TWI380731B - Planar heating source - Google Patents

Planar heating source Download PDF

Info

Publication number
TWI380731B
TWI380731B TW97130301A TW97130301A TWI380731B TW I380731 B TWI380731 B TW I380731B TW 97130301 A TW97130301 A TW 97130301A TW 97130301 A TW97130301 A TW 97130301A TW I380731 B TWI380731 B TW I380731B
Authority
TW
Taiwan
Prior art keywords
heat source
layer
surface heat
carbon nanotube
heating layer
Prior art date
Application number
TW97130301A
Other languages
Chinese (zh)
Other versions
TW201008357A (en
Inventor
Chang-Hong Liu
Ding Wang
Shou-Shan Fan
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97130301A priority Critical patent/TWI380731B/en
Publication of TW201008357A publication Critical patent/TW201008357A/en
Application granted granted Critical
Publication of TWI380731B publication Critical patent/TWI380731B/en

Links

Description

1380731. 101年10月18日梭正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種面熱源,尤其涉及一種基於奈米碳管的 面熱源。 , 【先前技術】 [0002] 熱源在人們的生產、生活、科研中起著重要的作用。面 熱源係熱源的一種,其特點為面熱源具有一平面結構, 將待加熱物體置於該平面結構的上方對物體進行加熱, 故,面熱源可對待加熱物體的各個部位同時加熱,加熱 面廣、加熱均勻且效率較高。面熱源已成功用於工業領 域、科研領域或生活領域等,如電加熱器、紅外治療儀 、電暖器等。 [0003] 先前面熱源一般包括一加熱層和至少兩個電極,該至少 兩個電極設置於該加熱層的表面,並與該加熱層的表面 電連接。當連接加熱層上的電極通入低電壓電流時,熱 量立刻從加熱層釋放.出來。現在市售的面熱源通常採用 金屬製成的電熱絲作為加熱層進行電熱轉換。然而,電 熱絲的強度不高易於折斷,特別係彎曲或繞折成一定角 度時,故應用受到限制。另,以金屬製成的電熱絲所產 生的熱量係以普通波長向外輻射的,其電熱轉換效率不 高不利於節省能源。 [0004] 非金屬碳纖維導電材料的發明為面熱源的發展帶來了突 破。採用碳纖維的加熱層通常在碳纖維外部塗覆一層防 水的絕緣層用作電熱轉換的元件以代替金屬電熱絲。由 於碳纖維具有較好的韌性,這在一定程度上解決了電熱 097誦产單編號應01 第3頁/共18頁 1013399288-0 1380731 101年10月18日核ΪΕ替換頁 絲強度不高易折斷的缺點。然而,由於碳纖維仍係以普 通波長向外散熱,故並未解決電熱轉換率低的問題。為 解決上述問題,採用碳纖維的加熱層一般包括多根碳纖 維熱源線鋪設而成*。該礙纖維熱源線為一外表包裹有化 纖或者棉線的導電芯線。該化纖或者棉線的外面浸塗一 層防水阻燃絕緣材料。所述導電芯線由多根碳纖維與多 根表面黏塗有遠紅外塗料的棉線纏繞而成。導電芯線中 加入黏塗有遠紅外塗料的棉線,一來可增強芯線的強度 ,二來可使通電後碳導纖維發出的熱量能以紅外波長向 外輕射。 [0005] 然而,採用碳纖維紙作為加熱層具有以下缺點:第一, 碳纖維強度不夠大,柔性不夠好,容易破裂,需要加入 棉線提高碳纖維的強度,限制了其應有範圍;第二,碳 纖維本身的電熱轉換效率較低,需加入黏塗有遠紅外塗 料的棉線提高電熱轉換效率,不利於節能環保;第三, 需先製成碳纖維熱源線再製成加熱層,不利於大面積製 作,不利於均勻性的要求,同時,不利於微型面熱源的 製作》 [0006] 有鑒於此,提供一種具有強度大,電熱轉換效率較高, 有利於節省能源且發熱均勻,大小可控,可製成大面積 或者微型的面熱源實為必要。 【發明内容】 [0007] 一種面熱源,該面熱源包括一第一電極、一第二電極和 一加熱層。所述第一電極和第二電極間隔設置於該加熱 層上,並與該加熱層電接觸。該加熱層包括一奈米碳管 單编號删1 第4頁/共18頁 1013399288-0 Γ380731. 1101 年.10 月 層,且該奈米嫂管層包括各向同性'沿一固定方向取向 或不同方向取向擇優排列的複數個奈米碳管。 [0008] 相較與先前技術,所述之面熱源具有以下優點:第一, 奈米碳管可方便地製成任意尺寸的奈米碳管層,既可應 用於宏觀領域也可應用於微觀領域。第二,奈米碳管比 碳纖維具有更小的密度,故’採用奈米碳管層的面熱源 具有更輕的重量,使用方便。第三’奈米碳管層的電熱 轉換效率高,熱阻率低,故該面熱源具有升溫迅速、熱 滯後小、熱交換速度快的特點。第四’所述之奈米碳管 層可通過碾壓奈米碳管陣列直接獲得,易於製備,成本 較低。 【實施方式】 [0009] 以下將結合附圖詳細說明本技術方案面熱源。 [0010] 請參閱圖1及圖2,本技術方案實施例提供一種面熱源10 ,該面熱源10包括一基底18、一反射層17、一加熱層16 、一第一電極12、一第二電極14和一絕緣保護層15。所 述反射層17設置於基底18的表面。所述加熱層16設置於 所述反射層17的表面。所述第一電極12和第二電極14間 隔設置,並與該加熱層16電接觸’用於使所述加熱層16 中流過電流《所述絕緣保護層15設置於所述加熱層16的 表面,並將所述第一電極12和第二電極14覆蓋,用於避 免所述加熱層16吸附外界雜質。 [0011] 0打13〇3〇产單蝙號A0101 所述基底18形狀不限,其具有一表面用於支撐加熱層16 或者反射層17。優選地,所述基底18為一板狀基底,其 材料可為硬性材料,如:陶瓷、玻璃、樹脂、石英等, 第 5 頁 / 共 18 頁 1013399288-0 1380731 --·~_ 101年.10月18日梭正替换頁 亦可選擇柔性材料,如:塑膠或柔性纖維等。當為柔性 材料時,該面熱源10在使用時可根據需要彎折成任意形 狀。其中,基底18的大小不限,可依據實際需要進行改 變。本實施例優選的基底18為一陶瓷基板。 [0012] 所述反射層17的設置用來反射加熱層16所發的熱量,從 而控制加熱的方向,用於單面加熱,並進一步提高加熱 的效率。所述反射層17的材料為一白色絕緣材料,如: 金屬氧化物、金屬鹽或陶瓷等。本實施例中,反射層17 為三氧化二鋁層,其厚度為100微米~0. 5毫米。該反射層 17可通過濺射或其他方法形成於該基底18表面。可以理 解,所述反射層17也可設置在基底18遠離加熱層16的表 面,即所述基底18設置於所述加熱層16和所述反射層17 之間,進一步加強反射層17反射熱量的作用。所述反射 層17為一可選擇的結構。所述加熱層16可直接設置在基 底18的表面,此時面熱源10的加熱方向不限,可用於雙 面加熱。 [0013] 所述加熱層16包括一奈米碳管層,該奈米碳管層本身具 有一定的黏性,可利用本身的黏性設置於基底18的表面 ,也可通過黏結劑設置於基底18的表面。所述之黏結劑 . 為矽膠。該奈米碳管層的長度、寬度和厚度不限,可根 據實際需要選擇。 [0014] 所述奈米碳管層包括均勻分佈的奈米碳管。該奈米碳管 層中的奈米碳管與奈米碳管層的表面成一夾角α,其中 ,α大於等於零度且小於等於15度(OS α $15°)。優選 地,所述奈米碳管層中的奈米碳管平行於奈米碳管層的 __产單編號删1 第6頁/共18頁 1013399288-0 Γ380731. 101年.10月18日 表 U不米兔官層可通過礙壓一奈米碳管陣列製備, 依據礙壓的方式不同,該奈米碳管層中的奈米碳管具有 不同的排列形式。具體地,奈米碳管可各向同性排列; 當沿f同方向時,奈米碳管沿不同方向擇優取向排 歹J。月參閱圖3 ;當沿同一方向礙壓時,奈米碳管沿一固 疋方向擇優取向排列,請參閱圖4。所述奈米碳管層中的 奈米碳管部分交疊。所述奈米碳管層中奈米碳管之間通 過凡德瓦爾力相互吸引,緊密結合,使得該奈米碳管層 具有报好的柔巍,可彎曲折疊成任意形狀而不破裂。 _]該奈米碳管層巾的奈米碳管包括單壁奈米碳管、雙壁奈 米炭S及夕壁奈米碳管中的一種或多種。所述單壁奈米 碳管的直徑為0.5奈米〜10奈米,雙壁奈米碳管的直徑為J '丁、米15不米’多壁奈米碳管的直徑為J 5奈求~ 5 〇奈米 。該奈米碳管的長度大於5G微米。奈米碳管的長度大於 50微米,優選地,奈米碳管的長度為2〇〇〜9〇〇微米。 _]該奈米碳管層的面積和厚度不限,可根據實際需要選擇 。該奈米破管層的面積與奈米碳管陣朗生長的基底的 尺寸有關。該奈米碳管層厚度與奈米碳管陣列的高度以 及碾壓的壓力有關,可為i微米〜丨毫米。可以理解,奈米 碳官陣列的咼度越大而施加的壓力越小,則製備的奈米 碳管層的厚度越大;反之,奈米碳管陣列的高度越小而 施加的壓力越大,則製備的奈米碳管層的厚度越小。可 以理解,奈米碳管層的熱回應速度與其厚度有關。在相 同面積的情況下,奈米碳管層的厚度越大,熱回應速度 越fe,反之,奈米碳管層的厚度越小,熱回應速度越快 097130301^單編號 A0101 第7頁/共18頁 1013399288-0 1380731 101年.10月18日核ΪΕ替换i 〇 [0017] 本實施例中,加熱層16採用厚度為1〇〇微米的奈米碳管層 。該奈米碳管層的長度為5厘米,奈米碳管層的寬度為3 厘米。利用奈米碳管層本身的黏性,將該奈米碳管層設 置於基底18的表面。 [0018] 所述第一電極12和第二電極14由導電材料組成,該第一 電極12和第—電極14的形狀不限,可為導電薄膜、金屬 片或者金屬引線》優選地,第一電極12和第二電極14均 為一層導電薄膜。該導電薄膜的厚度為〇. 5奈米〜1〇〇微米 。該導電薄膜的材料可為金屬、合金、銦錫氧化物(IT〇 )、銻錫氧化物(ΑΤΟ)、導電銀膠、導電聚合物或導電 性奈米碳管等。該金屬或合金材料可為鋁、銅、鎢、鉬 金鈦、鉉、鈀、铯或其任意組合的合金。本實施例 中,所述第一電極12和第二電極14的材料為金屬鈀膜, 厚度為5奈米。所述金屬鈀與奈米碳管具有較好的潤濕效 果,有利於所述第一電極12及第二電極14與所述加熱層 1 6之間形成良好的電接觸,減少歐姆接觸電阻。 [0019] 所述之第一電極〗2和第二電極14間隔設置,並分別與加 熱層16電連接,可設置在加熱層π的同一表面上也可設 置在加熱層16的不同表面上。其中,第一電極12和第二 電極14間隔設置,以使加熱層16應用於面熱源1〇時接入 一定的阻值避免鈕路現象產生。由於作為加熱層16的奈 米碳管層本身有裉好的黏附性’故第一電極丨2和第二電 極14直接就可與奈米碳管層之間形成很好的電接觸。 09713030^單編號 Α0101 第8頁/共18頁 1013399288-0 Γ 380731. __ 101年10月18日慘正替换頁 [0020] 另,所述之第一電極12和第二電極14也可通過一導電黏 結劑(圖未示)設置於該加熱層16的表面上,導電黏結劑 在實現第一電極12和第二電極14與加熱層16電接觸的同 時,還可將所述第一電極12和第二電極14更好地固定於 加熱層16的表面上。本實施例優選的導電黏結劑為銀膠 〇 [0021] 可以理解,第-電極12和第二電極14的結構和材料均不 限,其設置目的係為了使所述加熱層丨6中流過電流。故 ’所述第-電極12和第二電極14只需要導電,並與所述 加熱層16之間形成電接觸都在本發明的保護範圍内。 闕所述絕緣保護層15為-可選擇結構,其材料為一絕緣材 料,如:橡膠、樹脂等。所述絕緣保護層15厚度不限, 可根據實際情況選擇。所述絕緣保言蔓層15覆蓋於所述第 -電極12、第二電極η和加熱層16之上,可使該面熱源 ίο在絕緣狀態下使用,同時還可避免所述加熱層16中的 奈米碳管吸附外界雜質。本實施例中,該絕緣保護川 的材料為橡膠,其厚度為〇. 5~2毫求。 [0023]本技術方案實施例的面熱源10在使用時,可先將面熱源 ‘ 1G的第-電極12和第二電極14連接導線後接人電源。在 接入電源後熱源10中的奈米碳管層即可輻射出一定波長 範圍的電磁波。所述面熱源10可與待加熱物體的表面直 接接觸。或者’由於本實施例中作為加熱層_夺米碳 管層中的奈米碳管具有良好的導電性能,且該奈米碳管 層本身已經具有-定的自支樓性及穩定性,所述面熱源 10可與待加熱物體相隔一定的距離設置。 〇9713〇3〇产單編號A0101 第9頁/共is頁 1013399288-0 1380731 年10月18日梭ΪΕ番換 [0024] 本技術方案實施例中的面熱源1 〇在奈米碳管層的面積大 小一定時,可通過調節電源電壓大小和加熱層16的厚度 ,可輻射出不同波長範圍的電磁波。電源電壓的大小一 定時,加熱層16的厚度和面熱源1〇輻出電磁波的波長的 變化趨勢相反。即當電源電壓大小一定時,加熱層16的 厚度越厚,面熱源10輻出電磁波的波長越短,該面熱源 10可產生一可見光熱輻射;加熱層16的厚度越薄,面熱 源10轄出電磁波的波長越長,該面熱源1 〇可產生一紅外 線熱輻射。加熱層16的厚度一定時,電源電壓的大小和 面熱源10輻出電磁波的波長成反比。即當加熱層16的厚 度一定時,電源電壓越大,面熱源1〇輕出電磁波的波長 越短,該面熱源10可產生一可見光熱輻射;電源電壓越 小,面熱源10輻出電磁波的波長越長,該面熱源1〇可產 生一紅外熱輻射。 [0025] 奈米碳管具有良好的導電性能以及熱穩定性,且作為一 理想的黑體結構,具有比較高的熱輻射效率。將該面熱 源10暴露在氧化性氣體或者大氣的環境中,其中奈米碳 官層厚度為1毫米,通過在10伏〜30伏調節電源電麼,該 面熱源1 0可輻射出波長較長的電磁波。通過溫度測量儀 發現該面熱源10的溫度為5(TC~50(rc。對於具有黑體結 構的物體來說’其所對應的溫度為2〇〇它〜450。〇時就能發 出人眼看不見的熱輻射(紅外線),此時的熱輻射最穩 定、效率最高。應用奈米碳管層製成的發熱元件,可應 用於電加熱器、紅外治療儀、電暖器等領域。 [0026] 進一步地’將本技術方案實施例中的面熱源1〇放入一真 _030产單编號删1 第10頁/共18頁 1013399288-0 1^80731. ^ , 101年.10月 18 日 i裝置中,通過在8〇伏〜15〇伏調節 ^ , 电源電壓,該面熱源 i〇 了輻射出波長較短的電磁波。當 ,兮工扭Ε 电/原電壓大於150伏時 该面熱源10陸續會發出紅光、黃 户屯丨〜至改 、%寺可見光。通過溫 發現該面熱源1Q的溫度可軸15_以上此 :會產生-普通熱輻射。隨著電源電壓的進—步增大, 忒面熱源10還能產生殺死細菌 外尖)__ 耵人眼看不見的射線(紫 光),可應用於光源、顯示器件等領域。 [0027] :述之面熱源具有以下優點:第一,由於奈米碳管具有 較好的強度及祕奈米碳管層柔性較好,不易破裂使 其具有較長的使用壽命。第二,太 不 '水奴管層中的奈米碳 &均句分佈,故具有均勻的厚度及電阻,發轨均勻,奈 米碳管的電熱轉換效率高’故該面熱源具有升溫迅速、 :滯後小、熱交換速度快、輻射效率高的特點。第三, 2米碳管的直徑較小’使得奈米碳管層具有較小的面積 或厚度’可製備微型面熱源,應用於微型器件的加熱β 第四’所述之奈米碳管層可通過礙壓奈米碳管陣列直接 獲得,易於製備,成本較低。 _]综上所述,本發明確己符合發料狀要件遂依法提 出專利中請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 _]圖1係本技術方案實施例提供的面熱源的結構示意圖。 [0030]圖2係圖1的Π - Π剖面示意圖。 _«^單编號删1 第11頁/共18 i 1380731 101年10月18日修ΪΕ替換★ [0031] 圖3為本技術方案實施例提供的包括沿不同方向擇優取向 排列的奈米碳管的奈米碳管層的掃描電鏡照片。 [0032] 圖4為本技術方案實施例提供的包括沿同一方向擇優取向 排列的奈米碳管的奈米碳管層的掃描電鏡照片。 【主要元件符號說明】 [0033] 面熱源:1 0 [0034] 第一電極:12 [0035] 第二電極:14 [0036] 絕緣保護層:15 [0037] 加熱層:16 [0038] 反射層:17 [0039] 基底:18 _3_产單编號Α〇101 第12頁/共18頁 1013399288-01380731. On October 18, 101, the shuttle is replacing the page. 6. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a surface heat source, and more particularly to a surface heat source based on a carbon nanotube. [Prior Art] [0002] Heat sources play an important role in people's production, life, and research. The surface heat source is a heat source, which is characterized in that the surface heat source has a planar structure, and the object to be heated is placed above the planar structure to heat the object, so that the surface heat source can simultaneously heat various parts of the object to be heated, and the heating surface is wide. Uniform heating and high efficiency. Surface heat sources have been successfully used in industrial fields, scientific research fields or living areas, such as electric heaters, infrared therapeutic devices, and electric heaters. The front front heat source generally includes a heating layer and at least two electrodes disposed on a surface of the heating layer and electrically connected to a surface of the heating layer. When the electrode connected to the heating layer is supplied with a low voltage current, the heat is immediately released from the heating layer. Commercially available surface heat sources are usually electrothermally converted using a heating wire made of metal as a heating layer. However, the strength of the heating wire is not high and it is easy to break, especially when it is bent or folded into a certain angle, so the application is limited. In addition, the heat generated by the heating wire made of metal is radiated outward at a normal wavelength, and the electrothermal conversion efficiency is not high, which is disadvantageous for saving energy. [0004] The invention of non-metallic carbon fiber conductive materials has brought about a breakthrough in the development of surface heat sources. A heating layer using carbon fibers is usually coated with a water-repellent insulating layer on the outside of the carbon fibers as an electrothermal conversion element instead of the metal heating wire. Due to the good toughness of carbon fiber, this solves the electric heating 097 诵 single number should be 01 to some extent. 01 Page 3 / 18 pages 1013399288-0 1380731 On October 18, 101, the replacement of the filament is not high and easy to break. Shortcomings. However, since the carbon fiber is still radiated outward at a normal wavelength, the problem of low electrothermal conversion rate is not solved. In order to solve the above problems, the heating layer using carbon fiber generally comprises a plurality of carbon fiber heat source wires laid *. The fiber heat source line is a conductive core wire wrapped with a chemical fiber or a cotton thread. The outer surface of the chemical fiber or cotton thread is dip coated with a waterproof and flame-retardant insulating material. The conductive core wire is formed by winding a plurality of carbon fibers and a plurality of cotton wires coated with a far-infrared coating. A cotton wire coated with a far-infrared coating is added to the conductive core wire to enhance the strength of the core wire. Secondly, the heat generated by the carbon fiber after the energization can be directly emitted at an infrared wavelength. [0005] However, the use of carbon fiber paper as a heating layer has the following disadvantages: First, the carbon fiber strength is not large enough, the flexibility is not good enough, and it is easy to be broken, and it is necessary to add cotton wire to increase the strength of the carbon fiber, thereby limiting its proper range; second, the carbon fiber itself The electrothermal conversion efficiency is low, and it is necessary to add a cotton wire coated with far-infrared coating to improve the electrothermal conversion efficiency, which is not conducive to energy conservation and environmental protection. Third, it is necessary to first make a carbon fiber heat source line and then make a heating layer, which is disadvantageous for large-area production, which is disadvantageous. In order to meet the requirements of uniformity, it is not conducive to the fabrication of micro-surface heat sources. [0006] In view of this, it provides a high strength, high electrothermal conversion efficiency, energy saving, uniform heat generation, and controllable size. Large area or miniature surface heat sources are necessary. SUMMARY OF THE INVENTION [0007] A surface heat source includes a first electrode, a second electrode, and a heating layer. The first electrode and the second electrode are disposed on the heating layer at intervals and are in electrical contact with the heating layer. The heating layer comprises a carbon nanotube single number deletion 1 page 4 / 18 pages 1013399288-0 Γ 380731. 1101. October layer, and the nanotube layer includes isotropic 'oriented in a fixed direction Or a plurality of carbon nanotubes arranged in a different orientation. Compared with the prior art, the surface heat source has the following advantages: First, the carbon nanotube can be conveniently fabricated into a carbon nanotube layer of any size, which can be applied to both macroscopic and microscopic applications. field. Second, the carbon nanotubes have a smaller density than the carbon fibers, so the surface heat source using the carbon nanotube layer has a lighter weight and is convenient to use. The third 'nanocarbon tube layer has high electrothermal conversion efficiency and low thermal resistance rate, so the surface heat source has the characteristics of rapid temperature rise, small heat lag, and fast heat exchange rate. The fourth carbon nanotube layer can be directly obtained by milling a carbon nanotube array, which is easy to prepare and low in cost. [Embodiment] [0009] The surface heat source of the present technical solution will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , the embodiment of the present invention provides a surface heat source 10 including a substrate 18 , a reflective layer 17 , a heating layer 16 , a first electrode 12 , and a second surface . The electrode 14 and an insulating protective layer 15. The reflective layer 17 is disposed on the surface of the substrate 18. The heating layer 16 is disposed on the surface of the reflective layer 17. The first electrode 12 and the second electrode 14 are spaced apart and electrically contacted with the heating layer 16 for flowing a current in the heating layer 16. The insulating protective layer 15 is disposed on a surface of the heating layer 16. And covering the first electrode 12 and the second electrode 14 for preventing the heating layer 16 from adsorbing external impurities. [0011] The number of the base 18 is not limited, and has a surface for supporting the heating layer 16 or the reflective layer 17. Preferably, the substrate 18 is a plate-shaped substrate, and the material thereof may be a hard material such as ceramic, glass, resin, quartz, etc., page 5 of 18 1013399288-0 1380731 --·~_ 101 years. On October 18th, the shuttle replacement page can also choose flexible materials such as plastic or flexible fiber. When it is a flexible material, the surface heat source 10 can be bent into any shape as needed during use. The size of the substrate 18 is not limited and can be changed according to actual needs. The preferred substrate 18 of this embodiment is a ceramic substrate. [0012] The reflective layer 17 is arranged to reflect the heat generated by the heating layer 16, thereby controlling the direction of heating for single-sided heating and further improving the efficiency of heating. The material of the reflective layer 17 is a white insulating material such as a metal oxide, a metal salt or a ceramic. 5毫米。 The thickness of the layer is from 100 microns to 0. 5 mm. The reflective layer 17 can be formed on the surface of the substrate 18 by sputtering or other methods. It can be understood that the reflective layer 17 can also be disposed on the surface of the substrate 18 away from the heating layer 16, that is, the substrate 18 is disposed between the heating layer 16 and the reflective layer 17, further enhancing the reflective layer 17 to reflect heat. effect. The reflective layer 17 is an alternative structure. The heating layer 16 can be directly disposed on the surface of the substrate 18, and the heating direction of the surface heat source 10 is not limited, and can be used for double-sided heating. [0013] The heating layer 16 includes a carbon nanotube layer, the carbon nanotube layer itself has a certain viscosity, can be disposed on the surface of the substrate 18 by its own viscosity, or can be disposed on the substrate by a bonding agent. The surface of 18. The binder is a silicone rubber. The length, width and thickness of the carbon nanotube layer are not limited and can be selected according to actual needs. [0014] The carbon nanotube layer comprises a uniformly distributed carbon nanotube. The carbon nanotubes in the carbon nanotube layer form an angle α with the surface of the carbon nanotube layer, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees (OS α $15°). Preferably, the carbon nanotubes in the carbon nanotube layer are parallel to the carbon nanotube layer, and the number of the carbon nanotubes is parallel to the number of the carbon nanotubes. Page 6/18 pages 1013399288-0 Γ380731. 101. October 18 The U layer of the U-shaped rabbit can be prepared by obstructing a carbon nanotube array. The carbon nanotubes in the carbon nanotube layer have different arrangement depending on the manner of the pressure. Specifically, the carbon nanotubes may be isotropically aligned; when in the same direction as f, the carbon nanotubes are preferentially oriented in different directions. See Figure 3 for the month; when the pressure is blocked in the same direction, the carbon nanotubes are arranged in a preferred orientation along a solid direction, see Figure 4. The carbon nanotubes in the carbon nanotube layer partially overlap. The carbon nanotubes in the carbon nanotube layer are attracted to each other by the van der Waals force, and are tightly bonded, so that the carbon nanotube layer has a good softness and can be bent and folded into an arbitrary shape without breaking. _] The carbon nanotube of the carbon nanotube layer comprises one or more of a single-walled carbon nanotube, a double-walled nanocarbon S, and a Nicholas carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, and the diameter of the double-walled carbon nanotube is J 'Ding, and the diameter of the rice is not more than the diameter of the multi-walled carbon nanotube. ~ 5 〇 nano. The length of the carbon nanotubes is greater than 5G microns. The length of the carbon nanotubes is greater than 50 microns, and preferably, the length of the carbon nanotubes is from 2 to 9 microns. _] The area and thickness of the carbon nanotube layer are not limited, and can be selected according to actual needs. The area of the nanotube layer is related to the size of the substrate on which the carbon nanotube array is grown. The thickness of the carbon nanotube layer is related to the height of the carbon nanotube array and the pressure of the rolling, and may be from i micrometer to millimeter. It can be understood that the greater the twist of the nano-carbon array and the smaller the applied pressure, the greater the thickness of the prepared carbon nanotube layer; conversely, the smaller the height of the carbon nanotube array, the greater the applied pressure The smaller the thickness of the prepared carbon nanotube layer. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the greater the thickness of the carbon nanotube layer, the more the heat response speed is fe. On the contrary, the smaller the thickness of the carbon nanotube layer, the faster the heat response speed. 097130301^Single number A0101 Page 7 / Total 18 pages 1013399288-0 1380731 101. October 18th nuclear replacement i 〇 [0017] In this embodiment, the heating layer 16 is a carbon nanotube layer having a thickness of 1 〇〇 micron. The carbon nanotube layer has a length of 5 cm and the carbon nanotube layer has a width of 3 cm. The carbon nanotube layer is placed on the surface of the substrate 18 by the viscosity of the carbon nanotube layer itself. [0018] The first electrode 12 and the second electrode 14 are composed of a conductive material, and the shapes of the first electrode 12 and the first electrode 14 are not limited, and may be a conductive film, a metal piece or a metal lead. Preferably, the first The electrode 12 and the second electrode 14 are each a conductive film. The thickness of the conductive film is 0.5 nm to 1 μm. The material of the conductive film may be a metal, an alloy, an indium tin oxide (IT〇), a bismuth tin oxide (ITO), a conductive silver paste, a conductive polymer or a conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, titanium, rhodium, palladium, iridium or any combination thereof. In this embodiment, the material of the first electrode 12 and the second electrode 14 is a metal palladium film having a thickness of 5 nm. The metal palladium and the carbon nanotube have better wetting effect, which is favorable for forming good electrical contact between the first electrode 12 and the second electrode 14 and the heating layer 16, and reducing ohmic contact resistance. [0019] The first electrode and the second electrode 14 are spaced apart from each other and electrically connected to the heating layer 16, respectively, and may be disposed on the same surface of the heating layer π or on different surfaces of the heating layer 16. The first electrode 12 and the second electrode 14 are spaced apart to allow the heating layer 16 to be applied to the surface heat source 1 to access a certain resistance value to avoid the button phenomenon. Since the carbon nanotube layer as the heating layer 16 itself has good adhesion, the first electrode 丨2 and the second electrode 14 directly form a good electrical contact with the carbon nanotube layer. 09713030^单单Α0101 Page 8/18 pages 1013399288-0 Γ 380731. __ October 18th, 2011 Misplaced replacement page [0020] In addition, the first electrode 12 and the second electrode 14 can also pass through A conductive adhesive (not shown) is disposed on the surface of the heating layer 16, and the conductive adhesive can also electrically connect the first electrode 12 and the second electrode 14 with the heating layer 16 The second electrode 14 is better attached to the surface of the heating layer 16. The preferred conductive adhesive of the present embodiment is silver colloid. [0021] It can be understood that the structure and material of the first electrode 12 and the second electrode 14 are not limited, and the purpose of the setting is to make a current flow in the heating layer 丨6. . Therefore, the first electrode 12 and the second electrode 14 need only be electrically conductive, and electrical contact with the heating layer 16 is within the scope of the present invention. The insulating protective layer 15 is an optional structure made of an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer 15 is not limited and may be selected according to actual conditions. The insulating layer 15 is overlaid on the first electrode 12, the second electrode η and the heating layer 16, so that the surface heat source can be used in an insulated state, and the heating layer 16 can also be avoided. The carbon nanotubes adsorb foreign impurities. In this embodiment, the material of the insulating protection is rubber, and the thickness thereof is 〇. 5~2 milli. [0023] When the surface heat source 10 of the embodiment of the present invention is in use, the first electrode 12 and the second electrode 14 of the surface heat source '1G may be connected to a wire and then connected to a power source. The carbon nanotube layer in the heat source 10 after the power is turned on can radiate electromagnetic waves of a certain wavelength range. The surface heat source 10 can be in direct contact with the surface of the object to be heated. Or 'because the carbon nanotubes in the carbon nanotube layer as the heating layer in the present embodiment have good electrical conductivity, and the carbon nanotube layer itself has a certain self-supporting property and stability, The surface heat source 10 can be disposed at a certain distance from the object to be heated. 〇9713〇3〇Production No.A0101 Page 9/Total Page 1013399288-0 1380731 October 18th ΪΕ ΪΕ [ [0024] The surface heat source 1 in the embodiment of the present technical solution is in the carbon nanotube layer When the size of the area is constant, electromagnetic waves of different wavelength ranges can be radiated by adjusting the magnitude of the power supply voltage and the thickness of the heating layer 16. At the same time as the magnitude of the power supply voltage, the thickness of the heating layer 16 and the wavelength of the surface heat source 1 〇 radiate electromagnetic waves are opposite. That is, when the power supply voltage is constant, the thicker the thickness of the heating layer 16, the shorter the wavelength of the electromagnetic wave emitted by the surface heat source 10, the surface heat source 10 can generate a visible light heat radiation; the thinner the thickness of the heating layer 16, the surface heat source 10 The longer the wavelength of the electromagnetic wave is, the surface heat source 1 产生 can generate an infrared heat radiation. When the thickness of the heating layer 16 is constant, the magnitude of the power source voltage is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source 10. That is, when the thickness of the heating layer 16 is constant, the larger the power source voltage is, the shorter the wavelength of the surface heat source 1 〇 light electromagnetic wave is, the surface heat source 10 can generate a visible light heat radiation; the smaller the power source voltage, the surface heat source 10 emits electromagnetic waves. The longer the wavelength, the surface heat source 1 〇 can generate an infrared heat radiation. [0025] The carbon nanotubes have good electrical conductivity and thermal stability, and have an excellent heat radiation efficiency as an ideal black body structure. The surface heat source 10 is exposed to an oxidizing gas or an atmosphere, wherein the thickness of the nanocarbon layer is 1 mm, and the surface heat source 10 can radiate a longer wavelength by adjusting the power supply at 10 volts to 30 volts. Electromagnetic waves. The temperature of the surface heat source 10 is found by a temperature measuring instrument to be 5 (TC~50 (rc. For an object with a black body structure, the corresponding temperature is 2 〇〇 it ~ 450. When it is 〇, it can be invisible to the human eye. Thermal radiation (infrared), the heat radiation at this time is the most stable and efficient. The heating element made of carbon nanotube layer can be applied to electric heaters, infrared therapeutic devices, electric heaters, etc. [0026] Further, the surface heat source 1 in the embodiment of the present technical solution is placed in a true _030 production order number 1 page 10 / 18 pages 1013399288-0 1^80731. ^ , 101 years. October 18 In the i device, by adjusting the power supply voltage at 8 volts to 15 volts, the surface heat source emits electromagnetic waves having a shorter wavelength. When the power is turned on, the original heat source is greater than 150 volts. 10 will be issued red light, Huanghu 屯丨 ~ to change, % temple visible light. Through the temperature found that the surface heat source 1Q temperature can be 15_ above this: will produce - ordinary heat radiation. With the power supply voltage step Increase, the kneading heat source 10 can also produce rays that kill the bacteria.) __ 看不 invisible rays (Purple light), can be applied to the fields of light source, display device, etc. [0027] The surface heat source has the following advantages: First, since the carbon nanotube has better strength and the carbon nanotube layer is more flexible, It is not easy to be broken to make it have a long service life. Secondly, it is too low in the distribution of nanocarbon & uniform in the water layer, so it has uniform thickness and resistance, uniformity of the hair, and electric heating of the carbon nanotubes. The conversion efficiency is high', so the surface heat source has the characteristics of rapid temperature rise, small hysteresis, fast heat exchange rate and high radiation efficiency. Third, the smaller diameter of the 2 m carbon tube makes the carbon nanotube layer have a smaller area. Or thickness can be used to prepare a micro-surface heat source, which is applied to the heating of micro-devices. The carbon nanotube layer described in the fourth 'can be directly obtained by the barrier carbon nanotube array, which is easy to prepare and has low cost. As described above, the present invention has met the requirements for the issue of the material, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention cannot be limited thereby. People rely on this hair Equivalent modifications or variations made by the spirit of the present invention are to be included in the following claims. [Simplified Description of the Drawings] _] Figure 1 is a schematic structural view of a surface heat source provided by an embodiment of the present technical solution. [0030] Figure 1 is a cross-sectional view of the Π - Π. _«^单单除1 page 11 / 18 i 1380731 October 18, 101 repair replacement ★ [0031] Figure 3 is provided along with the embodiment of the present invention Scanning electron micrographs of carbon nanotube layers of carbon nanotubes arranged in different orientations. [0032] FIG. 4 is a nanocarbon of a carbon nanotube comprising aligned carbon nanotubes arranged in the same direction according to an embodiment of the present invention. Scanning electron micrograph of the tube layer. [Main component symbol description] [0033] Surface heat source: 1 0 [0034] First electrode: 12 [0035] Second electrode: 14 [0036] Insulating protective layer: 15 [0037] Heating layer: 16 [0038] Reflective layer :17 [0039] Base: 18 _3_Bill No. Α〇101 Page 12/Total 18 Page 1013399288-0

Claims (1)

101年10月18日核正^^頁 七、申請專利範圍: 1 .—種面熱源的裝置,其包括: —基底; —加熱層,所述加熱層設置於基底的表面;以及, 至少兩個電極,該兩個電極間隔設置且分別與加熱層電連 接’其改良在於, 所述加熱層包括-奈米碳管層,該奈米碳管層為一自支禮 的总構,且該奈米碳管層包括複數個各向同性沿一固定 方向或不同方向擇優取向排列的奈米碳管。 2. 如申請專利範圍第!項所述之面熱源的裝置,其中,所述 奈米碳管層中的奈米碳管與奈来碳管層的表面成一爽角α ,其中,α大於等於零度且小於等於。度⑶各,;“。) 〇 3. 如申請專利範圍第!項所述之面熱源的裝置,其中,所述 之奈米碳管層的厚度為1微米至1毫米。 4. 如申請專利範圍第!項所述 <面熱源的裝置,其中,所述 之奈米碳管層中的奈米碳管部分交疊。 5. 如申請專利範圍第!項所述之面熱源的裝置,其中,所述 奈米碳管層中的奈米碳管之間通過凡德瓦爾力相互吸引、 緊密結合。 6. 如申請專利範圍第!項所述之面熱源的裝置,其中,所述 奈米碳管的長度大於50微米,直徑小於5〇奈米。 7. 如申請專利範圍第!項所述之面熱源的裝置二中,所述 至少兩電極的材料為金屬'合金、銦錫氧化物、録錫氧化 物、導電銀膠、導電聚合物或導電性奈求碳管。 第13頁/共18頁 〇9713〇3〇i^單編號 ΑΟίοι 1013399288-0 ^80731 1。1 年 10 月 8 .如申請專利範圍第1項所述之面熱源的裳置,其中,所述 至少兩電極設置在加熱層的同一表面或者不同表面。 9 ·如申請專利範圍第1項所述之面熱源的裝置,其令,所述 基底的材料為柔性材料或硬性材料。 10.如申請專利範圍第9項所述之面熱源的裝置,其中,所述 柔性材料包括塑膠或柔性纖維,所述硬性材料包括陶瓷、 破璃、樹脂或石英β 11 .如申請專利範圍第丨項所述之面熱源的裝置,其中,所述 面熱源進一步包括一反射層。 12 .如申請專利範圍第Π項所述之面熱源的裝置,其中,所述 反射層的材料為金屬氧化物 '金屬鹽或陶瓷,厚度為1〇〇 微米〜0. 5毫米。 13 .如申請專利範圍第11項所述之面熱源的裝置,其中,所述 反射層設置於加熱層與基底之間β 14 .如申請專利範圍第11項所述之面熱源的裝置,其中,所述 反射層設置於所述基底遠離加熱層的表面。 15 .如申請專利範圍第14項所述之面熱源的裝置,其中,所述 面熱源進一步包括一絕緣保護層設置於所述加熱層表面。 16 ·*申請專利範圍第15項所述之面熱源的裝置,其^,所述 絕緣保護層材料包括橡膠或樹脂。 097130301^單編號 Α0101 第14頁/共18頁 1013399288-0October 18, 101, the core of the application, the scope of the patent application: 1. The device for surface heat source, comprising: - a substrate; - a heating layer, the heating layer is disposed on the surface of the substrate; and, at least two Electrodes, the two electrodes are spaced apart and electrically connected to the heating layer respectively. The improvement is that the heating layer comprises a carbon nanotube layer, and the carbon nanotube layer is a self-supporting structure, and the The carbon nanotube layer comprises a plurality of carbon nanotubes which are isotropically arranged in a fixed orientation or in a different orientation. 2. If you apply for a patent scope! The apparatus for surface heat source according to claim, wherein the carbon nanotubes in the carbon nanotube layer form a refresh angle α with the surface of the carbon nanotube layer, wherein α is greater than or equal to zero degrees and less than or equal to. (3) each, ".) 〇 3. A device for applying a surface heat source as described in the scope of the invention, wherein the carbon nanotube layer has a thickness of from 1 μm to 1 mm. The device of the <face heat source according to the above item, wherein the carbon nanotubes in the carbon nanotube layer partially overlap. 5. The device of the surface heat source according to the scope of claim [...] Wherein, the carbon nanotubes in the carbon nanotube layer are attracted to each other by the van der Waals force, and are closely combined. 6. The apparatus for applying the surface heat source according to the scope of the patent application, wherein the nai The length of the carbon nanotubes is greater than 50 micrometers and the diameter is less than 5 nanometers. 7. In the apparatus 2 of the surface heat source described in the scope of claim [0002], the material of the at least two electrodes is metal alloy, indium tin oxide. Matte, tin oxide, conductive silver, conductive polymer or conductive carbon tube. Page 13 of 18 〇9713〇3〇i^单号ΑΟίοι 1013399288-0 ^80731 1.1 October 8. The skirting of the surface heat source according to claim 1, wherein the At least two electrodes are disposed on the same surface or different surfaces of the heating layer. 9. The device according to claim 1, wherein the material of the substrate is a flexible material or a hard material. The device of claim 5, wherein the flexible material comprises plastic or flexible fibers, and the hard material comprises ceramic, glass, resin or quartz β 11 as described in the scope of the patent application. The device of the surface heat source, wherein the surface heat source further comprises a reflective layer. 12. The device of claim 5, wherein the material of the reflective layer is a metal oxide metal salt. Or a ceramic having a thickness of from 1 μm to 0.5 mm. 13. The device of claim 5, wherein the reflective layer is disposed between the heating layer and the substrate. A device for applying the surface heat source according to claim 11, wherein the reflective layer is disposed on a surface of the substrate away from the heating layer. 15. The surface heat according to claim 14 The device, wherein the surface heat source further comprises an insulating protective layer disposed on the surface of the heating layer. 16 * The device for applying the surface heat source according to claim 15 , wherein the insulating protective layer material comprises Rubber or resin. 097130301^单号Α0101 Page 14 of 18 1013399288-0
TW97130301A 2008-08-08 2008-08-08 Planar heating source TWI380731B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97130301A TWI380731B (en) 2008-08-08 2008-08-08 Planar heating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97130301A TWI380731B (en) 2008-08-08 2008-08-08 Planar heating source

Publications (2)

Publication Number Publication Date
TW201008357A TW201008357A (en) 2010-02-16
TWI380731B true TWI380731B (en) 2012-12-21

Family

ID=44827415

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97130301A TWI380731B (en) 2008-08-08 2008-08-08 Planar heating source

Country Status (1)

Country Link
TW (1) TWI380731B (en)

Also Published As

Publication number Publication date
TW201008357A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
TWI420954B (en) Heater and method for making the same
CN101626639B (en) Plane heat source
TWI486090B (en) Hollow heating source
CN101636005B (en) Plane heat source
CN101636001B (en) Cubic heat source
TWI380731B (en) Planar heating source
CN101616513A (en) Line heat source
TWI462630B (en) Planar heating source
CN101636004B (en) Plane heat source
CN101636007B (en) Plane heat source
TWI380730B (en) Planar heating source
TWI462628B (en) Planar heating source
TWI360521B (en) Planar heat source
TWI386363B (en) Linear heater
TWI448417B (en) Linear heater
TW201000395A (en) Linear heater
TWI380733B (en) Planar heating source
TWI380728B (en) Linear heater
TWI380729B (en) Linear heater
CN101636008B (en) Plane heat source
CN101616512B (en) Line heat source
TWI400985B (en) Method for making planar heater
TWI400983B (en) Planar heater
TWI399120B (en) Planar heater
TWI462627B (en) Hollow heating source