TW201004861A - Linear heater - Google Patents

Linear heater Download PDF

Info

Publication number
TW201004861A
TW201004861A TW97128297A TW97128297A TW201004861A TW 201004861 A TW201004861 A TW 201004861A TW 97128297 A TW97128297 A TW 97128297A TW 97128297 A TW97128297 A TW 97128297A TW 201004861 A TW201004861 A TW 201004861A
Authority
TW
Taiwan
Prior art keywords
line
heat source
heating layer
carbon nanotube
carbon
Prior art date
Application number
TW97128297A
Other languages
Chinese (zh)
Other versions
TWI448417B (en
Inventor
Chen Feng
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097128297A priority Critical patent/TWI448417B/en
Publication of TW201004861A publication Critical patent/TW201004861A/en
Application granted granted Critical
Publication of TWI448417B publication Critical patent/TWI448417B/en

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

The present invention relates to a linear heater. The linear heater includes a linear substrate, a heating layer disposed on a surface of the linear substrate, two electrodes disposed on a surface of the heating layer separately. The two electrodes are electrically connected with the heating layer. The heating layer includes at least one carbon nanotube yarn.

Description

201004861 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種線熱源,尤其涉及一種基於奈米碳管 的線熱源。 【先前技術】 熱源於人們的生產、生活、科研中起著重要的作用。 線熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外 治療儀、電暖器等領域。 Ο 明參見圖1,先岫技術提供一種線熱源10,其包括一 中空圓柱狀支架102; —加熱層104設置於該支架1〇2表 面,一絕緣保護層1〇6設置於該加熱層1〇4表面;兩個電 極110分別設置於支架102兩端,且與加熱層1〇4電連接; 兩個夾緊件108分別將兩個電極11〇與加熱層1〇4卡固於 支架102兩端。其中,加熱層1〇4通常採用一碳纖維紙通 過纏繞或包裹的方式形成。當通過兩個電極11〇對該線熱 ❺源10知加電壓時,所述加熱層104產生焦耳熱,並向周 圍進行熱輻射。所述碳纖維紙包括紙基材及雜亂分佈於該 紙基材中的瀝青基碳纖維。其中,紙基材包括纖維素纖維 及樹脂等的混合物,瀝青基碳纖維的直徑為3〜6毫米,長 度為5〜20微米。 然而採用叙纖維紙作為加熱層具有以下缺點··第一, ,纖、准紙厚度較大,—般為幾十微米,使線熱源不易做成 微型結構,無法應用於微型器件的加熱。第二,由於該碳 、’戴維紙中包含紙基材,故,該碳纖維紙的密度較大,重量 201004861 . 大,使得採用該碳纖維紙的線熱源使用不便。第三,由於 -該碳纖維紙中的瀝青基碳纖維雜亂分佈,故,該碳纖維紙 的強度較小,柔性較差,容易破裂,限制其應有範圍。第 四,奴纖維紙的電熱轉換效率較低,不利於節能環保。 〇有鑒於此,提供一種重量小,強度大,適應用於微型 器件的加熱,且電熱轉換效率較低,利於節能環保的線熱 源實為必要。 【發明内容】 一種線熱源包括一線狀基底;一加熱層設置於線狀基 底的表面,及兩個電極間隔設置於加熱層的表面,並分別 與该加熱層電連接,其中,所述加熱層包括至少一奈米碳 管長線。 相較於先前技術,所述的線熱源具有以下優點:第一, 不米碳官長線直徑可控制於宏觀或微觀範圍,既可應用於 宏觀領域也可應用於微觀領域。第二,奈米碳管比碳纖維 ❹具有更小的密度,故,採用奈米碳管結構的線熱源具有更 輕的重量,使用方便。第三,奈米碳管結構的電熱轉換效 率问,熱阻率低,故,該線熱源具有升溫迅速、熱滯後小、 熱交換速度快的特點。 【實施方式】 以下將結合附圖詳細說明本技術方案線熱源。 請參閱圖2至圖4 ’本技術方案實施例提供一種線熱 源20,該線熱源2〇包括一線狀基底2〇2; 一反射層210 设置於該線狀基底202的表面;一加熱層204設置於所述 201004861 反射層210表面;兩個電極206間隔設置於該加敎層204 的表面’且與該加熱層綱電連接;及—絕緣保護層細 设置於該加熱層204的表面。所述線熱源2〇的 直徑為〇.!微米〜U厘米。本實施例的線熱源;:優’ 選為1.1毫米〜1.1厘米。 所述線狀基底2G2起支樓作用,其材料可為硬性材 料’如:陶究、玻璃、樹脂、石英等,亦可選擇柔性材 ❹ 如:塑膠或柔性纖維等。當線狀基底202為柔性材料時, 该線熱源20使用時可根據需要彎折成任意形狀。所述線狀 基底202的長度、直徑及形狀不限,可依據實際需要進行 選擇。本實施例優選的線狀基底2〇2為一陶瓷桿,其直徑 為1毫米〜1厘米。 所述反射層210的材料為一白色絕緣材料,如:金屬 氧化物、金屬鹽或陶瓷等。本實施例中,反射層21〇的材 枓優選為三氧化二銘,其厚度》1〇〇微米〜〇·5毫米。該反 ©射層210通過濺射的方法沈積於該線狀基底2〇2表面。所 述反射層210用來反射加熱層2〇4所發的熱量,使其有效 的散發到外界空間去,故,該反射層210為一可選擇結構。 所述奈米碳管長線可通過直接拉伸一奈米碳管陣列獲 或拉伸一奈米碳管陣列後經過扭轉紡紗獲得。所述奈米 | s長線的直徑為i奈米〜1〇〇微米,其長度不限,可根據 ,需求製得。請參見圖5及圖6,所述奈米碳管長線包 由冷复數個首尾相連的奈米碳管束平行地組成的束狀結構或 複數個首尾相連的奈米碳管束相互扭轉組成的絞線結 8 201004861 .構。該T的奈米碳管束之間通過凡德瓦爾力緊密結合, •該奈米碳管束包括複數個平行排列的奈米碳管。所述奈米 碳管長線中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管 及夕土不米碳g·中的一種或多種。所述單壁奈米碳管的直 徑為〇.5奈米〜10奈米,雙壁奈米碳管的直徑4 10夺米〜15 奈米,多壁奈米碳管的直徑為h5奈米〜5〇奈米。所述奈 米碳管的長度大於·微米。本實施例t,該奈米碳管的 長度優選為200〜900微米。 β , 熱層綱包括複數個奈米碳管長線時,該複數個 奈米碳管長線相互平行或交又設置於反射層21〇的表面。 由於奈米碳管長線包括複數個首尾相連的奈米碳管束平行 地組成的束狀結構或由複數個首尾相連的奈米碳管束相互 扭轉組成的絞線結構,故,具有一定的柔勒性。故,該加 熱層204可彎曲折疊成任意形狀而不破裂。 本實施例將一奈米碳管長線緊密的纏繞於所述反射層 ❹210的表面作為加熱層2〇4。該加熱層2〇4的厚度為 微米。 所述電極206可設置於加熱層204的同一表面上也可 設置於加熱層204的不同表面上。所述電極2〇6可通過奈 米碳管層的黏性或導電黏結劑(圖未示)設置於該加熱層 204的表面上。導電黏結劑實現電極2〇6與奈米碳管層電 接觸的同時,還可將電極2〇6更好地固定於奈米碳管層的 表面上。通過該兩個電極2〇6可對加熱層2〇4施加電壓。 其中,兩個電極206之間相隔設置,以使採用奈米碳管層 201004861 • 的加熱層204通電發熱時接入一定的阻值避免短路現象產 生。優選地,由於線狀基底202直徑較小,兩個電極206 間隔設置於線狀基底202的兩端,並環繞設置於加熱層2〇4 的表面。 所述電極206為導電薄膜、金屬片或者金屬引線。該 導電薄膜的材料可為金屬、合金、銦錫氧化物(IT〇)、録 錫氧化物(ΑΤΟ)、導電銀膠、導電聚合物等。該導電薄膜 可通過物理氣相沈積法、化學氣相沈積法或其他方法形成 ❹於加熱層204表面。該金屬片或者金屬引線的材料可為銅 片或鋁片等。該金屬片可通過導電黏結劑固定於加熱層 204表面。 所述電極206還可為一奈米碳管結構。該奈米碳管結 構包裹或纏繞於反射層21〇的表面。該奈米碳管結構可= 過其自身的黏性或導電黏結劑固定於反射層21〇的表面。 ,奈米碳管結構包括定向排列且均勻分佈的金屬性奈米碳 ◎官。具體地,該奈米碳管結構包括至少一有序奈米碳管薄 臈或至少一奈米碳管長線。由於本實施例中的加熱層2〇4 也採用奈米碳管結構,故,電極2〇6與加熱層綱之間具 f較小的歐姆接觸電阻’可提高線熱源2〇對電能的利用 本實施例中,由於本實施例中的力口熱層綱由一太 =長成」故’奈米碳管長線的兩端可作為i極 而…、而專門設置兩個電極206。 所述絕緣保護層鹰的材料為—絕緣材料,如:橡谬、 201004861 樹脂等。所述絕緣保護層簡厚度不限,可根據實際情況 •選擇。本實施例中,該絕緣保護層的材料採用橡滕, 其厚度為0.5〜2毫米。該絕緣保護層2〇8可通過塗敷或包 裹的方法形成於加熱層204的表面。所述絕緣保護層2〇8 用來防止該線熱源20使用時與外界形成電接觸,同時 防止加熱層204中的奈米碳管層吸附外界雜質。該絕緣保 護層208為一可選擇結構。 本實施例中,將直徑為100微米的奈米碳管長線纏繞 於-直控為1厘米的線狀基底2〇2上,且其位於兩個電極 裏之間的長度為3厘求。電流沿著奈米碳管長線的纏繞 方向流入。測量儀器為紅外測溫儀Az_8859。當施加電壓 於1伏〜20伏,加熱功率為1瓦〜40瓦時,奈米碳管長線 的表面溫度為5(TC〜WC。可見,該奈米碳管結構具有較 馬的電熱轉換效率。對於具有黑體結構的物體來說,其所 對應的溫度為200t:〜4贼時就能發出人眼看不見的熱輕 ©射(紅外線),此時的熱輻射最穩定、效率最高,所產生的 熱輻射熱量最大。 δ…源20使用時,可將其設置於所要加熱的物體表 /或將/、/、被加熱的物體間隔設置,利用其熱輻射即可進 另還可將複數個該線熱源20排列成各種預定的 圖形使用。該線熱源2〇可廣泛應用於電加熱器、紅外治療 儀、電暖器等領域。 ” ^本實施例中’由於奈米碳管具有奈米級的直徑,使得 製備的不米兔管結構可具有較小的厚度,故,採用小直徑 11 201004861 .的線狀基底可製備微型線熱源。奈米碳管具有強的抗腐蝕 性,使其可於酸性環境中工作。而且,奈米碳管具有極強 的穩定性,即使於3000〇C以上高溫的真空環境下工作而不 會为解,使该線熱源20適合於真空高溫下工作。另,奈米 碳管比同體積的鋼強度高100倍,重量卻只有其1/6,故, 採用奈米碳管的線熱源20具有更高的強度及更輕的重量。 良 τ、上所述,本發明確已符合發明專利之要件,遂依法 響提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為先前技術的線熱源的結構示意圖。 圖2為本技術方案實施例的線熱源的結構示意圖 圖3為圖2的線熱源沿線m _羾的剖面示意圖。 Q 圖4為圖3的線熱源沿線iv -IV的剖面示意圖。 ,5為本技術方案實施例的束狀結構的奈米碳管 的知描電鏡照片。 的搞Γ 6為本技術方案實施例的絞線結構的奈米碳管長線 的和描電鏡照片。 【主要元件符號說明】 線熱源 支架 加熱層 10, 20 102 104, 204 12 201004861 保護層 106 夾緊件 108 電極 110, 206 線狀基底 202 絕緣保護層 208 反射層 210 ❹ 13201004861 IX. Description of the Invention: [Technical Field] The present invention relates to a line heat source, and more particularly to a line heat source based on a carbon nanotube. [Prior Art] Heat plays an important role in people's production, life, and scientific research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heaters. Referring to FIG. 1, a prior art provides a line heat source 10 including a hollow cylindrical bracket 102; a heating layer 104 is disposed on the surface of the bracket 1〇2, and an insulating protective layer 1〇6 is disposed on the heating layer 1 The two electrodes 110 are respectively disposed at two ends of the bracket 102 and electrically connected to the heating layer 1〇4; the two clamping members 108 respectively fix the two electrodes 11〇 and the heating layer 1〇4 to the bracket 102. Both ends. Among them, the heating layer 1〇4 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the line heat source 10 through the two electrodes 11 ,, the heating layer 104 generates Joule heat and conducts heat radiation around the line. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers randomly distributed in the paper substrate. Among them, the paper substrate comprises a mixture of cellulose fibers and a resin, and the pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm. However, the use of the fiber paper as the heating layer has the following disadvantages: First, the thickness of the fiber and the quasi-paper is large, generally several tens of micrometers, making the wire heat source difficult to be made into a micro structure and cannot be applied to the heating of the micro device. Second, since the carbon and 'Dave papers contain a paper substrate, the carbon fiber paper has a large density and a weight of 201004861. This makes the use of the carbon fiber paper line heat source inconvenient. Third, since the pitch-based carbon fibers in the carbon fiber paper are disorderly distributed, the carbon fiber paper has a small strength, is inferior in flexibility, and is easily broken, thereby limiting its proper range. Fourth, the electrothermal conversion efficiency of slave fiber paper is low, which is not conducive to energy conservation and environmental protection. In view of this, it is necessary to provide a line heat source which is small in weight, high in strength, suitable for heating of a micro device, and has low electrothermal conversion efficiency, which is advantageous for energy saving and environmental protection. SUMMARY OF THE INVENTION A line heat source includes a linear substrate; a heating layer is disposed on a surface of the linear substrate, and two electrodes are spaced apart from the surface of the heating layer and electrically connected to the heating layer, wherein the heating layer Includes at least one nanometer carbon tube long line. Compared with the prior art, the linear heat source has the following advantages: First, the diameter of the non-meter carbon long line can be controlled in the macroscopic or microscopic range, and can be applied to both the macroscopic field and the microscopic field. Second, the carbon nanotubes have a smaller density than the carbon fiber crucibles. Therefore, the line heat source using the carbon nanotube structure has a lighter weight and is convenient to use. Third, the electrothermal conversion efficiency of the carbon nanotube structure is low, and the thermal resistance is low. Therefore, the heat source of the line has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat exchange rate. [Embodiment] Hereinafter, a line heat source of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 2 to FIG. 4, the embodiment of the present invention provides a line heat source 20 including a linear substrate 2〇2; a reflective layer 210 disposed on a surface of the linear substrate 202; and a heating layer 204. The electrodes are disposed on the surface of the reflective layer 210 of the 201004861; the two electrodes 206 are spaced apart from the surface of the twisted layer 204 and electrically connected to the heating layer; and the insulating protective layer is finely disposed on the surface of the heating layer 204. The diameter of the line heat source 2〇 is 〇.·m to 〜cm. The line heat source of this embodiment; is preferably selected from 1.1 mm to 1.1 cm. The linear substrate 2G2 functions as a branch, and the material thereof may be a hard material such as ceramics, glass, resin, quartz, etc., or a flexible material such as plastic or flexible fiber. When the linear substrate 202 is a flexible material, the linear heat source 20 can be bent into any shape as needed when used. The length, diameter and shape of the linear substrate 202 are not limited and can be selected according to actual needs. The preferred linear substrate 2〇2 of this embodiment is a ceramic rod having a diameter of 1 mm to 1 cm. The material of the reflective layer 210 is a white insulating material such as a metal oxide, a metal salt or a ceramic. In the present embodiment, the material of the reflective layer 21 is preferably a bismuth trioxide having a thickness of "1" micron to 〇5 mm. The anti-reflection layer 210 is deposited on the surface of the linear substrate 2〇2 by sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 2〇4 to be effectively radiated to the external space. Therefore, the reflective layer 210 is an optional structure. The long carbon nanotube wire can be obtained by directly stretching a carbon nanotube array or stretching a carbon nanotube array and then twisting and spinning. The diameter of the long line of the nanometer | s is i nanometer ~ 1 〇〇 micrometer, and the length thereof is not limited, and can be obtained according to the demand. Referring to FIG. 5 and FIG. 6 , the carbon nanotube long-line package is composed of a bundle of a plurality of end-to-end carbon nanotube bundles in parallel, or a plurality of twisted ends of a plurality of end-to-end carbon nanotube bundles. Knot 8 201004861 . The T carbon nanotube bundles are tightly coupled by van der Waals force. • The carbon nanotube bundle includes a plurality of parallel arranged carbon nanotubes. The carbon nanotubes in the long line of the carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a smectite carbon. The diameter of the single-walled carbon nanotube is 〇.5 nm to 10 nm, the diameter of the double-walled carbon nanotube is 4 10 to 15 nm, and the diameter of the multi-walled carbon nanotube is h5 nm. ~5〇 nano. The length of the carbon nanotubes is greater than · microns. In this embodiment t, the length of the carbon nanotube is preferably 200 to 900 μm. When the thermal layer includes a plurality of long carbon nanotubes, the plurality of carbon nanotube long lines are parallel or intersect with each other and disposed on the surface of the reflective layer 21〇. Since the long carbon nanotube line includes a bundle of a plurality of end-to-end carbon nanotube bundles in parallel or a twisted wire structure composed of a plurality of end-to-end carbon nanotube bundles twisted together, it has a certain flexibility. . Therefore, the heating layer 204 can be bent and folded into an arbitrary shape without being broken. In this embodiment, a long carbon nanotube wire is tightly wound around the surface of the reflective layer 210 as a heating layer 2〇4. The thickness of the heating layer 2〇4 is micrometers. The electrodes 206 may be disposed on the same surface of the heating layer 204 or on different surfaces of the heating layer 204. The electrode 2〇6 may be disposed on the surface of the heating layer 204 through a viscous or conductive adhesive (not shown) of the carbon nanotube layer. The conductive adhesive allows the electrode 2〇6 to be electrically contacted with the carbon nanotube layer, and the electrode 2〇6 can be better fixed to the surface of the carbon nanotube layer. A voltage can be applied to the heating layer 2〇4 through the two electrodes 2〇6. Wherein, the two electrodes 206 are spaced apart from each other so that the heating layer 204 using the carbon nanotube layer 201004861 can be connected to a certain resistance value to avoid short circuit when it is heated. Preferably, since the linear substrate 202 has a small diameter, the two electrodes 206 are spaced apart from each other at both ends of the linear substrate 202 and surround the surface of the heating layer 2〇4. The electrode 206 is a conductive film, a metal sheet or a metal lead. The material of the conductive film may be metal, alloy, indium tin oxide (IT〇), tin oxide (ΑΤΟ), conductive silver paste, conductive polymer, or the like. The conductive film may be formed on the surface of the heating layer 204 by physical vapor deposition, chemical vapor deposition or the like. The material of the metal piece or the metal lead may be a copper piece or an aluminum piece or the like. The metal sheet may be fixed to the surface of the heating layer 204 by a conductive adhesive. The electrode 206 can also be a carbon nanotube structure. The carbon nanotube structure is wrapped or wound around the surface of the reflective layer 21〇. The carbon nanotube structure can be fixed to the surface of the reflective layer 21 by its own viscous or conductive adhesive. The carbon nanotube structure includes an oriented and uniformly distributed metallic nanocarbon. Specifically, the carbon nanotube structure comprises at least one ordered carbon nanotube thin layer or at least one nano carbon tube long line. Since the heating layer 2〇4 in the embodiment also adopts a carbon nanotube structure, the ohmic contact resistance between the electrode 2〇6 and the heating layer is small, which can improve the utilization of electric energy by the line heat source 2〇. In this embodiment, since the thermal layer of the force port in the present embodiment is composed of one too long, the two ends of the long line of the carbon nanotube can be used as the i pole. The material of the insulating protective layer eagle is - insulating material, such as: rubber, 201004861 resin, and the like. The thickness of the insulating protective layer is not limited, and may be selected according to actual conditions. In this embodiment, the insulating protective layer is made of a rubber material having a thickness of 0.5 to 2 mm. The insulating protective layer 2〇8 can be formed on the surface of the heating layer 204 by coating or encapsulation. The insulating protective layer 2〇8 is used to prevent the line heat source 20 from making electrical contact with the outside when in use, while preventing the carbon nanotube layer in the heating layer 204 from adsorbing foreign impurities. The insulating protective layer 208 is an optional structure. In the present embodiment, a long carbon nanotube having a diameter of 100 μm was wound around a linear substrate 2〇2 of 1 cm in direct control, and its length between the two electrodes was 3 Å. The current flows in the direction of winding of the long line of the carbon nanotubes. The measuring instrument is an infrared thermometer Az_8859. When the voltage is applied at 1 volt to 20 volts and the heating power is 1 watt to 40 watts, the surface temperature of the long carbon nanotube line is 5 (TC~WC. It can be seen that the carbon nanotube structure has a higher electrothermal conversion efficiency than the horse. For objects with a black body structure, the corresponding temperature is 200t: ~4 thieves can emit hot and light (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient, resulting in The heat of the heat radiation is the largest. δ... When the source 20 is used, it can be set on the object to be heated/or the /, /, heated object can be set at intervals, and the heat radiation can be used to enter a plurality of The line heat source 20 is arranged in various predetermined patterns. The line heat source 2 can be widely used in the fields of electric heaters, infrared therapeutic devices, electric heaters, etc. "In this embodiment, the carbon nanotubes have nanometers." The diameter of the grade makes the prepared non-rabbit tube structure have a small thickness, so a micro-line heat source can be prepared by using a linear substrate of small diameter 11 201004861. The carbon nanotube has strong corrosion resistance, so that Works in an acidic environment. Moreover, the carbon nanotube has extremely strong stability, and even if it is operated under a vacuum environment of a temperature higher than 3000 〇C, it will not be solved, so that the line heat source 20 is suitable for working under vacuum high temperature. The same volume of steel is 100 times stronger and weighs only 1/6 of the weight. Therefore, the line heat source 20 using carbon nanotubes has higher strength and lighter weight. Good τ, above, the present invention has indeed In accordance with the requirements of the invention patent, the patent application is filed according to the law. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations of the spirit of the present invention are to be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view of a prior art line heat source. Fig. 2 is a line heat source of an embodiment of the present technical solution. 3 is a schematic cross-sectional view of the line heat source along line m _ 图 of Fig. 2. Fig. 4 is a schematic cross-sectional view of the line heat source of Fig. 3 along line iv - IV. 5 is a bundle structure of the nanometer embodiment of the technical solution. Carbon tube The photomicrograph of the electron microscopy 6 is a long-line and SEM photograph of the carbon nanotube structure of the stranded structure of the embodiment of the present technical solution. [Description of main component symbols] The heating element of the line heat source bracket 10, 20 102 104, 204 12 201004861 Protective layer 106 clamping member 108 electrode 110, 206 linear substrate 202 insulating protective layer 208 reflective layer 210 ❹ 13

Claims (1)

201004861 . 十、申請專利範圍 • 帛線熱源包括-線狀基底,—加熱層設置於線狀基底 的表面’及兩個電極間隔設置,並分別與該加熱層電連 ,由其改良在於,所述加熱層包括至少一奈米碳管長線。 2. 如申請專利範圍第1項所述的線熱源,其中,所述至少 一奈米碳管長線纏繞於線狀基底的表面。 3. ^請專利範圍第1項所述的線熱源,其中,所述加熱 ❹二括*數個奈米破管纽平行或交叉^置於線狀基底 的表面。 4·如申請專利範圍第1項所诚 貝所述的線熱源,其中,所述奈米 反吕長線的直徑為1奈米〜100微米。 5.如申請專利範圍第1 、 ^ ^ “ $所迷的線熱源,其中,所述奈米 反e長線包括複數個由首 狀結構纽料構,㈣料㈣組成的束 „ ^ σ 斤述相鄰的奈米碳管束之間通過 凡德瓦爾力緊密結合,每一太 排列的奈米碳管。母束包括複數個平行 平^圍第5項所述的線熱源,其中,所述的奈 7:二= °微米,直徑小於5。奈米。 /·如曱请專利範圍第1項 ^ ^ ^,s 述的線熱源,其中,所述奈米 反S長線通過其自身的黏性 的表面。 或導電勒結劑固定於加熱層 8·如申請專利範圍第i 唄厅达的線熱源,其中,所述兩個 电極5又置於加熱層的表面。 9 ’如申凊專利範圍第i項 厅攻的線熱源,其中,所述電極 201004861 為—導電薄膜、金屬片、金 10.如申請專利範圍第9項所述線或奈米碳管結構。 碳管結構包括定向排列且均二熱源’其中’所述奈米 如申請專利範圍第9項所述:佈的金屬性奈米碳管。 碳管結構包括至少一有序卉:*熱源,其中,所述奈米 管長線。 Τ…、娀官薄膜或至少一奈米碳 12.如申請專利範圍第9項所 ❹ Ο 碳管結構包裹或纏繞於加熱層的其中,所述奈米 如申請專利範圍第J項所述 碳管結構通過其自身的黏性或導7源’其中,所述奈米 的表面。 導電黏結劑固定於加熱層 14. 如申請專利範圍第1項所述的緩鼓 基底的材料為柔性材料或硬性源’其中,所述線狀 塑膠或柔性纖維,所述硬性材2 ’且所職性材料為 石英。 材枓為陶瓷、玻璃、樹脂、 15. 如申請專利範圍第i項所述 源進-步包括一反射層設置其中’所述線熱 且該反射層的材料為金屬氧化物熱層與線狀基底之間’ 為_微米〜0.5毫米 物、金屬鹽或陶究’厚度 圍第1項所述的線熱源,其中,所述線熱 面。乂 ^ 、絕緣保濩層設置於所述加熱層的外表 17·如申請專利範圍第玉項所述的 源的直徑為0.1微米〜15厘米。、’、“、’其令,所述秦熱 15201004861 . X. Patent application scope • The heat source of the twist line includes a linear substrate, a heating layer is disposed on the surface of the linear substrate, and two electrodes are spaced apart from each other and electrically connected to the heating layer respectively. The heating layer comprises at least one carbon nanotube long line. 2. The line heat source according to claim 1, wherein the at least one carbon nanotube long wire is wound around the surface of the linear substrate. 3. The wire heat source of claim 1, wherein the heating element is arranged in parallel or intersecting with the surface of the linear substrate. 4. The line heat source as described in claim 1 of the patent application, wherein the nanometer anti-Lu long line has a diameter of from 1 nm to 100 μm. 5. For example, the line heat source of the patent scope 1 , ^ ^ " $, wherein the nano-anti-e long line includes a plurality of bundles consisting of a first-structure structure, and (4) a material (4). Adjacent carbon nanotube bundles are tightly bonded by van der Waals forces, each of which is aligned with carbon nanotubes. The mother bundle comprises a plurality of linear heat sources as recited in item 5, wherein said nai 7: two = ° micrometers and having a diameter of less than five. Nano. /· For example, please refer to the first line of the patent scope ^ ^ ^, s line heat source, wherein the nano-anti-S long line passes through its own viscous surface. Or a conductive binder is fixed to the heating layer. 8. A line heat source as in the scope of the patent application, wherein the two electrodes 5 are placed on the surface of the heating layer. 9 </ br> A line heat source of the attack of the scope of the patent application scope, wherein the electrode 201004861 is a conductive film, a metal sheet, a gold 10. The wire or carbon nanotube structure as described in claim 9 of the patent application. The carbon tube structure includes a directional alignment and a uniform heat source 'wherein the nanometer as described in claim 9 of the patent application: a metallic carbon nanotube of cloth. The carbon tube structure includes at least one ordered plant: * heat source, wherein the nanotube tube is long. Τ..., 娀 薄膜 film or at least one nano carbon 12. As claimed in item 9 of the patent application Ο carbon tube structure wrapped or wrapped in a heating layer, the nano carbon as described in claim J The tube structure passes its own viscous or guided 7 source 'where the surface of the nano. The conductive adhesive is fixed to the heating layer 14. The material of the slow drum base according to claim 1 is a flexible material or a hard source, wherein the linear plastic or flexible fiber, the hard material 2' The job material is quartz. The material is ceramic, glass, resin, 15. The source-step as described in claim i includes a reflective layer in which the wire is hot and the material of the reflective layer is a metal oxide thermal layer and a line A line heat source according to item 1, wherein the substrate is '_micron to 0.5 mm, metal salt or ceramics' thickness, wherein the line hot surface.乂 ^, the insulating layer is disposed on the outer surface of the heating layer. 17. The source of the source as described in the glyph of the patent application is 0.1 to 15 cm in diameter. , ', ', 'the order, the Qin hot 15
TW097128297A 2008-07-25 2008-07-25 Linear heater TWI448417B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097128297A TWI448417B (en) 2008-07-25 2008-07-25 Linear heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097128297A TWI448417B (en) 2008-07-25 2008-07-25 Linear heater

Publications (2)

Publication Number Publication Date
TW201004861A true TW201004861A (en) 2010-02-01
TWI448417B TWI448417B (en) 2014-08-11

Family

ID=44826073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128297A TWI448417B (en) 2008-07-25 2008-07-25 Linear heater

Country Status (1)

Country Link
TW (1) TWI448417B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI302327B (en) * 2005-10-14 2008-10-21 Hon Hai Prec Ind Co Ltd Electron emission device
TWI346711B (en) * 2007-12-14 2011-08-11 Hon Hai Prec Ind Co Ltd Method of making magnesium matrix nanotube composite material

Also Published As

Publication number Publication date
TWI448417B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
TWI420954B (en) Heater and method for making the same
TW201008362A (en) Hollow heating source
CN101626639B (en) Plane heat source
CN101616513B (en) Linear heat source
KR20090131652A (en) Linear heater and methods for making the same
CN101610613B (en) Line heat source
CN101636004B (en) Plane heat source
CN101636007B (en) Plane heat source
CN101616514B (en) Linear heat source
TW201004861A (en) Linear heater
TWI380729B (en) Linear heater
TWI386363B (en) Linear heater
TW201000395A (en) Linear heater
TWI380728B (en) Linear heater
TWI360521B (en) Planar heat source
CN101616516B (en) Line heat source
TWI380733B (en) Planar heating source
TWI462630B (en) Planar heating source
CN101616512B (en) Line heat source
TWI462628B (en) Planar heating source
TWI380731B (en) Planar heating source
TWI380734B (en) Linear heater
TWI473524B (en) Hollow heating source
TWI380730B (en) Planar heating source
TWI462627B (en) Hollow heating source