JP2006336060A - Nickel particle powder and production method therefor - Google Patents
Nickel particle powder and production method therefor Download PDFInfo
- Publication number
- JP2006336060A JP2006336060A JP2005160884A JP2005160884A JP2006336060A JP 2006336060 A JP2006336060 A JP 2006336060A JP 2005160884 A JP2005160884 A JP 2005160884A JP 2005160884 A JP2005160884 A JP 2005160884A JP 2006336060 A JP2006336060 A JP 2006336060A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- powder
- average particle
- nickel hydroxide
- noble metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 239000002245 particle Substances 0.000 title claims abstract description 80
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 77
- 239000000843 powder Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 87
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims abstract description 49
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 23
- 150000002500 ions Chemical class 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 6
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 4
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 239000010419 fine particle Substances 0.000 claims description 69
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 30
- 229910052763 palladium Inorganic materials 0.000 claims description 13
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 11
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 11
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 11
- -1 palladium ions Chemical class 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 4
- 230000006911 nucleation Effects 0.000 claims description 3
- 238000010899 nucleation Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 10
- 239000007791 liquid phase Substances 0.000 abstract description 8
- 239000003985 ceramic capacitor Substances 0.000 abstract description 6
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 19
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000003756 stirring Methods 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 150000002815 nickel Chemical class 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004917 polyol method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、ニッケル金属の微粒子粉末、特に積層セラミックコンデンサー(Multi−Layer
Ceramic Capacitor:MLCC)等の製造に用いる導電性ペースト用導電粉として好適なニッケル金属の微粒子粉末、及びその製造方法に関する。
The present invention relates to a fine powder of nickel metal, particularly a multilayer ceramic capacitor (Multi-Layer).
The present invention relates to a fine particle powder of nickel metal suitable as a conductive powder for a conductive paste used in the manufacture of Ceramic Capacitor (MLCC) and the like, and a method of manufacturing the same.
MLCCは、複数の誘電体層と複数の内部電極が積層された構造を有する。このような構造を有するMLCCは、小さな体積でも大きい容量を発揮することができるため、例えば、コンピュータ、移動通信機器などの電子機器に広く用いられている。 The MLCC has a structure in which a plurality of dielectric layers and a plurality of internal electrodes are stacked. Since MLCC having such a structure can exhibit a large capacity even in a small volume, it is widely used in electronic devices such as computers and mobile communication devices.
従来から、MLCCの内部電極は、金属粉末を含む導電性ペーストを用いて形成されている。その内部電極用の金属材料としては、一般にAg−Pd合金が用いられていた。しかし、Ag−Pd合金は、空気中で焼結されるためMLCCの製造には容易に適用し得るが、高価であるという問題があった。そのため1990年代後半になり、MLCCの価格を下げるために、内部電極の材料として安価なニッケルが用いられるようになった。 Conventionally, the internal electrode of the MLCC is formed using a conductive paste containing metal powder. Generally, an Ag—Pd alloy has been used as the metal material for the internal electrode. However, since the Ag—Pd alloy is sintered in the air, it can be easily applied to the production of MLCC, but there is a problem that it is expensive. Therefore, in the late 1990s, in order to reduce the price of MLCC, inexpensive nickel was used as a material for the internal electrode.
一般に、ニッケル等の金属粉末を製造する方法には気相法と液相法とがある。気相法は、金属粉末の形状及び不純物の制御が比較的容易であるため広く用いられているが、粒子の微細化と大量生産性の面では不利である。一方、液相法は、大量生産に有利であり、初期投資及び工程に要するコストが安いという長所を有している。この液相法による一般的な方法として、金属化合物を溶液中においてヒドラジン等の還元剤を用いて還元する方法がある。しかしながら、この方法では、生成した金属微粒子間に強い凝集力が働くため、100nm以下の粒径を有する金属微粒子を作製することは困難であった。 Generally, there are a gas phase method and a liquid phase method for producing metal powder such as nickel. The vapor phase method is widely used because it is relatively easy to control the shape and impurities of the metal powder, but it is disadvantageous in terms of particle miniaturization and mass productivity. On the other hand, the liquid phase method is advantageous for mass production, and has the advantages that the initial investment and the cost required for the process are low. As a general method by this liquid phase method, there is a method in which a metal compound is reduced in a solution using a reducing agent such as hydrazine. However, in this method, since a strong cohesive force works between the generated metal fine particles, it is difficult to produce metal fine particles having a particle size of 100 nm or less.
また、生産性の高い濃厚系で金属微粒子を合成する方法として、ポリオール法がよく知られている(特開昭59−173206号公報)。この方法は、例えば酸化銅のような金属の酸化物又は塩をポリオール中で加熱還元する方法であり、ポリオールは溶媒、還元剤、保護剤の三つの役割を担っている。その結果、濃厚系であっても、サブミクロンないしミクロンオーダーの金属微粒子を得ることができる。 A polyol method is well known as a method for synthesizing fine metal particles in a dense system with high productivity (Japanese Patent Laid-Open No. 59-173206). In this method, for example, a metal oxide or salt such as copper oxide is heated and reduced in a polyol, and the polyol plays three roles: a solvent, a reducing agent, and a protective agent. As a result, submicron to micron order metal fine particles can be obtained even in a dense system.
上記ポリオール法においては、ポリオールの種類、反応温度、原料などを調製することによって、例えば銅等については微細な金属微粒子を得られることが知られている。しかしながら、通常のポリオール法では、特にニッケル微粒子の場合、平均粒径が100nm以下の分散性の優れたニッケル微粒子の合成は極めて困難であった。 In the above-mentioned polyol method, it is known that fine metal fine particles can be obtained, for example, for copper and the like by preparing the kind of polyol, reaction temperature, raw material, and the like. However, in the usual polyol method, particularly in the case of nickel fine particles, it was very difficult to synthesize nickel fine particles having an average particle size of 100 nm or less and excellent dispersibility.
上記したようにポリオール法は、大量生産に適した液相法であり、粒径100nm以下のニッケル微粒子の製造も可能であるが、製造時に得られる粒径のばらつきが激しいという欠点があった。そのため、孔径の小さなフィルターを通過させて分級を行なう方法も現実的に用いられているが、フィルター処理の付加による工程数の増加や、フィルター濾過による歩留まりの低下によるコストアップ等の問題が発生していた。 As described above, the polyol method is a liquid phase method suitable for mass production and can produce nickel fine particles having a particle size of 100 nm or less. However, there is a drawback in that the variation in particle size obtained during production is severe. Therefore, a method of classifying by passing through a filter having a small pore diameter is also practically used, but problems such as an increase in the number of steps due to the addition of filter treatment and an increase in cost due to a decrease in yield due to filter filtration occur. It was.
本発明は、このような従来の事情に鑑み、大量生産に適した液相法であるポリオール法を応用して、平均粒径が100nm以下であり、しかも粒径の均一性が極めて高く、分散性に優れたニッケル微粒子粉末の製造方法を提供することを目的とする。特に、積層セラミックコンデンサー(MLCC)の製造に用いる導電性ペースト用導電粉として好適なニッケルニッケル微粒子粉末、及びその製造方法を提供することを目的とする。 In view of such conventional circumstances, the present invention applies a polyol method, which is a liquid phase method suitable for mass production, has an average particle size of 100 nm or less, and has extremely high particle size uniformity and dispersion. It aims at providing the manufacturing method of the nickel fine particle powder excellent in property. In particular, it is an object to provide a nickel-nickel fine particle powder suitable as a conductive powder for a conductive paste used in the production of a multilayer ceramic capacitor (MLCC), and a method for producing the same.
上記目的を達成するため、本発明が提供するニッケル微粒子粉末の製造方法は、水酸化ニッケルをエチレングリコール溶液中で加熱還元してニッケル微粒子を得る方法において、核生成のために貴金属イオンを添加し、該貴金属を含有する平均粒径20〜100nmのニッケル微粒子を得ることを特徴とする。前記貴金属イオンとしては、パラジウムイオン又は銀イオンを用いることが好ましい。 In order to achieve the above object, the present invention provides a method for producing a nickel fine particle powder in which nickel hydroxide is obtained by heating and reducing nickel hydroxide in an ethylene glycol solution to add a noble metal ion for nucleation. In addition, nickel fine particles having an average particle diameter of 20 to 100 nm containing the noble metal are obtained. As the noble metal ions, palladium ions or silver ions are preferably used.
上記本発明のニッケル微粒子粉末の製造方法においては、前記水酸化ニッケルとして、水中での中和合成により得られたゲル状水酸化ニッケルを用いることが好ましい。また、前記水酸化ニッケルとして、固体状水酸化ニッケルを粉砕して得られた平均粒径1μm以下の水酸化ニッケル粉末を用いることもできる。更に、上記本発明のニッケル微粒子粉末の製造方法では、分散剤としてポリビニルピロリドンを添加することが好ましい。 In the nickel fine particle powder production method of the present invention, gel nickel hydroxide obtained by neutralization synthesis in water is preferably used as the nickel hydroxide. As the nickel hydroxide, nickel hydroxide powder having an average particle size of 1 μm or less obtained by pulverizing solid nickel hydroxide can be used. Furthermore, it is preferable to add polyvinylpyrrolidone as a dispersant in the method for producing the nickel fine particle powder of the present invention.
また、本発明が提供するニッケル微粒子粉末は、上記した本発明によるニッケル微粒子粉末の製造方法のいずれかの方法により得られたニッケル微粒子粉末であって、ニッケル微粒子が貴金属を含有し、平均粒径dが20〜100nmで且つ粒径の標準偏差σ/平均粒径dが30%以下であり、単分散性を有することを特徴とするものである。 The nickel fine particle powder provided by the present invention is a nickel fine particle powder obtained by any one of the above-described methods for producing a nickel fine particle powder according to the present invention, wherein the nickel fine particle contains a noble metal and has an average particle diameter. d is 20 to 100 nm, the standard deviation σ of the particle diameter / the average particle diameter d is 30% or less, and has monodispersity.
本発明によれば、大量生産に適した液相法により、平均粒径が100nm以下であって、しかも粒径の均一性が極めて高く、分散性に優れたニッケル微粒子粉末を提供することができる。とりわけ、高圧容器等の特別な装置を必要としないうえ、使用する原料及び有機溶媒などのいずれもが一般の工業材料を使用できるため、低コストを実現することが可能である。 According to the present invention, it is possible to provide a nickel fine particle powder having an average particle size of 100 nm or less, extremely high particle size uniformity, and excellent dispersibility by a liquid phase method suitable for mass production. . In particular, a special apparatus such as a high-pressure vessel is not required, and since all of the raw materials and organic solvents to be used can use general industrial materials, low cost can be realized.
また、本発明のニッケル微粒子粉末は、単分散状態の極めて微細なニッケル微粒子からなるため、導電性ペーストの調製において分散性が優れている。更に、粒径の均一性が極めて高く、粒度の標準偏差σ/平均粒径dが30%以下というシャープな粒度分布を有している。従って、導電性ペーストとしたとき、得られる乾燥膜の密度が高く、薄くて且つ突起のない表面粗さの小さな導電膜を形成することができ、特に積層セラミックコンデンサー(MLCC)の内部電極の形成に好適な導電性ペーストを調整することができる。 Moreover, since the nickel fine particle powder of the present invention is composed of extremely fine nickel fine particles in a monodispersed state, it has excellent dispersibility in the preparation of a conductive paste. Further, the uniformity of the particle size is extremely high, and the particle size has a sharp particle size distribution in which the standard deviation σ of particle size / average particle size d is 30% or less. Therefore, when a conductive paste is used, the resulting dry film has a high density, a thin conductive film with a small surface roughness, and no protrusions can be formed. In particular, the internal electrode of a multilayer ceramic capacitor (MLCC) can be formed. A conductive paste suitable for the above can be prepared.
本発明におけるニッケル微粒子粉末の製造方法は、公知のポリオール法を応用して、原料である水酸化ニッケルをポリオールの1種であるエチレングリコール溶液中で加熱還元することにより、液相中でニッケル微粒子を合成するものである。その際、本発明方法においては、微粒子形成の核を得るために、貴金属イオンを添加する。添加する貴金属イオンとしては、パラジウムイオン又は銀イオンが好ましい。 The method for producing nickel fine particle powder in the present invention applies a known polyol method, and heat-reduces nickel hydroxide as a raw material in an ethylene glycol solution, which is one kind of polyol, to thereby produce nickel fine particles in the liquid phase. Is synthesized. At that time, in the method of the present invention, noble metal ions are added in order to obtain nuclei for fine particle formation. As the noble metal ion to be added, palladium ion or silver ion is preferable.
エチレングリコール溶液に添加された貴金属イオンは、還元反応の初期の段階で還元され、極めて微細な粒子を生成する。この極めて微細な貴金属の粒子を核として水酸化ニッケルから還元されたニッケルが堆積することにより、平均粒径100nm以下の微細で均一なニッケル微粒子が形成される。核形成のための貴金属イオンは、イオンの状態で添加することが好ましく、例えば塩化パラジウムアンモニウム、塩化パラジウム等のパラジウム塩の水溶液、あるいは硝酸銀、塩化銀等の銀塩の水溶液として添加することが望ましい。 The noble metal ions added to the ethylene glycol solution are reduced at an early stage of the reduction reaction, and extremely fine particles are generated. By depositing nickel reduced from nickel hydroxide using these extremely fine noble metal particles as nuclei, fine and uniform nickel fine particles having an average particle diameter of 100 nm or less are formed. The noble metal ions for nucleation are preferably added in the form of ions, for example, an aqueous solution of a palladium salt such as palladium ammonium chloride or palladium chloride, or an aqueous solution of a silver salt such as silver nitrate or silver chloride. .
貴金属イオンの添加量は、ニッケルに対する貴金属の重量比、即ち貴金属/Ni重量比で10ppm〜1%の範囲が好ましく、100〜5000ppmの範囲が更に好ましい。その理由は、貴金属/Ni重量比が10ppm未満では、核となる微細な貴金属粒子の量が不足するため、ニッケルの還元反応ないしニッケル微粒子の形成が十分に進まないからである。尚、ニッケル微粒子が形成された場合でも、核となる貴金属粒子数が不足しているため、平均粒径が100nmを越えてしまう。また、貴金属/Ni重量比が1%を超えると、還元反応は進行してニッケル微粒子が得られるが、高価な貴金属の投入量が増加して、原料コストを押し上げるため好ましくない。 The addition amount of the noble metal ions is preferably in the range of 10 ppm to 1%, more preferably in the range of 100 to 5000 ppm in terms of the weight ratio of the noble metal to nickel, that is, the noble metal / Ni weight ratio. The reason for this is that when the noble metal / Ni weight ratio is less than 10 ppm, the amount of fine noble metal particles serving as nuclei is insufficient, so that the reduction reaction of nickel or the formation of nickel fine particles does not proceed sufficiently. Even when nickel fine particles are formed, the average particle size exceeds 100 nm because the number of noble metal particles serving as nuclei is insufficient. On the other hand, when the weight ratio of noble metal / Ni exceeds 1%, the reduction reaction proceeds and nickel fine particles are obtained, but this is not preferable because the amount of expensive noble metal input increases and the raw material cost is increased.
本発明方法において原料として用いる水酸化ニッケル(Ni(OH)2)は、水中での中和合成により得られたゲル状水酸化ニッケルが好ましい。通常の水酸化ニッケル粉末を用いることもできるが、その場合は固体状水酸化ニッケルを湿式解砕法又は乾式解砕法等により粉砕処理し、平均粒径1μm以下とした水酸化ニッケル粉末を使用することが望ましい。これらの水酸化ニッケルを用いることによって、原料の比表面積が増加して活性面を大きくすることができ、エチレングリコール溶液への溶解が促進されると共に、ニッケルへの還元が容易になる。 The nickel hydroxide (Ni (OH) 2 ) used as a raw material in the method of the present invention is preferably gel nickel hydroxide obtained by neutralization synthesis in water. Ordinary nickel hydroxide powder can also be used, but in that case, solid nickel hydroxide should be pulverized by wet crushing method or dry crushing method to use nickel hydroxide powder having an average particle size of 1 μm or less. Is desirable. By using these nickel hydroxides, the specific surface area of the raw material can be increased and the active surface can be increased, so that dissolution in an ethylene glycol solution is promoted and reduction to nickel is facilitated.
好ましい原料であるゲル状水酸化ニッケル(Ni(OH)2)は、水酸化ナトリウム水溶液に塩化ニッケル(NiCl2)水溶液を加えることにより、中和合成することができる。その後、吸引濾過等により脱水して、ケーキ状態のゲル状水酸化ニッケルを回収する。回収したゲル状水酸化ニッケルは、必要に応じて水洗と濾過を行い、原料としてエチレングリコール溶液中に投入する。 Gel nickel hydroxide (Ni (OH) 2 ), which is a preferred raw material, can be neutralized and synthesized by adding a nickel chloride (NiCl 2 ) aqueous solution to a sodium hydroxide aqueous solution. Then, it spin-dry | dehydrates by suction filtration etc., and collect | recovers gelled nickel hydroxide in a cake state. The recovered gelled nickel hydroxide is washed with water and filtered as necessary, and charged as a raw material into an ethylene glycol solution.
本発明方法では、必要に応じて、更に分散剤としてポリビニルピロリドン(PVP)を添加することができる。ポリビニルピロリドンは、還元析出したニッケル微粒子の表面を被覆し、立体障害によりニッケル微粒子同士の接触を防止して、凝集がほとんどない分散性に優れたニッケル微粒子の生成を促進する。用いるポリビニルピロリドンとしては、エチレングリコール溶液に溶解し、生成したニッケル微粒子に吸着して立体障害を形成し得るものであればよく、そのためには分子量が10,000〜30,000程度のものが好ましい。 In the method of the present invention, polyvinyl pyrrolidone (PVP) can be further added as a dispersant as required. Polyvinyl pyrrolidone coats the surface of nickel fine particles that have been reduced and deposited, prevents contact between the nickel fine particles due to steric hindrance, and promotes the production of nickel fine particles having excellent dispersibility with little aggregation. The polyvinyl pyrrolidone used is not particularly limited as long as it can be dissolved in an ethylene glycol solution and adsorbed on the generated nickel fine particles to form a steric hindrance. For that purpose, a molecular weight of about 10,000 to 30,000 is preferable. .
また、ポリビニルピロリドンの添加量としては、エチレングリコール溶液に対する重量比で30g/l以下が好ましい。ポリビニルピロリドンの添加量が30g/lを超えると、液の粘性が高くなるうえ、濃縮時にポリビニルピロリドンの残存量が多くなるため好ましくない。 Further, the addition amount of polyvinylpyrrolidone is preferably 30 g / l or less by weight ratio with respect to the ethylene glycol solution. If the amount of polyvinyl pyrrolidone added exceeds 30 g / l, the viscosity of the liquid increases, and the residual amount of polyvinyl pyrrolidone increases during concentration.
微細で均一なニッケル微粒子を合成するためには、エチレングリコール溶液の温度は、最高到達温度で150以上が好ましく、180〜195℃が更に好ましい。この最高到達温度が150℃未満では、ニッケルの還元反応が起らない。ただし、エチレングリコールの沸点(197.6℃)を超えると、溶媒が蒸発してしまい反応の制御が困難となるため好ましくない。 In order to synthesize fine and uniform nickel fine particles, the temperature of the ethylene glycol solution is preferably 150 or more, more preferably 180 to 195 ° C., at the maximum temperature. When this maximum temperature is less than 150 ° C., nickel reduction reaction does not occur. However, exceeding the boiling point of ethylene glycol (197.6 ° C.) is not preferable because the solvent evaporates and the reaction becomes difficult to control.
このようにして得られる本発明のニッケル微粒子粉末は、ニッケル微粒子が貴金属を含有していて、微粒子粉末の平均粒径dが20〜100nmと極めて微細であり、単分散性に優れている。しかも、粒径の標準偏差σ/平均粒径dが30%以下であり、粒径の均一性が極めて高い(即ち、粒度分布がシャープである)。従って、このニッケル微粒子粉末を用いて、積層セラミックコンデンサー(MLCC)の内部電極の形成に好適な導電性ペーストを作製することができる。 In the nickel fine particle powder of the present invention thus obtained, the nickel fine particles contain a noble metal, the average particle diameter d of the fine particle powder is as extremely fine as 20 to 100 nm, and is excellent in monodispersity. In addition, the standard deviation σ of particle diameter / average particle diameter d is 30% or less, and the uniformity of particle diameter is extremely high (that is, the particle size distribution is sharp). Therefore, a conductive paste suitable for forming the internal electrode of the multilayer ceramic capacitor (MLCC) can be produced using this nickel fine particle powder.
[実施例1]
まず、濃度448.2g/lの水酸化ナトリウム(NaOH)水溶液114mlに、濃度196.6g/lの塩化ニッケル(NiCl2)水溶液281mlを投入して、ゲル状の水酸化ニッケル(Ni(OH)2)を中和合成した。その後、吸引濾過により脱水し、ケーキ状態のゲル状水酸化ニッケルを回収した。
[Example 1]
First, 281 ml of a nickel chloride (NiCl 2 ) aqueous solution having a concentration of 196.6 g / l is added to 114 ml of an aqueous solution of sodium hydroxide (NaOH) having a concentration of 448.2 g / l, and gelled nickel hydroxide (Ni (OH)) 2 ) was neutralized and synthesized. Then, it dehydrated by suction filtration and recovered the gelled nickel hydroxide in a cake state.
このゲル状水酸化ニッケル39.5g(Ni分量で25g)を水中に投入し、ポリビニルピロリドン(PVP:ISP製、商品名K−15)10gを添加した後、撹拌して均一に分散させ、吸引濾過して脱水した。このレパルプ洗浄工程を2回繰り返した後、得られたゲル状水酸化ニッケルをエチレングリコール(日本触媒(株)製)500g中に投入した。 39.5 g (25 g in Ni content) of this gelled nickel hydroxide was put into water, 10 g of polyvinylpyrrolidone (PVP: made by ISP, trade name K-15) was added, and the mixture was stirred and dispersed uniformly. Filter to dehydrate. After repeating this repulp washing step twice, the obtained gelled nickel hydroxide was put into 500 g of ethylene glycol (manufactured by Nippon Shokubai Co., Ltd.).
次に、このゲル状水酸化ニッケルを分散させたエチレングリコール溶液を撹拌しながら加熱し、更にパラジウム量で0.1g(Pd/Ni=0.4重量%)の塩化パラジウムアンモニウム(住友金属鉱山(株)製)にアンモニア水を加えて溶解したパラジウム溶液を加え、185℃に4時間保持してニッケル微粒子を還元析出させた。 Next, the ethylene glycol solution in which the gelled nickel hydroxide is dispersed is heated with stirring, and further 0.1 g (Pd / Ni = 0.4 wt%) of palladium ammonium chloride (Sumitomo Metal Mining ( A palladium solution in which ammonia water was added and dissolved was added to (made by Co., Ltd.), and kept at 185 ° C. for 4 hours to reduce and precipitate nickel fine particles.
得られたニッケル微粒子を濾過し、電子顕微鏡(SEM)で観察したところ、凝集のない単分散性の微粒子粉末であった。即ち、このニッケル微粒子粉末は、粒径分布が24〜56nm、平均粒径dが39nm、粒径の標準偏差σが6.3であり、標準偏差σ/平均粒径dが16%であった。このニッケル微粒子粉末のSEM写真を図1に示す。 When the obtained nickel fine particles were filtered and observed with an electron microscope (SEM), they were monodisperse fine particle powders without aggregation. That is, this nickel fine particle powder had a particle size distribution of 24 to 56 nm, an average particle size d of 39 nm, a standard deviation σ of particle size of 6.3, and a standard deviation σ / average particle size d of 16%. . An SEM photograph of this nickel fine particle powder is shown in FIG.
[実施例2]
平均粒径が約15μmで凝集している水酸化ニッケル粉(住友金属鉱山(株)製)39.5gを、エチレングリコール500gに投入して撹拌した後、ピコミル(浅田鉄工(株)製)により凝集体の平均粒径が0.5μmになるまで粉砕を行なった。なお、平均粒径の計測には、日機装(株)製のレーザ回折・散乱法による粒度分布測定装置(マイクロトラック粒度分析計、型式9320−HRA)を用いた。
[Example 2]
After 39.5 g of nickel hydroxide powder (Sumitomo Metal Mining Co., Ltd.) agglomerated with an average particle size of about 15 μm was added to 500 g of ethylene glycol and stirred, Picomill (Asada Tekko Co., Ltd.) was used. Grinding was performed until the average particle size of the aggregates became 0.5 μm. In addition, the particle size distribution measuring apparatus (Microtrac particle size analyzer, model 9320-HRA) by a laser diffraction / scattering method manufactured by Nikkiso Co., Ltd. was used for measurement of the average particle size.
次に、粉砕後のエチレングリコール中の水酸化ニッケル粉をビーズミルで撹拌しながら加熱し、更に実施例1と同じパラジウム量で0.1g(Pd/Ni=0.4重量%)の塩化パラジウムアンモニウムの溶液を加えて、185℃に3時間保持してニッケル粒子を還元析出させた。 Next, the nickel hydroxide powder in the ethylene glycol after pulverization was heated with stirring in a bead mill, and further 0.1 g (Pd / Ni = 0.4 wt%) of palladium ammonium chloride in the same palladium amount as in Example 1. The solution was added and held at 185 ° C. for 3 hours to reduce and precipitate nickel particles.
得られたニッケル微粒子を濾過し、SEMで観察したところ、凝集のない単分散性の微粒子粉末であった。即ち、このニッケル微粒子粉末は、粒径分布が35〜113nm、平均粒径dが62nm、粒径の標準偏差σが12.9であり、標準偏差σ/平均粒径dが21%であった。このニッケル微粒子粉末のSEM写真を図2に示す。 The obtained nickel fine particles were filtered and observed with an SEM. As a result, it was a monodisperse fine particle powder without aggregation. That is, this nickel fine particle powder had a particle size distribution of 35 to 113 nm, an average particle size d of 62 nm, a particle size standard deviation σ of 12.9, and a standard deviation σ / average particle size d of 21%. . An SEM photograph of this nickel fine particle powder is shown in FIG.
[実施例3]
実施例1と同様に、ゲル状水酸化ニッケル39.5gをエチレングリコール500g中に分散させた。このエチレングリコール溶液を撹拌しながら加熱し、更に実施例1と同様に調整したパラジウム量で0.025g(Pd/Ni=0.1重量%)の塩化パラジウムアンモニウムの溶液を加えて、185℃に3時間保持してニッケル粒子を還元析出させた。
[Example 3]
In the same manner as in Example 1, 39.5 g of gelled nickel hydroxide was dispersed in 500 g of ethylene glycol. The ethylene glycol solution was heated with stirring, and 0.025 g (Pd / Ni = 0.1 wt%) of palladium ammonium chloride was added in the same manner as in Example 1 to add 185 ° C. The nickel particles were reduced and deposited by holding for 3 hours.
得られたニッケル微粒子を濾過し、SEMで観察したところ、凝集のない単分散性の微粒子粉末であった。即ち、このニッケル微粒子粉末は、粒径分布が31〜81nm、平均粒径dが51nm、粒径の標準偏差σが8.0であり、標準偏差σ/平均粒径dが16%であった。 The obtained nickel fine particles were filtered and observed with an SEM. As a result, it was a monodisperse fine particle powder without aggregation. That is, this nickel fine particle powder had a particle size distribution of 31 to 81 nm, an average particle size d of 51 nm, a standard deviation σ of particle size of 8.0, and a standard deviation σ / average particle size d of 16%. .
[実施例4]
実施例1と同様に、ゲル状水酸化ニッケル39.5gをエチレングリコール500g中に分散させた。このエチレングリコール溶液を撹拌しながら加熱し、更に銀量で0.15g(Ag/Ni=0.6重量%)の硝酸銀(和光純薬工業(株)製、試薬)を水に溶解した溶液を加えて、185℃に4時間保持してニッケル粒子を還元析出させた。
[Example 4]
In the same manner as in Example 1, 39.5 g of gelled nickel hydroxide was dispersed in 500 g of ethylene glycol. This ethylene glycol solution was heated with stirring, and a solution of 0.15 g (Ag / Ni = 0.6 wt%) of silver nitrate (made by Wako Pure Chemical Industries, Ltd., reagent) in water was further dissolved. In addition, nickel particles were reduced and deposited by holding at 185 ° C. for 4 hours.
得られたニッケル微粒子を濾過し、SEMで観察したところ、凝集のない単分散性の微粒子粉末であった。即ち、このニッケル微粒子粉末は、粒径分布が42〜98nm、平均粒径dが69nm、粒径の標準偏差σが9.6であり、標準偏差σ/平均粒径dが14%であった。 The obtained nickel fine particles were filtered and observed with an SEM. As a result, it was a monodisperse fine particle powder without aggregation. That is, this nickel fine particle powder had a particle size distribution of 42 to 98 nm, an average particle size d of 69 nm, a particle size standard deviation σ of 9.6, and a standard deviation σ / average particle size d of 14%. .
[実施例5]
平均粒径が約15μmで凝集している水酸化ニッケル粉(住友金属鉱山(株)製)39.5gを、エチレングリコール500gに投入して撹拌した後、ピコミル(浅田鉄工(株)製)により凝集体の平均粒径が0.9μmになるまで粉砕を行なった。
[Example 5]
After 39.5 g of nickel hydroxide powder (Sumitomo Metal Mining Co., Ltd.) agglomerated with an average particle size of about 15 μm was added to 500 g of ethylene glycol and stirred, Picomill (Asada Tekko Co., Ltd.) was used. Grinding was performed until the average particle size of the aggregates became 0.9 μm.
次に、粉砕後のエチレングリコール中の水酸化ニッケル粉をビーズミルで撹拌しながら加熱し、更に実施例1と同じパラジウム量で0.1g(Pd/Ni=0.4重量%)の塩化パラジウムアンモニウムの溶液を加えて、190℃に3時間保持してニッケル粒子を還元析出させた。 Next, the nickel hydroxide powder in the ethylene glycol after pulverization was heated with stirring in a bead mill, and further 0.1 g (Pd / Ni = 0.4 wt%) of palladium ammonium chloride in the same palladium amount as in Example 1. The solution was added and maintained at 190 ° C. for 3 hours to reduce and precipitate nickel particles.
得られたニッケル微粒子を濾過し、SEMで観察したところ、凝集のない単分散性の微粒子粉末であった。即ち、このニッケル微粒子粉末は、粒径分布が55〜145nm、平均粒径dが84nm、粒径の標準偏差σが14.9であり、標準偏差σ/平均粒径dが18%であった。 The obtained nickel fine particles were filtered and observed with an SEM. As a result, it was a monodisperse fine particle powder without aggregation. That is, this nickel fine particle powder had a particle size distribution of 55 to 145 nm, an average particle size d of 84 nm, a particle size standard deviation σ of 14.9, and a standard deviation σ / average particle size d of 18%. .
[比較例1]
平均粒径が約15μmで凝集している水酸化ニッケル粉(住友金属鉱山(株)製)39.5gを、エチレングリコール500gに投入した後、撹拌しながら加熱し、更に実施例1と同じパラジウム量で0.1g(Pd/Ni=0.4重量%)の塩化パラジウムアンモニウムの溶液を加えて、185℃に4時間保持した。
[Comparative Example 1]
39.5 g of nickel hydroxide powder (Sumitomo Metal Mining Co., Ltd.) agglomerated with an average particle diameter of about 15 μm was added to 500 g of ethylene glycol, and then heated with stirring. An amount of 0.1 g (Pd / Ni = 0.4 wt%) of palladium ammonium chloride solution was added and held at 185 ° C. for 4 hours.
その後、濾過した回収物をX線回折により分析した結果、未反応の水酸化ニッケルの残留が認められた。原料である水酸化ニッケル粉を粉砕していないため、比表面積が小さく、エチレングリコール中への溶解が困難となり、ニッケルの還元反応が十分進行しなかったものと考えられる。この回収物(未還元の水酸化ニッケル粉)のSEM写真を図3に示す。 Thereafter, the filtered recovered material was analyzed by X-ray diffraction. As a result, residual unreacted nickel hydroxide was observed. Since the raw material nickel hydroxide powder is not crushed, it is considered that the specific surface area is small, the dissolution in ethylene glycol becomes difficult, and the nickel reduction reaction does not proceed sufficiently. An SEM photograph of this recovered product (unreduced nickel hydroxide powder) is shown in FIG.
[比較例2]
平均粒径が約15μmで凝集している水酸化ニッケル粉(住友金属鉱山(株)製)39.5gを、エチレングリコール500gに投入して撹拌した後、実施例2と同様に凝集体の平均粒径が0.5μmになるまで粉砕を行なった。この粉砕後のエチレングリコール中の水酸化ニッケル粉を、撹拌しながら185℃に4時間保持した。
[Comparative Example 2]
After putting 39.5 g of nickel hydroxide powder (manufactured by Sumitomo Metal Mining Co., Ltd.) having an average particle diameter of about 15 μm into 500 g of ethylene glycol and stirring, the average of aggregates was the same as in Example 2. Grinding was performed until the particle size became 0.5 μm. The pulverized nickel hydroxide powder in ethylene glycol was kept at 185 ° C. for 4 hours with stirring.
その後、濾過した回収物をX線回折により分析した結果、未反応の水酸化ニッケルの残留が認められた。核となる貴金属イオンが添加されなかったため、核が発生されず、ニッケルの還元反応が進行しなかったものと考えられる。 Thereafter, the filtered recovered material was analyzed by X-ray diffraction. As a result, residual unreacted nickel hydroxide was observed. Since no noble metal ions serving as nuclei were added, it is considered that no nuclei were generated and the nickel reduction reaction did not proceed.
[比較例3]
平均粒径が約15μmで凝集している水酸化ニッケル粉(住友金属鉱山(株)製)39.5gを、エチレングリコール500gに投入して撹拌した後、実施例2と同様に凝集体の平均粒径が0.5μmになるまで粉砕を行なった。この粉砕後のエチレングリコール中の水酸化ニッケル粉を、撹拌しながら加熱し、更に実施例1と同じパラジウム量で0.1g(Pd/Ni=0.4重量%)の塩化パラジウムアンモニウムの溶液を加えて、150℃に4時間保持した。
[Comparative Example 3]
After putting 39.5 g of nickel hydroxide powder (manufactured by Sumitomo Metal Mining Co., Ltd.) having an average particle diameter of about 15 μm into 500 g of ethylene glycol and stirring, the average of aggregates was the same as in Example 2. Grinding was performed until the particle size became 0.5 μm. The pulverized nickel hydroxide powder in ethylene glycol was heated with stirring, and a 0.1 g (Pd / Ni = 0.4 wt%) palladium ammonium chloride solution having the same palladium amount as in Example 1 was further added. In addition, it was kept at 150 ° C. for 4 hours.
その後、濾過した回収物をX線回折により分析した結果、未反応の水酸化ニッケルの残留が認められた。加熱温度が低いために、ニッケルへの還元反応が進行しなかったものと考えられる。 Thereafter, the filtered recovered material was analyzed by X-ray diffraction. As a result, residual unreacted nickel hydroxide was observed. It is considered that the reduction reaction to nickel did not proceed because the heating temperature was low.
[比較例4]
実施例1と同様に、ゲル状水酸化ニッケル39.5gをエチレングリコール500g中に分散させた。このエチレングリコール溶液を撹拌しながら加熱し、185℃に4時間保持した。
[Comparative Example 4]
In the same manner as in Example 1, 39.5 g of gelled nickel hydroxide was dispersed in 500 g of ethylene glycol. The ethylene glycol solution was heated with stirring and held at 185 ° C. for 4 hours.
その後、濾過した回収物をX線回折により分析した結果、未反応の水酸化ニッケルの残留が認められた。核となる貴金属イオンが添加されなかったため、核が発生されず、ニッケルの還元反応が進行しなかったものと考えられる。 Thereafter, the filtered recovered material was analyzed by X-ray diffraction. As a result, residual unreacted nickel hydroxide was observed. Since no noble metal ions serving as nuclei were added, it is considered that no nuclei were generated and the nickel reduction reaction did not proceed.
以上の実施例1〜5及び比較例1〜4について、反応条件を下記表1に、その結果を下記表2に示した。尚、ニッケル微粒子の粒径は、いずれの場合も、日立製作所(株)製の電界放出型電子顕微鏡(FE−SEM、型式S−4700)を使用したSEM写真観察により、視野から200個の粒子を無作為に選択して測定した。 About the above Examples 1-5 and Comparative Examples 1-4, reaction conditions were shown in the following Table 1, and the result was shown in the following Table 2. In any case, the particle size of the nickel fine particles is 200 particles from the field of view by SEM photo observation using a field emission electron microscope (FE-SEM, model S-4700) manufactured by Hitachi, Ltd. Were randomly selected and measured.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005160884A JP2006336060A (en) | 2005-06-01 | 2005-06-01 | Nickel particle powder and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005160884A JP2006336060A (en) | 2005-06-01 | 2005-06-01 | Nickel particle powder and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006336060A true JP2006336060A (en) | 2006-12-14 |
Family
ID=37556874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005160884A Pending JP2006336060A (en) | 2005-06-01 | 2005-06-01 | Nickel particle powder and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006336060A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008308733A (en) * | 2007-06-14 | 2008-12-25 | Toda Kogyo Corp | Nickel powder coated with carbon and production method therefor |
CN100556587C (en) * | 2007-10-17 | 2009-11-04 | 江苏大学 | Microwave auxiliary liquid phase reduction method preparing needle-shaped nanometer nickel |
JP2010077526A (en) * | 2008-09-25 | 2010-04-08 | Samsung Electro-Mechanics Co Ltd | Method for preparing metal nanoparticle using metal seed and metal nanoparticle comprising metal seed |
JP2010185112A (en) * | 2009-02-12 | 2010-08-26 | Noritake Co Ltd | Nickel particulate and production method therefor |
JP2010189680A (en) * | 2009-02-16 | 2010-09-02 | Dowa Electronics Materials Co Ltd | Metal nickel particle powder and fluid dispersion thereof, and method for producing metal nickel particle powder |
JP2011509312A (en) * | 2007-09-25 | 2011-03-24 | ザ テキサス エー アンド エム ユニバーシティ システム | Water-soluble nanoparticles with controlled aggregate size |
JP2012126991A (en) * | 2010-12-13 | 2012-07-05 | Korea Inst Of Geoscience & Mineral Resources | Method for directly producing nickel powder using hydrothermal synthesis method |
KR101191970B1 (en) | 2011-12-09 | 2012-10-17 | 한화케미칼 주식회사 | Phosphorous-doped nickel nano-particles and process for preparing the same |
CN102873335A (en) * | 2011-07-14 | 2013-01-16 | 东南大学 | Preparation method of temperature-sensitive water-soluble silver nanoparticles |
JP2013089822A (en) * | 2011-10-19 | 2013-05-13 | Sakai Chem Ind Co Ltd | Production method of nickel-coated dielectric particle |
CN103586482A (en) * | 2013-10-25 | 2014-02-19 | 江苏大学 | Method for preparing nanometer nickel under microwave and ultraviolet irradiation |
JP2014105365A (en) * | 2012-11-28 | 2014-06-09 | Dowa Electronics Materials Co Ltd | Nickel nanoparticles, its manufacturing method and nickel paste |
JP2014173092A (en) * | 2013-03-05 | 2014-09-22 | Dowa Electronics Materials Co Ltd | Nickel nanoparticles, method for manufacturing the same, and nickel paste |
JP2015048494A (en) * | 2013-08-30 | 2015-03-16 | 富士フイルム株式会社 | Method for producing metal nanoparticles |
WO2019050182A1 (en) * | 2017-09-05 | 2019-03-14 | 부경대학교 산학협력단 | Nickel powder fabrication method |
CN110711576A (en) * | 2019-10-13 | 2020-01-21 | 西安凯立新材料股份有限公司 | Method for preparing palladium-based catalyst by pulling method and application |
WO2024127604A1 (en) * | 2022-12-15 | 2024-06-20 | シャープディスプレイテクノロジー株式会社 | Method for manufacturing composite fine particles, composite fine particles, light-emitting element, and display device |
-
2005
- 2005-06-01 JP JP2005160884A patent/JP2006336060A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008308733A (en) * | 2007-06-14 | 2008-12-25 | Toda Kogyo Corp | Nickel powder coated with carbon and production method therefor |
JP2011509312A (en) * | 2007-09-25 | 2011-03-24 | ザ テキサス エー アンド エム ユニバーシティ システム | Water-soluble nanoparticles with controlled aggregate size |
CN100556587C (en) * | 2007-10-17 | 2009-11-04 | 江苏大学 | Microwave auxiliary liquid phase reduction method preparing needle-shaped nanometer nickel |
JP2010077526A (en) * | 2008-09-25 | 2010-04-08 | Samsung Electro-Mechanics Co Ltd | Method for preparing metal nanoparticle using metal seed and metal nanoparticle comprising metal seed |
JP2010185112A (en) * | 2009-02-12 | 2010-08-26 | Noritake Co Ltd | Nickel particulate and production method therefor |
JP2010189680A (en) * | 2009-02-16 | 2010-09-02 | Dowa Electronics Materials Co Ltd | Metal nickel particle powder and fluid dispersion thereof, and method for producing metal nickel particle powder |
JP2012126991A (en) * | 2010-12-13 | 2012-07-05 | Korea Inst Of Geoscience & Mineral Resources | Method for directly producing nickel powder using hydrothermal synthesis method |
CN102873335A (en) * | 2011-07-14 | 2013-01-16 | 东南大学 | Preparation method of temperature-sensitive water-soluble silver nanoparticles |
JP2013089822A (en) * | 2011-10-19 | 2013-05-13 | Sakai Chem Ind Co Ltd | Production method of nickel-coated dielectric particle |
KR101191970B1 (en) | 2011-12-09 | 2012-10-17 | 한화케미칼 주식회사 | Phosphorous-doped nickel nano-particles and process for preparing the same |
JP2014105365A (en) * | 2012-11-28 | 2014-06-09 | Dowa Electronics Materials Co Ltd | Nickel nanoparticles, its manufacturing method and nickel paste |
JP2014173092A (en) * | 2013-03-05 | 2014-09-22 | Dowa Electronics Materials Co Ltd | Nickel nanoparticles, method for manufacturing the same, and nickel paste |
JP2015048494A (en) * | 2013-08-30 | 2015-03-16 | 富士フイルム株式会社 | Method for producing metal nanoparticles |
CN103586482A (en) * | 2013-10-25 | 2014-02-19 | 江苏大学 | Method for preparing nanometer nickel under microwave and ultraviolet irradiation |
WO2019050182A1 (en) * | 2017-09-05 | 2019-03-14 | 부경대학교 산학협력단 | Nickel powder fabrication method |
CN110711576A (en) * | 2019-10-13 | 2020-01-21 | 西安凯立新材料股份有限公司 | Method for preparing palladium-based catalyst by pulling method and application |
CN110711576B (en) * | 2019-10-13 | 2022-07-05 | 西安凯立新材料股份有限公司 | Method for preparing palladium-based catalyst by pulling method and application |
WO2024127604A1 (en) * | 2022-12-15 | 2024-06-20 | シャープディスプレイテクノロジー株式会社 | Method for manufacturing composite fine particles, composite fine particles, light-emitting element, and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006336060A (en) | Nickel particle powder and production method therefor | |
Wu | Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC | |
JP5820202B2 (en) | Copper powder for conductive paste and method for producing the same | |
JP6274444B2 (en) | Method for producing copper powder | |
JP2009024254A (en) | Production method of nickel nanoparticle | |
EP2026924A2 (en) | Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom | |
JP6799936B2 (en) | Nickel particles, conductive paste, internal electrodes and multilayer ceramic capacitors | |
JP2012526191A (en) | Silver particles and method for producing the same | |
JP2013541640A (en) | Silver particles and method for producing the same | |
JP2012525506A (en) | Silver particles and method for producing the same | |
KR20070043661A (en) | Nickel powder and its production method | |
KR20150028970A (en) | Silver powder | |
KR102051321B1 (en) | A method for preparing silver-copper mixture powder of core-shell structure using wet process | |
US6632265B1 (en) | Nickel powder, method for preparation thereof and conductive paste | |
WO2001036131A1 (en) | Nickel powder and conductive paste | |
JP2009024197A (en) | Method for producing nickel powder | |
JP4100244B2 (en) | Nickel powder and method for producing the same | |
JP2008223096A (en) | Method for manufacturing flaky silver powder | |
JP5756694B2 (en) | Flat metal particles | |
KR102031753B1 (en) | A method for preparing copper nano powder improved in oxidation stability | |
KR100436523B1 (en) | A method for preparing micrometal using liquid phase reduction method and micrometal prepared from this method | |
JP4061462B2 (en) | Composite fine particles, conductive paste and conductive film | |
JP6114014B2 (en) | Nickel nanoparticles, production method thereof, and nickel paste | |
TW201338893A (en) | Silver powder | |
JP2017206751A (en) | Manufacturing method of nickel powder |