KR20080035315A - Silver nano-particles and preparation method thereof - Google Patents

Silver nano-particles and preparation method thereof Download PDF

Info

Publication number
KR20080035315A
KR20080035315A KR1020060101844A KR20060101844A KR20080035315A KR 20080035315 A KR20080035315 A KR 20080035315A KR 1020060101844 A KR1020060101844 A KR 1020060101844A KR 20060101844 A KR20060101844 A KR 20060101844A KR 20080035315 A KR20080035315 A KR 20080035315A
Authority
KR
South Korea
Prior art keywords
silver
solution
precursor
metal
temperature
Prior art date
Application number
KR1020060101844A
Other languages
Korean (ko)
Inventor
전병호
정재우
이귀종
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020060101844A priority Critical patent/KR20080035315A/en
Publication of KR20080035315A publication Critical patent/KR20080035315A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles

Abstract

A preparation method of silver nanoparticles is provided to simply mass-produce silver nanoparticles having fine and uniform particle sizes, and substantially reduce the amount of PVP(PolyVinylPyrrolidone) as a dispersant used in the preparation of nanoparticles, and silver nanoparticles prepared by the preparation method of silver nanoparticles are provided. A preparation method of silver nanoparticles comprises the steps of: preparing a solution comprising a precursor of a metal reductant, a dispersant, and a polar solvent and increasing temperature of the solution to prepare a first solution comprising the metal reductant; preparing a second solution comprising a silver precursor and a polar solvent; and lowering temperature of the first solution to a room temperature, adding the second solution into the first solution, and increasing temperature of the mixed solution. The metal reductant is a metal having a standard oxidation/reduction potential value lower than that of silver. The metal having a standard oxidation/reduction potential value lower than that of silver is selected from the group consisting of copper indium, and zinc. The silver precursor is contained in the first solution at a molar ratio of 5 to 50% of the silver precursor in the second solution. The silver precursor is at least one selected from the group consisting of AgBF4, AgCF3SO3, AgClO4, AgNO3, AgOAc, and AgPF6.

Description

은 나노입자의 제조방법 및 이에 의하여 제조되는 은 나노입자 {Silver nano-particles and preparation method thereof}Method for preparing silver nanoparticles and silver nanoparticles prepared thereby {Silver nano-particles and preparation method

도 1은 본 발명의 일 실시예에 따라 제조된 은 나노입자의 투과전자현미경(TEM) 상으로서, 본 발명의 방법에 의하여 30~40 nm의 입자가 균일하게 생성되었음을 보여준다. 1 is a transmission electron microscope (TEM) image of silver nanoparticles prepared according to an embodiment of the present invention, and shows that particles of 30 to 40 nm are uniformly produced by the method of the present invention.

본 발명은 금속환원제를 사용하여 수용액 중의 은 전구체로부터 미세하고 균일한 입도를 가지는 은 나노입자를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing silver nanoparticles having a fine and uniform particle size from a silver precursor in an aqueous solution using a metal reducing agent.

최근 전자 부품의 소형화 및 고밀도화 추세에 따라 잉크젯을 통한 박막의 금속 패터닝이나 기판에서의 미세 배선 형성에 대한 요구가 증가하고 있다. 이를 구현하기 위해 도전성 잉크는 균일한 모양과 좁은 입도 분포를 가지며 우수한 분산성을 보이는 나노 크기의 금속 입자로 만들어져야 할 필요가 있다.Recently, with the trend toward miniaturization and high density of electronic components, there is an increasing demand for metal patterning of thin films through inkjet or formation of fine wirings on a substrate. In order to realize this, the conductive ink needs to be made of nano-sized metal particles having a uniform shape and narrow particle size distribution and showing excellent dispersibility.

종래 금속 나노입자를 제조하는 방법에는 기계적으로 그라인딩하는 방법, 공 침법, 분무법, 졸-겔법, 전기분해법, 마이크로에멀젼법 등 다양한 종류가 있다. 공침법으로 제조된 금속 입자는 입자의 크기, 모양 및 크기 분포의 제어가 불가능하며, 전기분해법과 졸-겔법은 제조 경비가 높고 대량 생산이 어려운 문제점이 있다. 한편, 마이크로에멀젼법은 입자의 크기, 모양 및 크기 분포의 제어는 용이하나 제조 공정이 복잡하여 실용화되지 못하고 있다. Conventional methods for preparing metal nanoparticles include various methods such as mechanical grinding, coprecipitation, spraying, sol-gel, electrolysis, microemulsion, and the like. The metal particles produced by the coprecipitation method are unable to control the size, shape and size distribution of the particles, and the electrolysis method and the sol-gel method have high manufacturing costs and difficulty in mass production. On the other hand, the microemulsion method is easy to control the size, shape and size distribution of the particles, but the manufacturing process is complicated and has not been put to practical use.

최근 습식 환원법을 통해 구리 미분말을 제조하려는 시도가 이루어져 왔는데 특히, 히드라진을 사용하는 일부 환원법이 0.1~100㎛ 정도의 입도를 갖는 구리 입자의 제조에 적절한 수단으로 제시되었다. Recently, attempts have been made to produce fine copper powder through wet reduction, and in particular, some reduction methods using hydrazine have been suggested as a suitable means for the production of copper particles having a particle size of about 0.1 to 100 μm.

한편, 액상에서의 은 나노입자 합성은 1) 에틸렌글리콜 등을 이용하여 환원시키는 폴리올 합성법과 2) 글루코오스 및 아스코빅산 등의 유기 환원제를 이용하는 유기 환원법 (reduction method)을 이용하여 왔다. On the other hand, the synthesis of silver nanoparticles in the liquid phase has been used a polyol synthesis method to reduce using ethylene glycol and the like and 2) an organic reduction method using organic reducing agents such as glucose and ascorbic acid.

그러나 종래의 이러한 방식은 합성되는 양에 따라 입자 크기의 차이가 많이 나며, 대량 합성의 경우 균일한 핵 형성 (homogeneous nucleation) 및 성장률(growth rate) 조절이 어려워 수율이 낮다는 문제점을 내포하고 있다. However, such a conventional method has a large difference in particle size according to the amount synthesized, and has a problem in that the yield is low due to difficulty in controlling homogeneous nucleation and growth rate in mass synthesis.

특히, 폴리올 방법을 사용하는 경우에는 에틸렌글리콜의 환원력을 극대화하기 위해서 고온 활성이 필요하다. 그러나, 고온에서는 은 입자의 성장속도 또한 최대가 되기 때문에 이러한 성장을 제어하기 위해 많은 양의 PVP를 필요로 한다. 문헌 (Xia, Y. et al, Chem. Eur. J. 2005. 11, 454-463)에서는 PVP 양이 은 이온의 mol 수 대비 10배 이상 존재해야 원하는 구형의 은 입자를 얻을 수 있다고 밝히고 있다. 이러한 극대화 된 PVP의 양은 은 입자의 고농도 대량 합성을 불가능하게 만드는 요인으로 작용하기 때문에 PVP의 양을 줄일 수 있는 방안에 대한 요구가 있다. In particular, when the polyol method is used, high temperature activity is required to maximize the reducing power of ethylene glycol. However, at high temperatures, the growth rate of silver particles is also maximum, requiring a large amount of PVP to control this growth. The literature (Xia, Y. et al, Chem. Eur. J. 2005. 11, 454-463) indicates that the desired spherical silver particles can be obtained when the PVP amount is at least 10 times the mol number of silver ions. Since the maximized amount of PVP acts as a factor that makes high-volume synthesis of silver particles impossible, there is a need for a method to reduce the amount of PVP.

또한, 유기 환원제를 사용하는 환원방법 중 아스코빅산의 경우 상온에서도 은 이온을 환원시켜 버리기 때문에 입자 제어에 어려움이 있으며, 글루코오스의 경우 수계에서도 용해도가 너무 낮아 은 이온대비 농도를 맞추려면 많은 양의 극성 용매가 필요한데 이는 고농도의 입자 합성법을 어렵게 한다. 이러한 이유로 인하여 종래의 은 입자 합성방식은 저농도 (>0.05M)로만 합성이 가능했으며, 한 배치에서 얻을 수 있는 균일한 입자의 양은 제한적이다.In addition, ascorbic acid reduces silver ions even at room temperature in the reduction method using an organic reducing agent, which makes it difficult to control particles. In the case of glucose, the solubility in water is too low to adjust the concentration compared to silver ions. Solvents are required, which makes it difficult to synthesize high concentrations of particles. For this reason, the conventional silver particle synthesis method was able to synthesize only at low concentration (> 0.05M), and the amount of uniform particles obtained in one batch is limited.

본 발명의 목적은 고농도로 균일하게 은 입자를 대량 합성하는데 유용한, 은 나노입자의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing silver nanoparticles, which is useful for mass synthesis of silver particles at high concentration and uniformity.

상기 목적을 달성하기 위하여 본 발명의 일 측면에 따르면, According to an aspect of the present invention to achieve the above object,

금속환원제의 전구체, 분산제 및 극성 용매를 포함하는 용액을 준비하고 승온시켜 금속환원제를 포함하는 제1용액을 제조하는 단계;Preparing a solution including a precursor, a dispersing agent, and a polar solvent of the metal reducing agent and raising the temperature to prepare a first solution including the metal reducing agent;

은 전구체 및 극성 용매를 포함하는 제2용액을 제조하는 단계; 및Preparing a second solution comprising a silver precursor and a polar solvent; And

제1용액의 온도를 실온으로 낮추고 제2용액을 첨가한 후 승온시키는 단계를 포함하는, 은 나노 입자의 제조방법을 제시할 수 있다. A method for preparing silver nanoparticles may be provided, including the step of lowering the temperature of the first solution to room temperature and adding the second solution and then raising the temperature.

또한, 본 발명의 다른 일 측면에 따르면, 상기 방법에 의하여 제조되는 은 나노입자를 제시할 수 있다. In addition, according to another aspect of the present invention, it is possible to present the silver nanoparticles produced by the method.

이하, 본 발명을 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail.

본 발명의 일 측면에 따르면, According to one aspect of the invention,

금속환원제의 전구체, 분산제 및 극성 용매를 포함하는 용액을 준비하고 승온시켜 금속환원제를 포함하는 제1용액을 제조하는 단계;Preparing a solution including a precursor, a dispersing agent, and a polar solvent of the metal reducing agent and raising the temperature to prepare a first solution including the metal reducing agent;

은 전구체 및 극성 용매를 포함하는 제2용액을 제조하는 단계; 및Preparing a second solution comprising a silver precursor and a polar solvent; And

제1용액을 실온으로 낮추고 제2용액을 첨가한 후 승온시키는 단계를 포함하는, 은 나노 입자의 제조방법을 제시할 수 있다. Lowering the first solution to room temperature and adding the second solution, and then raising the temperature can provide a method for producing the silver nanoparticles.

본 발명은 은 나노입자 합성과 관련하여 콜로이드 합성법을 통하여 입자 크기가 균일하면서도 수율이 향상된 합성법을 제시하고자 하는 것이다. 즉, 본 발명에서는 종래의 폴리올법이나 유기, 무기환원제를 사용하는 방법만으로는 제어할 수 없었던 입자의 균일성 및 합성 수율의 향상을 레독스 방법을 통하여 달성하고자 하였다. The present invention intends to provide a synthesis method with uniform particle size and improved yield through colloidal synthesis in relation to silver nanoparticle synthesis. That is, in the present invention, it was intended to achieve the uniformity of the particles and the improvement of the synthetic yield through the redox method that could not be controlled by the conventional polyol method, the method using organic or inorganic reducing agents.

구체적으로, 은 보다 표준 산화/환원 전위가 낮은 값을 갖는 금속전구체로부터 금속입자를 합성하여 금속 입자를 가지는 수용액 (제1용액)을 준비하고, 은 전구체의 수용액 (제2용액)을 상기 수용액 (제1용액)에 첨가 후 승온시켜 은 나노입자를 제조하였다. 이때 금속전구체로부터 합성된 금속입자는 은 보다 표준 산화/ 환원 전위가 낮으므로 은이온을 환원시키면서 자신은 산화되어 환원제 (상기와 같은 이유로 금속환원제로 명명하였다)로 작용하게 되는 것이다 (2Ag+ + Cu → Ag + Cu2+). 이와 같은 산화/환원 방법을 통하여 균일한 핵 생성을 유도할 수 있었고 이를 통해 수계 용매 시스템에서 30-40nm의 작은 크기를 갖는 은 나노입자를 제조할 수 있었다. Specifically, metal particles are synthesized from metal precursors having a lower standard oxidation / reduction potential than silver to prepare an aqueous solution (first solution) having metal particles, and an aqueous solution of a silver precursor (second solution) is prepared from the aqueous solution ( The silver nanoparticles were prepared by heating after addition to the first solution). At this time, since the metal particles synthesized from the metal precursors have lower standard oxidation / reduction potentials than silver, they are oxidized while reducing silver ions to act as reducing agents (named metal reducing agents for the same reasons as above) (2Ag + + Cu → Ag + Cu 2+ ). Through this oxidation / reduction method, uniform nucleation could be induced, thereby producing silver nanoparticles having a small size of 30-40 nm in an aqueous solvent system.

상기 금속환원제는 은 이온을 환원시킬 수 있어야 하므로 은보다 표준 산화/환원 전위가 낮은 값을 갖는 금속이어야 하며, 이와 같은 금속으로는 구리, 인듐, 아연 등을 예시할 수 있다. 따라서 금속전구체 (본 발명의 금속환원제의 전구체)로서 할라이드 염 계통을 제외한 이들 금속의 황산염, 질산염, 초산염 등을 단독으로 또는 혼합하여 사용하는 것이 가능하다. 본 발명의 바람직한 실시예에서는 Cu(NO3)2를 사용하여 구리 입자를 제조하고, 이를 은 입자 제조에서의 금속환원제로 사용하였다. Since the metal reducing agent should be capable of reducing silver ions, the metal reducing agent should be a metal having a lower standard oxidation / reduction potential than silver, and examples of such metals include copper, indium, and zinc. Therefore, as the metal precursor (precursor of the metal reducing agent of the present invention), sulfates, nitrates, acetates and the like of these metals except for the halide salt system can be used alone or in combination. In a preferred embodiment of the present invention, Cu (NO 3 ) 2 to produce a copper particle, it was used as a metal reducing agent in the production of silver particles.

사용되는 금속 환원제의 전구체의 양은 나중에 첨가되는 제2용액 내의 은 전구체의 5 내지 50% 몰비로 제1용액에 포함되는 것이 바람직하다. 5% 이하의 몰비로 첨가되는 경우에는 촉매의 양이 적어 수율이 낮다는 문제가 있고, 50% 몰비 이상으로 첨가되는 경우에는 과량의 전구체로 인한 Ag 입자의 과성장 문제 및 산화물 구리가 존재하게 되는 문제가 있다. The amount of precursor of the metal reducing agent used is preferably included in the first solution in a 5 to 50% molar ratio of the silver precursor in the second solution added later. When added in a molar ratio of 5% or less, there is a problem in that the yield is low due to the small amount of catalyst. When added in a molar ratio of 50% or more, there is a problem of overgrowth of Ag particles due to excess precursor and oxide copper. there is a problem.

제2용액의 제조에 사용되는 은 전구체는 AgBF4, AgCF3SO3, AgClO4, AgNO3, AgOAc 및 AgPF6로 구성되는 군으로부터 선택되는 하나 이상인 것이 바람직하다. 상기 은 전구체는 0.5 내지 2 M 농도로 상기 제2용액에 포함되는 것이 바람직하다. 0.5 M 이하의 농도로 포함되는 경우에는 입자 생성 수율이 낮다는 문제가 있고, 2 M 농도 이상으로 포함되는 경우에는 고농도로 인한 입자의 응집이 발생하는 문제가 있다.The silver precursor used in the preparation of the second solution is preferably at least one selected from the group consisting of AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgNO 3 , AgOAc and AgPF 6 . The silver precursor is preferably contained in the second solution at a concentration of 0.5 to 2 M. When included at a concentration of 0.5 M or less, there is a problem that the yield of particle generation is low, and when included at a concentration of 2 M or more, there is a problem that aggregation of particles due to high concentration occurs.

제1용액 및 제2용액의 용매는 폴리올, 물 및 알코올을 포함하는 극성 용매일 수 있다. 바람직하게는 폴리올로서 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 폴리에틸렌글리콜 등을 하나 이상 혼합하여 사용할 수 있고, 더욱 바람직하게는 에틸렌 글리콜을 단독으로 사용할 수 있다. The solvent of the first solution and the second solution may be a polar solvent including polyol, water and alcohol. Preferably, one or more of ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and the like may be mixed and used as the polyol, and more preferably, ethylene glycol may be used alone.

아울러, 제1용액의 일 성분인 분산제는 PVP (Polyvinylpyrrolidone), CTAB (Cetyltrimethylammonium bromide), SDS (Sodium dodecyl sulfate) 및 Na-CMC (Sodium carboxymethyl cellulose)로 구성되는 군으로부터 선택되는 하나 이상을 포함할 수 있으며, 할라이드 계열을 제외한 것이 바람직하다. 보다 바람직하게는 분자량 30,000의 PVP를 단독으로 사용할 수 있다. 고분자 분산제인 PVP는 제조되는 입자의 크기 및 균일성을 제어할 수 있게 하고, 수계 용매에서의 응집을 방지하며 분산성을 부여하는 효과를 나타낸다. 첨가되는 분산제의 양은 은 전구체 1 몰(mole)에 대하여 분산제 1 내지 20 몰을 사용하는 것이 바람직한데, 1몰 이하로 첨가되는 경우에는 은 입자의 제어효과가 떨어져 균일한 나노입자의 제조가 힘들고, 20몰 이상으로 첨가되는 경우에는 과량의 고분자 분산제로 인한 반응용액의 점 도 상승으로 교반이 어려워 균일한 반응이 힘들며 부반응물 및 잔여 유기물의 제거에 과량의 비용매가 필요하게 되므로 비경제적이다.In addition, the dispersant as one component of the first solution may include one or more selected from the group consisting of PVP (Polyvinylpyrrolidone), CTAB (Cetyltrimethylammonium bromide), SDS (Sodium dodecyl sulfate) and Na-CMC (Sodium carboxymethyl cellulose) And, except for halide series. More preferably, PVP with a molecular weight of 30,000 can be used alone. PVP, a polymeric dispersant, has the effect of controlling the size and uniformity of the particles to be produced, preventing aggregation in an aqueous solvent and imparting dispersibility. The amount of dispersant added is preferably 1 to 20 moles of dispersant per 1 mole of silver precursor, but when added to 1 mole or less, it is difficult to produce uniform nanoparticles due to poor control effect of silver particles. If more than 20 moles are added, it is uneconomical because the viscosity of the reaction solution due to the excessive polymer dispersant is difficult to stir, making it difficult to uniformly react, and the excess nonsolvent is required to remove the side reactants and residual organics.

한편, 제1용액에 제2용액을 첨가하는 단계에서는 제1용액의 온도를 실온으로 낮추고, 제2용액을 첨가할 것이 요구되는데, 그 이유는 은 입자 생성 반응이 미리 진행하는 것을 막기 위함이다. 즉, 은 입자의 생성은 이후의 승온 단계를 거쳐 본격화되어 입자를 균일하게 합성할 수 있게 하기 위한 것이다. 상기 단계들에서의 승온 온도는 50 내지 200℃로 유지하는 것이 바람직한데, 온도가 200℃를 초과하는 경우는 후속 반응 과정에서 급속하게 반응이 진행되어 안정성이 저하되며 제조되는 입자가 불균일하게 되는 문제가 있고, 온도가 50℃ 미만일 경우에는 환원 반응이 제대로 진행되지 않는다는 문제가 있다. On the other hand, in the step of adding the second solution to the first solution, it is required to lower the temperature of the first solution to room temperature and add the second solution, in order to prevent the silver particle formation reaction from proceeding in advance. That is, the generation of silver particles is intended to be full-scaled through a subsequent temperature raising step so that the particles can be uniformly synthesized. It is preferable to maintain the elevated temperature in the above steps to 50 to 200 ℃, if the temperature exceeds 200 ℃ the reaction proceeds rapidly in the subsequent reaction process, the stability is lowered and the resulting particles are non-uniform And, if the temperature is less than 50 ℃ there is a problem that the reduction reaction does not proceed properly.

앞서 기재한 바와 같이, 금속환원제나 은 나노입자의 생성은 금속전구체가 포함된 용액이나 은 전구체 수용액의 온도를 승온시켜 반응시킴으로써 이루어진다. 반응시간은 20분 내지 2시간이 바람직한데, 20분 이하의 경우에는 금속 이온이 충분히 환원되지 못하고, 2시간을 초과하면 입자의 과성장으로 크기가 균일하도록 제어하는 것이 어렵게 된다. As described above, the production of the metal reducing agent or the silver nanoparticles is carried out by raising the temperature of the solution containing the metal precursor or the aqueous solution of the silver precursor. The reaction time is preferably 20 minutes to 2 hours, but in the case of 20 minutes or less, the metal ions are not sufficiently reduced, and when it exceeds 2 hours, it is difficult to control the uniformity due to the overgrowth of the particles.

반응이 충분히 진행되면 은 나노입자의 과성장을 막기 위해 냉각된 탈이온 증류수를 이용하여 급냉시키고 원심분리를 이용하여 은 나노입자를 침전시킨다. 분리된 은 나노입자는 구리 이온 및 과량의 PVP 등의 부반응물 및 잔여 유기물 등을 제거하기 위하여 아세톤과 증류수를 이용하여 세척하고 50℃로 유지된 진공 건조기에서 건조한다. 본 발명자 등은 상기 방법으로 제조된 구리 나노입자를 투과 전자현미경 (TEM) 으로 분석한 결과, 도 1에 나타난 바와 같이, 입자 크기가 30 내지 40 nm 인 구형의 균일한 입자가 형성되었음을 확인하였다. When the reaction proceeds sufficiently, in order to prevent overgrowth of the silver nanoparticles, it is quenched using cooled deionized distilled water and the silver nanoparticles are precipitated by centrifugation. The separated silver nanoparticles are washed with acetone and distilled water and dried in a vacuum drier maintained at 50 ° C to remove copper ions, side reactions such as excess PVP and residual organic matter. The present inventors analyzed the copper nanoparticles prepared by the above method with a transmission electron microscope (TEM), and as shown in FIG. 1, it was confirmed that spherical uniform particles having a particle size of 30 to 40 nm were formed.

본 발명의 방법은 합성하고자 하는 은 나노입자의 전구체인 AgNO3와 약한 환원제 역할을 하는 금속 나노입자를 반응시킴으로써 고온 활성이 아닌 저온(100~120℃)에서 은 나노입자의 핵성장의 제어를 가능하게 하므로, 기존의 고온 활성의 경우에 핵성장 및 입도 성장을 제어하기 위하여 필요한 과량의 PVP를 사용하지 않아도 되는 장점을 가지고 있다. 즉, 본 발명에 따르면 은 이온의 몰 수에 대하여 PVP의 양이 3-5배 정도만 존재하여도 구형의 은 나노입자를 합성하는 것이 가능하다.The method of the present invention enables the control of nuclear growth of silver nanoparticles at low temperature (100-120 ° C.) rather than high temperature activity by reacting AgNO 3 , a precursor of silver nanoparticles to be synthesized, with metal nanoparticles serving as a weak reducing agent. Therefore, in the case of the existing high temperature activity, there is an advantage of not using the excess PVP necessary to control the nuclear growth and the grain growth. That is, according to the present invention, it is possible to synthesize spherical silver nanoparticles even when the amount of PVP is about 3-5 times with respect to the number of moles of silver ions.

이하, 본 발명의 바람직한 실시예를 참조하여 본 발명을 더욱 상세하게 설명하나 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention, but the scope of the present invention is not limited thereto.

<실시예: 은 나노입자의 제조>Example: Preparation of Silver Nanoparticles

실시예 1-1: 구리 나노입자(금속 환원제)의 제조Example 1-1 Preparation of Copper Nanoparticles (Metal Reducing Agent)

금속환원제로 사용될 구리 금속입자를 합성하기 위해 Cu(NO3)2 0.1 mol, PVP (Mw=10,000~35,000) 2 mol 및 에틸렌글리콜 500 ml을 비이커에서 혼합하고 교반기를 이용하여 용해한 후 180℃까지 승온하였다. 1시간 정도 반응시켜 구리 나노입자(금속환원제)를 포함하는 용액을 제조하였다.To synthesize copper metal particles to be used as metal reducing agents, 0.1 mol of Cu (NO 3 ) 2 , 2 mol of PVP (Mw = 10,000 ~ 35,000) and 500 ml of ethylene glycol were mixed in a beaker, dissolved using a stirrer, and heated to 180 ° C. It was. By reacting for about 1 hour to prepare a solution containing copper nanoparticles (metal reducing agent).

실시예 1-2: 은 나노입자의 제조 Example 1-2 Preparation of Silver Nanoparticles

실시예 1-1에서 제조한 구리 입자 용액의 온도를 실온으로 낮춘 후, 에틸렌글리콜 200 ml에 AgNO3 1 mol 을 용해시킨 용액을 첨가하였다. 그 후 상기 용액을 100℃ 로 승온시키고 1시간 동안 반응시켜 은 나노입자를 합성하였다. 환원반응에 의해 담즙색의 반응물이 얻어지면 여기에 냉각된 탈이온 증류수를 투입하여 급냉시켰다. 원심분리를 통하여 은 나노분말을 회수하고 아세톤과 증류수를 이용하여 3회 세척한 후 50℃로 유지된 진공 건조기에서 건조하여 최종적으로 은 나노입자 100g을 얻었다.After the temperature of the copper particle solution prepared in Example 1-1 was lowered to room temperature, a solution in which 1 mol of AgNO 3 was dissolved in 200 ml of ethylene glycol was added. Thereafter, the solution was heated to 100 ° C. and reacted for 1 hour to synthesize silver nanoparticles. When a bile reactant was obtained by the reduction reaction, cooled deionized distilled water was added thereto and quenched. The silver nanopowder was recovered by centrifugation, washed three times with acetone and distilled water, and dried in a vacuum dryer maintained at 50 ° C. to finally obtain 100 g of silver nanoparticles.

상술한 바와 같이 본 발명의 방법에 따르면, 입자 크기가 미세하며 균일한 입도를 갖는 은 나노입자 분말을 대량으로 간단하게 제조할 수 있으며, 나노 입자의 제조시에 사용되는 분산제인 PVP의 양을 획기적으로 줄일 수 있다. As described above, according to the method of the present invention, silver nanoparticle powder having a small particle size and uniform particle size can be easily produced in large quantities, and the amount of PVP, which is a dispersant used in the production of nanoparticles, is remarkable. Can be reduced.

Claims (12)

금속환원제의 전구체, 분산제 및 극성 용매를 포함하는 용액을 준비하고 승온시켜 금속환원제를 포함하는 제1용액을 제조하는 단계;Preparing a solution including a precursor, a dispersing agent, and a polar solvent of the metal reducing agent and raising the temperature to prepare a first solution including the metal reducing agent; 은 전구체 및 극성 용매를 포함하는 제2용액을 제조하는 단계; 및Preparing a second solution comprising a silver precursor and a polar solvent; And 제1용액의 온도를 실온으로 낮추고 제2용액을 첨가한 후 승온시키는 단계를 포함하는, 은 나노 입자의 제조방법.Lowering the temperature of the first solution to room temperature and adding the second solution and then raising the temperature, the manufacturing method of the silver nanoparticles. 제1항에 있어서, 상기 금속환원제는 은보다 표준 산화/환원 전위가 작은 값을 갖는 금속인, 은 나노 입자의 제조방법.The method of claim 1, wherein the metal reducing agent is a metal having a smaller standard oxidation / reduction potential than silver. 제2항에 있어서, 상기 은보다 표준 산화/환원 전위가 작은 값을 갖는 금속은 구리, 인듐 및 아연으로 구성되는 군으로부터 선택되는 것인 은 나노 입자의 제조방법.The method of claim 2, wherein the metal having a lower standard oxidation / reduction potential than silver is selected from the group consisting of copper, indium, and zinc. 제1항에 있어서, 상기 금속환원제는 제2용액 내의 은 전구체의 5 내지 50% 몰비로 제1용액에 포함되는 것인 은 나노입자의 제조방법.The method of claim 1, wherein the metal reducing agent is included in the first solution in a 5 to 50% molar ratio of the silver precursor in the second solution. 제1항에 있어서, 상기 은 전구체는 AgBF4, AgCF3SO3, AgClO4, AgNO3, AgOAc 및 AgPF6로 구성되는 군으로부터 선택되는 하나 이상인 은 나노입자의 제조방법.The method of claim 1, wherein the silver precursor is at least one selected from the group consisting of AgBF 4 , AgCF 3 SO 3 , AgClO 4 , AgNO 3 , AgOAc, and AgPF 6 . 제1항에 있어서, 상기 은 전구체는 0.5 내지 2 몰 범위로 상기 제2용액에 포함되는 것인 은 나노입자의 제조방법.The method of claim 1, wherein the silver precursor is included in the second solution in a range of about 0.5 to about 2 moles. 제1항에 있어서, 상기 극성 용매는 폴리올(polyol), 물 및 알코올로 구성되는 군으로부터 선택되는 하나 이상으로 이루어진 것인 은 나노입자의 제조방법.The method of claim 1, wherein the polar solvent comprises at least one selected from the group consisting of polyols, water, and alcohols. 제7항에 있어서, 상기 폴리올은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜 및 폴리에틸렌글리콜로 구성되는 군으로부터 선택되는 것인 은 나노입자의 제조방법.The method of claim 7, wherein the polyol is selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol. 제1항에 있어서, 상기 분산제는 PVP(Polyvinylpyrrolidone), CTAB(Cetyltrimethylammonium bromide), SDS(Sodium dodecyl sulfate) 및 Na-CMC(Sodium carboxymethyl cellulose)로 구성되는 군으로부터 선택되는 하나 이상을 포함하는 것인 은 나노입자의 제조방법.The silver of claim 1, wherein the dispersant comprises one or more selected from the group consisting of polyvinylpyrrolidone (PVP), catyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and sodium carboxymethyl cellulose (Na-CMC). Method for producing nanoparticles. 제1항에 있어서, 승온 온도는 50 내지 200℃인 은 나노입자의 제조방법.The method of claim 1, wherein the elevated temperature is 50 to 200 ℃. 제1항에 있어서, 승온시키는 단계는 20분 내지 2시간 동안 수행되는 것인 구리 나노입자의 제조방법.The method of claim 1, wherein the step of raising the temperature is performed for 20 minutes to 2 hours. 제1항 내지 제11항 중 어느 한 항의 방법에 의하여 제조되는 은 나노입자.Silver nanoparticles produced by the method of claim 1.
KR1020060101844A 2006-10-19 2006-10-19 Silver nano-particles and preparation method thereof KR20080035315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060101844A KR20080035315A (en) 2006-10-19 2006-10-19 Silver nano-particles and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060101844A KR20080035315A (en) 2006-10-19 2006-10-19 Silver nano-particles and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20080035315A true KR20080035315A (en) 2008-04-23

Family

ID=39574325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060101844A KR20080035315A (en) 2006-10-19 2006-10-19 Silver nano-particles and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20080035315A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579746B (en) * 2008-05-13 2011-01-12 中国科学院理化技术研究所 Method for preparing micron-grade superfine silver powder with shape of pinecone, flower or tree
CN102221493A (en) * 2011-04-12 2011-10-19 重庆大学 Preparation method of silver alloy transmission electron microscope
CN102228995A (en) * 2011-06-30 2011-11-02 华南理工大学 Polysaccharide-nano silver sol and preparation method thereof
CN102407342A (en) * 2011-10-31 2012-04-11 山东大学 Preparation method of nano silver powder with accurately controllable particle size
CN102554258A (en) * 2012-02-03 2012-07-11 济南大学 Method for preparing metal silver nanostructure in water solution
CN102554255A (en) * 2011-12-22 2012-07-11 中国科学院合肥物质科学研究院 Preparation method of silver nanoparticle/graphene composite material
KR101283984B1 (en) * 2011-05-20 2013-07-09 한국화학연구원 Silver nanowire having protuberance and Method for preparing the same
CN103212720A (en) * 2013-04-02 2013-07-24 环保化工科技有限公司 Nano-silver dispersion liquid and preparation method of nano-silver dispersion liquid as well as preparation method of nano-silver antibacterial coating
CN103528969A (en) * 2013-11-01 2014-01-22 中国科学院宁波材料技术与工程研究所 Method for detecting bivalent copper ions and reagent kit
CN103722181A (en) * 2014-01-21 2014-04-16 江苏欧耐尔新型材料有限公司 Method for preparing nano silver powder by using dispersing agent through liquid-phase reduction method
CN103769604A (en) * 2014-01-25 2014-05-07 华南理工大学 Green and quick method for preparing lignin-nanosilver sol
CN103962572A (en) * 2014-04-18 2014-08-06 青岛大学 Method for preparing small-sized nanometer silver crystals through blending-soaking-crystallizing method
CN103962571A (en) * 2014-04-18 2014-08-06 青岛大学 Method for preparing small-size nano-silver crystals through linter blending-soaking-crystal cup method
CN104014817A (en) * 2014-06-27 2014-09-03 凯里学院 Preparation method of silver nanomaterial suitable for mass production
RU2618303C1 (en) * 2016-03-11 2017-05-03 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Nanosilver colloidal solution and preparation method thereof
US20180258307A1 (en) * 2017-03-13 2018-09-13 Eastman Kodak Company Silver-containing precursor and product articles containing cellulosic polymers
US10246561B1 (en) * 2017-09-25 2019-04-02 Eastman Kodak Company Method of making silver-containing dispersions with nitrogenous bases
US20190136074A1 (en) * 2017-11-08 2019-05-09 Eastman Kodak Company, Method of making silver-containing dispersions
CN110722174A (en) * 2019-11-06 2020-01-24 Oppo广东移动通信有限公司 Silver nanowire and preparation method and application thereof
CN111168083A (en) * 2020-02-24 2020-05-19 深圳先进技术研究院 Preparation method of nano silver powder
CN112059205A (en) * 2020-09-18 2020-12-11 东北大学 Preparation method of nano-silver with stable particle size

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579746B (en) * 2008-05-13 2011-01-12 中国科学院理化技术研究所 Method for preparing micron-grade superfine silver powder with shape of pinecone, flower or tree
CN102221493B (en) * 2011-04-12 2013-03-20 重庆大学 Preparation method of silver alloy transmission electron microscope
CN102221493A (en) * 2011-04-12 2011-10-19 重庆大学 Preparation method of silver alloy transmission electron microscope
KR101283984B1 (en) * 2011-05-20 2013-07-09 한국화학연구원 Silver nanowire having protuberance and Method for preparing the same
CN102228995A (en) * 2011-06-30 2011-11-02 华南理工大学 Polysaccharide-nano silver sol and preparation method thereof
CN102407342A (en) * 2011-10-31 2012-04-11 山东大学 Preparation method of nano silver powder with accurately controllable particle size
CN102554255A (en) * 2011-12-22 2012-07-11 中国科学院合肥物质科学研究院 Preparation method of silver nanoparticle/graphene composite material
CN102554255B (en) * 2011-12-22 2013-08-21 中国科学院合肥物质科学研究院 Preparation method of silver nanoparticle/graphene composite material
CN102554258A (en) * 2012-02-03 2012-07-11 济南大学 Method for preparing metal silver nanostructure in water solution
CN103212720A (en) * 2013-04-02 2013-07-24 环保化工科技有限公司 Nano-silver dispersion liquid and preparation method of nano-silver dispersion liquid as well as preparation method of nano-silver antibacterial coating
CN103212720B (en) * 2013-04-02 2015-12-23 环保化工科技有限公司 A kind of nano silver dispersion and preparation method thereof, and a kind of preparation method of nano silver antibacterial coating
CN103528969A (en) * 2013-11-01 2014-01-22 中国科学院宁波材料技术与工程研究所 Method for detecting bivalent copper ions and reagent kit
CN103722181A (en) * 2014-01-21 2014-04-16 江苏欧耐尔新型材料有限公司 Method for preparing nano silver powder by using dispersing agent through liquid-phase reduction method
CN103722181B (en) * 2014-01-21 2016-01-20 江苏欧耐尔新型材料有限公司 Liquid phase reduction uses dispersant to prepare the method for nano-silver powder
CN103769604A (en) * 2014-01-25 2014-05-07 华南理工大学 Green and quick method for preparing lignin-nanosilver sol
CN103962571A (en) * 2014-04-18 2014-08-06 青岛大学 Method for preparing small-size nano-silver crystals through linter blending-soaking-crystal cup method
CN103962572B (en) * 2014-04-18 2015-10-14 青岛大学 A kind of blended-method of wet-crystal cup legal system of spreading and sinking in for small-size nano-silver crystal
CN103962571B (en) * 2014-04-18 2015-10-14 青岛大学 A kind of cotton linter is blended-method of wet-crystal cup legal system of spreading and sinking in for small-size nano-silver crystal
CN103962572A (en) * 2014-04-18 2014-08-06 青岛大学 Method for preparing small-sized nanometer silver crystals through blending-soaking-crystallizing method
CN104014817A (en) * 2014-06-27 2014-09-03 凯里学院 Preparation method of silver nanomaterial suitable for mass production
CN104014817B (en) * 2014-06-27 2016-08-31 凯里学院 It is suitable for the preparation method of the silver nano material of large-scale production
RU2618303C1 (en) * 2016-03-11 2017-05-03 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Nanosilver colloidal solution and preparation method thereof
US20180258307A1 (en) * 2017-03-13 2018-09-13 Eastman Kodak Company Silver-containing precursor and product articles containing cellulosic polymers
US10870774B2 (en) * 2017-03-13 2020-12-22 Eastman Kodak Company Silver-containing precursor and product articles containing cellulosic polymers
US10246561B1 (en) * 2017-09-25 2019-04-02 Eastman Kodak Company Method of making silver-containing dispersions with nitrogenous bases
US20190136074A1 (en) * 2017-11-08 2019-05-09 Eastman Kodak Company, Method of making silver-containing dispersions
US10472528B2 (en) * 2017-11-08 2019-11-12 Eastman Kodak Company Method of making silver-containing dispersions
CN110722174A (en) * 2019-11-06 2020-01-24 Oppo广东移动通信有限公司 Silver nanowire and preparation method and application thereof
CN111168083A (en) * 2020-02-24 2020-05-19 深圳先进技术研究院 Preparation method of nano silver powder
CN112059205A (en) * 2020-09-18 2020-12-11 东北大学 Preparation method of nano-silver with stable particle size

Similar Documents

Publication Publication Date Title
KR20080035315A (en) Silver nano-particles and preparation method thereof
KR100790458B1 (en) Copper nano-particles and preparation method thereof
KR100809982B1 (en) Method for manufacturing copper nanoparticles using microwave
KR100836659B1 (en) Method for manufacturing metal nanoparticles
JP4698648B2 (en) Method for producing cubic shaped copper nanoparticles
EP2883922B1 (en) Metal nanoparticle synthesis and conductive ink formulation
KR100790948B1 (en) Method for preparing metal nanoparticles and metal nanoparticles prepared using the same
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP2009024254A (en) Production method of nickel nanoparticle
US8084140B2 (en) Silver platelets comprising palladium
KR101537149B1 (en) Method of producing metal nano-particles
KR20160053352A (en) A process for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
WO2004078641A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
KR20130090807A (en) Method of producing metal nano-particles
CN116060631A (en) Method for simply preparing silver-copper bimetallic nano-particles
JP4120007B2 (en) Method for producing copper powder
KR101302902B1 (en) Method of producing metal nano-particle by using spg membrane and micromixer
KR101827218B1 (en) A process for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
KR102423669B1 (en) Method for manufacturing copper particles capable of shape control and conductive ink composition comprising copper particles prepared thereby
Neethu et al. An experimental investigation on tuning the edge length of Ag nanoplates
KR100756853B1 (en) Process of rod-like Ag particles for application in electrode
Zhang et al. Shape control of Pd-based nanocrystals via quasi-solid-state reactions
WO2023244187A1 (en) A method for synthesizing copper sulphide particles
CN114346254A (en) Method for preparing nano copper powder in eutectic ionic liquid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application