KR20090010477A - Method for manufacturing nickel nanoparticles - Google Patents

Method for manufacturing nickel nanoparticles Download PDF

Info

Publication number
KR20090010477A
KR20090010477A KR1020070073598A KR20070073598A KR20090010477A KR 20090010477 A KR20090010477 A KR 20090010477A KR 1020070073598 A KR1020070073598 A KR 1020070073598A KR 20070073598 A KR20070073598 A KR 20070073598A KR 20090010477 A KR20090010477 A KR 20090010477A
Authority
KR
South Korea
Prior art keywords
nickel
nickel nanoparticles
mixed solution
nanoparticles
sodium
Prior art date
Application number
KR1020070073598A
Other languages
Korean (ko)
Inventor
이영일
정재우
최준락
이귀종
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020070073598A priority Critical patent/KR20090010477A/en
Priority to US12/081,274 priority patent/US20090025510A1/en
Priority to CNA2008100932956A priority patent/CN101352760A/en
Priority to JP2008148847A priority patent/JP5047064B2/en
Publication of KR20090010477A publication Critical patent/KR20090010477A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

A method of manufacturing nickel nano particles is provided to reduce manufacture cost with a wet synthesis method and without a separate reduction process, to simplify facility of manufacturing nickel nano particles and to be mass-produced easily. A method of manufacturing nickel nano particles comprises steps of: adding a reducing agent, a dispersing agent and nickel salt in a polyol solvent and manufacturing a mixed solution; agitating the mixed solution and increasing temperature; and manufacturing the nickel nanoparticles by reacting the mixed solution. The reducing agent is one or more selected from sodium hypophosphite(NaH2PO2), hydrazine(N2H4), hydrochloride, sodium borohydride(NaBH4) and sodium hydroxymethyl sulfoxylate(NaHSO2.CH2O.2H2O).

Description

니켈 나노입자의 제조방법{Method for manufacturing nickel nanoparticles}Method for manufacturing nickel nanoparticles

본 발명은 니켈 나노입자의 제조방법에 관한 것으로, 보다 상세하게는 균일한입도와 우수한 분산성을 갖는 니켈 나노입자의 제조방법에 관한 것이다. The present invention relates to a method for producing nickel nanoparticles, and more particularly to a method for producing nickel nanoparticles having a uniform particle size and excellent dispersibility.

최근 전자 부품의 소형화 추세에 따라 적층 세라믹 콘덴서(MLCC)는 소형화, 고용량화의 콘센서로 널리 사용되고 있다. 적층 세라믹 콘덴서에서 내부 전극재료는 Pd, Pt 등의 고가의 귀금속 재료를 사용하여 왔으나 최근에는 제조비용의 절감을 위하여 니켈 분말로 대체되고 있는 추세이며, 특히 적층수가 많은 고용량의 적층 세라믹 콘덴서의 내부 전극으로 니켈을 중심으로 하는 연구가 활발히 진행되고 있다.Recently, according to the trend of miniaturization of electronic components, multilayer ceramic capacitors (MLCC) have been widely used as condensers of miniaturization and high capacity. In the multilayer ceramic capacitor, the internal electrode material has used expensive precious metal materials such as Pd and Pt, but recently, it is being replaced by nickel powder to reduce the manufacturing cost. In particular, the internal electrode of the high capacity multilayer ceramic capacitor having a large number of stacks As a result, research on nickel has been actively conducted.

적층 세라믹 콘덴서에서 니켈 전극층은 분말 야금에서 성형체의 충진밀도에 비하여 낮으며, 소성시 소결에 따른 수축량이 유전체 층에 비하여 크기 때문에 니켈 전극에서 층간 단락 및 단선으로 인한 불량을 일으키기 쉽다. 이러한 불량을 막기 위해서 내부 전극에 사용되는 니켈 분말은 조대한 입자를 포함하지 않아야 하 고 입도 분포가 좁고 균일해야 하며 응집이 없이 양호한 분산성을 가져야 한다.In the multilayer ceramic capacitor, the nickel electrode layer is lower than the packing density of the molded body in powder metallurgy, and the shrinkage amount due to sintering during firing is larger than that of the dielectric layer, which is likely to cause defects due to interlayer short circuit and disconnection in the nickel electrode. In order to prevent such defects, the nickel powder used for the internal electrode should not contain coarse particles, have a narrow and uniform particle size distribution, and have good dispersibility without aggregation.

종래 적층 세라믹 콘덴서 내부전극 재료로서 이용된 니켈 분말 제조방법에 대하여 다수 제안되어 왔지만 고적층, 고용량의 콘덴서 구현을 위한 100nm 이하의 균일한 니켈 분말을 제조할 수 있는 만족할만한 방법이 알려져 있지 아니하였다.Although many methods have been proposed for a nickel powder manufacturing method used as an internal electrode material of a multilayer ceramic capacitor, a satisfactory method for producing a uniform nickel powder of 100 nm or less for realizing a high lamination and a high capacity capacitor has not been known.

구체적으로, 종래에는 염화니켈을 1000℃ 정도의 고온하에서 수소로 기상 환원시키는 방법이 제안되었다. 그러나 이러한 방법은 고온 하에서 반응이 열이력을 갖고 있어 입자 표면은 평활하지만 핵생성과 성장이 동시에 일어나기 때문에, 입도 분포가 넓고 1.0㎛ 이상의 조대한 입자들이 존재하므로 내부 전극의 박층화로 적용하기에는 미흡한 점이 많았다.Specifically, conventionally, a method of gas phase reduction of nickel chloride with hydrogen at a high temperature of about 1000 ° C. has been proposed. However, this method has a thermal history of reaction under high temperature, so that the surface of the particles is smooth but nucleation and growth occur simultaneously. Therefore, the particle size distribution is large and coarse particles of 1.0 µm or more exist. .

또한, 염화니켈 및 황산니켈 수용액을 강알칼리 존재 하에서 환원제로서 히드라진 및 히드라진 수화물을 이용하여 환원하여 니켈분말을 제조할 수 있는 습식 환원법이 제안되었다. 상기 방법은 기상반응법에 비하여 좁은 입도 분포를 갖는 니켈 분말을 얻을 수 있었으나, 입자 표면이 평활하지 않아 치밀한 내부전극을 형성하기 곤란하였다.In addition, a wet reduction method has been proposed in which nickel powder and nickel sulfate aqueous solution can be reduced by using hydrazine and hydrazine hydrate as reducing agents in the presence of strong alkalis. In this method, nickel powder having a narrower particle size distribution was obtained than the gas phase reaction method, but it was difficult to form a dense internal electrode because the surface of the particles was not smooth.

아울러, 에틸렌 글리콜, 캐핑분자 및 환원제를 혼합한 다음, 금속 전구체, 알코올계 화합물을 혼합하고, 그 다음으로, 아세톤, 에틸렌 글리콜을 혼합하여 금속 나노입자를 제조하는 방법은 금속 전구체 첨가전에 승온과정이 이루어지고 그 이후에 금속전구체를 첨가함으로써 방법이 간단하지 못하다. In addition, ethylene glycol, a capping molecule and a reducing agent are mixed, then a metal precursor and an alcohol compound are mixed, and then, acetone and ethylene glycol are mixed to prepare metal nanoparticles. The method is not simple by adding a metal precursor after that.

이외에도 여러가지 제조방법들이 알려져 있으며 그 중 습식 환원법이 분말의 형상 및 입도 제어가 용이하여, 서브마이크론 단위의 미세한 분말의 제조가 가능하 나, 반응과정 상에 반응 변수가 많아 이에 따른 니켈의 반응이 불균일 할 수 있으며, 최종 합성되는 니켈 분말의 크기가 200nm~1㎛로, 100nm 이하의 균일한 미세 분말을 제조하기 어렵다는 단점이 있다. 또한, 환원공정이 추가적인 단계로 포함되는 경우, 제조공정이 다소 간단하지 못하다. 따라서, 이와 같은 종래 방식은 니켈 나노입자의 미세 균일한 대량합성에 용이하지 않다는 문제점이 있다.In addition, various manufacturing methods are known. Among them, the wet reduction method makes it easy to control the shape and particle size of the powder, so that it is possible to prepare fine powders in submicron units, but there are many reaction variables in the reaction process, resulting in uneven reaction of nickel. The final synthesized nickel powder may have a size of 200 nm to 1 μm, and it may be difficult to prepare a uniform fine powder of 100 nm or less. In addition, when the reduction process is included as an additional step, the manufacturing process is not so simple. Therefore, this conventional method has a problem that it is not easy to fine uniform mass synthesis of nickel nanoparticles.

본 발명은 입도가 균일하고 분산성이 우수한 니켈 나노입자를 간단한 방법으로 대량생산할 수 있는 니켈 나노입자의 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for producing nickel nanoparticles that can mass-produce nickel nanoparticles having a uniform particle size and excellent dispersibility by a simple method.

상기 기술적 과제를 해결하기 위하여, 본 발명에서는,In order to solve the above technical problem, in the present invention,

폴리올 용매에 환원제, 분산제, 및 니켈염을 첨가하여 혼합용액을 제조하는 단계; 상기 혼합용액을 교반하고 승온시키는 단계; 및 상기 혼합용액을 반응시켜 니켈 나노입자를 생성시키는 단계;를 포함하는 니켈 나노입자의 제조방법을 제공한다.Preparing a mixed solution by adding a reducing agent, a dispersant, and a nickel salt to the polyol solvent; Stirring and heating the mixed solution; And reacting the mixed solution to generate nickel nanoparticles.

본 발명의 일 실시예에 따르면, 상기 환원제는 소디움하이포포스파이트 (NaH2PO2), 히드라진 (N2H4), 하이드로클로라이드, 소디움보로하이드라이드 (NaBH4) 및 소디움히드록시메틸설폭실레이트 (NaHSO2ㅇCH2Oㅇ2H2O)로 구성된 군에서 선택된 어느 하나 이상일 수 있다.According to one embodiment of the invention, the reducing agent is sodium hypophosphite (NaH 2 PO 2 ), hydrazine (N 2 H 4 ), hydrochloride, sodium borohydride (NaBH 4 ) and sodium hydroxymethyl sulfoxyl rate may be at least any one selected from the group consisting of (NaHSO 2 o o CH 2 o 2H 2 o).

본 발명의 일 실시예에 따르면, 분산제는 양이온계 계면활성제, 음이온계 계면활성제, 셀룰로오즈계 유도체, 폴리머, 코폴리머(copolymer) 및 터폴리머(terpolymer)로 구성된 군에서 선택된 어느 하나 이상일 수 있다. According to an embodiment of the present invention, the dispersant may be any one or more selected from the group consisting of cationic surfactants, anionic surfactants, cellulose derivatives, polymers, copolymers and terpolymers.

본 발명의 일 실시예에 따르면, 상기 분산제는 CTAB (cetyltrimethylammonium bromide), SDS (sodium dodecyl sulfate), Na-CMC (sodium carboxymethyl cellulose), PVP (polyvinylpyrrolidone), PVP/VA (vinylpyrrolidone/vineylacetate) 및 비닐카프로락탐/비닐피롤리돈/프로필메타아크릴아미드 (vinylcaprolactam/vinylpyrrolidone/propylmethacylamide)로 구성된 군에서 선택된 어느 하나 이상일 수 있다. According to an embodiment of the present invention, the dispersant is CTB (cetyltrimethylammonium bromide), SDS (sodium dodecyl sulfate), Na-CMC (sodium carboxymethyl cellulose), PVP (polyvinylpyrrolidone), PVP / VA (vinylpyrrolidone / vineylacetate) and vinyl capropro It may be at least one selected from the group consisting of lactam / vinylpyrrolidone / propyl methacrylamide (vinylcaprolactam / vinylpyrrolidone / propylmethacylamide).

본 발명의 일 실시예에 따르면, 상기 니켈염은 혼합용액에 대하여 0.001 내지 1몰(M)의 농도로 첨가될 수 있다. According to one embodiment of the present invention, the nickel salt may be added at a concentration of 0.001 to 1 mol (M) with respect to the mixed solution.

본 발명의 일 실시예에 따르면, 상기 환원제는 니켈염에 대하여 2 내지 10 몰비로 첨가될 수 있다. According to one embodiment of the invention, the reducing agent may be added in a 2 to 10 molar ratio with respect to the nickel salt.

본 발명의 일 실시예에 따르면, 상기 분산제는 니켈염에 대하여 1 내지 20 몰비로 첨가될 수 있다. According to one embodiment of the invention, the dispersant may be added in a molar ratio of 1 to 20 relative to the nickel salt.

본 발명의 일 실시예에 따르면, 상기 니켈염은 NiCl2, Ni(NO3)2, NiSO4 및 (CH3COO)2Ni로 구성된 군에서 선택된 어느 하나 이상일 수 있다. According to one embodiment of the present invention, the nickel salt may be any one or more selected from the group consisting of NiCl 2 , Ni (NO 3 ) 2 , NiSO 4 and (CH 3 COO) 2 Ni.

본 발명의 일 실시예에 따르면, 상기 폴리올 용매는 에틸렌글리콜, 다이에틸렌글리콜, 트리에틸렌글리콜 및 폴리에틸렌글리콜로 구성된 군에서 선택된 어느 하나 이상일 수 있다. According to one embodiment of the invention, the polyol solvent may be any one or more selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol and polyethylene glycol.

본 발명의 일 실시예에 따르면, 상기 혼합용액은 80~160℃로 승온시킬 수 있다. According to one embodiment of the present invention, the mixed solution may be heated to 80 ~ 160 ℃.

본 발명의 일 실시예에 따르면, 생성된 니켈 나노입자를 세척, 분리 및 건조하는 단계를 더 포함할 수 있다.  According to one embodiment of the invention, it may further comprise the step of washing, separating and drying the resulting nickel nanoparticles.

상술한 바와 같이 본 발명에 따른 니켈 나노입자의 제조방법은 설비가 간단하고 대량생산이 용이한 습식합성법을 이용하여 균일하고 우수한 분산성을 가지며 30~50nm의 크기를 가지는 니켈 나노입자를 제조할 수 있다. 또한, 간단한 방법으로 니켈 나노입자를 저가로 제조할 수 있으며, 별도의 환원공정이 불필요하다. As described above, the method for preparing nickel nanoparticles according to the present invention can prepare nickel nanoparticles having a uniform and excellent dispersibility and a size of 30 to 50 nm by using a wet synthesis method that is simple in equipment and easy to mass produce. have. In addition, nickel nanoparticles can be manufactured at low cost by a simple method, and a separate reduction process is unnecessary.

이하, 본 발명에 따른 니켈 나노입자의 제조방법에 대하여 보다 상세하게 설명하기로 한다. Hereinafter, a method of manufacturing nickel nanoparticles according to the present invention will be described in more detail.

본 발명은 환원제, 분산제 및 니켈염을 폴리올 용매에 첨가하여 혼합용액을 제조하고, 이를 교반하여 승온시킨 다음, 반응온도 및 시간을 조절하여 환원반응에 의한 니켈입자를 생성시키고, 생성된 반응물을 세척, 분리, 건조하여 니켈 나노입자를 수득하는 것이다. In the present invention, a mixed solution is prepared by adding a reducing agent, a dispersant, and a nickel salt to a polyol solvent, stirring and raising the temperature, and then adjusting the reaction temperature and time to generate nickel particles by a reduction reaction, and washing the resulting reactants. Separation, drying to obtain nickel nanoparticles.

상기 니켈염은 NiCl2, Ni(NO3)2, NiSO4, (CH3COO)2Ni와 같은 수용성의 니켈염을 단독 혹은 혼합하여 사용할 수 있으며, 바람직하게는, NiCl2를 단독으로 사용할 수 있다. 또한, 상기 니켈염은 상기 혼합용액에 대하여 0.001 내지 1몰(M)의 농도로 포함될 수 있다. 니켈염이 0.001M 미만인 경우, 제공되는 니켈 이온이 적어 효율측면에서 바람직하지 않고, 1M 초과하여 포함하면 입자의 과성장 응집이 발생하게 되어 바람직하지 않다. 여기서, 니켈 전구체의 함량이 낮을수록 더 작은 크기의 니켈 나노입자를 형성할 수 있다. The nickel salt may be used alone or mixed with a water-soluble nickel salt such as NiCl 2 , Ni (NO 3 ) 2 , NiSO 4 , (CH 3 COO) 2 Ni, and preferably, NiCl 2 may be used alone. have. In addition, the nickel salt may be included in a concentration of 0.001 to 1 mol (M) relative to the mixed solution. When the nickel salt is less than 0.001 M, the nickel ions are provided in a small amount, which is not preferable in terms of efficiency, and when the nickel salt is included in an amount of more than 1 M, overgrowth of the particles occurs, which is undesirable. Here, the lower the content of the nickel precursor may form nickel nanoparticles of smaller size.

상기 폴리올 용매는 에틸렌 글리콜, 다이에틸렌글리콜, 트라이에틸렌글리콜, 폴리에틸렌글리콜 등의 다양한 폴리올을 단독 혹은 혼합하여 사용할 수 있으며, 바람직하게는 에틸렌 글리콜을 단독으로 사용할 수 있다.The polyol solvent may be used alone or mixed with various polyols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, preferably ethylene glycol may be used alone.

상기 에틸렌 글리콜은 별도로 첨가되는 환원제와 함께 금속 전구체를 환원시켜 미 반응물의 형성을 억제하여 높은 수율의 금속 나노 입자가 형성될 수 있도록 한다. 또한 에틸렌 글리콜은 금속 전구체를 용해시키는 용매로 사용될 수 있다. 에틸렌 글리콜은 또한 과량의 아세톤과 함께 첨가되어 미반응 PVP를 제거하고 반응을 종료시키는 역할을 한다. The ethylene glycol is to reduce the metal precursor with a reducing agent added separately to suppress the formation of unreacted material to form a high yield of metal nanoparticles. Ethylene glycol can also be used as a solvent to dissolve the metal precursor. Ethylene glycol is also added with excess acetone to remove unreacted PVP and terminate the reaction.

상기 환원제는 디메틸포름아미드 (DMF), 글루코스, 아스코빅산, 탄닌산, 디메틸포름아미드, 테트라부틸암모늄보로하이드라이드, 소디움하이포포스파이트 (NaH2PO2), 히드라진 (N2H4), 하이드로클로라이드, 소디움보로하이드라이드 (NaBH4), 소디움히드록시메틸설폭실레이트(NaHSO2ㅇCH2Oㅇ2H2O) 등을 사용할 수 있으며, 바람직하게는, 소디움하이포포스파이트를 사용할 수 있다. The reducing agent is dimethylformamide (DMF), glucose, ascorbic acid, tannic acid, dimethylformamide, tetrabutylammonium borohydride, sodium hypophosphite (NaH 2 PO 2 ), hydrazine (N 2 H 4 ), hydrochloride , Sodium borohydride (NaBH 4 ), sodium hydroxymethyl sulfoxylate (NaHSO 2 —CH 2 O — 2H 2 O) and the like can be used. Preferably, sodium hypophosphite can be used.

상기 환원제는 니켈염에 대하여 2 내지 10몰비로 사용할 수 있다. 2몰비 보다 적게 포함될 경우, 니켈 이온을 충분히 환원할 수 없고, 10몰비를 초과하면 부반응물이 과다하게 생성되며, 100% 니켈 이온 환원에 필요한 이상으로 첨가되어 비경제적이다. The reducing agent may be used in 2 to 10 molar ratio with respect to the nickel salt. If less than 2 molar ratios are included, nickel ions cannot be sufficiently reduced, and if it exceeds 10 molar ratios, excessive side reactions are produced and added more than necessary for 100% nickel ion reduction, which is uneconomical.

상기 분산제는 CTAB(cetyltrimethylammonium bromide)나 SDS(sodium dodecyl sulfate)와 같은 양,음이온계 계면활성제, Na-CMC(Sodium carboxymethyl cellulose)와 같은 셀룰로오즈계 유도체, PVP(Polyvinylpyrrolidone)와 같은 폴리머(polymer) 및 PVP/VA(Vinylpyrrolidone/Vinylacetate)와 같은 코폴리머(copolymer), 비닐카프로락탐/비닐피롤리돈/프로필메타아크릴아미드 (vinylcaprolactam /vinylpyrrolidone/propylmethacrylamide)와 같은 터폴리머(terpolymer) 등을 단독 또는 혼합 사용할 수 있으며, 바람직하게는 PVP를 단독으로 사용하는 것이고, 더욱 바람직하게는 분자량 40,000의 PVP를 단독으로 사용하는 것이다. The dispersing agent may be an amount such as cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS), anionic surfactants, cellulose derivatives such as sodium carboxymethyl cellulose (Na-CMC), polymers such as polyvinylpyrrolidone (PVP), and PVP. Copolymers such as / VA (vinylpyrrolidone / Vinylacetate), terpolymers such as vinylcaprolactam / vinylpyrrolidone / propylmethacrylamide (vinylcaprolactam / vinylpyrrolidone / propylmethacrylamide), etc. may be used alone or in combination. Preferably, PVP is used independently, More preferably, PVP of molecular weight 40,000 is used alone.

또한, 상기 분산제는 니켈염에 대하여 1 내지 20몰비로 첨가하는 것이 바람 직하다. 1 몰비 미만을 포함할 경우, 입자의 형상 및 크기를 제어하기 어려우며 생성된 입자에 충분한 분산성을 부여하기 힘들다. 20 몰비를 초과하여 포함할 경우, 전구체 용액의 점도가 급격히 증가하여 균일한 물질의 혼합이 어려워져 반응기 내부의 반응불균일성이 커지게 되고 잉여 유기물이 과도하게 생성되어 입자의 세척, 분리가 어려워지며 대량의 세척 용매 사용을 유발하여 비경제적이다.In addition, the dispersant is preferably added in a 1 to 20 molar ratio with respect to the nickel salt. If less than 1 molar ratio is included, it is difficult to control the shape and size of the particles and hardly give sufficient dispersibility to the resulting particles. When included in excess of 20 molar ratios, the viscosity of the precursor solution increases rapidly, making it difficult to mix homogeneous materials, resulting in increased reaction inhomogeneity in the reactor, and excessive generation of excess organic material, making it difficult to clean and separate particles. It is uneconomical by causing the use of a washing solvent.

상기 환원제, 분산제 및 니켈염을 포함하는 폴리올 혼합 용액은 80~160℃로 승온시키는 것이 바람직하다. 온도가 160℃보다 높으면 급속하게 반응이 진행되어 안정성이 저하되고 입자가 불균일해지며, 온도가 80℃ 이하일 경우에는 환원 반응이 제대로 진행되지 않는다. It is preferable to heat up the polyol mixed solution containing the said reducing agent, a dispersing agent, and a nickel salt at 80-160 degreeC. If the temperature is higher than 160 ℃, the reaction proceeds rapidly, the stability is lowered, the particles are non-uniform, the reduction reaction does not proceed properly when the temperature is 80 ℃ or less.

상기와 같이 혼합용액을 승온시킨 다음, 니켈염과 환원제의 몰비에 따라 상기 80~160℃ 중 100~140℃에서 환원반응이 진행되며, 반응시간은 1분 내지 1시간이 소요될 수 있다. 반응시간이 1분 이내이면 충분한 환원반응이 일어나지 못해 수율이 저하되며, 1시간 이상일 경우에는 과도한 입자의 성장으로 인해 입도가 불균일하게 된다. After raising the mixed solution as described above, the reduction reaction proceeds at 100 ~ 140 ℃ of the 80 ~ 160 ℃ according to the molar ratio of the nickel salt and the reducing agent, the reaction time may take 1 minute to 1 hour. If the reaction time is less than 1 minute, a sufficient reduction reaction does not occur and the yield is lowered. If the reaction time is more than 1 hour, the particle size becomes uneven due to excessive grain growth.

환원반응이 종료되어 니켈 나노입자가 생성되면, 입자의 과성장을 막기 위해 냉각된 증류수 등을 이용하여 급냉시키고, 원심분리 등을 이용하여 니켈 나노입자를 분리할 수 있다. 분리된 니켈 나노입자는 부반응물 및 잔여 유기물 등을 제거하기 위하여 아세톤과 증류수 등을 이용하여 세척을 실시하고, 30~80℃로 유지된 진공 건조기에서 2~8시간 동안 건조하여 수득할 수 있다.When the reduction reaction is finished to produce the nickel nanoparticles, in order to prevent the overgrowth of the particles by quenching with cooled distilled water or the like, the nickel nanoparticles can be separated by centrifugation or the like. The separated nickel nanoparticles may be washed by using acetone and distilled water to remove side reactions and residual organics, and dried for 2 to 8 hours in a vacuum dryer maintained at 30 to 80 ° C.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

<실시예 1: 니켈 나노입자의 제조>Example 1 Preparation of Nickel Nanoparticles

염화니켈 0.4몰인 95.04g, 소디움 하이포포스파이트 1.2몰인 106g, PVP 4몰인 444g, 에틸렌 글리콜 500ml을 비커에서 혼합하고 교반기를 이용하여 용해시키면서 서서히 승온시켰다. 상기 혼합용액을 2℃/min.의 속도로 120℃까지 승온시켰다. 120℃에서 수분 내에 혼합용액은 환원반응에 의해 흑색으로 변화하였으며, 이 상태에서 30분동안 반응을 유지시켰다. 다음으로, 냉각된 증류수를 투입하여 급냉시킨 후 원심분리를 통하여 흑색의 니켈 나노입자를 회수하고, 아세톤과 증류수를 이용하여 3회 세척한 후 50℃로 유지된 진공 건조기에서 3시간 건조하여 최종적으로 니켈 나노입자 12g을 얻었다.95.04 g of nickel chloride, 106 g of sodium hypophosphite, 106 g of 1.2 moles of sodium hypophosphite, 444 g of 4 moles of PVP, and 500 ml of ethylene glycol were mixed in a beaker and gradually heated up while dissolving using a stirrer. The mixed solution was heated to 120 ° C. at a rate of 2 ° C./min. The mixed solution turned black in a few minutes at 120 ° C. by the reduction reaction, and the reaction was maintained for 30 minutes in this state. Next, quenched by adding cooled distilled water to recover the black nickel nanoparticles by centrifugation, washed three times with acetone and distilled water, and dried for 3 hours in a vacuum dryer maintained at 50 ℃ finally 12 g of nickel nanoparticles were obtained.

상기 실시예 1에 의하여 제조된 니켈 나노입자의 SEM 사진은 도 1과 같았다. 도 1에 나타난 바와 같이, 입자크기가 30~50nm인 구형의 균일한 니켈 나노입자가 형성되었음을 확인할 수 있었다.SEM photographs of the nickel nanoparticles prepared in Example 1 were as shown in FIG. 1. As shown in FIG. 1, it was confirmed that spherical uniform nickel nanoparticles having a particle size of 30 to 50 nm were formed.

또한, 상기 실시예 1에 의하여 제조된 니켈 나노입자의 XRD 분석 결과 그래프를 도 2에 도시하였다. 도 2에 나타난 바와 같이, 불순물 및 산화물 상 없이 순수한 FCC (face-centered cubic lattice) 결정구조를 갖는 니켈의 결정상만이 생성되었음을 확인하였다. 순수한 fcc구조의 니켈 결정구조를 갖는 입자가 생성되었을 때, 도 2와 같이 3개의 특징적인 피크가 나타나며, (111), (200), (220)은 각각 fcc 구조에서의 해당 면을 표시하는 것이다.In addition, a graph of the XRD analysis of the nickel nanoparticles prepared in Example 1 is shown in FIG. As shown in FIG. 2, it was confirmed that only a crystal phase of nickel having a pure face-centered cubic lattice (FCC) crystal structure was produced without impurities and oxide phases. When a particle having a pure fcc-structured nickel crystal structure is produced, three characteristic peaks appear as shown in Fig. 2, and (111), (200), and (220) indicate corresponding faces in the fcc structure, respectively. .

<비교예 1>Comparative Example 1

상기 실시예 1의 결과와 비교하기 위해, 승온과정이 이루어진 후에 금속염을 첨가하는 경우에 관한 실험을 아래와 같이 실시하였다. In order to compare with the result of Example 1, the experiment for the case of adding a metal salt after the temperature increase process was carried out as follows.

소디움 하이포포스파이트 106g, PVP 444g, 에틸렌 글리콜 400g을 비커에서 혼합하고 교반기를 이용하여 용해시키면서 2℃/min.의 속도로 120℃까지 승온시켰다. 그리고, 염화니켈 95.04g을 에틸렌 글리콜 150g에 용해한 후 120℃까지 승온시켰다. 120℃로 유지된 소디움 하이포포스파이트, PVP, 에틸렌 글리콜 혼합용액에 동일한 온도의 염화니켈 용액을 한번에 투입한 후 교반기를 이용하여 강하게 혼합하였다. 이후 혼합용액은 서서히 흑색으로 변화하였으며 60분동안 반응을 유지시켰다. 다음으로, 냉각된 증류수를 투입하여 급냉시킨 후 원심분리를 통하여 흑색의 반응물을 회수하고, 아세톤과 증류수를 이용하여 3회 세척한 후 50℃로 유지된 진공 건조기에서 3시간 건조하여 니켈나노입자 8g을 얻었다.106 g of sodium hypophosphite, 444 g of PVP, and 400 g of ethylene glycol were mixed in a beaker and heated up to 120 ° C. at a rate of 2 ° C./min. While dissolving using a stirrer. And 95.04 g of nickel chloride was melt | dissolved in 150 g of ethylene glycol, and it heated up to 120 degreeC. A nickel chloride solution of the same temperature was added to the sodium hypophosphite, PVP, and ethylene glycol mixed solution maintained at 120 ° C. at once, and then mixed vigorously using a stirrer. The mixed solution was gradually changed to black and maintained for 60 minutes. Next, quenched by adding cooled distilled water, the black reactant was recovered by centrifugation, washed three times with acetone and distilled water, and then dried in a vacuum dryer maintained at 50 ° C. for 3 hours to dry nickel nanoparticles 8 g. Got.

비교예 1에 의하여 제조된 니켈 나노입자의 SEM 사진은 도 3과 같았다. 도 3에 나타난 바와 같이, 응집이 심하고 불균칙한 형상의 입자가 형성되었음을 확인할 수 있었다. SEM photographs of the nickel nanoparticles prepared by Comparative Example 1 were as shown in FIG. 3. As shown in FIG. 3, it was confirmed that the particles were formed with agglomerates and irregular shapes.

또한, 상기 비교예 1에 의하여 제조된 니켈 나노입자의 XRD 분석 결과 그래프를 도 4에 도시하였다. 도 4에 나타난 바와 같이, FCC (face-centered cubic lattice) 결정구조를 갖는 니켈 결정상이 나타나지 않고 있음을 확인하였으며, 이는 비교예 1의 방법, 즉, 승온과정이 이루어진 후에 금속염을 첨가하는 종래의 방법에 따라서는 본 발명에 따른 실시예 1과 비교해 볼 때, 니켈 결정상이 제대로 생성되지 않는 것으로 나타났다. In addition, a graph of the XRD analysis of the nickel nanoparticles prepared by Comparative Example 1 is shown in FIG. As shown in FIG. 4, it was confirmed that the nickel crystal phase having a face-centered cubic lattice (FCC) crystal structure did not appear, which is a method of Comparative Example 1, that is, a conventional method of adding a metal salt after a temperature rising process was performed. In comparison with Example 1 according to the present invention, it was found that the nickel crystal phase is not properly generated.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art to which the present invention pertains without departing from the spirit and scope of the present invention as set forth in the claims below It will be appreciated that modifications and variations can be made.

도 1은 실시예 1에 의하여 제조된 니켈 나노입자를 SEM 분석한 사진이다.Figure 1 is a SEM analysis of the nickel nanoparticles prepared in Example 1.

도 2는 실시예 1에 의하여 제조된 니켈 나노입자의 XRD 분석 결과 그래프이다 ((111), (200) 및 (220) : 니켈나노입자의 각각 fcc 구조에서의 해당 면을 나타냄).Figure 2 is a graph of the XRD analysis of the nickel nanoparticles prepared by Example 1 ((111), (200) and (220): shows the corresponding surface in the fcc structure of nickel nanoparticles, respectively).

도 3은 비교예 1에 의하여 제조된 니켈 나노입자를 SEM 분석한 사진이다 Figure 3 is a SEM analysis of the nickel nanoparticles prepared by Comparative Example 1

도 4는 비교예 1에 의하여 제조된 니켈 나노입자의 XRD 분석 결과 그래프이다.Figure 4 is a graph of the XRD analysis of the nickel nanoparticles prepared by Comparative Example 1.

Claims (11)

폴리올 용매에 환원제, 분산제, 및 니켈염을 첨가하여 혼합용액을 제조하는 단계;Preparing a mixed solution by adding a reducing agent, a dispersant, and a nickel salt to the polyol solvent; 상기 혼합용액을 교반하고 승온시키는 단계; 및Stirring and heating the mixed solution; And 상기 혼합용액을 반응시켜 니켈 나노입자를 생성시키는 단계; Reacting the mixed solution to generate nickel nanoparticles; 를 포함하는 니켈 나노입자의 제조방법.Nickel nanoparticles manufacturing method comprising a. 제1항에 있어서,The method of claim 1, 상기 환원제는 소디움하이포포스파이트(NaH2PO2), 히드라진(N2H4), 하이드로클로라이드, 소디움보로하이드라이드(NaBH4) 및 소디움히드록시메틸설폭실레이트(NaHSO2ㅇCH2Oㅇ2H2O)로 구성된 군에서 선택된 어느 하나 이상인 니켈 나노입자의 제조방법.The reducing agent is sodium hypophosphite (NaH 2 PO 2 ), hydrazine (N 2 H 4 ), hydrochloride, sodium borohydride (NaBH 4 ) and sodium hydroxymethyl sulfoxylate (NaHSO 2 ㅇ CH 2 O ㅇ 2H 2 O) method for producing nickel nanoparticles of any one or more selected from the group consisting of. 제1항에 있어서,The method of claim 1, 상기 분산제는 양이온계 계면활성제, 음이온계 계면활성제, 셀룰로오즈계 유도체, 폴리머, 코폴리머(copolymer) 및 터폴리머(terpolymer)로 구성된 군에서 선 택된 어느 하나 이상인 니켈 나노입자의 제조방법. The dispersant is any one or more selected from the group consisting of cationic surfactants, anionic surfactants, cellulose derivatives, polymers, copolymers and terpolymers. 제1항에 있어서,The method of claim 1, 상기 분산제는 CTAB (cetyltrimethylammonium bromide), SDS (sodium dodecyl sulfate), Na-CMC (sodium carboxymethyl cellulose), PVP (polyvinylpyrrolidone), PVP/VA (vinylpyrrolidone/vineylacetate) 및 비닐카프로락탐/비닐피롤리돈/프로필메타아크릴아미드 (vinylcaprolactam/vinylpyrrolidone/propylmethacylamide)로 구성된 군에서 선택된 어느 하나 이상인 니켈 나노입자의 제조방법. The dispersant is CTAB (cetyltrimethylammonium bromide), SDS (sodium dodecyl sulfate), Na-CMC (sodium carboxymethyl cellulose), PVP (polyvinylpyrrolidone), PVP / VA (vinylpyrrolidone / vineylacetate) and vinyl caprolactam / vinylpyrrolidone / propylmetha Method for producing nickel nanoparticles of any one or more selected from the group consisting of acrylamide (vinylcaprolactam / vinylpyrrolidone / propylmethacylamide). 제1항에 있어서, The method of claim 1, 상기 니켈염은 혼합용액에 대하여 0.001 내지 1 몰(M)의 농도로 첨가되는 니켈 나노입자의 제조방법.The nickel salt is a method for producing nickel nanoparticles are added at a concentration of 0.001 to 1 mol (M) relative to the mixed solution. 제1항에 있어서,The method of claim 1, 상기 환원제는 니켈염에 대하여 2 내지 10 몰비로 첨가되는 니켈 나노입자의제조방법. The reducing agent is a method for producing nickel nanoparticles is added in a molar ratio of 2 to 10 relative to the nickel salt. 제1항에 있어서,The method of claim 1, 상기 분산제는 니켈염에 대하여 1 내지 20 몰비로 첨가되는 니켈 나노입자의제조방법. The dispersant is a method for producing nickel nanoparticles is added in a molar ratio of 1 to 20 relative to the nickel salt. 제1항에 있어서, The method of claim 1, 상기 니켈염은 NiCl2, Ni(NO3)2, NiSO4 및 (CH3COO)2Ni로 구성된 군에서 선택된 어느 하나 이상인 니켈 나노입자의 제조방법.The nickel salt is any one or more selected from the group consisting of NiCl 2 , Ni (NO 3 ) 2 , NiSO 4 and (CH 3 COO) 2 Ni. 제1항에 있어서, The method of claim 1, 상기 폴리올 용매는 에틸렌글리콜, 다이에틸렌글리콜, 트리에틸렌글리콜 및 폴리에틸렌글리콜로 구성된 군에서 선택된 어느 하나 이상인 니켈 나노입자의 제조방법.The polyol solvent is any one or more selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol and polyethylene glycol nickel nanoparticles manufacturing method. 제1항에 있어서,The method of claim 1, 상기 혼합용액은 80~160℃로 승온시키는 니켈 나노입자의 제조방법. The mixed solution is a method for producing nickel nanoparticles to increase the temperature to 80 ~ 160 ℃. 제1항에 있어서,The method of claim 1, 생성된 니켈 나노입자를 세척, 분리 및 건조하는 단계를 더 포함하는 니켈 나노입자의 제조방법. Method for producing a nickel nanoparticle further comprises the step of washing, separating and drying the resulting nickel nanoparticles.
KR1020070073598A 2007-07-23 2007-07-23 Method for manufacturing nickel nanoparticles KR20090010477A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070073598A KR20090010477A (en) 2007-07-23 2007-07-23 Method for manufacturing nickel nanoparticles
US12/081,274 US20090025510A1 (en) 2007-07-23 2008-04-14 Method for manufacturing nickel nanoparticles
CNA2008100932956A CN101352760A (en) 2007-07-23 2008-05-21 Method for manufacturing nickel nanoparticles
JP2008148847A JP5047064B2 (en) 2007-07-23 2008-06-06 Method for producing nickel nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070073598A KR20090010477A (en) 2007-07-23 2007-07-23 Method for manufacturing nickel nanoparticles

Publications (1)

Publication Number Publication Date
KR20090010477A true KR20090010477A (en) 2009-01-30

Family

ID=40294077

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070073598A KR20090010477A (en) 2007-07-23 2007-07-23 Method for manufacturing nickel nanoparticles

Country Status (4)

Country Link
US (1) US20090025510A1 (en)
JP (1) JP5047064B2 (en)
KR (1) KR20090010477A (en)
CN (1) CN101352760A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239386B1 (en) * 2010-12-13 2013-03-05 한국지질자원연구원 METHOD OF MANUFACTURING DIRECTLY NICKEL POWDERS USING hydrothermal process
KR101445375B1 (en) * 2013-01-28 2014-10-07 순천대학교 산학협력단 manufacturing method of nickel nano fluid using liquid phase plasma reaction
KR20140146928A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Method for preparing nickel particle and nickel particle prepared by thereof
KR20150054714A (en) * 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing nickel microparticles
KR20150054984A (en) * 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing metal microparticles
KR20150054715A (en) * 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing metal microparticles
KR20160010701A (en) * 2014-07-17 2016-01-28 한국세라믹기술원 Nanosheet-shaped nickel metal by mechanochemical reduction, and fabrication method of positive electrode of Ni-based alkaline storage battery using the same
KR20160057361A (en) * 2016-05-02 2016-05-23 한국세라믹기술원 The manufacturing method of nanosheet-shaped nickel metal by mechanochemical reduction
KR102022936B1 (en) * 2018-12-28 2019-09-20 에이치플러스에코 주식회사 Preparation method of nano zero-valent Iron modified with PVP-VA

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892533B (en) 2010-03-17 2014-12-10 新日铁住金化学株式会社 Process for production of nickel nanoparticles
CN101879604B (en) * 2010-06-02 2012-11-21 浙江大学 Application of metallic indium nanometer particle ink
CN101869989A (en) * 2010-06-03 2010-10-27 中国林业科学研究院林产化学工业研究所 Method for preparing water dispersible metal nano-particles
CN101890504B (en) * 2010-07-07 2012-06-27 江苏技术师范学院 Method for preparing flaky nano copper powder
JP5126862B1 (en) 2011-03-14 2013-01-23 エム・テクニック株式会社 Method for producing metal fine particles
KR101191970B1 (en) 2011-12-09 2012-10-17 한화케미칼 주식회사 Phosphorous-doped nickel nano-particles and process for preparing the same
US20130202909A1 (en) * 2012-02-06 2013-08-08 Lg Chem, Ltd. Method of producing metal nanoparticles
JP5376483B1 (en) * 2012-09-12 2013-12-25 エム・テクニック株式会社 Method for producing nickel fine particles
JP5261780B1 (en) * 2012-09-12 2013-08-14 エム・テクニック株式会社 Method for producing metal fine particles
CN103028739B (en) * 2013-01-05 2015-07-22 河北工业大学 Preparation method of long-range ordered, layered and self-assembled nano-structure superlattice copper
CN103586481A (en) * 2013-10-19 2014-02-19 南昌大学 Preparation method for Fe100-xNix nanometer powder
CN103706804A (en) * 2013-12-25 2014-04-09 南昌航空大学 Environment-friendly preparing method of nickel nanocrystalline
US10378446B2 (en) * 2015-11-17 2019-08-13 Delavan Inc Thermal management for injectors
JP6898619B2 (en) * 2016-01-15 2021-07-07 日本ゼオン株式会社 Composition for thermoelectric conversion element and its manufacturing method, molded body for thermoelectric conversion element and its manufacturing method, and thermoelectric conversion element
CN105642903B (en) * 2016-03-01 2017-12-22 河海大学 The process for dispersing that a kind of nickel nanowire surface non-covalent modification is modified
JP6573563B2 (en) 2016-03-18 2019-09-11 住友金属鉱山株式会社 Nickel powder, nickel powder manufacturing method, internal electrode paste using nickel powder, and electronic component
CN107684909A (en) * 2017-09-30 2018-02-13 陕西科技大学 A kind of preparation method of the flower-shaped nickel nano catalytic material of high activity
KR20190043277A (en) * 2017-10-18 2019-04-26 현대자동차주식회사 Battery module having cooling channel and battery system comprising the same
CN110253032B (en) * 2019-07-16 2020-11-13 浙江大学 Method for preparing flower-like nickel nanoparticles at normal temperature and normal pressure in high yield
GB202009513D0 (en) * 2020-06-22 2020-08-05 Univ Of Stellenbosch An enzyme-polymer matrix
CN114260462A (en) * 2020-09-16 2022-04-01 南京理工大学 Method for preparing nickel nano-particles
CN112520740A (en) * 2020-11-13 2021-03-19 中科合成油技术有限公司 Co3Preparation method of material C
CN115609000A (en) * 2020-12-24 2023-01-17 赵伟 Preparation method of high-dispersion nickel nano dispersion liquid
CN112958780B (en) * 2021-02-01 2023-05-09 中科南京绿色制造产业创新研究院 Flake nano metal nickel and preparation method and application thereof
CN114130067A (en) * 2021-12-16 2022-03-04 *** Nickel-based oil-water separation membrane and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474810B2 (en) * 2001-07-06 2010-06-09 株式会社村田製作所 Metal powder manufacturing method, metal powder, conductive paste, multilayer ceramic electronic component
TWI399254B (en) * 2004-12-10 2013-06-21 Mitsui Mining & Smelting Co Nickel powder and its manufacturing method and conductive paste
WO2006076611A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation Production of metal nanoparticles
KR100716201B1 (en) * 2005-09-14 2007-05-10 삼성전기주식회사 Metal nanoparticles and method for manufacturing thereof
US7625637B2 (en) * 2006-05-31 2009-12-01 Cabot Corporation Production of metal nanoparticles from precursors having low reduction potentials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239386B1 (en) * 2010-12-13 2013-03-05 한국지질자원연구원 METHOD OF MANUFACTURING DIRECTLY NICKEL POWDERS USING hydrothermal process
KR20150054714A (en) * 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing nickel microparticles
KR20150054984A (en) * 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing metal microparticles
KR20150054715A (en) * 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing metal microparticles
KR101445375B1 (en) * 2013-01-28 2014-10-07 순천대학교 산학협력단 manufacturing method of nickel nano fluid using liquid phase plasma reaction
KR20140146928A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Method for preparing nickel particle and nickel particle prepared by thereof
KR20160010701A (en) * 2014-07-17 2016-01-28 한국세라믹기술원 Nanosheet-shaped nickel metal by mechanochemical reduction, and fabrication method of positive electrode of Ni-based alkaline storage battery using the same
KR20160057361A (en) * 2016-05-02 2016-05-23 한국세라믹기술원 The manufacturing method of nanosheet-shaped nickel metal by mechanochemical reduction
KR102022936B1 (en) * 2018-12-28 2019-09-20 에이치플러스에코 주식회사 Preparation method of nano zero-valent Iron modified with PVP-VA

Also Published As

Publication number Publication date
US20090025510A1 (en) 2009-01-29
JP5047064B2 (en) 2012-10-10
JP2009024254A (en) 2009-02-05
CN101352760A (en) 2009-01-28

Similar Documents

Publication Publication Date Title
KR20090010477A (en) Method for manufacturing nickel nanoparticles
CN101104205B (en) Method for manufacturing copper nano granule
JP4698648B2 (en) Method for producing cubic shaped copper nanoparticles
KR100809982B1 (en) Method for manufacturing copper nanoparticles using microwave
KR101398821B1 (en) Method of manufacturing metal nano-particle, conductive ink composition having the metal nano-particle and method of forming conductive pattern using the same
KR20080035315A (en) Silver nano-particles and preparation method thereof
US8292986B2 (en) Preparation of silver spheres by the reduction of silver polyamine complexes
US7648556B2 (en) Method for manufacturing nickel nanoparticles
JP2008214695A (en) Method for producing ultra-fine particle of silver
JP2006336060A (en) Nickel particle powder and production method therefor
WO2012123442A1 (en) Manufacture of base metal nanoparticles using a seed particle method
JP4100244B2 (en) Nickel powder and method for producing the same
JP5421339B2 (en) Nickel powder direct manufacturing method using hydrothermal synthesis method
KR102357284B1 (en) Metal nanoparticle dispersion stabilizer, metal colloidal solution and preparation method thereof
CN110177760B (en) Method for manufacturing hollow structure
KR101096059B1 (en) Method for manufacturing of copper nanopowders
KR20120045711A (en) Preparation method of copper nanoparticles
KR102314912B1 (en) Method for producing nickel particles
CN116441528B (en) Superfine spherical nickel powder and preparation method thereof
KR101593748B1 (en) Method for preparing nickel particle and nickel particle prepared by thereof
KR100929310B1 (en) Method for preparing zinc-doped iron platinum nano powder
KR20140148193A (en) Manufacturing method of nickel nanopowder and thereby made nickel nanopowder
CN116441556B (en) Hydrogen-assisted wet-heat synthesis method of ultra-pure copper powder and ultra-pure copper powder material
KR20140075500A (en) Metal nanoparticles with enhanced anti-oxidation and method of preparation of the same
TWI544977B (en) Copper powder for conductive paste and method for producing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application