TWI427027B - Hollow heating source - Google Patents

Hollow heating source Download PDF

Info

Publication number
TWI427027B
TWI427027B TW97128264A TW97128264A TWI427027B TW I427027 B TWI427027 B TW I427027B TW 97128264 A TW97128264 A TW 97128264A TW 97128264 A TW97128264 A TW 97128264A TW I427027 B TWI427027 B TW I427027B
Authority
TW
Taiwan
Prior art keywords
heat source
carbon nanotube
hollow
hollow heat
layer
Prior art date
Application number
TW97128264A
Other languages
Chinese (zh)
Other versions
TW201004858A (en
Inventor
Chen Feng
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97128264A priority Critical patent/TWI427027B/en
Publication of TW201004858A publication Critical patent/TW201004858A/en
Application granted granted Critical
Publication of TWI427027B publication Critical patent/TWI427027B/en

Links

Description

空心熱源 Hollow heat source

本發明涉及一種空心熱源,尤其涉及一種基於奈米碳管的空心熱源。 The invention relates to a hollow heat source, in particular to a hollow heat source based on a carbon nanotube.

熱源在人們的生產、生活、科研中起著重要的作用。空心熱源係熱源的一種,其特點為空心熱源具有一空心結構,將待加熱物體設置於該空心結構的空心中對物體進行加熱,故,空心熱源可對待加熱物體的各個部位同時加熱,加熱面廣、加熱均勻且效率較高。空心熱源已成功用於工業領域、科研領域或生活領域等,如工廠管道、實驗室加熱爐或廚具電烤箱等。 Heat sources play an important role in people's production, life, and research. The hollow heat source is a heat source, characterized in that the hollow heat source has a hollow structure, and the object to be heated is disposed in the hollow of the hollow structure to heat the object, so the hollow heat source can simultaneously heat various parts of the object to be heated, and the heating surface Wide, uniform heating and high efficiency. Hollow heat sources have been successfully used in industrial fields, scientific research fields or living areas, such as factory pipes, laboratory furnaces or kitchen ovens.

空心熱源的基本結構通常包括基底和設置在基底上的電熱層,通過在電熱層中通入電流產生焦耳熱使電熱層的溫度升高進而加熱物體。先前的空心熱源的電極通常採用一金屬片、金屬絲、金屬膜、銦錫氧化物(ITO)層、銻錫氧化物(ATO)層、導電銀膠層或導電聚合物層等。然而,採用金屬片、金屬絲、金屬膜、銦錫氧化物(ITO)層、銻錫氧化物(ATO)層、導電銀膠層或導電聚合物層作為空心熱源的電極具有以下缺點:第一,該電極的電阻率較大,故對電能的損耗也 較大。第二,該電極的柔韌性和機械強度差,長期折疊容易斷裂,使用壽命短,不易應用於柔性空心熱源。第三,該電極的密度較大,重量大,使用不便。 The basic structure of the hollow heat source generally includes a substrate and an electrothermal layer disposed on the substrate, and the Joule heat is generated in the electrothermal layer to generate Joule heat to raise the temperature of the electrothermal layer to heat the object. The electrodes of the prior hollow heat source generally employ a metal sheet, a metal wire, a metal film, an indium tin oxide (ITO) layer, an antimony tin oxide (ATO) layer, a conductive silver paste layer or a conductive polymer layer. However, an electrode using a metal piece, a wire, a metal film, an indium tin oxide (ITO) layer, an antimony tin oxide (ATO) layer, a conductive silver paste layer or a conductive polymer layer as a hollow heat source has the following disadvantages: The electrode has a large resistivity, so the loss of electrical energy is also Larger. Second, the electrode has poor flexibility and mechanical strength, long-term folding is easy to break, and has a short service life, and is not easily applied to a flexible hollow heat source. Third, the electrode has a large density, a large weight, and is inconvenient to use.

有鑒於此,提供電極電阻率較小,柔韌性和機械強度高,長期折疊不易斷裂,且密度小,重量輕的空心熱源實為必要。 In view of this, it is necessary to provide a hollow heat source with a small electrode resistivity, high flexibility and high mechanical strength, long-term folding which is not easily broken, and low density and light weight.

一種空心熱源,其包括:一空心基底;一加熱層,該加熱層設置於空心基底的表面;以及兩個電極,所述兩個電極間隔設置於奈米碳管結構上的表面且位於該線狀基底的兩端,且分別與加熱層電連接;其中,所述兩個電極中,至少一個電極包括一奈米碳管結構。 A hollow heat source comprising: a hollow substrate; a heating layer disposed on a surface of the hollow substrate; and two electrodes spaced apart from the surface of the carbon nanotube structure and located at the line The two ends of the substrate are electrically connected to the heating layer respectively; wherein at least one of the two electrodes comprises a carbon nanotube structure.

相較於先前技術,所述之空心熱源具有以下優點:其一,奈米碳管具有極好的導電性,故該電極的電阻小,有利於降低功耗,提高發熱效率。其二,奈米碳管的優異的力學特性使得奈米碳管結構具有很好的柔韌性和機械強度,故,採用奈米碳管結構作電極,可相應的提高空心熱源,尤其係柔性空心熱源的耐用性,故該空心熱源使用壽命長;其三,奈米碳管密度小,故該空心熱源重量輕,使用方便。 Compared with the prior art, the hollow heat source has the following advantages: First, the carbon nanotube has excellent conductivity, so the resistance of the electrode is small, which is beneficial to reducing power consumption and improving heat generation efficiency. Secondly, the excellent mechanical properties of the carbon nanotubes make the carbon nanotube structure have good flexibility and mechanical strength. Therefore, using the carbon nanotube structure as the electrode, the hollow heat source can be correspondingly improved, especially the flexible hollow. The durability of the heat source is long, so the hollow heat source has a long service life; thirdly, the density of the carbon nanotubes is small, so the hollow heat source is light in weight and convenient to use.

100,200,300‧‧‧空心熱源 100,200,300‧‧‧ hollow heat source

102,202,302‧‧‧空心基底 102,202,302‧‧‧ hollow base

104,204,304‧‧‧加熱層 104,204,304‧‧‧heating layer

106,206‧‧‧絕緣保護層 106,206‧‧‧Insulating protective layer

108,208,308‧‧‧反射層 108,208,308‧‧‧reflective layer

110.210,310‧‧‧第一電極 110.210, 310‧‧‧ first electrode

112,212,312‧‧‧第二電極 112,212,312‧‧‧second electrode

圖1為本技術方案第一實施例所提供的空心熱源的結構示意圖。 FIG. 1 is a schematic structural view of a hollow heat source provided by a first embodiment of the present technical solution.

圖2為圖1中沿II-II線的剖面示意圖。 Figure 2 is a cross-sectional view taken along line II-II of Figure 1.

圖3為本技術方案實施例的奈米碳管薄膜的掃描電鏡照片 3 is a scanning electron micrograph of a carbon nanotube film according to an embodiment of the present technical solution

圖4為本技術方案實施例的束狀結構的奈米碳管長線的掃描電鏡照片。 4 is a scanning electron micrograph of a long carbon nanotube tube of a bundle structure according to an embodiment of the present technology.

圖5為本技術方案實施例的絞線結構的奈米碳管長線的掃描電鏡照片。 FIG. 5 is a scanning electron micrograph of a long carbon nanotube line of a stranded wire structure according to an embodiment of the present technical solution.

圖6為本技術方案第二實施例所提供的空心熱源的結構示意圖。 FIG. 6 is a schematic structural view of a hollow heat source according to a second embodiment of the present technical solution.

圖7為圖6的沿VII-VII線的剖面示意圖。 Fig. 7 is a schematic cross-sectional view taken along line VII-VII of Fig. 6.

圖8為本技術方案第三實施例所提供的空心熱源的結構示意圖。 FIG. 8 is a schematic structural diagram of a hollow heat source according to a third embodiment of the present technical solution.

圖9為圖8的IX-IX沿線的剖面示意圖。 Figure 9 is a cross-sectional view taken along line IX-IX of Figure 8.

以下將結合附圖詳細說明本技術方案提供的空心熱源。 The hollow heat source provided by the present technical solution will be described in detail below with reference to the accompanying drawings.

請參閱圖1及圖2,本技術方案第一實施例提供一種空心熱源100,該空心熱源100包括一空心基底102;一加熱層104,該加熱層104設置於該空心基底102的內表面;一反射層108,該反射層108位於加熱層104的週邊,設置於該空心基底102的外表面;一第一電極110及一第二電極112,第一電極110和第二電極112間隔設置於加熱層104的表面,並分別與加熱層104電連接;一絕緣保護層106,該絕緣保護層106設置於加熱層104的內表面。 Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a hollow heat source 100. The hollow heat source 100 includes a hollow substrate 102, and a heating layer 104 disposed on an inner surface of the hollow substrate 102. a reflective layer 108 is disposed on the outer surface of the hollow substrate 102 at a periphery of the heating layer 104. A first electrode 110 and a second electrode 112 are disposed at intervals between the first electrode 110 and the second electrode 112. The surface of the layer 104 is heated and electrically connected to the heating layer 104, respectively; an insulating protective layer 106 is disposed on the inner surface of the heating layer 104.

所述空心基底102的材料不限,用於支撐加熱層104,可為硬性材料,如:陶瓷、玻璃、樹脂、石英、塑膠等。空心基底102亦可選擇柔性材料,如:樹脂、橡膠、塑膠或柔性纖維等。當空心基底102為柔性材料時,該空心熱源100在使用時可根據需要彎折成任意形狀。所述空心基底102的形狀大小不限,其具有一空心結構即可,可為管狀、球狀、長方體狀等,可為全封閉結構,也可為半封閉結構,其具體可根據實際需要進行改變。空心基底102的橫截面的形狀亦不限,可為圓形、弧形、長方形等。本實施例中,空心基底102為一空心陶瓷管,其橫截面為一圓形。 The material of the hollow substrate 102 is not limited, and is used to support the heating layer 104, and may be a hard material such as ceramic, glass, resin, quartz, plastic, or the like. The hollow substrate 102 can also be selected from flexible materials such as resins, rubber, plastic or flexible fibers. When the hollow substrate 102 is a flexible material, the hollow heat source 100 can be bent into any shape as needed during use. The hollow substrate 102 is not limited in shape and shape, and has a hollow structure, which may be tubular, spherical, rectangular, etc., and may be a fully enclosed structure or a semi-closed structure, which may be specifically configured according to actual needs. change. The shape of the cross section of the hollow substrate 102 is not limited, and may be circular, curved, rectangular, or the like. In this embodiment, the hollow substrate 102 is a hollow ceramic tube having a circular cross section.

所述加熱層104設置於空心基底102的內表面,用於向空心基底102的內部空間加熱。所述加熱層104的材料不限,其可為金屬絲層、電熱膜、碳纖維層或奈米碳管層。當採用奈米碳管層作為加熱層104時,該奈米碳管層包括複數個均勻分佈的奈米碳管。該奈米碳管層中的奈米碳管有序排列或無序排列。該奈米碳管層的厚度為0.01微米~2毫米。該奈米碳管層中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。該奈米碳管的長度為大於50微米,優選為200~900微米。該奈米碳管層可通過粘結劑或分子間力固定於所述空心基底102的內表面。奈米碳管具有良好的導電性能以及熱穩定性,作為一理想的黑體結構, 且具有比較高的熱輻射效率。 The heating layer 104 is disposed on an inner surface of the hollow substrate 102 for heating the inner space of the hollow substrate 102. The material of the heating layer 104 is not limited, and may be a wire layer, an electrothermal film, a carbon fiber layer or a carbon nanotube layer. When a carbon nanotube layer is used as the heating layer 104, the carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes in the carbon nanotube layer are ordered or disorderly arranged. The carbon nanotube layer has a thickness of 0.01 μm to 2 mm. The carbon nanotubes in the carbon nanotube layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano. The carbon nanotubes have a length greater than 50 microns, preferably from 200 to 900 microns. The carbon nanotube layer may be fixed to the inner surface of the hollow substrate 102 by a binder or an intermolecular force. The carbon nanotube has good electrical conductivity and thermal stability as an ideal black body structure. And has a relatively high heat radiation efficiency.

所述第一電極110和第二電極112可設置在加熱層104的同一表面上也可設置在加熱層104的不同表面上,且與加熱層104電連接。所述第一電極110和第二電極112可通過奈米碳管層的粘性或導電粘結劑(圖未示)設置於該加熱層104的表面上。導電粘結劑在實現第一電極110和第二電極112與奈米碳管層電接觸的同時,還可將第一電極110和第二電極112更好地固定於奈米碳管層的表面上。通過該第一電極110和第二電極112可對加熱層104進行施加電壓。其中,第一電極110和第二電極112之間相隔設置,以使採用奈米碳管層的加熱層104通電發熱時接入一定的阻值避免短路現象產生。優選地,將第一電極110和第二電極112環繞設置於加熱層104的外表面。 The first electrode 110 and the second electrode 112 may be disposed on the same surface of the heating layer 104 or on different surfaces of the heating layer 104 and electrically connected to the heating layer 104. The first electrode 110 and the second electrode 112 may be disposed on the surface of the heating layer 104 through a viscous or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive can also better fix the first electrode 110 and the second electrode 112 to the surface of the carbon nanotube layer while achieving electrical contact between the first electrode 110 and the second electrode 112 and the carbon nanotube layer. on. A voltage is applied to the heating layer 104 through the first electrode 110 and the second electrode 112. Wherein, the first electrode 110 and the second electrode 112 are disposed apart from each other, so that when the heating layer 104 using the carbon nanotube layer is energized and heated, a certain resistance is prevented from being generated to avoid a short circuit phenomenon. Preferably, the first electrode 110 and the second electrode 112 are circumferentially disposed on the outer surface of the heating layer 104.

所述之第一電極110和第二電極112中至少一個電極包括一奈米碳管結構。該奈米碳管結構通過導電粘結劑或分子間力固定於所述加熱層104的表面,且與加熱層104電連接。該奈米碳管結構中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。本實施例優選金屬性奈米碳管。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。該奈米碳管的長度為大於50微米。 At least one of the first electrode 110 and the second electrode 112 includes a carbon nanotube structure. The carbon nanotube structure is fixed to the surface of the heating layer 104 by a conductive adhesive or an intermolecular force, and is electrically connected to the heating layer 104. The carbon nanotubes in the carbon nanotube structure include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. This embodiment is preferably a metallic carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano. The carbon nanotubes have a length greater than 50 microns.

具體地,該奈米碳管結構包括一有序奈米碳管薄膜或至少兩層重疊且交叉設置的有序奈米碳管薄膜,或至少一奈米碳管 長線。 Specifically, the carbon nanotube structure comprises an ordered carbon nanotube film or at least two layers of overlapping and intersecting ordered carbon nanotube films, or at least one carbon nanotube Long line.

當所述奈米碳管結構包括至少一有序奈米碳管薄膜時。請參閱圖3,該有序奈米碳管薄膜可通過直接拉伸一奈米碳管陣列獲得。該有序奈米碳管薄膜包括複數個沿拉伸方向定向排列的奈米碳管。所述奈米碳管均勻分佈,且平行於奈米碳管薄膜表面。具體地,所述有序奈米碳管薄膜包括複數個首尾相連且沿同一方向擇優取向排列的複數個奈米碳管163。該複數個奈米碳管163之間通過凡德瓦爾力連接,一方面,首尾相連的奈米碳管163之間通過凡德瓦爾力連接,另一方面,擇優取向的奈米碳管163之間通過凡德瓦爾力連接,故,該有序奈米碳管薄膜具有很好地柔韌性,可彎曲折疊成任意形狀而不破裂,且採用該有序奈米碳管薄膜的電極具有較長的使用壽命。 When the carbon nanotube structure comprises at least one ordered carbon nanotube film. Referring to Figure 3, the ordered carbon nanotube film can be obtained by directly stretching a carbon nanotube array. The ordered carbon nanotube film comprises a plurality of carbon nanotubes oriented in the direction of stretching. The carbon nanotubes are evenly distributed and parallel to the surface of the carbon nanotube film. Specifically, the ordered carbon nanotube film comprises a plurality of carbon nanotubes 163 connected end to end and arranged in a preferred orientation in the same direction. The plurality of carbon nanotubes 163 are connected by van der Waals force. On the one hand, the end-to-end connected carbon nanotubes 163 are connected by van der Waals force, and on the other hand, the preferred orientation of the carbon nanotubes 163 The film is connected by van der Waals force, so the ordered carbon nanotube film has good flexibility, can be bent and folded into any shape without cracking, and the electrode using the ordered carbon nanotube film has a longer length. The service life.

所述有序奈米碳管薄膜係由奈米碳管陣列經進一步處理得到的,故其長度不限,寬度和奈米碳管陣列所生長的基底的尺寸有關,可根據實際需求制得。本實施例中,採用氣相沈積法在4英寸的基底生長超順排奈米碳管陣列。所述有序奈米碳管薄膜的寬度可為0.01厘米~10厘米,厚度為0.01微米~100微米。有序奈米碳管薄膜的厚度優選為0.1微米~10微米。 The ordered carbon nanotube film is further processed by the carbon nanotube array, so the length is not limited, and the width is related to the size of the substrate on which the carbon nanotube array is grown, and can be prepared according to actual needs. In this example, a super-sequential carbon nanotube array was grown on a 4 inch substrate using vapor deposition. The ordered carbon nanotube film may have a width of 0.01 cm to 10 cm and a thickness of 0.01 to 100 μm. The thickness of the ordered carbon nanotube film is preferably from 0.1 μm to 10 μm.

另,所述有序奈米碳管薄膜還可包括複數個平行排列的長奈米碳管。該長奈米碳管的長度為1厘米~5厘米,直徑為0.5奈米~50奈米。由於該長奈米碳管為單根奈米碳管,故其電阻 更小。故採用該有序奈米碳管薄膜設置於反射層210或加熱層204的表面做電極,可更有效的傳導電流,減少電能的損耗。 In addition, the ordered carbon nanotube film may further include a plurality of long carbon nanotubes arranged in parallel. The long carbon nanotubes have a length of 1 cm to 5 cm and a diameter of 0.5 nm to 50 nm. Since the long carbon nanotube is a single carbon nanotube, its resistance smaller. Therefore, the ordered carbon nanotube film is disposed on the surface of the reflective layer 210 or the heating layer 204 as an electrode, which can more effectively conduct current and reduce power loss.

當所述奈米碳管結構包括至少兩層重疊設置的有序奈米碳管薄膜時,相鄰的有序奈米碳管薄膜之間通過凡德瓦爾力緊密結合。進一步,該奈米碳管結構中的有序奈米碳管薄膜的層數不限,且相鄰兩層有序奈米碳管薄膜之間奈米碳管的排列方向形成一夾角α,0≦α≦90度,具體可依據實際需求製備。由於該有序奈米碳管薄膜中的奈米碳管沿同一方向定向排列,故在奈米碳管排列方向具有優異的導電性。本實施例通過改變相鄰兩層有序奈米碳管薄膜之間的交叉角度α,可使得該奈米碳管結構在各個方向都具有優異的導電性。本實施例中,優選交叉角度α=90度。 When the carbon nanotube structure comprises at least two layers of ordered carbon nanotube films arranged in an overlapping manner, the adjacent ordered carbon nanotube films are tightly bonded by van der Waals force. Further, the number of layers of the ordered carbon nanotube film in the carbon nanotube structure is not limited, and the arrangement direction of the carbon nanotubes between the adjacent two ordered ordered carbon nanotube films forms an angle α, 0 ≦α≦90 degrees, can be prepared according to actual needs. Since the carbon nanotubes in the ordered carbon nanotube film are aligned in the same direction, they have excellent conductivity in the direction in which the carbon nanotubes are arranged. In this embodiment, the carbon nanotube structure can have excellent electrical conductivity in all directions by changing the intersection angle α between adjacent two layers of ordered carbon nanotube films. In the present embodiment, it is preferable that the crossing angle α = 90 degrees.

當所述奈米碳管結構包括至少一奈米碳管長線時,該奈米碳管長線纏繞於加熱層104的表面。所述奈米碳管長線可通過直接拉伸一奈米碳管陣列獲得或拉伸一奈米碳管陣列後經過扭轉紡紗獲得。所述奈米碳管長線的直徑為1奈米~100微米,其長度不限,可根據實際需求制得。請參見圖4及圖5,所述奈米碳管長線包括複數個首尾相連的奈米碳管沿奈米碳管長線的軸向方向擇優取向排列。具體地,該奈米碳管長線中的奈米碳管沿奈米碳管長線的軸向方向平行排列或沿奈米碳管長線的軸向方向螺旋排列。該奈米碳管長線中的奈米碳管之間通過凡德瓦爾力緊密結合,故奈米碳管長線具有一定的 柔韌性。該奈米碳管的長度為200~900微米。 When the carbon nanotube structure includes at least one nanotube long line, the nano carbon tube is wound on the surface of the heating layer 104. The long carbon nanotube wire can be obtained by directly stretching a carbon nanotube array or stretching a carbon nanotube array and then twisting and spinning. The long diameter of the carbon nanotubes is from 1 nm to 100 μm, and the length thereof is not limited, and can be prepared according to actual needs. Referring to FIG. 4 and FIG. 5, the long carbon nanotube line includes a plurality of carbon nanotubes connected end to end in a preferred orientation along the axial direction of the carbon nanotube long line. Specifically, the carbon nanotubes in the long line of the carbon nanotubes are arranged in parallel along the axial direction of the long line of the carbon nanotubes or spirally arranged in the axial direction of the long line of the carbon nanotubes. The carbon nanotubes in the long line of the carbon nanotubes are closely combined by the van der Waals force, so the long carbon nanotubes have a certain length. Flexibility. The carbon nanotubes have a length of 200 to 900 microns.

所述奈米碳管結構還可包括複數個奈米碳管長線,且複數個奈米碳管長線交叉且重疊設置於加熱層104的表面。該奈米碳管結構的長度、寬度以及厚度不限,可根據實際需要製備。由於奈米碳管長線具有一定的柔韌性,故該奈米碳管結構可彎曲折疊成任意形狀而不破裂。 The carbon nanotube structure may further include a plurality of carbon nanotube long lines, and a plurality of carbon nanotube long lines intersect and overlap the surface of the heating layer 104. The length, width and thickness of the carbon nanotube structure are not limited and can be prepared according to actual needs. Since the long carbon nanotube has a certain flexibility, the carbon nanotube structure can be bent and folded into any shape without breaking.

由於該奈米碳管長線中的奈米碳管沿著奈米碳管長線的長度方向排列,故該奈米碳管長線沿著長度方向具有較小的電阻。故將該奈米碳管長線纏繞於加熱層104的表面做電極,可有效的傳導電流,節約電能。 Since the carbon nanotubes in the long line of the carbon nanotubes are arranged along the length of the long line of the carbon nanotubes, the long carbon nanotubes have a small electrical resistance along the length direction. Therefore, the long carbon wire of the nano carbon tube is wound around the surface of the heating layer 104 as an electrode, which can effectively conduct current and save electrical energy.

當只有一個電極包括一奈米碳管結構時,另一電極採用金屬片金屬絲、金屬膜或導電膠層等。本實施例優選地,第一電極110和第二電極112都採用奈米碳管結構製作,且該奈米碳管結構包括重疊且交叉設置的50層有序奈米碳管薄膜,相鄰兩層有序奈米碳管薄膜之間交叉的角度為90度。該奈米碳管結構中有序奈米碳管薄膜的長度為1厘米,寬度為1厘米,厚度為30微米。本實施例將兩個上述奈米碳管結構分別間隔包裹於加熱層104的表面。由於奈米碳管結構良好的導電性,使得奈米碳管結構與加熱層104之間形成良好的電連接。 When only one electrode includes a carbon nanotube structure, the other electrode uses a metal wire, a metal film or a conductive adhesive layer or the like. In this embodiment, preferably, the first electrode 110 and the second electrode 112 are both made of a carbon nanotube structure, and the carbon nanotube structure comprises 50 layers of ordered carbon nanotube film which are overlapped and intersected, adjacent to each other. The angle between the layers of ordered carbon nanotube film is 90 degrees. The ordered carbon nanotube film in the carbon nanotube structure has a length of 1 cm, a width of 1 cm, and a thickness of 30 μm. In this embodiment, two of the above-mentioned carbon nanotube structures are separately wrapped on the surface of the heating layer 104. Due to the good electrical conductivity of the carbon nanotube structure, a good electrical connection is formed between the carbon nanotube structure and the heating layer 104.

本實施例中,優選地,加熱層104採用奈米碳管層。第一電極110和第二電極112都採用採用重疊且交叉設置的10層有序奈米碳管薄膜,相鄰兩層有序奈米碳管薄膜之間交叉的角度 為90度。該結構可減小加熱層204與電極之間的歐姆接觸電阻,提高對電能的利用率。 In this embodiment, preferably, the heating layer 104 is a carbon nanotube layer. The first electrode 110 and the second electrode 112 adopt a 10-layer ordered carbon nanotube film which is overlapped and cross-connected, and the angle between the adjacent two layers of the ordered carbon nanotube film is crossed. It is 90 degrees. The structure can reduce the ohmic contact resistance between the heating layer 204 and the electrode, and improve the utilization of electric energy.

所述反射層108用於反射加熱層104所發出的熱量,使其有效地對空心基底102內部空間加熱,故,反射層108位於加熱層104週邊,設置於空心基底102的外表面。反射層108的材料為一白色絕緣材料,如:金屬氧化物、金屬鹽或陶瓷等。反射層108通過濺射或塗敷的方法設置於空心基底102的外表面。本實施例中,反射層108的材料優選為三氧化二鋁,其厚度為100微米~0.5毫米。該反射層108通過濺射的方法沈積於該空心基底102外表面。可以理解,該反射層108為一可選擇結構,當空心熱源100未包括反射層時,該空心熱源100也可用於對外加熱。 The reflective layer 108 is used to reflect the heat generated by the heating layer 104 to effectively heat the inner space of the hollow substrate 102. Therefore, the reflective layer 108 is located around the heating layer 104 and disposed on the outer surface of the hollow substrate 102. The material of the reflective layer 108 is a white insulating material such as a metal oxide, a metal salt or a ceramic. The reflective layer 108 is disposed on the outer surface of the hollow substrate 102 by sputtering or coating. In this embodiment, the material of the reflective layer 108 is preferably aluminum oxide, and has a thickness of 100 micrometers to 0.5 millimeters. The reflective layer 108 is deposited on the outer surface of the hollow substrate 102 by sputtering. It can be understood that the reflective layer 108 is an optional structure. When the hollow heat source 100 does not include a reflective layer, the hollow heat source 100 can also be used for external heating.

所述絕緣保護層106用來防止該空心熱源100在使用時與外界形成電接觸,同時還可防止加熱層104中的奈米碳管層吸附外界雜質,其設置於加熱層104的內表面。所述絕緣保護層106的材料為一絕緣材料,如:橡膠、樹脂等。所述絕緣保護層106厚度不限,可根據實際情況選擇。優選地,該絕緣保護層106的厚度為0.5~2毫米。該絕緣保護層106可通過塗敷或濺射的方法形成於加熱層104的表面。可以理解,所述絕緣保護層106為一可選擇結構。 The insulating protective layer 106 is used to prevent the hollow heat source 100 from making electrical contact with the outside during use, and also prevents the carbon nanotube layer in the heating layer 104 from adsorbing external impurities, which is disposed on the inner surface of the heating layer 104. The material of the insulating protective layer 106 is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer 106 is not limited and may be selected according to actual conditions. Preferably, the insulating protective layer 106 has a thickness of 0.5 to 2 mm. The insulating protective layer 106 may be formed on the surface of the heating layer 104 by coating or sputtering. It can be understood that the insulating protective layer 106 is an optional structure.

本實施例所提供的空心熱源100在應用時具體包括以下步驟:提供一待加熱的物體;將待加熱的物體設置於該空心熱源100的中心;將空心熱源100通過第一電極110與第二電極112 連接導線接入1伏-20伏的電源電壓後,加熱功率為1瓦~40瓦時,該空心熱源可輻射出波長較長的電磁波。通過溫度測量儀紅外測溫儀AZ8859測量發現該空心熱源100的加熱層104表面的溫度為50℃~500℃,加熱待加熱物體。可見,該奈米碳管層具有較高的電熱轉換效率。由於加熱層104表面的熱量以熱輻射的形式傳遞給待加熱物體,加熱效果不會因為待加熱物體中各個部分因為距離空心熱源100的不同而產生較大的不同,可實現對待加熱物體的均勻加熱。對於具有黑體結構的物體來說,其所對應的溫度為200℃~450℃時就能發出人眼看不見的熱輻射(紅外線),此時的熱輻射最穩定、效率最高,所產生的熱輻射熱量最大。 The hollow heat source 100 provided in this embodiment specifically includes the following steps: providing an object to be heated; placing an object to be heated at a center of the hollow heat source 100; passing the hollow heat source 100 through the first electrode 110 and the second Electrode 112 When the connecting wire is connected to a power supply voltage of 1 volt to 20 volts, the heating power is 1 watt to 40 watts, and the hollow heat source can radiate electromagnetic waves having a long wavelength. The temperature of the surface of the heating layer 104 of the hollow heat source 100 was found to be 50 ° C to 500 ° C by the temperature measuring instrument infrared thermometer AZ8859, and the object to be heated was heated. It can be seen that the carbon nanotube layer has a high electrothermal conversion efficiency. Since the heat on the surface of the heating layer 104 is transferred to the object to be heated in the form of heat radiation, the heating effect is not caused by the difference in the parts of the object to be heated because of the difference from the hollow heat source 100, and the uniformity of the object to be heated can be achieved. heating. For an object with a black body structure, the corresponding temperature of 200 ° C ~ 450 ° C can emit heat radiation (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient, and the heat radiation is generated. The largest amount.

該空心熱源100在使用時,可將其與待加熱的物體表面直接接觸或將其與被加熱的物體間隔設置,利用其熱輻射即可進行加熱。該空心熱源100可廣泛應用於如工廠管道、實驗室加熱爐或廚具電烤箱等。 When in use, the hollow heat source 100 can be in direct contact with the surface of the object to be heated or spaced from the object to be heated, and can be heated by its heat radiation. The hollow heat source 100 can be widely applied to, for example, a factory pipe, a laboratory furnace or a kitchen oven.

本實施例中所提供的空心熱源具有以下優點:其一,奈米碳管具有較低的電阻率,故電極的電阻小,有利於節約能源。其二,奈米碳管具有優異的力學特性,使得奈米碳管結構具有很好的柔韌性和機械強度,故,採用奈米碳管結構作電極,可相應提高空心熱源的耐用性,空心熱源的使用壽命長;其三,奈米碳管的密度低,故空心熱源的品質輕,使用方便。 The hollow heat source provided in this embodiment has the following advantages: First, the carbon nanotube has a lower electrical resistivity, so the resistance of the electrode is small, which is conducive to energy conservation. Second, the carbon nanotubes have excellent mechanical properties, which make the carbon nanotube structure have good flexibility and mechanical strength. Therefore, using the carbon nanotube structure as the electrode can improve the durability of the hollow heat source, hollow. The heat source has a long service life; thirdly, the density of the carbon nanotubes is low, so the hollow heat source is light in weight and convenient to use.

本實施例所提供的空心熱源100中,奈米碳管具有強的抗腐 蝕性,使其可在酸性環境中工作。而且,奈米碳管具有極強的穩定性,即使於3000℃以上的高溫真空環境下工作而不會分解,使空心熱源100可在真空高溫環境下工作。另,奈米碳管比同體積的鋼強度高100倍,重量只有其1/6,故,採用奈米碳管結構作為電極的空心熱源100具有更高的強度和更輕的品質。 In the hollow heat source 100 provided in this embodiment, the carbon nanotubes have strong corrosion resistance. It is opaque, making it work in an acidic environment. Moreover, the carbon nanotubes have extremely high stability, and work even in a high-temperature vacuum environment above 3000 ° C without decomposition, so that the hollow heat source 100 can work in a vacuum high temperature environment. In addition, the carbon nanotubes are 100 times stronger than the same volume of steel and weigh only 1/6 of the weight. Therefore, the hollow heat source 100 using the carbon nanotube structure as the electrode has higher strength and lighter quality.

請參見圖6及圖7,本技術方案第二實施例提供一種空心熱源200,該空心熱源200包括一空心基底202;一加熱層204,該加熱層204設置於該空心基底202的內表面;一反射層208,該反射層208位於加熱層204的週邊;一第一電極210及一第二電極212,第一電極210和第二電極212間隔設置於加熱層204的表面,並分別與加熱層204電連接;一絕緣保護層206,該絕緣保護層206設置於加熱層104的內表面。第二實施例中所提供的空心熱源200與第一實施例所提供的空心熱源100的結構基本相同,其區別在於反射層208設置於空心基底202與加熱層204之間,位於加熱層104的外表面。所述空心基底202、加熱層204、反射層208、第一電極210及第二電極212的結構和材料與第一實施例相同。 Referring to FIG. 6 and FIG. 7 , a second embodiment of the present invention provides a hollow heat source 200. The hollow heat source 200 includes a hollow substrate 202 and a heating layer 204 disposed on an inner surface of the hollow substrate 202. a reflective layer 208, the reflective layer 208 is located at the periphery of the heating layer 204; a first electrode 210 and a second electrode 212, the first electrode 210 and the second electrode 212 are spaced apart from the surface of the heating layer 204, and are respectively heated The layer 204 is electrically connected; an insulating protective layer 206 is disposed on the inner surface of the heating layer 104. The hollow heat source 200 provided in the second embodiment has substantially the same structure as the hollow heat source 100 provided in the first embodiment, except that the reflective layer 208 is disposed between the hollow substrate 202 and the heating layer 204, and is located at the heating layer 104. The outer surface. The structures and materials of the hollow substrate 202, the heating layer 204, the reflective layer 208, the first electrode 210, and the second electrode 212 are the same as those of the first embodiment.

請參見圖8及圖9,本技術方案第三實施例提供一種空心熱源300,該空心熱源300包括一空心基底302;一加熱層304;一反射層208;一第一電極210及一第二電極212,第一電極210和第二電極212間隔設置於加熱層204的表面,並分別與加熱層204電連接。第三實施例中的空心熱源300和第一實施例中 的空心熱源100的結構基本相同,其區別在於,該加熱層304設置於該空心基底202的外表面,該反射層208設置於加熱層304的外表面,由於加熱層304設置於空心基底302和反射層208之間,故,無需絕緣保護層,且加熱層304與反射層308的位置不同。第三實施例中的所述空心基底302、加熱層304、反射層308的結構和材料與第一實施例相同。 Referring to FIG. 8 and FIG. 9, a third embodiment of the present invention provides a hollow heat source 300. The hollow heat source 300 includes a hollow substrate 302, a heating layer 304, a reflective layer 208, a first electrode 210, and a second layer. The electrode 212, the first electrode 210 and the second electrode 212 are spaced apart from each other on the surface of the heating layer 204, and are electrically connected to the heating layer 204, respectively. Hollow heat source 300 in the third embodiment and in the first embodiment The structure of the hollow heat source 100 is substantially the same, except that the heating layer 304 is disposed on the outer surface of the hollow substrate 202, and the reflective layer 208 is disposed on the outer surface of the heating layer 304, since the heating layer 304 is disposed on the hollow substrate 302 and Between the reflective layers 208, an insulating protective layer is not required, and the positions of the heating layer 304 and the reflective layer 308 are different. The structure and material of the hollow substrate 302, the heating layer 304, and the reflective layer 308 in the third embodiment are the same as those of the first embodiment.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

100‧‧‧空心熱源 100‧‧‧ Hollow heat source

102‧‧‧空心基底 102‧‧‧ hollow base

104‧‧‧加熱層 104‧‧‧heating layer

106‧‧‧絕緣保護層 106‧‧‧Insulating protective layer

108‧‧‧反射層 108‧‧‧reflective layer

110‧‧‧第一電極 110‧‧‧First electrode

112‧‧‧第二電極 112‧‧‧second electrode

Claims (20)

一種空心熱源,其包括:一空心基底;一加熱層,該加熱層設置於空心基底的表面;以及兩個電極,所述兩個電極間隔設置,且分別與加熱層電連接;其改良在於,所述兩個電極中的至少一個電極包括一奈米碳管結構。 A hollow heat source comprising: a hollow substrate; a heating layer disposed on a surface of the hollow substrate; and two electrodes, the two electrodes being spaced apart and electrically connected to the heating layer respectively; At least one of the two electrodes includes a carbon nanotube structure. 如請求項第1項所述之空心熱源,其中,所述之空心熱源進一步包括一反射層,所述反射層設置於加熱層的外圍。 The hollow heat source of claim 1, wherein the hollow heat source further comprises a reflective layer disposed on a periphery of the heating layer. 如請求項第2項所述之空心熱源,其中,所述之空心熱源進一步包括一絕緣保護層,該絕緣保護層設置於加熱層的表面。 The hollow heat source of claim 2, wherein the hollow heat source further comprises an insulating protective layer disposed on a surface of the heating layer. 如請求項第3項所述之空心熱源,其中,所述之加熱層設置於空心基底的外表面,所述之反射層設置於加熱層的外表面,加熱層位於空心基底與反射層之間。 The hollow heat source of claim 3, wherein the heating layer is disposed on an outer surface of the hollow substrate, the reflective layer is disposed on an outer surface of the heating layer, and the heating layer is located between the hollow substrate and the reflective layer . 如請求項第3項所述之空心熱源,其中,所述之加熱層設置於空心基底的內表面,所述之反射層設置於空心基底的外表面,所述之絕緣保護層設置於加熱層的內表面。 The hollow heat source of claim 3, wherein the heating layer is disposed on an inner surface of the hollow substrate, the reflective layer is disposed on an outer surface of the hollow substrate, and the insulating protective layer is disposed on the heating layer Inner surface. 如請求項第3項所述之空心熱源,其中,所述之加熱層設置於空心基底的內表面,所述之反射層設置於加熱層與空心基底之間,所述之絕緣保護層設置於加熱層的內表面。 The hollow heat source of claim 3, wherein the heating layer is disposed on an inner surface of the hollow substrate, the reflective layer is disposed between the heating layer and the hollow substrate, and the insulating protective layer is disposed on Heating the inner surface of the layer. 如請求項第2項所述之空心熱源,其中,所述之反射層的材料為金屬氧化物、金屬鹽或陶瓷。 The hollow heat source of claim 2, wherein the material of the reflective layer is a metal oxide, a metal salt or a ceramic. 如請求項第1項所述之空心熱源,其中,所述兩個電極設置於加熱層的同一表面或不同表面。 The hollow heat source of claim 1, wherein the two electrodes are disposed on the same surface or different surfaces of the heating layer. 如請求項第1項所述之空心熱源,其中,所述奈米碳管結構包括至少一有序奈米碳管薄膜,且該有序奈米碳管薄膜包括複數個奈米碳管沿同一方向排列。 The hollow heat source of claim 1, wherein the carbon nanotube structure comprises at least one ordered carbon nanotube film, and the ordered carbon nanotube film comprises a plurality of carbon nanotubes along the same Arrange in the direction. 如請求項第9項所述之空心熱源,其中,所述之有序奈米碳管薄膜的厚度為0.01微米~100微米。 The hollow heat source of claim 9, wherein the ordered carbon nanotube film has a thickness of from 0.01 μm to 100 μm. 如請求項第9項所述之空心熱源,其中,所述有序奈米碳管薄膜包括複數個首尾相連且沿同一方向擇優取向排列的奈米碳管。 The hollow heat source of claim 9, wherein the ordered carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction. 如請求項第11項所述之空心熱源,其中,所述奈米碳管之間通過凡德瓦爾力連接。 The hollow heat source of claim 11, wherein the carbon nanotubes are connected by a van der Waals force. 如請求項第9項所述之空心熱源,其中,所述奈米碳管結構包括至少兩個重疊設置的有序奈米碳管薄膜,且相鄰兩個有序奈米碳管薄膜之間通過凡德瓦爾力緊密連接。 The hollow heat source of claim 9, wherein the carbon nanotube structure comprises at least two overlapping ordered carbon nanotube films, and between adjacent two ordered carbon nanotube films Tightly connected by Van der Valli. 如請求項第13項所述之空心熱源,其中,所述之奈米碳管結構中相鄰的有序奈米碳管薄膜中的奈米碳管的排列方向形成一夾角α,0≦α≦90度。 The hollow heat source according to claim 13, wherein the arrangement direction of the carbon nanotubes in the adjacent ordered carbon nanotube film in the carbon nanotube structure forms an angle α, 0≦α ≦ 90 degrees. 如請求項第1項所述之空心熱源,其中,所述奈米碳管結構包括至少一奈米碳管長線。 The hollow heat source of claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube long line. 如請求項第1項所述之空心熱源,其中,所述奈米碳管結構為由多根奈米碳管長線組成的束狀結構或絞線結構。 The hollow heat source according to claim 1, wherein the carbon nanotube structure is a bundle structure or a stranded structure composed of a plurality of long carbon nanotube tubes. 如請求項第16項所述之空心熱源,其中,所述奈米碳管長線的直徑為1奈米~100微米。 The hollow heat source of claim 16, wherein the long diameter of the carbon nanotubes is from 1 nm to 100 μm. 如請求項第16項所述之空心熱源,其中,所述奈米碳管長線包括複數個由首尾相連且擇優取向排列的奈米碳管。 The hollow heat source of claim 16, wherein the long carbon nanotube line comprises a plurality of carbon nanotubes arranged in an end-to-end orientation and in a preferred orientation. 如請求項第18項所述之空心熱源,其中,所述相鄰的奈米碳管之間通過凡德瓦爾力緊密結合。 The hollow heat source of claim 18, wherein the adjacent carbon nanotubes are tightly bonded by a van der Waals force. 如請求項第1項所述之空心熱源,其中,所述空心基底的材料為柔性材料或硬性材料,且所述柔性材料為塑膠或柔性纖維,所述硬性材料為陶瓷、玻璃、樹脂、石英。 The hollow heat source according to claim 1, wherein the material of the hollow substrate is a flexible material or a hard material, and the flexible material is a plastic or a flexible fiber, and the hard material is ceramic, glass, resin, quartz. .
TW97128264A 2008-07-25 2008-07-25 Hollow heating source TWI427027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128264A TWI427027B (en) 2008-07-25 2008-07-25 Hollow heating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128264A TWI427027B (en) 2008-07-25 2008-07-25 Hollow heating source

Publications (2)

Publication Number Publication Date
TW201004858A TW201004858A (en) 2010-02-01
TWI427027B true TWI427027B (en) 2014-02-21

Family

ID=44826070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128264A TWI427027B (en) 2008-07-25 2008-07-25 Hollow heating source

Country Status (1)

Country Link
TW (1) TWI427027B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372251B (en) * 2010-08-23 2014-03-26 清华大学 Carbon nanotube structure and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501056B1 (en) * 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
JP2004186102A (en) * 2002-12-06 2004-07-02 Jfe Engineering Kk Carbon nanotube aggregate having layered structure and product using the same
JP2008168631A (en) * 2007-01-15 2008-07-24 Samsung Electronics Co Ltd Heat generating structure for ink-jet print head, its manufacturing method, and ink-jet print head having it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501056B1 (en) * 1998-04-28 2002-12-31 E. Tec Corporation Carbon heating element and method of manufacturing the same
JP2004186102A (en) * 2002-12-06 2004-07-02 Jfe Engineering Kk Carbon nanotube aggregate having layered structure and product using the same
JP2008168631A (en) * 2007-01-15 2008-07-24 Samsung Electronics Co Ltd Heat generating structure for ink-jet print head, its manufacturing method, and ink-jet print head having it

Also Published As

Publication number Publication date
TW201004858A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
TWI486090B (en) Hollow heating source
CN101626639B (en) Plane heat source
CN101616515B (en) Linear heat source
CN101610613B (en) Line heat source
CN101636005B (en) Plane heat source
TWI427027B (en) Hollow heating source
CN101636001B (en) Cubic heat source
CN101636004B (en) Plane heat source
CN101626641B (en) Hollow heat source
TWI473524B (en) Hollow heating source
CN101636006B (en) Plane heat source
TWI466585B (en) Hollow heating source
TWI380734B (en) Linear heater
TWI462627B (en) Hollow heating source
TWI465145B (en) Hollow heating source
TWI448417B (en) Linear heater
TWI462630B (en) Planar heating source
CN101616514B (en) Linear heat source
TWI380732B (en) Planar heating source
TWI360521B (en) Planar heat source
TWI462628B (en) Planar heating source
TWI386363B (en) Linear heater
TWI380733B (en) Planar heating source
TWI380728B (en) Linear heater
TW201000395A (en) Linear heater