the same time, the direct stretching method for obtaining the carbon nanotube film is simple and rapid, and is suitable for industrial application.

所述奈米碳管拉膜的寬度與奈米碳管陣列所生長的基底的尺寸(直徑/寬度)有關,該奈米碳管拉膜的長度不限,可根據實際需求製得。當該奈米碳管陣列的面積為4英寸時,該奈米碳管拉膜的寬度可為0.5奈米~10釐米,該奈米碳管拉膜的厚度可為0.5奈米~100微米。 The width of the carbon nanotube film is related to the size (diameter/width) of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. When the area of the carbon nanotube array is 4 inches, the width of the carbon nanotube film may be 0.5 nm to 10 cm, and the thickness of the carbon nanotube film may be 0.5 nm to 100 μm.

所述奈米碳管拉膜可沿同一方向或不同方向鋪設在所述第一黏結層預製體表面形成所述奈米碳管結構110。可以理解,當所述奈米碳管結構110包括奈米碳管碾壓膜、奈米碳管序化膜、長奈米碳管膜或至少一奈米碳管線狀結構時,所述奈米碳管碾壓膜、奈米碳管序化膜、長奈米碳管膜或至少一奈米碳管線狀結構也可直接鋪設在所述第一黏結層預製體表面,形成所述奈米碳管結構110。 The carbon nanotube film may be laid on the surface of the first bonding layer preform in the same direction or in different directions to form the carbon nanotube structure 110. It can be understood that when the carbon nanotube structure 110 comprises a carbon nanotube rolled film, a carbon nanotube sequential film, a long carbon nanotube film or at least one nano carbon line structure, the nanometer is a carbon tube rolled film, a carbon nanotube film, a long carbon tube film or at least one nano carbon line structure may also be directly laid on the surface of the first bonding layer preform to form the nano carbon Tube structure 110.

本實施例中,10層所述奈米碳管拉膜沿同一方向鋪設在第一黏結層預製體表面形成所述奈米碳管結構110。 In this embodiment, 10 layers of the carbon nanotube film are laid in the same direction on the surface of the first bonding layer preform to form the carbon nanotube structure 110.

步驟三:間隔設置一第一電極130和一第二電極140於所述奈米碳管結構110表面或兩端。 Step 3: A first electrode 130 and a second electrode 140 are disposed on the surface or both ends of the carbon nanotube structure 110.

所述第一電極130和第二電極140與所述奈米碳管結構110電連接。本實施例中,所述第一電極130和第二電極140均為條帶狀銀電極,該條帶狀銀電極通過塗覆、絲網印刷或沈積等方法形成在所 述奈米碳管結構110表面或兩端。本實施例中,所述第一電極130和第二電極140通過物理氣相沈積方法,如濺射,沈積在所述奈米碳管結構110兩端。 The first electrode 130 and the second electrode 140 are electrically connected to the carbon nanotube structure 110. In this embodiment, the first electrode 130 and the second electrode 140 are strip-shaped silver electrodes, and the strip-shaped silver electrodes are formed by coating, screen printing or deposition. The surface or both ends of the carbon nanotube structure 110 are described. In this embodiment, the first electrode 130 and the second electrode 140 are deposited on both ends of the carbon nanotube structure 110 by a physical vapor deposition method such as sputtering.

步驟四:提供一第二基體122及一第二黏結層預製體,將該第二黏結層預製體設置於所述第二基體122與奈米碳管結構110之間,進而形成一五層結構。 Step 4: providing a second substrate 122 and a second bonding layer preform, and placing the second bonding layer preform between the second substrate 122 and the carbon nanotube structure 110 to form a five-layer structure. .

當所述第二黏結層預製體的材料為熱熔膠膜時,所述第二黏結層預製體可通過將熱熔膠膜直接鋪設在所述第二基體122表面而製備。當所述第二黏結層預製體的材料為熱熔膠粉時,該熱熔膠粉可撒在所述奈米碳管結構110遠離第一基體102的表面形成所述第二黏結層預製體,然後將所述第二基體122覆蓋在所述第二黏結層預製體表面。 When the material of the second bonding layer preform is a hot melt adhesive film, the second bonding layer preform can be prepared by directly laying a hot melt adhesive film on the surface of the second substrate 122. When the material of the second adhesive layer preform is a hot melt adhesive powder, the hot melt adhesive powder may be sprinkled on the surface of the carbon nanotube structure 110 away from the first base 102 to form the second adhesive layer preform. And then covering the second substrate 122 on the surface of the second bonding layer preform.

本實施例中,所述第二黏結層預製體的材料為EVA熱熔膠膜。該EVA熱熔膠膜可直接鋪設在所述第二基體122表面形成第二黏結層預製體,然後將該第二基體122覆蓋在所述奈米碳管結構110表面。 In this embodiment, the material of the second adhesive layer preform is an EVA hot melt adhesive film. The EVA hot melt adhesive film can be directly laid on the surface of the second substrate 122 to form a second adhesive layer preform, and then the second substrate 122 is covered on the surface of the carbon nanotube structure 110.

步驟五:熱壓上述五層結構。 Step 5: Hot pressing the above five-layer structure.

所述熱壓過程為將上述五層結構整體放入一熱壓機中。該熱壓機可包括一上基板及一下基板。一加熱元件可設置在上基板和/或下基板中。該上基板及下基板的形狀可大於或大致等於所述基體102,122的形狀。本實施例中,該上基板及下基板具有一較為平整的表面且平行相對設置。該上基板及下基板中均設置有一加熱元件。上述五層結構可設置在該上基板和下基板之間。具體地, 可將所述下基板固定,通過上基板的運動對所述五層結構施加一定壓力。所述五層結構可設置在下基板表面並與上基板接觸設置或間隔設置。位於所述上基板和下基板中的加熱元件對上基板和下基板加熱,進而對設置在上基板和下基板之間的五層結構進行加熱,待加熱至高於熱熔膠的熔融溫度後,上基板施加一定壓力於所述五層結構。在上述過程中,熱熔膠融化並成流動狀態,浸潤或/並填充所述奈米碳管結構110。上述施加一定壓力的過程有利於提高所述熱熔膠的流動性,使之更容易與奈米碳管結構110複合。待停止加熱,降溫後即形成所述加熱器件100。 The hot pressing process is to put the above five-layer structure into a hot press as a whole. The hot press can include an upper substrate and a lower substrate. A heating element can be disposed in the upper substrate and/or the lower substrate. The shape of the upper and lower substrates may be greater than or substantially equal to the shape of the substrates 102, 122. In this embodiment, the upper substrate and the lower substrate have a relatively flat surface and are disposed opposite to each other. A heating element is disposed in both the upper substrate and the lower substrate. The above five-layer structure may be disposed between the upper substrate and the lower substrate. specifically, The lower substrate may be fixed, and a certain pressure is applied to the five-layer structure by the movement of the upper substrate. The five-layer structure may be disposed on the surface of the lower substrate and disposed or spaced apart from the upper substrate. The heating elements located in the upper substrate and the lower substrate heat the upper substrate and the lower substrate, thereby heating the five-layer structure disposed between the upper substrate and the lower substrate, and after being heated to be higher than the melting temperature of the hot melt adhesive, The upper substrate applies a certain pressure to the five-layer structure. In the above process, the hot melt melts and flows into a flowing state, soaking or/and filling the carbon nanotube structure 110. The above-described process of applying a certain pressure is advantageous for improving the fluidity of the hot melt adhesive, making it easier to recombine with the carbon nanotube structure 110. The heating device 100 is formed after the heating is stopped and the temperature is lowered.

所述奈米碳管結構110與所述第一黏結層104及第二黏結層124複合的程度與第一黏結層預製體及第二黏結層預製體的用量有關。第一黏結層預製體及第二黏結層預製體的用量越大,所述奈米碳管結構110與所述第一黏結層104及第二黏結層124複合的程度愈大,即奈米碳管結構110與所述第一黏結層104及第二黏結層124可較多地複合。所述第一黏結層預製體及第二黏結層預製體的用量越小,所述奈米碳管結構110與所述第一黏結層104及第二黏結層124複合的程度愈小,即奈米碳管結構110與所述第一黏結層104及第二黏結層124可較少地複合。另外,所述奈米碳管結構110與所述第一黏結層104及第二黏結層124複合的程度還與奈米碳管結構的110的厚度有關,在第一黏結層預製體及第二黏結層預製體的用量一定的情況下,奈米碳管結構110的厚度越大,所述奈米碳管結構110與所述第一黏結層104及第二黏結層124複合的程度愈小;奈米碳管結構110的厚度越小,所述奈米碳管結構110與所述第一黏結層104及第二黏結層124複合的程度愈大。所述加熱溫度與所採用的熱熔膠有關,以高於熱熔膠的熔點,熱熔 膠能夠熔化並成流動狀態為准。所施加的壓力在所述五層結構表面產生的壓強可小於100兆帕。本實施例中,可將所述五層結構加熱至80℃以上,優選加熱至100℃~180℃,使EVA熱熔膠粉處於熔融狀態,然後上基板施加一壓力於所述五層結構,該壓力在所述五層結構表面產生的壓強為30兆帕,以使熔融態的熱熔膠與所述基體102,122及奈米碳管結構110充分浸潤並複合。然後停止加熱,自然冷卻至室溫後形成所述加熱器件100。可以理解,所述加熱溫度可以根據實際需要進行選擇。 The degree of recombination of the carbon nanotube structure 110 with the first adhesive layer 104 and the second adhesive layer 124 is related to the amount of the first adhesive layer preform and the second adhesive layer preform. The greater the amount of the first adhesive layer preform and the second adhesive layer preform, the greater the degree of recombination of the carbon nanotube structure 110 with the first adhesive layer 104 and the second adhesive layer 124, ie, nanocarbon The tube structure 110 and the first adhesive layer 104 and the second adhesive layer 124 may be compounded in a large amount. The smaller the amount of the first adhesive layer preform and the second adhesive layer preform, the smaller the degree of recombination of the carbon nanotube structure 110 with the first adhesive layer 104 and the second adhesive layer 124, ie, The carbon nanotube structure 110 and the first bonding layer 104 and the second bonding layer 124 may be less compounded. In addition, the degree of recombination of the carbon nanotube structure 110 with the first bonding layer 104 and the second bonding layer 124 is also related to the thickness of the carbon nanotube structure 110, in the first bonding layer preform and the second When the amount of the binder layer is constant, the thickness of the carbon nanotube structure 110 is greater, and the degree of recombination of the carbon nanotube structure 110 with the first binder layer 104 and the second binder layer 124 is smaller; The smaller the thickness of the carbon nanotube structure 110, the greater the degree to which the carbon nanotube structure 110 is combined with the first bonding layer 104 and the second bonding layer 124. The heating temperature is related to the hot melt glue used, and is higher than the melting point of the hot melt adhesive, and the heat is melted. The glue can be melted and the flow state is correct. The applied pressure may produce a pressure on the surface of the five-layer structure of less than 100 MPa. In this embodiment, the five-layer structure may be heated to 80 ° C or higher, preferably to 100 ° C to 180 ° C, so that the EVA hot melt adhesive powder is in a molten state, and then the upper substrate is applied with a pressure on the five-layer structure. The pressure exerted a pressure of 30 MPa on the surface of the five-layer structure to sufficiently wet and recombine the molten hot melt adhesive with the substrates 102, 122 and the carbon nanotube structure 110. Heating is then stopped and the heating device 100 is formed after naturally cooling to room temperature. It can be understood that the heating temperature can be selected according to actual needs.

可以理解,當所述紅外反射層設置在所述第一基體102遠離第一黏結層預製體的表面時,該紅外反射層可待所述熱壓步驟之後形成在所述第一基體102遠離第一黏結層預製體的表面。 It can be understood that when the infrared reflective layer is disposed on the surface of the first substrate 102 away from the first adhesive layer preform, the infrared reflective layer may be formed on the first substrate 102 away from the first substrate 102 after the hot pressing step. The surface of a bonded layer preform.

所述加熱器件及其製備方法具有以下優點:第一,由於奈米碳管具有較好的強度及韌性,由奈米碳管組成的加熱元件的強度較大,韌性較好,不易破裂,進而有利於提高所述加熱器件的耐用性。第二,由於奈米碳管具有良好的導電性能以及熱穩定性,且作為一理想的黑體結構,具有比較高的熱輻射效率,故由奈米碳管組成的加熱元件的的電熱轉換效率高,從而使所述加熱器件具有升溫迅速、熱滯後小、熱交換速度快的特點。第三,所述加熱器件中的第一基體及第二基體的材料可相同或不同,第一基體及第二基體的範圍較廣。第四,當該第一基體的材料採用絕熱材料,該第二基體的材料採用導熱材料時,所述奈米碳管結構在第二基體一側具有較好的加熱性能,進一步地,所述第一基體可起到保溫的作用,從而有利於提高所述加熱器件的加熱性能。 The heating device and the preparation method thereof have the following advantages: First, since the carbon nanotube has better strength and toughness, the heating element composed of the carbon nanotube has higher strength, better toughness, and is not easily broken, thereby being advantageous. To improve the durability of the heating device. Secondly, since the carbon nanotube has good electrical conductivity and thermal stability, and has an ideal thermal radiation efficiency as an ideal black body structure, the heating element composed of the carbon nanotube has high electrothermal conversion efficiency. Therefore, the heating device has the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate. Third, the materials of the first substrate and the second substrate in the heating device may be the same or different, and the first substrate and the second substrate have a wide range. Fourth, when the material of the first substrate is made of a heat insulating material, and the material of the second substrate is made of a heat conductive material, the carbon nanotube structure has better heating performance on the side of the second substrate. Further, the The first substrate can serve to maintain the heat, thereby facilitating the improvement of the heating performance of the heating device.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申 請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. please. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧加熱元件 10‧‧‧ heating elements

100‧‧‧加熱器件 100‧‧‧ heating device

102‧‧‧第一基體 102‧‧‧First substrate

104‧‧‧第一黏結層 104‧‧‧First bonding layer

110‧‧‧奈米碳管結構 110‧‧‧Nano carbon nanotube structure

122‧‧‧第二基體 122‧‧‧Second substrate

124‧‧‧第二黏結層 124‧‧‧Second bonding layer

130‧‧‧第一電極 130‧‧‧First electrode

140‧‧‧第二電極 140‧‧‧second electrode

Claims (20)

一種加熱器件,其包括一第一電極、一第二電極以及一加熱元件,該第一電極和第二電極間隔設置;其改良在於,所述加熱元件包括一第一基體、一第二基體、一第一黏結層、一第二黏結層及一奈米碳管結構,所述第一基體的材料為絕熱材料,第二基體的材料為導熱材料,所述奈米碳管結構設置在第一基體及第二基體之間並通過所述第一黏結層及第二黏結層分別與所述第一基體及第二基體結合,且該奈米碳管結構與所述第一電極及第二電極電連接。 A heating device comprising a first electrode, a second electrode and a heating element, the first electrode and the second electrode being spaced apart; wherein the heating element comprises a first substrate, a second substrate, a first bonding layer, a second bonding layer and a carbon nanotube structure, the material of the first substrate is a heat insulating material, the material of the second substrate is a heat conductive material, and the carbon nanotube structure is disposed at the first The first bonding layer and the second bonding layer are respectively coupled to the first substrate and the second substrate through the first bonding layer and the second bonding layer, and the carbon nanotube structure and the first electrode and the second electrode are Electrical connection. 如請求項第1項所述的加熱器件,其中,所述奈米碳管結構包括至少一奈米碳管膜、至少一奈米碳管線狀結構或其結合。 The heating device of claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film, at least one nanocarbon line structure, or a combination thereof. 如請求項第2項所述的加熱器件,其中,所述奈米碳管膜包括均勻分佈的奈米碳管。 The heating device of claim 2, wherein the carbon nanotube film comprises a uniformly distributed carbon nanotube. 如請求項第2項所述的加熱器件,其中,所述奈米碳管結構包括至少兩層層疊設置的奈米碳管膜。 The heating device of claim 2, wherein the carbon nanotube structure comprises at least two layers of carbon nanotube membranes stacked. 如請求項第4項所述的加熱器件,其中,所述奈米碳管膜係由若干奈米碳管組成的自支撐結構,且該若干奈米碳管沿同一方向擇優取向排列。 The heating device of claim 4, wherein the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation in the same direction. 如請求項第5項所述的加熱器件,其中,所述奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。 The heating device of claim 5, wherein the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. 如請求項第2項所述的加熱器件,其中,所述奈米碳管結構包括多個平行設置、交叉設置或相互編織的奈米碳管線狀結構。 The heating device of claim 2, wherein the carbon nanotube structure comprises a plurality of nanocarbon line-like structures arranged in parallel, intersecting or interwoven. 如請求項第2項所述的加熱器件,其中,所述奈米碳管線狀結構包括至少一個扭轉的奈米碳管線、至少一個非扭轉的奈米碳管線或其組合。 The heating device of claim 2, wherein the nanocarbon line-like structure comprises at least one twisted nanocarbon line, at least one non-twisted nanocarbon line, or a combination thereof. 如請求項第8項所述的加熱器件,其中,所述奈米碳管線狀結構為多個奈 米碳管線平行設置組成的一束狀結構或由多個奈米碳管線相互扭轉組成的一絞線結構。 The heating device of claim 8, wherein the nanocarbon line-like structure is a plurality of nai The carbon carbon pipeline is arranged in parallel to form a bundle structure or a twisted wire structure composed of a plurality of nano carbon pipelines twisted to each other. 如請求項第2項所述的加熱器件,其中,所述奈米碳管結構包括至少一奈米碳管線狀結構設置在所述至少一奈米碳管膜表面。 The heating device of claim 2, wherein the carbon nanotube structure comprises at least one nanocarbon line-like structure disposed on the surface of the at least one carbon nanotube film. 如請求項第1項所述的加熱器件,其中,所述第一黏結層和第二黏結層的材料為熱熔膠。 The heating device of claim 1, wherein the material of the first adhesive layer and the second adhesive layer is a hot melt adhesive. 如請求項第11項所述的加熱器件,其中,所述第一黏結層和第二黏結層與奈米碳管結構的表層緊密結合或部分第一黏結層和第二黏結層滲透入奈米碳管結構內部與奈米碳管結構複合。 The heating device of claim 11, wherein the first bonding layer and the second bonding layer are closely bonded to a surface layer of the carbon nanotube structure or a portion of the first bonding layer and the second bonding layer penetrate into the nano layer. The inside of the carbon tube structure is combined with the carbon nanotube structure. 如請求項第11項所述的加熱器件,其中,所述熱熔膠的材料為乙烯-醋酸乙烯共聚物、聚乙烯、聚醯胺、聚酯或乙烯-丙烯酸乙酯共聚物。 The heating device according to claim 11, wherein the material of the hot melt adhesive is ethylene-vinyl acetate copolymer, polyethylene, polyamide, polyester or ethylene-ethyl acrylate copolymer. 如請求項第1項所述的加熱器件,其中,所述第一基體與第一黏結層之間或第一基體背離奈米碳管結構的表面進一步設置有一紅外反射層。 The heating device of claim 1, wherein an infrared reflecting layer is further disposed between the first substrate and the first bonding layer or the surface of the first substrate facing away from the carbon nanotube structure. 如請求項第14項所述的加熱器件,其中,所述紅外反射層的材料為金屬氧化物、金屬鹽或陶瓷。 The heating device of claim 14, wherein the material of the infrared reflective layer is a metal oxide, a metal salt or a ceramic. 一種加熱器件的製備方法,其包括以下步驟:提供一第一基體,該第一基體的材料為絕熱材料,形成一第一黏結層預製體於該第一基體的一表面;提供一奈米碳管結構,將該奈米碳管結構鋪設在所述第一基體表面覆蓋所述第一黏結層預製體;間隔設置一第一電極和一第二電極於所述奈米碳管結構表面或兩端;提供一第二基體及一第二黏結層預製體,所述第二基體的材料為導熱材料,將所述第二黏結層預製體設置於所述第二基體與奈米碳管結構之間,進而形成一五層結構;以及熱壓上述五層結構。 A method for preparing a heating device, comprising the steps of: providing a first substrate, the material of the first substrate being a heat insulating material, forming a first bonding layer preform on a surface of the first substrate; providing a nano carbon a tube structure, the surface of the first carbon nanotube is disposed on the surface of the first substrate to cover the first bonding layer preform; a first electrode and a second electrode are disposed on the surface of the carbon nanotube structure or two Providing a second substrate and a second bonding layer preform, the material of the second substrate is a heat conductive material, and the second bonding layer preform is disposed on the second substrate and the carbon nanotube structure And forming a five-layer structure; and hot pressing the above five-layer structure. 如請求項第16項所述的加熱器件的製備方法,其中,所述第一黏結層預製體及第二黏結層預製體的材料為熱熔膠。 The method for preparing a heating device according to claim 16, wherein the material of the first bonding layer preform and the second bonding layer preform is a hot melt adhesive. 如請求項第17項所述的加熱器件的製備方法,其中,所述熱壓上述五層結構的步驟包括加熱所述五層結構至高於所述熱熔膠的熔點。 The method of producing a heating device according to claim 17, wherein the step of hot pressing the five-layer structure comprises heating the five-layer structure to be higher than a melting point of the hot-melt adhesive. 如請求項第18項所述的加熱器件的製備方法,其中,所述加熱溫度為80°C~180℃。 The method for producing a heating device according to claim 18, wherein the heating temperature is from 80 ° C to 180 ° C. 如請求項第16項所述的加熱器件的製備方法,其中,所述熱壓上述五層結構的步驟包括施加一壓力於所述五層結構,該壓力在所述五層結構表面產生的壓強小於100兆帕。 The method of producing a heating device according to claim 16, wherein the step of hot pressing the five-layer structure comprises applying a pressure to the five-layer structure, the pressure generated on the surface of the five-layer structure. Less than 100 MPa.
TW99101016A 2010-01-15 2010-01-15 Heater and method for making the same TWI420954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99101016A TWI420954B (en) 2010-01-15 2010-01-15 Heater and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101016A TWI420954B (en) 2010-01-15 2010-01-15 Heater and method for making the same

Publications (2)

Publication Number Publication Date
TW201125419A TW201125419A (en) 2011-07-16
TWI420954B true TWI420954B (en) 2013-12-21

Family

ID=45047433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101016A TWI420954B (en) 2010-01-15 2010-01-15 Heater and method for making the same

Country Status (1)

Country Link
TW (1) TWI420954B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731941B (en) * 2012-10-12 2015-12-02 清华大学 The preparation method of heating element
CN110031115A (en) 2018-01-11 2019-07-19 清华大学 Face source black matrix
CN110031103A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of face source black matrix and face source black matrix
CN110031109A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of blackbody radiation source and blackbody radiation source
CN110031108A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of blackbody radiation source and blackbody radiation source
CN110031107B (en) 2018-01-11 2022-08-16 清华大学 Blackbody radiation source and preparation method thereof
CN110031105A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of cavate blackbody radiation source and cavate blackbody radiation source
CN110031104A (en) 2018-01-11 2019-07-19 清华大学 Face source black matrix
CN110031118A (en) 2018-01-11 2019-07-19 清华大学 The preparation method of cavate blackbody radiation source and cavate blackbody radiation source
CN110031116A (en) 2018-01-11 2019-07-19 清华大学 Cavate blackbody radiation source
CN110031114A (en) 2018-01-11 2019-07-19 清华大学 Face source black matrix
CN110031117A (en) * 2018-01-11 2019-07-19 清华大学 The preparation method of cavate blackbody radiation source and cavate blackbody radiation source
CN110031106B (en) 2018-01-11 2021-04-02 清华大学 Blackbody radiation source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144554A (en) * 1991-11-21 1993-06-11 Hiroshima Kasei Ltd Manufacture of surface heater
TW200843544A (en) * 2007-01-26 2008-11-01 Tesa Ag Heat element
US20090057296A1 (en) * 2006-03-24 2009-03-05 Frank-Gunter Niemz Flat heater including conductive non-woven cellulose material
EP2043406A2 (en) * 2007-09-28 2009-04-01 Tsinghua University Plane heat source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144554A (en) * 1991-11-21 1993-06-11 Hiroshima Kasei Ltd Manufacture of surface heater
US20090057296A1 (en) * 2006-03-24 2009-03-05 Frank-Gunter Niemz Flat heater including conductive non-woven cellulose material
TW200843544A (en) * 2007-01-26 2008-11-01 Tesa Ag Heat element
EP2043406A2 (en) * 2007-09-28 2009-04-01 Tsinghua University Plane heat source

Also Published As

Publication number Publication date
TW201125419A (en) 2011-07-16

Similar Documents

Publication Publication Date Title
TWI420954B (en) Heater and method for making the same
CN102056353A (en) Heating device and manufacturing method thereof
US20100200567A1 (en) Carbon nanotube heater
CN101626639B (en) Plane heat source
CN101605409B (en) Surface heat source
TWI399119B (en) Linear heater
TW201008362A (en) Hollow heating source
KR20090131652A (en) Linear heater and methods for making the same
CN101636005B (en) Plane heat source
JP5281036B2 (en) Surface heat source
TWI400984B (en) Planar heater
CN101636004A (en) Plane heat source
TWI408990B (en) Linear heater
TWI399120B (en) Planar heater
TWI400985B (en) Method for making planar heater
TWI400983B (en) Planar heater
TWI513357B (en) Three-dimensional heat source
TWI381989B (en) Heating device
TWI380733B (en) Planar heating source
TWI408989B (en) Linear heater
TWI462628B (en) Planar heating source
TWI397342B (en) Planar heater
TWI399118B (en) Method for making linear heater
TWI399121B (en) Linear heater
TWI380734B (en) Linear heater