TWI448417B - Linear heater - Google Patents

Linear heater Download PDF

Info

Publication number
TWI448417B
TWI448417B TW097128297A TW97128297A TWI448417B TW I448417 B TWI448417 B TW I448417B TW 097128297 A TW097128297 A TW 097128297A TW 97128297 A TW97128297 A TW 97128297A TW I448417 B TWI448417 B TW I448417B
Authority
TW
Taiwan
Prior art keywords
heat source
carbon nanotube
line heat
heating layer
line
Prior art date
Application number
TW097128297A
Other languages
Chinese (zh)
Other versions
TW201004861A (en
Inventor
Chen Feng
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097128297A priority Critical patent/TWI448417B/en
Publication of TW201004861A publication Critical patent/TW201004861A/en
Application granted granted Critical
Publication of TWI448417B publication Critical patent/TWI448417B/en

Links

Description

線熱源 Line heat source

本發明涉及一種線熱源,尤其涉及一種基於奈米碳管的線熱源。 The invention relates to a line heat source, in particular to a line heat source based on a carbon nanotube.

熱源於人們的生產、生活、科研中起著重要的作用。線熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外治療儀、電暖器等領域。 Heat plays an important role in people's production, life, and research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heaters.

請參見圖1,先前技術提供一種線熱源10,其包括一中空圓柱狀支架102;一加熱層104設置於該支架102表面,一絕緣保護層106設置於該加熱層104表面;兩個電極110分別設置於支架102兩端,且與加熱層104電連接;兩個夾緊件108分別將兩個電極110與加熱層104卡固於支架102兩端。其中,加熱層104通常採用一碳纖維紙通過纏繞或包裹的方式形成。當通過兩個電極110對該線熱源10施加一電壓時,所述加熱層104產生焦耳熱,並向周圍進行熱輻射。所述碳纖維紙包括紙基材及雜亂分佈於該紙基材中的瀝青基碳纖維。其中,紙基材包括纖維素纖維及樹脂等的混合物,瀝青基碳纖維的直徑為3~6毫米,長度為5~20微米。 Referring to FIG. 1 , the prior art provides a line heat source 10 including a hollow cylindrical bracket 102; a heating layer 104 is disposed on the surface of the bracket 102, and an insulating protective layer 106 is disposed on the surface of the heating layer 104; They are respectively disposed at two ends of the bracket 102 and electrically connected to the heating layer 104; the two clamping members 108 respectively fix the two electrodes 110 and the heating layer 104 to both ends of the bracket 102. Wherein, the heating layer 104 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the line heat source 10 through the two electrodes 110, the heating layer 104 generates Joule heat and thermally radiates to the surroundings. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers that are disorderly distributed in the paper substrate. The paper substrate comprises a mixture of cellulose fibers and a resin, and the pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm.

然而,採用碳纖維紙作為加熱層具有以下缺點:第一,碳纖維紙厚度較大,一般為幾十微米,使線熱源不易做成微型結構,無法應用於微型器件的加熱。第二,由於該碳纖維紙中包含紙基材,故,該碳纖維紙的密度較大,重量大,使得採用該碳纖維紙的線 熱源使用不便。第三,由於該碳纖維紙中的瀝青基碳纖維雜亂分佈,故,該碳纖維紙的強度較小,柔性較差,容易破裂,限制其應有範圍。第四,碳纖維紙的電熱轉換效率較低,不利於節能環保。 However, the use of carbon fiber paper as the heating layer has the following disadvantages: First, the thickness of the carbon fiber paper is large, generally several tens of micrometers, making the line heat source difficult to be made into a micro structure and cannot be applied to the heating of the micro device. Second, since the carbon fiber paper contains a paper substrate, the carbon fiber paper has a large density and a large weight, so that the carbon fiber paper is used. The heat source is inconvenient to use. Third, since the pitch-based carbon fibers in the carbon fiber paper are disorderly distributed, the carbon fiber paper has low strength, is inferior in flexibility, and is easily broken, thereby limiting its due range. Fourth, the heat conversion efficiency of carbon fiber paper is low, which is not conducive to energy conservation and environmental protection.

有鑒於此,提供一種重量小,強度大,適應用於微型器件的加熱,且電熱轉換效率較低,利於節能環保的線熱源實為必要。 In view of this, it is necessary to provide a line heat source that is small in weight, high in strength, suitable for heating of a micro device, and has low electrothermal conversion efficiency, and is advantageous for energy saving and environmental protection.

一種線熱源包括一線狀基底;一加熱層設置於線狀基底的表面;及兩個電極間隔設置於加熱層的表面,並分別與該加熱層電連接,其中,所述加熱層包括至少一奈米碳管長線。 A line heat source includes a linear substrate; a heating layer is disposed on a surface of the linear substrate; and two electrodes are spaced apart from the surface of the heating layer and electrically connected to the heating layer, wherein the heating layer includes at least one Long carbon pipe.

相較於先前技術,所述的線熱源具有以下優點:第一,奈米碳管長線直徑可控制於宏觀或微觀範圍,既可應用於宏觀領域也可應用於微觀領域。第二,奈米碳管比碳纖維具有更小的密度,故,採用奈米碳管結構的線熱源具有更輕的重量,使用方便。第三,奈米碳管結構的電熱轉換效率高,熱阻率低,故,該線熱源具有升溫迅速、熱滯後小、熱交換速度快的特點。 Compared with the prior art, the linear heat source has the following advantages: First, the long diameter of the carbon nanotube can be controlled in a macroscopic or microscopic range, and can be applied to both the macroscopic field and the microscopic field. Second, the carbon nanotubes have a smaller density than the carbon fibers. Therefore, the line heat source using the carbon nanotube structure has a lighter weight and is convenient to use. Third, the carbon nanotube structure has high electrothermal conversion efficiency and low thermal resistance. Therefore, the line heat source has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange rate.

10,20‧‧‧線熱源 10,20‧‧‧Wire heat source

102‧‧‧支架 102‧‧‧ bracket

104,204‧‧‧加熱層 104,204‧‧‧heating layer

106‧‧‧保護層 106‧‧‧Protective layer

108‧‧‧夾緊件 108‧‧‧Clamping parts

110,206‧‧‧電極 110,206‧‧‧ electrodes

202‧‧‧線狀基底 202‧‧‧Linear substrate

208‧‧‧絕緣保護層 208‧‧‧Insulating protective layer

210‧‧‧反射層 210‧‧‧reflective layer

圖1為先前技術的線熱源的結構示意圖。 1 is a schematic structural view of a prior art line heat source.

圖2為本技術方案實施例的線熱源的結構示意圖。 2 is a schematic structural view of a line heat source according to an embodiment of the present technical solution.

圖3為圖2的線熱源沿線Ⅲ-Ⅲ的剖面示意圖。 3 is a schematic cross-sectional view of the line heat source of FIG. 2 taken along line III-III.

圖4為圖3的線熱源沿線Ⅳ-Ⅳ的剖面示意圖。 4 is a cross-sectional view of the line heat source of FIG. 3 taken along line IV-IV.

圖5為本技術方案實施例的束狀結構的奈米碳管長線的掃描電鏡照片。 FIG. 5 is a scanning electron micrograph of a long carbon nanotube tube of a bundle structure according to an embodiment of the present technology.

圖6為本技術方案實施例的絞線結構的奈米碳管長線的掃描電鏡照片。 6 is a scanning electron micrograph of a long carbon nanotube line of a stranded wire structure according to an embodiment of the present technical solution.

以下將結合附圖詳細說明本技術方案線熱源。 The line heat source of the present technical solution will be described in detail below with reference to the accompanying drawings.

請參閱圖2至圖4,本技術方案實施例提供一種線熱源20,該線熱源20包括一線狀基底202;一反射層210設置於該線狀基底202的表面;一加熱層204設置於所述反射層210表面;兩個電極206間隔設置於該加熱層204的表面,且與該加熱層204電連接;及一絕緣保護層208設置於該加熱層204的表面。所述線熱源20的長度不限,直徑為0.1微米~1.5厘米。本實施例的線熱源20的直徑優選為1.1毫米~1.1厘米。 Referring to FIG. 2 to FIG. 4, the embodiment of the present invention provides a line heat source 20, which includes a linear substrate 202. A reflective layer 210 is disposed on the surface of the linear substrate 202. A heating layer 204 is disposed at the surface. The surface of the reflective layer 210 is disposed on the surface of the heating layer 204 and electrically connected to the heating layer 204; and an insulating protective layer 208 is disposed on the surface of the heating layer 204. The length of the line heat source 20 is not limited, and the diameter is from 0.1 micrometer to 1.5 centimeters. The diameter of the line heat source 20 of the present embodiment is preferably 1.1 mm to 1.1 cm.

所述線狀基底202起支撐作用,其材料可為硬性材料,如:陶瓷、玻璃、樹脂、石英等,亦可選擇柔性材料,如:塑膠或柔性纖維等。當線狀基底202為柔性材料時,該線熱源20使用時可根據需要彎折成任意形狀。所述線狀基底202的長度、直徑及形狀不限,可依據實際需要進行選擇。本實施例優選的線狀基底202為一陶瓷桿,其直徑為1毫米~1厘米。 The linear substrate 202 serves as a supporting material, and the material thereof may be a hard material such as ceramics, glass, resin, quartz, etc., and a flexible material such as plastic or flexible fiber may also be selected. When the linear substrate 202 is a flexible material, the linear heat source 20 can be bent into any shape as needed when used. The length, diameter and shape of the linear substrate 202 are not limited, and may be selected according to actual needs. The preferred linear substrate 202 of this embodiment is a ceramic rod having a diameter of from 1 mm to 1 cm.

所述反射層210的材料為一白色絕緣材料,如:金屬氧化物、金屬鹽或陶瓷等。本實施例中,反射層210的材料優選為三氧化二鋁,其厚度為100微米~0.5毫米。該反射層210通過濺射的方法沈積於該線狀基底202表面。所述反射層210用來反射加熱層204所發的熱量,使其有效的散發到外界空間去,故,該反射層210為一可選擇結構。 The material of the reflective layer 210 is a white insulating material such as a metal oxide, a metal salt or a ceramic. In this embodiment, the material of the reflective layer 210 is preferably aluminum oxide, and the thickness thereof is 100 micrometers to 0.5 millimeters. The reflective layer 210 is deposited on the surface of the linear substrate 202 by sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 204 to be effectively radiated to the external space. Therefore, the reflective layer 210 is an optional structure.

所述奈米碳管長線可通過直接拉伸一奈米碳管陣列獲得或拉伸一奈米碳管陣列後經過扭轉紡紗獲得。所述奈米碳管長線的直徑為1奈米~100微米,其長度不限,可根據實際需求製得。請參見圖5及圖6,所述奈米碳管長線包括複數個首尾相連的奈米碳管束平行地組成的束狀結構或由複數個首尾相連的奈米碳管束相互扭轉組成的絞線結構。該相鄰的奈米碳管束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括複數個平行排列的奈米碳管。所述奈米碳管長線中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。所述奈米碳管的長度大於100微米。本實施例中,該奈米碳管的長度優選為200~900微米。 The long carbon nanotube wire can be obtained by directly stretching a carbon nanotube array or stretching a carbon nanotube array and then twisting and spinning. The long diameter of the carbon nanotubes is from 1 nm to 100 μm, and the length thereof is not limited, and can be prepared according to actual needs. Referring to FIG. 5 and FIG. 6 , the long carbon nanotube line includes a bundle structure in which a plurality of end-to-end carbon nanotube bundles are parallel or a twisted wire structure composed of a plurality of end-to-end carbon nanotube bundles twisted to each other. . The adjacent carbon nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes arranged in parallel. The carbon nanotubes in the long line of the carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano. The length of the carbon nanotubes is greater than 100 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm.

當加熱層204包括複數個奈米碳管長線時,該複數個奈米碳管長線相互平行或交叉設置於反射層210的表面。由於奈米碳管長線包括複數個首尾相連的奈米碳管束平行地組成的束狀結構或由複數個首尾相連的奈米碳管束相互扭轉組成的絞線結構,故,具有一定的柔韌性。故,該加熱層204可彎曲折疊成任意形狀而不破裂。 When the heating layer 204 includes a plurality of long carbon nanotube long lines, the plurality of carbon nanotube long lines are disposed parallel or intersecting each other on the surface of the reflective layer 210. Since the long carbon nanotube line includes a bundle structure in which a plurality of end-to-end carbon nanotube bundles are formed in parallel or a twisted wire structure composed of a plurality of end-to-end connected carbon nanotube bundles twisted each other, it has a certain flexibility. Therefore, the heating layer 204 can be bent and folded into any shape without breaking.

本實施例將一奈米碳管長線緊密的纏繞於所述反射層210的表面作為加熱層204。該加熱層204的厚度為100微米。 In this embodiment, a long carbon nanotube wire is tightly wound around the surface of the reflective layer 210 as the heating layer 204. The heating layer 204 has a thickness of 100 microns.

所述電極206可設置於加熱層204的同一表面上也可設置於加熱層204的不同表面上。所述電極206可通過奈米碳管層的黏性或導電黏結劑(圖未示)設置於該加熱層204的表面上。導電黏結劑實現電極206與奈米碳管層電接觸的同時,還可將電極206更好地固定 於奈米碳管層的表面上。通過該兩個電極206可對加熱層204施加電壓。其中,兩個電極206之間相隔設置,以使採用奈米碳管層的加熱層204通電發熱時接入一定的阻值避免短路現象產生。優選地,由於線狀基底202直徑較小,兩個電極206間隔設置於線狀基底202的兩端,並環繞設置於加熱層204的表面。 The electrodes 206 may be disposed on the same surface of the heating layer 204 or on different surfaces of the heating layer 204. The electrode 206 may be disposed on the surface of the heating layer 204 through a viscous or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive achieves electrical contact between the electrode 206 and the carbon nanotube layer, and the electrode 206 can be better fixed. On the surface of the carbon nanotube layer. A voltage can be applied to the heating layer 204 through the two electrodes 206. Wherein, the two electrodes 206 are spaced apart from each other so as to connect a certain resistance value when the heating layer 204 using the carbon nanotube layer is energized to avoid short circuit. Preferably, since the linear substrate 202 has a small diameter, the two electrodes 206 are spaced apart from both ends of the linear substrate 202 and surround the surface of the heating layer 204.

所述電極206為導電薄膜、金屬片或者金屬引線。該導電薄膜的材料可為金屬、合金、銦錫氧化物(ITO)、銻錫氧化物(ATO)、導電銀膠、導電聚合物等。該導電薄膜可通過物理氣相沈積法、化學氣相沈積法或其他方法形成於加熱層204表面。該金屬片或者金屬引線的材料可為銅片或鋁片等。該金屬片可通過導電黏結劑固定於加熱層204表面。 The electrode 206 is a conductive film, a metal sheet or a metal lead. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer, or the like. The conductive film may be formed on the surface of the heating layer 204 by physical vapor deposition, chemical vapor deposition, or the like. The material of the metal piece or the metal lead may be a copper piece or an aluminum piece or the like. The metal sheet may be fixed to the surface of the heating layer 204 by a conductive adhesive.

所述電極206還可為一奈米碳管結構。該奈米碳管結構包裹或纏繞於反射層210的表面。該奈米碳管結構可通過其自身的黏性或導電黏結劑固定於反射層210的表面。該奈米碳管結構包括定向排列且均勻分佈的金屬性奈米碳管。具體地,該奈米碳管結構包括至少一有序奈米碳管薄膜或至少一奈米碳管長線。由於本實施例中的加熱層204也採用奈米碳管結構,故,電極206與加熱層204之間具有較小的歐姆接觸電阻,可提高線熱源20對電能的利用率。 The electrode 206 can also be a carbon nanotube structure. The carbon nanotube structure is wrapped or wound around the surface of the reflective layer 210. The carbon nanotube structure can be fixed to the surface of the reflective layer 210 by its own viscous or conductive adhesive. The carbon nanotube structure includes aligned and uniformly distributed metallic carbon nanotubes. Specifically, the carbon nanotube structure comprises at least one ordered carbon nanotube film or at least one nano carbon tube long line. Since the heating layer 204 in this embodiment also adopts a carbon nanotube structure, the electrode 206 and the heating layer 204 have a small ohmic contact resistance, which can improve the utilization of the electric energy by the line heat source 20.

本實施例中,由於本實施例中的加熱層204由一奈米碳管長線纏繞形成,故,奈米碳管長線的兩端可作為電極使用,而無需專門設置兩個電極206。 In this embodiment, since the heating layer 204 in the present embodiment is formed by winding a long carbon nanotube, the two ends of the long carbon nanotube can be used as an electrode without separately providing two electrodes 206.

所述絕緣保護層208的材料為一絕緣材料,如:橡膠、樹脂等。所述絕緣保護層208厚度不限,可根據實際情況選擇。本實施例 中,該絕緣保護層208的材料採用橡膠,其厚度為0.5~2毫米。該絕緣保護層208可通過塗敷或包裹的方法形成於加熱層204的表面。所述絕緣保護層208用來防止該線熱源20使用時與外界形成電接觸,同時還可防止加熱層204中的奈米碳管層吸附外界雜質。該絕緣保護層208為一可選擇結構。 The material of the insulating protective layer 208 is an insulating material such as rubber, resin or the like. The thickness of the insulating protection layer 208 is not limited and may be selected according to actual conditions. This embodiment The material of the insulating protective layer 208 is made of rubber and has a thickness of 0.5 to 2 mm. The insulating protective layer 208 may be formed on the surface of the heating layer 204 by a coating or wrapping method. The insulating protective layer 208 is used to prevent the line heat source 20 from making electrical contact with the outside when in use, and also prevents the carbon nanotube layer in the heating layer 204 from adsorbing external impurities. The insulating protective layer 208 is an optional structure.

本實施例中,將直徑為100微米的奈米碳管長線纏繞於一直徑為1厘米的線狀基底202上,且其位於兩個電極206之間的長度為3厘米。電流沿著奈米碳管長線的纏繞方向流入。測量儀器為紅外測溫儀AZ-8859。當施加電壓於1伏~20伏,加熱功率為1瓦~40瓦時,奈米碳管長線的表面溫度為50℃~500℃。可見,該奈米碳管結構具有較高的電熱轉換效率。對於具有黑體結構的物體來說,其所對應的溫度為200℃~450℃時就能發出人眼看不見的熱輻射(紅外線),此時的熱輻射最穩定、效率最高,所產生的熱輻射熱量最大。 In the present embodiment, a long carbon nanotube having a diameter of 100 μm was wound around a linear substrate 202 having a diameter of 1 cm, and its length between the two electrodes 206 was 3 cm. The current flows in the winding direction of the long line of the carbon nanotubes. The measuring instrument is an infrared thermometer AZ-8859. When the applied voltage is between 1 volt and 20 volts and the heating power is 1 watt to 40 watts, the surface temperature of the long carbon nanotube line is 50 ° C to 500 ° C. It can be seen that the carbon nanotube structure has high electrothermal conversion efficiency. For an object with a black body structure, the corresponding temperature of 200 ° C ~ 450 ° C can emit heat radiation (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient, and the heat radiation is generated. The largest amount.

該線熱源20使用時,可將其設置於所要加熱的物體表面或將其與被加熱的物體間隔設置,利用其熱輻射即可進行加熱。另,還可將複數個該線熱源20排列成各種預定的圖形使用。該線熱源20可廣泛應用於電加熱器、紅外治療儀、電暖器等領域。 When the line heat source 20 is used, it can be placed on the surface of the object to be heated or placed at an interval from the object to be heated, and can be heated by the heat radiation. Alternatively, a plurality of the line heat sources 20 may be arranged for use in various predetermined patterns. The line heat source 20 can be widely used in the fields of electric heaters, infrared therapeutic devices, electric heaters and the like.

本實施例中,由於奈米碳管具有奈米級的直徑,使得製備的奈米碳管結構可具有較小的厚度,故,採用小直徑的線狀基底可製備微型線熱源。奈米碳管具有強的抗腐蝕性,使其可於酸性環境中工作。而且,奈米碳管具有極強的穩定性,即使於3000℃以上高溫的真空環境下工作而不會分解,使該線熱源20適合於真空高溫下工作。另,奈米碳管比同體積的鋼強度高100倍,重量卻只有 其1/6,故,採用奈米碳管的線熱源20具有更高的強度及更輕的重量。 In the present embodiment, since the carbon nanotubes have a diameter of a nanometer order, the prepared carbon nanotube structure can have a small thickness, and therefore, a microwire heat source can be prepared by using a small-diameter linear substrate. The carbon nanotubes have strong corrosion resistance, making them work in an acidic environment. Moreover, the carbon nanotubes have extremely high stability, and do not decompose even when working in a vacuum environment at a high temperature of 3000 ° C or higher, so that the line heat source 20 is suitable for operation under vacuum high temperature. In addition, the carbon nanotubes are 100 times stronger than the same volume of steel, but the weight is only Its 1/6, therefore, the line heat source 20 using a carbon nanotube has higher strength and lighter weight.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

20‧‧‧線熱源 20‧‧‧Wire heat source

202‧‧‧線狀基底 202‧‧‧Linear substrate

204‧‧‧加熱層 204‧‧‧heating layer

206‧‧‧電極 206‧‧‧ electrodes

208‧‧‧絕緣保護層 208‧‧‧Insulating protective layer

210‧‧‧反射層 210‧‧‧reflective layer

Claims (17)

一種線熱源包括一線狀基底,一加熱層設置於線狀基底的表面,及兩個電極間隔設置,並分別與該加熱層電連接,其改良在於,所述加熱層包括至少一奈米碳管長線,且所述兩個電極通過該奈米碳管長線電連接。 A line heat source includes a linear substrate, a heating layer is disposed on a surface of the linear substrate, and two electrodes are spaced apart and electrically connected to the heating layer respectively, wherein the heating layer comprises at least one carbon nanotube length a wire, and the two electrodes are electrically connected through the long carbon nanotube line. 如請求項第1項所述的線熱源,其中,所述至少一奈米碳管長線纏繞於線狀基底的表面。 The line heat source of claim 1, wherein the at least one carbon nanotube long wire is wound around a surface of the linear substrate. 如請求項第1項所述的線熱源,其中,所述加熱層包括複數個奈米碳管長線平行或交叉設置於線狀基底的表面。 The line heat source of claim 1, wherein the heating layer comprises a plurality of carbon nanotube long lines that are parallel or intersecting on a surface of the linear substrate. 如請求項第1項所述的線熱源,其中,所述奈米碳管長線的直徑為1奈米~100微米。 The line heat source according to claim 1, wherein the long diameter of the carbon nanotubes is from 1 nm to 100 μm. 如請求項第1項所述的線熱源,其中,所述奈米碳管長線包括複數個首尾相連的奈米碳管束平行地組成的束狀結構或由複數個首尾相連的奈米碳管束相互扭轉組成的絞線結構,相鄰的奈米碳管束之間通過凡德瓦爾力緊密結合,且該奈米碳管束包括複數個平行排列的奈米碳管。 The line heat source of claim 1, wherein the long carbon nanotube line comprises a bundle of a plurality of end-to-end carbon nanotube bundles in parallel or a plurality of end-to-end carbon nanotube bundles The twisted wire structure is twisted, and the adjacent carbon nanotube bundles are tightly coupled by van der Waals force, and the carbon nanotube bundle includes a plurality of parallel arranged carbon nanotubes. 如請求項第5項所述的線熱源,其中,所述的奈米碳管的長度大於100微米,直徑小於50奈米。 The line heat source of claim 5, wherein the carbon nanotubes have a length greater than 100 microns and a diameter less than 50 nanometers. 如請求項第1項所述的線熱源,其中,所述奈米碳管長線通過其自身的黏性或導電黏結劑固定於加熱層的表面。 The line heat source of claim 1, wherein the long carbon nanotube wire is fixed to the surface of the heating layer by its own viscous or conductive adhesive. 如請求項第1項所述的線熱源,其中,所述兩個電極設置於加熱層的表面。 The line heat source of claim 1, wherein the two electrodes are disposed on a surface of the heating layer. 如請求項第1項所述的線熱源,其中,所述電極為一導電薄膜、金屬片、金屬引線或奈米碳管結構。 The line heat source of claim 1, wherein the electrode is a conductive film, a metal piece, a metal lead or a carbon nanotube structure. 如請求項第9項所述的線熱源,其中,所述奈米碳管結構包括定向排列且 均勻分佈的金屬性奈米碳管。 The line heat source of claim 9, wherein the carbon nanotube structure comprises an alignment arrangement and Uniformly distributed metallic carbon nanotubes. 如請求項第9項所述的線熱源,其中,所述奈米碳管結構包括至少一有序奈米碳管薄膜或至少一奈米碳管長線。 The line heat source of claim 9, wherein the carbon nanotube structure comprises at least one ordered carbon nanotube film or at least one carbon nanotube long line. 如請求項第9項所述的線熱源,其中,所述奈米碳管結構包裹或纏繞於加熱層的表面。 The line heat source of claim 9, wherein the carbon nanotube structure is wrapped or wound around a surface of the heating layer. 如請求項第1項所述的線熱源,其中,所述奈米碳管結構通過其自身的黏性或導電黏結劑固定於加熱層的表面。 The line heat source of claim 1, wherein the carbon nanotube structure is fixed to the surface of the heating layer by its own viscous or conductive adhesive. 如請求項第1項所述的線熱源,其中,所述線狀基底的材料為柔性材料或硬性材料,且所述柔性材料為塑膠或柔性纖維,所述硬性材料為陶瓷、玻璃、樹脂、石英。 The linear heat source according to claim 1, wherein the material of the linear substrate is a flexible material or a rigid material, and the flexible material is a plastic or a flexible fiber, and the hard material is ceramic, glass, resin, quartz. 如請求項第1項所述的線熱源,其中,所述線熱源進一步包括一反射層設置於加熱層與線狀基底之間,且該反射層的材料為金屬氧化物、金屬鹽或陶瓷,厚度為100微米~0.5毫米。 The line heat source of claim 1, wherein the line heat source further comprises a reflective layer disposed between the heating layer and the linear substrate, and the material of the reflective layer is a metal oxide, a metal salt or a ceramic. The thickness is from 100 microns to 0.5 mm. 如請求項第1項所述的線熱源,其中,所述線熱源進一步包括一絕緣保護層設置於所述加熱層的外表面。 The line heat source of claim 1, wherein the line heat source further comprises an insulating protective layer disposed on an outer surface of the heating layer. 如請求項第1項所述的線熱源,其中,所述線熱源的直徑為0.1微米~1.5厘米。 The line heat source of claim 1, wherein the line heat source has a diameter of 0.1 μm to 1.5 cm.
TW097128297A 2008-07-25 2008-07-25 Linear heater TWI448417B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097128297A TWI448417B (en) 2008-07-25 2008-07-25 Linear heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097128297A TWI448417B (en) 2008-07-25 2008-07-25 Linear heater

Publications (2)

Publication Number Publication Date
TW201004861A TW201004861A (en) 2010-02-01
TWI448417B true TWI448417B (en) 2014-08-11

Family

ID=44826073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128297A TWI448417B (en) 2008-07-25 2008-07-25 Linear heater

Country Status (1)

Country Link
TW (1) TWI448417B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200715334A (en) * 2005-10-14 2007-04-16 Hon Hai Prec Ind Co Ltd Electron emission device
TWI346711B (en) * 2007-12-14 2011-08-11 Hon Hai Prec Ind Co Ltd Method of making magnesium matrix nanotube composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200715334A (en) * 2005-10-14 2007-04-16 Hon Hai Prec Ind Co Ltd Electron emission device
TWI346711B (en) * 2007-12-14 2011-08-11 Hon Hai Prec Ind Co Ltd Method of making magnesium matrix nanotube composite material

Also Published As

Publication number Publication date
TW201004861A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
TWI486090B (en) Hollow heating source
CN101616515B (en) Linear heat source
CN101610613B (en) Line heat source
CN101616513B (en) Linear heat source
TWI448417B (en) Linear heater
CN101636004B (en) Plane heat source
CN101616514B (en) Linear heat source
TWI386363B (en) Linear heater
TWI427027B (en) Hollow heating source
TWI380729B (en) Linear heater
TWI462630B (en) Planar heating source
TWI380728B (en) Linear heater
TWI360521B (en) Planar heat source
TWI473524B (en) Hollow heating source
TWI462628B (en) Planar heating source
CN101616512B (en) Line heat source
TW201000395A (en) Linear heater
TWI462627B (en) Hollow heating source
TWI380733B (en) Planar heating source
TWI466585B (en) Hollow heating source
TWI380734B (en) Linear heater
CN101616516B (en) Line heat source
TWI465145B (en) Hollow heating source
TWI380731B (en) Planar heating source
TWI380732B (en) Planar heating source