JP2008214695A - Method for producing ultra-fine particle of silver - Google Patents

Method for producing ultra-fine particle of silver Download PDF

Info

Publication number
JP2008214695A
JP2008214695A JP2007054077A JP2007054077A JP2008214695A JP 2008214695 A JP2008214695 A JP 2008214695A JP 2007054077 A JP2007054077 A JP 2007054077A JP 2007054077 A JP2007054077 A JP 2007054077A JP 2008214695 A JP2008214695 A JP 2008214695A
Authority
JP
Japan
Prior art keywords
silver
oxalate
oleylamine
particles
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007054077A
Other languages
Japanese (ja)
Other versions
JP4978242B2 (en
Inventor
Masato Kurihara
正人 栗原
Masaomi Sakamoto
政臣 坂本
Nobutsugu Kawasaki
修嗣 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2007054077A priority Critical patent/JP4978242B2/en
Publication of JP2008214695A publication Critical patent/JP2008214695A/en
Application granted granted Critical
Publication of JP4978242B2 publication Critical patent/JP4978242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ultra-fine particles of silver, which have a nanometric size of order, a narrow particle size distribution and superior storage stability, further can be produced easily at a high yield, and have superior low-temperature sinterability. <P>SOLUTION: The method for producing the ultra-fine particles of silver includes: making silver oxalate react with oleylamine to produce a complex compound containing at least silver, oleylamine and oxalate ions; and heating the produced complex compound to decompose the compound into ultra-fine particles of silver. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナノメートルサイズの銀超微粒子の製造方法に関する。   The present invention relates to a method for producing nanometer-sized silver ultrafine particles.

粒子径が100nm以下、特に数nm〜数十nmオーダーの金属の超微粒子は、高い表面活性を利用した触媒、吸着剤、吸収剤として用いられる。このほか、溶剤や樹脂等の液状分散媒に分散させてフィルム状、ペースト状、塗料状またはインク状とし、各種電子回路や半導体素子の電極、配線などの導体パターンや、透明導電膜、帯電防止膜、電磁波遮蔽膜、カラーフィルタ、機能性フィルム等の、導電性被膜を形成するための材料としても使用される。特に、このようなナノメートルサイズの金属微粒子(ナノ粒子)は、通常厚膜導体ペーストの導電性フィラーとして使用されるマイクロメートルサイズの金属粉末に比べてはるかに低温で焼結するので、100〜300℃程度の低い温度で熱処理することにより、高い導電性を有する導電性被膜が得られる。また、粒子が微細であるため薄く緻密で、微細な導体パターンを形成することができる。このため、エレクトロニクス分野での応用が期待されている。さらには、導体パターンをインクジェット印刷により形成するために用いる、インクジェットインク用の導電性フィラーとしても適していると考えられる。また、通常の厚膜導体ペーストの添加剤、即ち導電性向上剤、焼結促進剤等としても利用することができる。さらに、抗菌剤、医薬品としての用途も重要である。   Metal ultrafine particles having a particle size of 100 nm or less, particularly several nanometers to several tens of nanometers, are used as catalysts, adsorbents, and absorbents utilizing high surface activity. In addition, films, pastes, paints, or inks are dispersed in liquid dispersion media such as solvents and resins. Conductive patterns such as electrodes and wiring of various electronic circuits and semiconductor elements, transparent conductive films, and antistatics It is also used as a material for forming a conductive film such as a film, an electromagnetic wave shielding film, a color filter, and a functional film. In particular, such nanometer-sized metal fine particles (nanoparticles) sinter at a much lower temperature than micrometer-sized metal powders that are usually used as conductive fillers in thick film conductor pastes. By conducting heat treatment at a low temperature of about 300 ° C., a conductive film having high conductivity can be obtained. Further, since the particles are fine, a thin and fine conductor pattern can be formed. For this reason, application in the electronics field is expected. Furthermore, it is considered suitable as a conductive filler for inkjet ink used to form a conductor pattern by inkjet printing. It can also be used as an additive for ordinary thick film conductor pastes, that is, a conductivity improver, a sintering accelerator and the like. Furthermore, the use as an antibacterial agent and a pharmaceutical is also important.

これらの用途において、ナノメートルサイズで粒度分布が狭く、粒子形状の揃った金属超微粒子を高収率で容易に製造することが要求される。また、特に導電性被膜形成材料として用いる場合、100〜300℃程度の低温で焼結すること、また、分散媒中で高度に分散した安定な状態で存在すること、さらに分散液の状態でもまた粉末の状態でも凝集しにくく長期保存が可能であることが望まれる。   In these applications, it is required to easily produce ultrafine metal particles having a nanometer size, a narrow particle size distribution, and a uniform particle shape with a high yield. In particular, when used as a conductive film-forming material, it must be sintered at a low temperature of about 100 to 300 ° C., exist in a stable state highly dispersed in a dispersion medium, and further in a dispersion state. It is desired that the powder is not aggregated even in a powder state and can be stored for a long time.

このような金属超微粒子の製造方法として、例えば、特許文献1では、炭酸塩、脂肪酸塩などの金属塩とアミン化合物とを不活性雰囲気中で熱処理を行うことによって複合金属ナノ粒子を得ることが開示されている。具体的には、シュウ酸錫、炭酸銀及びオクチルアミンを混合し窒素雰囲気下で加熱攪拌することによって、銀/錫の複合金属ナノ粒子を得ている。しかしながら、上記特許文献1におけるアミン化合物は、オクチルアミン等の1級〜3級飽和脂肪族アミンの例示があるが、オレイルアミンの例示はなされていない。
特開2005−298921号公報
As a method for producing such ultrafine metal particles, for example, in Patent Document 1, composite metal nanoparticles are obtained by heat-treating a metal salt such as carbonate or fatty acid salt and an amine compound in an inert atmosphere. It is disclosed. Specifically, silver / tin composite metal nanoparticles are obtained by mixing tin oxalate, silver carbonate and octylamine and stirring under heating in a nitrogen atmosphere. However, the amine compound in Patent Document 1 is exemplified by primary to tertiary saturated aliphatic amines such as octylamine, but no oleylamine is exemplified.
JP 2005-298922 A

ところで、金属超微粒子として銀の超微粒子を製造する場合、例えばシュウ酸銀や炭酸銀を熱分解する方法が試みられている。シュウ酸銀や炭酸銀を熱分解すると、銀の還元反応が自発的に生じて銀粒子が得られる。なかでもシュウ酸銀は、炭酸銀に比べて低温で熱分解して銀を析出するので、出発原料としてはシュウ酸銀が好ましく用いられる。この熱分解においては、シュウ酸イオンが二酸化炭素に分解されて除去されるため、還元剤を使って銀化合物を還元する場合のように、還元剤を除去する工程を必要とせず、また不純物の少ない銀粒子が得られるという利点がある。しかしながら、生成する銀粒子は微粒子が凝集した多孔体となるため、本発明の目的であるナノメートルサイズの銀超微粒子がよく分散した粉体や分散液が得られないという問題がある。また、シュウ酸銀の熱分解は爆発的に生じるために、危険であるという問題があった。
シュウ酸銀をカルボン酸の存在下で熱分解した場合には、爆発的熱分解は抑制され、また比較的小さい銀粒子が得られるが、やはり凝集を完全に防止することができないため、
得られる粒子の径は粗大で粒径にばらつきが生じ、粒径の揃ったナノメートルサイズの銀粒子を得ることができない。また、シュウ酸銀を飽和脂肪族アミンの存在下で熱分解した場合にも、同様に銀の粒子同士が凝集して粒径の揃ったナノメートルサイズの銀粒子を得ることができない。
本発明は、上記事情に鑑みてなされたもので、平均粒径が1nm〜50nm、特に5nm〜20nmで、粒度分布が狭く、保存安定性に優れた超微粒子を容易にかつ高収率で製造し得る銀超微粒子の製造方法を提供することを目的としている。
また、低温焼結性の優れた銀超微粒子の製造方法を提供することを目的としている。
By the way, when producing ultrafine silver particles as ultrafine metal particles, for example, a method of thermally decomposing silver oxalate or silver carbonate has been attempted. When silver oxalate or silver carbonate is thermally decomposed, a silver reduction reaction occurs spontaneously to obtain silver particles. Among them, silver oxalate is preferably used as a starting material because silver oxalate is thermally decomposed at a lower temperature than silver carbonate to precipitate silver. In this thermal decomposition, oxalate ions are decomposed into carbon dioxide and removed, so that there is no need for a step of removing the reducing agent as in the case of reducing the silver compound by using a reducing agent, and impurities are removed. There is an advantage that few silver particles can be obtained. However, since the silver particles to be produced become a porous body in which fine particles are aggregated, there is a problem that it is impossible to obtain a powder or dispersion in which nanometer-sized silver ultrafine particles, which is the object of the present invention, are well dispersed. In addition, the thermal decomposition of silver oxalate is explosive and therefore dangerous.
When silver oxalate is pyrolyzed in the presence of carboxylic acid, explosive pyrolysis is suppressed and relatively small silver particles are obtained, but again aggregation cannot be completely prevented.
The diameter of the obtained particles is coarse and the particle size varies, and nanometer-sized silver particles having a uniform particle size cannot be obtained. In addition, when silver oxalate is thermally decomposed in the presence of a saturated aliphatic amine, similarly, silver particles are aggregated and nanometer-sized silver particles having a uniform particle size cannot be obtained.
The present invention has been made in view of the above circumstances, and easily produces ultrafine particles having an average particle size of 1 nm to 50 nm, particularly 5 nm to 20 nm, a narrow particle size distribution and excellent storage stability in a high yield. An object of the present invention is to provide a method for producing ultrafine silver particles.
Another object of the present invention is to provide a method for producing ultrafine silver particles having excellent low-temperature sinterability.

上記課題を解決するため、請求項1の発明は、銀超微粒子の製造方法において、
シュウ酸銀と、オレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、
生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを特徴とする。
In order to solve the above problems, the invention of claim 1 is a method for producing ultrafine silver particles,
Silver oxalate and oleylamine are reacted to form a complex compound containing at least silver, oleylamine and oxalate ion,
The produced complex compound is thermally decomposed to produce ultrafine silver particles.

請求項2の発明は、請求項1に記載の銀超微粒子の製造方法において、
前記シュウ酸銀と、前記オレイルアミンに加えて飽和脂肪族アミンを反応させて前記錯化合物を生成することを特徴とする。
Invention of Claim 2 is the manufacturing method of the silver ultrafine particle of Claim 1,
The complex compound is produced by reacting the silver oxalate with a saturated aliphatic amine in addition to the oleylamine.

請求項3の発明は、請求項2に記載の銀超微粒子の製造方法において、
前記飽和脂肪族アミンの総炭素数は、1〜18であることを特徴とする。
Invention of Claim 3 in the manufacturing method of the silver ultrafine particle of Claim 2,
The saturated aliphatic amine has a total carbon number of 1 to 18.

請求項4の発明は、請求項2又は3に記載の銀超微粒子の製造方法において、
前記飽和脂肪族アミンの少なくとも一部が前記シュウ酸銀に被着していることを特徴とする。
Invention of Claim 4 in the manufacturing method of the silver ultrafine particle of Claim 2 or 3,
At least a part of the saturated aliphatic amine is deposited on the silver oxalate.

請求項5の発明は、請求項1〜4のいずれか一項に記載の銀超微粒子の製造方法において、
前記シュウ酸銀のシュウ酸イオンの20モル%以下が、炭酸イオン、硝酸イオン、酸化物イオンの少なくともいずれか一種以上で置換されていることを特徴とする。
Invention of Claim 5 is the manufacturing method of the silver ultrafine particle as described in any one of Claims 1-4,
20 mol% or less of the oxalate ion of the silver oxalate is substituted with at least one of carbonate ion, nitrate ion and oxide ion.

本発明によれば、シュウ酸銀とオレイルアミンとを反応させ、銀とシュウ酸イオンとオレイルアミンを含む錯化合物(以下、単に「錯化合物」ということもある)を生成させる。そして、この錯化合物を加熱分解させることによりシュウ酸イオンが二酸化炭素に分解されて除去され、オレイルアミンで保護された平均粒径1nm〜50nm、特に5nm〜20nmで、粒径及び形状の揃った高分散性の銀超微粒子を高収率で得ることができる。また、シュウ酸イオンが二酸化炭素に分解されるため、アミン以外の有機物や還元剤に起因する不純物が残留しない点で有利である。
また、オレイルアミンに加えて、脂肪族アミン、特に総炭素数18以下の飽和脂肪族アミンを添加して反応させることにより、錯化合物を容易に生成でき、銀超微粒子の製造に要する時間を短縮できる。しかも、これらのアミンで保護された銀超微粒子をより高収率で生成することができる。
また、前記オレイルアミンや総炭素数18以下の飽和脂肪族アミンは熱分解温度が比較的低く、低温で除去することができる。このため得られた銀超微粒子は低温焼結性に優れ、例えば導電性被膜形成材料として用いた場合、100〜300℃程度の加熱でも容易に焼結し、緻密で導電性が高く、極めて薄い電極等を形成することができる。さらに、本発明の方法で得られるアミン保護銀超微粒子は、有機溶媒に容易に分散して安定なナノ銀分散インクを作りやすく、インクジェットインクとしても好適である。
According to the present invention, silver oxalate and oleylamine are reacted to form a complex compound containing silver, oxalate ion, and oleylamine (hereinafter sometimes simply referred to as “complex compound”). Then, by thermally decomposing this complex compound, the oxalate ions are decomposed and removed into carbon dioxide, and the average particle size of 1 nm to 50 nm, particularly 5 nm to 20 nm, protected with oleylamine, is high in particle size and shape. Dispersible silver ultrafine particles can be obtained in high yield. Further, since the oxalate ion is decomposed into carbon dioxide, it is advantageous in that impurities derived from organic substances other than amines and reducing agents do not remain.
Further, in addition to oleylamine, an aliphatic amine, particularly a saturated aliphatic amine having a total carbon number of 18 or less, is added and reacted, whereby a complex compound can be easily formed and the time required for producing silver ultrafine particles can be shortened. . In addition, ultrafine silver particles protected with these amines can be produced in a higher yield.
The oleylamine and saturated aliphatic amine having a total carbon number of 18 or less have a relatively low thermal decomposition temperature and can be removed at a low temperature. For this reason, the ultrafine silver particles obtained are excellent in low-temperature sinterability. For example, when used as a conductive film-forming material, the silver ultrafine particles are easily sintered even when heated at about 100 to 300 ° C., dense, highly conductive, and extremely thin. An electrode or the like can be formed. Furthermore, the amine-protected silver ultrafine particles obtained by the method of the present invention can be easily dispersed in an organic solvent to easily form a stable nanosilver-dispersed ink, and is also suitable as an inkjet ink.

以下、本発明に係る銀超微粒子の製造方法について詳細に説明する。まず、銀超微粒子の製造方法に用いられる化合物について説明する。   Hereinafter, the method for producing silver ultrafine particles according to the present invention will be described in detail. First, compounds used in the method for producing silver ultrafine particles will be described.

(シュウ酸銀)
銀超微粒子の原料として用いるシュウ酸銀は、銀含有率が高く、また通常150℃以下の低温で分解しやすい。熱分解すると、シュウ酸イオンが二酸化炭素として除去されて金属銀が得られるため、還元剤を必要とせず、不純物が残留しにくい点で有利である。
シュウ酸銀としては制限はなく、例えば市販のシュウ酸銀を用いることができる。また、シュウ酸銀のシュウ酸イオンの20モル%以下を炭酸イオン、硝酸イオン、酸化物イオンの1種以上で置換しても良い。特にシュウ酸イオンの20モル%以下を炭酸イオンで置換した場合、シュウ酸銀の熱的安定性を高める効果があるので好ましい。置換量が20モル%を超えると前記錯化合物が加熱分解しにくくなる場合がある。シュウ酸イオンをこれらのイオンで置換する方法に限定はないが、例えばシュウ酸イオンと炭酸イオンとが溶解した溶液に銀イオン溶液を反応させ、共沈により炭酸イオン含有シュウ酸銀を得る方法や、シュウ酸銀に炭酸銀、硝酸銀、酸化銀等の化合物を被着し、複合化する方法などがある。
(Silver oxalate)
Silver oxalate used as a raw material for the ultrafine silver particles has a high silver content and is usually easily decomposed at a low temperature of 150 ° C. or lower. Thermal decomposition is advantageous in that the oxalate ions are removed as carbon dioxide to obtain metallic silver, so that no reducing agent is required and impurities are difficult to remain.
There is no restriction | limiting as silver oxalate, For example, commercially available silver oxalate can be used. Further, 20 mol% or less of silver oxalate oxalate ion may be substituted with one or more of carbonate ion, nitrate ion and oxide ion. In particular, when 20 mol% or less of oxalate ions are substituted with carbonate ions, it is preferable because of the effect of increasing the thermal stability of silver oxalate. When the substitution amount exceeds 20 mol%, the complex compound may be difficult to thermally decompose. There is no limitation on the method of replacing oxalate ions with these ions. For example, a method in which a silver ion solution is reacted with a solution in which oxalate ions and carbonate ions are dissolved to obtain carbonate ion-containing silver oxalate by coprecipitation. There is a method in which a compound such as silver carbonate, silver nitrate or silver oxide is deposited on silver oxalate and combined.

(アミン)
オレイルアミンは、シュウ酸銀と反応して、銀と少なくともオレイルアミンとシュウ酸イオンを含む錯化合物を形成する。本発明においては、中間体としてこの錯化合物を形成させることが重要である。シュウ酸銀を直接熱分解すると微粒子が凝集した多孔体となるが、この錯化合物を形成してから加熱分解することにより、極めて微細で高分散性の銀超微粒子が得られる。しかもシュウ酸銀を直接熱分解する場合と異なり、熱分解反応が極めて穏やかである。このような効果は、シュウ酸銀とオレイルアミンを反応させず、単に混合しただけでは得られない。
錯化合物の熱分解で生成する銀超微粒子にはオレイルアミンが被着しており、これが保護剤として作用するため、粒成長が抑制され、また凝集しにくく、高分散性を保ったまま極めて安定に保存が可能である。また、得られたオレイルアミン保護銀超微粒子は各種の溶媒に容易に分散して、安定な銀超微粒子分散液とすることができる。またオレイルアミンは200℃以下の低温で揮発または分解して銀超微粒子から除去されるので、脂肪酸系の保護剤に比べて銀超微粒子の低温焼結性を阻害することがない。
(Amine)
Oleylamine reacts with silver oxalate to form a complex compound containing silver and at least oleylamine and oxalate ions. In the present invention, it is important to form this complex compound as an intermediate. Direct thermal decomposition of silver oxalate results in a porous body in which fine particles are aggregated. By forming this complex compound and then thermally decomposing it, extremely fine and highly dispersible silver ultrafine particles can be obtained. Moreover, unlike the case where silver oxalate is directly pyrolyzed, the pyrolysis reaction is extremely gentle. Such an effect cannot be obtained by simply mixing silver oxalate and oleylamine without reacting them.
Silver ultrafine particles produced by thermal decomposition of complex compounds are coated with oleylamine, which acts as a protective agent, which suppresses grain growth, resists aggregation, and is extremely stable while maintaining high dispersibility. Can be saved. The obtained oleylamine-protected silver ultrafine particles can be easily dispersed in various solvents to form a stable silver ultrafine particle dispersion. In addition, oleylamine volatilizes or decomposes at a low temperature of 200 ° C. or less and is removed from the ultrafine silver particles, so that the low temperature sinterability of the ultrafine silver particles is not inhibited as compared with the fatty acid-based protective agent.

なお、オレイルアミンの代わりにステアリン酸等の飽和脂肪酸やオレイン酸等の不飽和脂肪酸を使用した場合には、中間体として脂肪酸銀を形成すると考えられるが、これを加熱還元して得られる銀粒子は粒径が大きく、粒度分布にもばらつきが生じる。   In addition, when using saturated fatty acid such as stearic acid or unsaturated fatty acid such as oleic acid instead of oleylamine, it is considered that fatty acid silver is formed as an intermediate. The particle size is large and the particle size distribution also varies.

また本発明においては、好ましくはオレイルアミンに加えて飽和脂肪族アミンを反応させる。飽和脂肪族アミンはオレイルアミンと共に前記錯化合物を形成する。飽和脂肪族アミンを併用することにより錯化合物の形成が起こりやすくなり、短時間で収率よく銀超微粒子を製造することができる。オレイルアミンを使用せず飽和脂肪族アミンを単独で用いた場合は、たとえ銀、アミン、シュウ酸イオンを含む錯化合物を形成したとしても、これを熱分解して生成する粒子が凝集し、目的の粒径の揃った高分散性銀超微粒子が得られない。
飽和脂肪族アミンとしては特に制限はないが、望ましくはオレイルアミンと同じかそれより短い炭素鎖を有するもの、即ち炭素数18以下のものを使用する。炭素数18以下の飽和脂肪族アミンとしては、例えばオクチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、ステアリルアミンなどが挙げられる。このような鎖長の短い飽和脂肪族アミンは、オレイルアミンと同様、生成する銀超微粒子の優れた保護剤であると同時に、低温で容易に分解除去できるために有利である。オレイルアミンと飽和脂肪族アミンの比率は、モル比でおよそ5:1〜1:2の範囲であることが望ましい。この範囲では最も高収率で銀超微粒子を製造することができる。飽和脂肪族アミンがこの範囲を超えて多くなると錯化合物を形成するオレイルアミンの比率が低下するため、粒径の揃った高分散性銀超微粒子が得られなくなる。
更に、前記飽和脂肪族アミンの一部又は全部を予めシュウ酸銀に被着させておくと、オレイルアミンと反応させる段階においてシュウ酸銀とアミンとの反応がより起こりやすくなるので好ましい。この場合の飽和脂肪族アミンの被着量は、シュウ酸銀に対して、0.1重量%〜20重量%であることが望ましい。0.1重量%以下では効果が小さく、また20重量%を超えるとシュウ酸銀が熱的に不安定となって取扱いが困難になる場合がある。シュウ酸銀に飽和脂肪族アミンを被着させる方法は限定されない。例えばシュウ酸銀と飽和脂肪族アミンとを直接混合した後乾燥する、または溶媒中に分散したシュウ酸銀と飽和脂肪族アミンとを混合し、乾燥するなどの方法がある。
In the present invention, a saturated aliphatic amine is preferably reacted in addition to oleylamine. Saturated aliphatic amines form the complex with oleylamine. By using a saturated aliphatic amine in combination, complex compounds are easily formed, and silver ultrafine particles can be produced in a high yield in a short time. When a saturated aliphatic amine is used alone without using oleylamine, even if a complex compound containing silver, amine, and oxalate ions is formed, the particles produced by thermal decomposition of these compounds aggregate to form the target Highly dispersible silver ultrafine particles having a uniform particle size cannot be obtained.
The saturated aliphatic amine is not particularly limited, but preferably has a carbon chain equal to or shorter than that of oleylamine, that is, one having 18 or less carbon atoms. Examples of the saturated aliphatic amine having 18 or less carbon atoms include octylamine, hexylamine, 2-ethylhexylamine, stearylamine and the like. Such a saturated aliphatic amine having a short chain length is advantageous because, like oleylamine, it is an excellent protective agent for the resulting ultrafine silver particles, and at the same time, it can be easily decomposed and removed at low temperatures. The ratio of oleylamine to saturated aliphatic amine is preferably in the range of about 5: 1 to 1: 2 in molar ratio. In this range, silver ultrafine particles can be produced with the highest yield. When the amount of saturated aliphatic amine exceeds this range, the ratio of oleylamine forming a complex compound is lowered, so that highly dispersible silver ultrafine particles having a uniform particle size cannot be obtained.
Furthermore, it is preferable that a part or all of the saturated aliphatic amine is preliminarily deposited on silver oxalate because the reaction between silver oxalate and amine is more likely to occur at the stage of reaction with oleylamine. In this case, the saturated aliphatic amine is preferably deposited in an amount of 0.1% by weight to 20% by weight with respect to silver oxalate. If the amount is less than 0.1% by weight, the effect is small, and if it exceeds 20% by weight, silver oxalate may become thermally unstable and difficult to handle. The method for depositing the saturated aliphatic amine on silver oxalate is not limited. For example, there is a method in which silver oxalate and a saturated aliphatic amine are directly mixed and then dried, or silver oxalate dispersed in a solvent and a saturated aliphatic amine are mixed and dried.

次に、上述した化合物を用いて本発明に係る銀超微粒子の製造方法について説明する。
まず、シュウ酸銀もしくはシュウ酸銀のシュウ酸イオンの一部を炭酸イオン、硝酸イオン、酸化物イオンの1種以上で置換したシュウ酸銀(以下「シュウ酸銀等」という)と、オレイルアミンもしくはオレイルアミンと飽和脂肪族アミン(以下「オレイルアミン等」という)とを混合し、攪拌して錯化合物を形成する。このとき、例えばメタノール、エタノール、水等の溶媒を添加してもよい。シュウ酸銀は固体であり、オレイルアミンと単に混合しただけではアミンや溶媒には溶けないが、錯化合物が形成されると溶解する。
シュウ酸銀等とオレイルアミン等の混合比率はモル比で1:1〜1:15の範囲とすることが好ましい。混合する際の温度は0℃〜90℃の範囲であればよく、好ましくは10〜40℃とする。温度が低すぎると、前記錯化合物の形成が不十分になる場合がある。また高すぎると、生成した錯化合物がすぐに分解してしまうため、錯化合物の形成が不十分なまま銀粒子が生成する。また錯化合物を十分に形成させるためには、混合時間は通常30分以上必要であり、好ましくは1時間〜12時間程度である。なお12時間を超えても差し支えないが、工業的には不利である。
Next, the manufacturing method of the silver ultrafine particle which concerns on this invention using the compound mentioned above is demonstrated.
First, silver oxalate or a part of the oxalate ion of silver oxalate substituted with one or more of carbonate ion, nitrate ion, oxide ion (hereinafter referred to as “silver oxalate etc.”) and oleylamine or An oleylamine and a saturated aliphatic amine (hereinafter referred to as “oleylamine etc.”) are mixed and stirred to form a complex compound. At this time, for example, a solvent such as methanol, ethanol, or water may be added. Silver oxalate is a solid and does not dissolve in amines or solvents when simply mixed with oleylamine, but dissolves when complex compounds are formed.
The mixing ratio of silver oxalate and the like to oleylamine is preferably in the range of 1: 1 to 1:15 in terms of molar ratio. The temperature at the time of mixing should just be the range of 0 to 90 degreeC, Preferably it shall be 10 to 40 degreeC. If the temperature is too low, the formation of the complex compound may be insufficient. On the other hand, if it is too high, the generated complex compound is immediately decomposed, so that silver particles are generated with insufficient formation of the complex compound. Further, in order to sufficiently form a complex compound, the mixing time is usually 30 minutes or more, and preferably about 1 to 12 hours. Although it may be longer than 12 hours, it is industrially disadvantageous.

次いで、必要により溶媒及び未反応物を分離した後、生成した錯化合物を、加熱して分解させる。加熱によりシュウ酸イオンが分解、脱離し、自己還元により銀を析出するが、析出した銀はオレイルアミン等で保護されるため、凝集を起こさず、平均粒径1nm〜50nm、特に5nm〜20nm程度で粒径の揃った、アミンが被着した銀超微粒子の高分散体が得られる。
加熱は100〜180℃程度の温度で行うことが好ましく、特に120〜160℃程度が好ましい。100℃より低いと反応が遅く、また熱分解反応が不十分になる恐れがある。180℃を超えるとオレイルアミンが揮発または分解して失われる恐れがあり、また生成した銀超微粒子が融着を起こす恐れがある。加熱時間は30分〜6時間程度が好ましい。
Next, after separating the solvent and unreacted substances as necessary, the produced complex compound is decomposed by heating. Oxalate ions are decomposed and desorbed by heating, and silver is precipitated by self-reduction, but the precipitated silver is protected by oleylamine and the like, so that it does not cause aggregation and has an average particle size of 1 nm to 50 nm, particularly about 5 nm to 20 nm. A high dispersion of ultrafine silver particles having a uniform particle diameter and coated with amine is obtained.
Heating is preferably performed at a temperature of about 100 to 180 ° C, particularly preferably about 120 to 160 ° C. If it is lower than 100 ° C., the reaction is slow and the thermal decomposition reaction may be insufficient. If it exceeds 180 ° C., oleylamine may be volatilized or decomposed and lost, and the produced silver ultrafine particles may be fused. The heating time is preferably about 30 minutes to 6 hours.

得られた銀超微粒子を反応溶液から回収する場合には、通常の濾過装置や遠心分離機等を用いて濾過、又は分離して捕集する。捕集して得られた銀超微粒子は、微粒子同士の凝集が起こりにくく、取り扱いが容易で、再分散性も極めて優れている。必要により濾過、分離に先立って精製、洗浄を行う。例えば、ヘキサン等を用いて未反応物を除去することができる。洗浄には例えば水やメタノール等のアルコールを用いる。捕集した銀超微粒子は、所望により、減圧乾燥して粉末状とすることができる。   When the obtained ultrafine silver particles are recovered from the reaction solution, they are collected by filtration or separation using a normal filtration device or a centrifuge. The ultrafine silver particles obtained by collection are less likely to aggregate with each other, are easy to handle, and have excellent redispersibility. If necessary, purify and wash prior to filtration and separation. For example, unreacted substances can be removed using hexane or the like. For example, water or alcohol such as methanol is used for washing. The collected silver ultrafine particles can be dried under reduced pressure to form a powder, if desired.

捕集して得られた銀粉末は、別の分散媒に分散させて使用することができる。分散媒としては、限定されるものではなく、通常使用される水や、アルコール系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、テルペン系溶剤、石油系溶剤、炭化水素系溶剤などの溶剤類、熱可塑性樹脂、熱硬化性樹脂などの樹脂類、これらの混合物などが使用される。用途に応じて適切な分散媒を用いることにより、分散性、安定性、塗布性等諸特性の極めて優れたペースト状、塗装状又はインク状分散液を得ることができる。必要により樹脂や可塑剤等により粘土特性を調整したり、他の金属粉末や、ガラス粉末、界面活性剤、その他この種の分散液に通常使用される添加剤を配合しても良い。   The silver powder obtained by collection can be used by being dispersed in another dispersion medium. The dispersion medium is not limited and is usually a solvent such as water, alcohol solvents, ketone solvents, ether solvents, ester solvents, terpene solvents, petroleum solvents, hydrocarbon solvents. Resins such as thermoplastic resins and thermosetting resins, and mixtures thereof. By using an appropriate dispersion medium according to the application, a paste-like, paint-like, or ink-like dispersion having extremely excellent properties such as dispersibility, stability, and coatability can be obtained. If necessary, the clay characteristics may be adjusted by a resin, a plasticizer or the like, or other metal powders, glass powders, surfactants, and other additives usually used in this type of dispersion may be blended.

このような分散液を用いて導電被膜を形成するには、基板にスピンコート、ディッピング、スクリーン印刷、インクジェット印刷、転写印刷法、その他種々の方法で前記銀超微粒子分散液を塗布し、加熱して銀超微粒子を焼結させる。本発明により得られる銀超微粒子は極めて焼結し易いので、500℃以下の低温、例えば100〜300℃程度で加熱して保護剤のアミンを除去することにより、緻密で導電性が高く、しかも微粒子が微細であるために極めて薄い電極、配線、透明導電膜、カラーフィルタ等を形成することができる。また低温焼成が可能なため、基板としてガラス、樹脂、ITOなどの耐熱性の低い基板に適用することもでき、しかもポリマー系導体ペーストの硬化温度と同程度の低温で、高温焼成タイプの導体ペーストに匹敵する高い導電性を得ることができる。
また、この銀超微粒子は、通常の導電性粉末を用いた厚膜導体ペーストや、導電性接着剤に、導電性向上剤あるいは焼結促進剤として添加することもできる。また、この銀超微粒子を分散媒に分散させた本発明の銀超微粒子分散液を用いると、セラミック、カーボン、有機ポリマー等の担体の表面に、均一に銀超微粒子を担持させることができ、触媒、吸着剤、吸収剤、抗菌剤、医薬品の製造にも有用である。
In order to form a conductive film using such a dispersion, the silver ultrafine particle dispersion is applied to a substrate by spin coating, dipping, screen printing, ink jet printing, transfer printing, and other various methods, and heated. To sinter silver ultrafine particles. Since the ultrafine silver particles obtained by the present invention are extremely easy to sinter, heating at a low temperature of 500 ° C. or lower, for example, about 100 to 300 ° C. to remove the amine as a protective agent, the dense and highly conductive, Since the fine particles are fine, extremely thin electrodes, wirings, transparent conductive films, color filters, and the like can be formed. In addition, since it can be fired at a low temperature, it can be applied to substrates with low heat resistance such as glass, resin, ITO, etc., and at a low temperature comparable to the curing temperature of polymer-based conductor paste, it is a high-temperature fired type conductor paste. High electrical conductivity comparable to the above can be obtained.
The ultrafine silver particles can be added as a conductivity improver or a sintering accelerator to a thick film conductor paste using a normal conductive powder or a conductive adhesive. Further, when using the silver ultrafine particle dispersion of the present invention in which the silver ultrafine particles are dispersed in a dispersion medium, the ultrafine silver particles can be uniformly supported on the surface of a carrier such as ceramic, carbon, or organic polymer, It is also useful for the production of catalysts, adsorbents, absorbents, antibacterial agents, and pharmaceuticals.

以上のように、本発明の製造方法では、シュウ酸銀とオレイルアミンとを反応させて錯化合物を生成した後、この錯化合物を加熱分解させることによって、アミンで保護された平均粒径1nm〜50nm、特に5nm〜20nmのオーダーで、粒径の揃った高分散性の銀超微粒子を高収率で得ることができる。また、極めて単純なプロセスで生成することができる。   As described above, in the production method of the present invention, a complex compound is formed by reacting silver oxalate and oleylamine, and then the complex compound is thermally decomposed to thereby have an average particle size of 1 nm to 50 nm protected with amine. In particular, highly dispersible silver ultrafine particles having a uniform particle diameter can be obtained in a high yield on the order of 5 nm to 20 nm. Further, it can be generated by a very simple process.

以下に、実施例として銀超微粒子の製造方法及びその評価を示すが、本発明はこれに限定されるものではない。
[実施例1]
オレイルアミン21.40g(80mmol)をメタノール10mlと混合し、この混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し室温で12時間攪拌してシュウ酸銀を溶解させた。このとき得られた生成物はFT-IRを用いた解析により、銀とシュウ酸イオンとオレイルアミンとを含む錯化合物であることを確認した。その後、エバポレータを使用して40℃下でメタノールを除去し、次いで、150℃に加熱して1時間攪拌させると、褐色の液体が得られた。これにヘキサン30mlを加えて約30分攪拌し、遠心分離機で分離させ上澄みを濾過した。この操作を3回繰り返した。さらに、エバポレータを使用して45℃でヘキサンを除去した後、メタノール20mlを加えて遠心分離機で分離させ上澄みを除去した。この操作も3回繰り返し、その後、減圧乾燥により生成物として粉末を得た。得られた粉末について以下のような解析及び評価を行った。
In the following, production methods of silver ultrafine particles and evaluation thereof will be shown as examples, but the present invention is not limited thereto.
[Example 1]
21.40 g (80 mmol) of oleylamine was mixed with 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added to this mixed solution, 2 ml of water was further added, and the mixture was stirred at room temperature for 12 hours to dissolve the silver oxalate. The product obtained at this time was confirmed to be a complex compound containing silver, oxalate ion and oleylamine by analysis using FT-IR. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour to obtain a brown liquid. 30 ml of hexane was added thereto, and the mixture was stirred for about 30 minutes, separated by a centrifuge, and the supernatant was filtered. This operation was repeated three times. Furthermore, after removing hexane at 45 ° C. using an evaporator, 20 ml of methanol was added and separated by a centrifuge to remove the supernatant. This operation was also repeated three times, and then powder was obtained as a product by drying under reduced pressure. The obtained powder was analyzed and evaluated as follows.

[解析及び評価]
得られた粉末について、X線回折計((株)リガク製ミニフレックス)により解析を行ったところ、X線回折パターンから金属銀が生成されていることを確認した。また、走査透過電子顕微鏡(日本電子(株)製STEM)による観察を行い、SEM像を図1(a)に示した。
図1(a)から明らかなように得られた粉末は球状で平均粒径が11.4nmの粒度の揃った単分散超微粒子からなるものであった。収率は66.7%であった。また、IR分析によりオレイルアミンが被着していることを確認した。
[Analysis and evaluation]
The obtained powder was analyzed with an X-ray diffractometer (Miniflex, manufactured by Rigaku Corporation), and it was confirmed that metallic silver was generated from the X-ray diffraction pattern. Further, observation with a scanning transmission electron microscope (STEM manufactured by JEOL Ltd.) was performed, and an SEM image was shown in FIG.
As apparent from FIG. 1 (a), the obtained powder was composed of monodispersed ultrafine particles having a spherical shape and an average particle size of 11.4 nm. The yield was 66.7%. Further, it was confirmed by IR analysis that oleylamine was deposited.

[実施例2]
オレイルアミン5.35g(20mmol)とオクチルアミン2.58g(20mmol)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌して銀、シュウ酸イオン、オレイルアミン及びオクチルアミンを含む錯化合物を生成させ完全に溶解させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が12.0nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は93.2%であった。
[Example 2]
5.35 g (20 mmol) of oleylamine and 2.58 g (20 mmol) of octylamine are mixed with 5 ml of methanol. To this mixed solution is added 1.519 g (5 mmol) of silver oxalate, and 1 ml of water is further added, followed by stirring at room temperature for 2 hours. Thus, a complex compound containing silver, oxalate ion, oleylamine and octylamine was produced and completely dissolved. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.0 nm and protected with an amine. The yield was 93.2%.

[実施例3]
オレイルアミン3.57g(13.3mmol)とオクチルアミン3.45g(26.7mmol)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が12.7nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は82.1%であった。
[Example 3]
3.57 g (13.3 mmol) of oleylamine and 3.45 g (26.7 mmol) of octylamine are mixed with 5 ml of methanol, 1.519 g (5 mmol) of silver oxalate is added to this mixed solution, and 1 ml of water is further added for 2 hours at room temperature. Stirring to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.7 nm and protected with an amine. The yield was 82.1%.

[実施例4]
オレイルアミン5.35g(20mmol)とヘキシルアミン2.02g(20mmol)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が12.5nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は87.8%であった。
[Example 4]
5.35 g (20 mmol) of oleylamine and 2.02 g (20 mmol) of hexylamine are mixed with 5 ml of methanol. To this mixed solution is added 1.519 g (5 mmol) of silver oxalate, and 1 ml of water is further added, followed by stirring at room temperature for 2 hours. A complex compound was formed. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.5 nm and protected with an amine. The yield was 87.8%.

以上の実施例1〜実施例4の結果から、シュウ酸銀と、オレイルアミンを用いることによって粒径の小さなナノメートルオーダーの銀超微粒子を得ることができ、また、粒度分布も狭いことがわかる。また、実施例1〜実施例4のいずれの製造方法においても66〜93%の高い収率でシュウ酸銀から銀超微粒子が得られることが認められる。特に、実施例2〜実施例4に示すように、オレイルアミンに加えて飽和脂肪族アミンを用いることによって、短時間で容易に錯化合物を生成することができ、実施例1よりも収率の高い銀超微粒子を得られることが明らかである。   From the results of Examples 1 to 4 described above, it can be seen that by using silver oxalate and oleylamine, nanometer-order silver ultrafine particles having a small particle size can be obtained, and the particle size distribution is also narrow. In any of the production methods of Examples 1 to 4, it is recognized that silver ultrafine particles can be obtained from silver oxalate with a high yield of 66 to 93%. In particular, as shown in Examples 2 to 4, by using a saturated aliphatic amine in addition to oleylamine, a complex compound can be easily formed in a short time, and the yield is higher than that of Example 1. It is clear that silver ultrafine particles can be obtained.

[実施例5]
シュウ酸銀3.038g(10mmol)に対してメタノールに溶解した0.08gのオクチルアミンを混合し45℃で乾燥して、オクチルアミンを被着したシュウ酸銀を得た。次いで、このオクチルアミンを被着したシュウ酸銀をオレイルアミン16.1g(60mmol)とメタノール10mlの混合溶液に添加し、さらに水2mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が10.7nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は81.8%であった。
[Example 5]
0.038 g octylamine dissolved in methanol was mixed with 3.038 g (10 mmol) of silver oxalate and dried at 45 ° C. to obtain silver oxalate coated with octylamine. Next, silver oxalate coated with octylamine was added to a mixed solution of 16.1 g (60 mmol) of oleylamine and 10 ml of methanol, and 2 ml of water was further added and stirred at room temperature for 2 hours to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 10.7 nm and protected with an amine. The yield was 81.8%.

[実施例6]
シュウ酸アンモニウム一水和物1.34g(9.6mmol)と炭酸アンモニウム0.04g(0.4mmol)を50mlの水に溶かした水溶液に、硝酸銀3.38g(20mmol)を50mlの水に溶かした水溶液を添加して反応させた後、乾燥してシュウ酸イオンの一部(約4mol%)が、炭酸イオンで置換されたシュウ酸銀を得た。その後、オレイルアミン21.4g(80mmol)とメタノール5mlの混合溶液に上述のシュウ酸イオンの一部が炭酸イオンで置換されたシュウ酸銀を添加し、さらに水2mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が10.3nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は82.3%であった。
[Example 6]
To an aqueous solution in which 1.34 g (9.6 mmol) of ammonium oxalate monohydrate and 0.04 g (0.4 mmol) of ammonium carbonate were dissolved in 50 ml of water, an aqueous solution in which 3.38 g (20 mmol) of silver nitrate was dissolved in 50 ml of water was added. After the reaction, drying was performed to obtain silver oxalate in which a part of oxalate ions (about 4 mol%) was substituted with carbonate ions. Thereafter, silver oxalate in which a part of the oxalate ion is replaced with carbonate ion is added to a mixed solution of 21.4 g (80 mmol) of oleylamine and 5 ml of methanol, and further 2 ml of water is added and stirred at room temperature for 2 hours. A complex compound was formed. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 10.3 nm and protected with an amine. The yield was 82.3%.

[実施例7]
上記実施例6のシュウ酸イオンの一部が炭酸イオンで置換されたシュウ酸銀に、オクチルアミン0.08gのメタノール溶液を混合し45℃で乾燥してオクチルアミンを被着したシュウ酸銀を得た。次いで、このオクチルアミンを被着したシュウ酸銀をオレイルアミン21.4g(80mmol)とメタノール10mlの混合溶液に添加し、さらに水2mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌させた。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が11.2nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は83.4%であった。
[Example 7]
Silver oxalate in which 0.08 g of octylamine was mixed with a silver oxalate in which a part of the oxalate ion in Example 6 was substituted with carbonate ion was dried at 45 ° C. to obtain silver oxalate coated with octylamine. It was. Next, silver oxalate coated with octylamine was added to a mixed solution of 21.4 g (80 mmol) of oleylamine and 10 ml of methanol, and 2 ml of water was further added and stirred at room temperature for 2 hours to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 11.2 nm and protected with an amine. The yield was 83.4%.

[比較例1]
オクチルアミン13.4g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行った。
図1(b)に得られた粉末のSEM像を示した。また、得られた粉末は、平均一次粒径12.8nmの粒度にばらつきのある微粒子の凝集体であり、収率は91.4%であった。
[Comparative Example 1]
To a mixed solution of 13.4 g (80 mmol) of octylamine and 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1.
FIG. 1 (b) shows the SEM image of the obtained powder. Further, the obtained powder was an aggregate of fine particles having an average primary particle diameter of 12.8 nm and varied in particle size, and the yield was 91.4%.

[比較例2]
ヘキシルアミン8.08g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、平均一次粒径24.6nmの粒度にばらつきのある微粒子の凝集体であり、収率は92.8%であった。
[Comparative Example 2]
To a mixed solution of hexylamine 8.08 g (80 mmol) and methanol 10 ml, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was an aggregate of fine particles having an average primary particle size of 24.6 nm and a variation in particle size, and the yield was 92.8%.

[比較例3]
150℃に加熱したオレイルアミン21.4g(80mmol)にシュウ酸銀3.038g(10mmol)を添加し混合した。このとき実施例1〜実施例7のように攪拌による溶解処理を行わなかった。FT-IRにより、錯化合物を形成していないことを確認した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行った。図1(c)に得られた粉末のSEM像を示した。また、得られた粉末は、平均一次粒径20.1nmで粒度にばらつきのある微粒子の凝集体であり、収率は60.2%であった。
[Comparative Example 3]
To 21.4 g (80 mmol) of oleylamine heated to 150 ° C., 3.038 g (10 mmol) of silver oxalate was added and mixed. At this time, the dissolution treatment by stirring was not performed as in Examples 1 to 7. It was confirmed by FT-IR that no complex compound was formed. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. FIG. 1 (c) shows the SEM image of the obtained powder. Further, the obtained powder was an aggregate of fine particles having an average primary particle size of 20.1 nm and varying in particle size, and the yield was 60.2%.

[比較例4]
オレイン酸22.5g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、平均一次粒径16.8nmで粒度にばらつきのある微粒子の凝集体であり、収率は94.8%であった。
[Comparative Example 4]
To a mixed solution of 22.5 g (80 mmol) of oleic acid and 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was an aggregate of fine particles having an average primary particle size of 16.8 nm and a variation in particle size, and the yield was 94.8%.

[比較例5]
ステアリン酸22.8g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、平均一次粒径19.8nmで粒度にばらつきのある微粒子の凝集体であり、収率は95.2%であった。
[Comparative Example 5]
To a mixed solution of 22.8 g (80 mmol) of stearic acid and 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was an aggregate of fine particles having an average primary particle size of 19.8 nm and a variation in particle size, and the yield was 95.2%.

(a)〜(c)は、それぞれ実施例1、比較例1及び比較例3において得られた銀超微粒子のSEM像である。(a)-(c) are the SEM images of the ultrafine silver particles obtained in Example 1, Comparative Example 1 and Comparative Example 3, respectively.

Claims (5)

シュウ酸銀と、オレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、
生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを特徴とする銀超微粒子の製造方法。
Silver oxalate and oleylamine are reacted to form a complex compound containing at least silver, oleylamine and oxalate ion,
A method of producing ultrafine silver particles, wherein the complex compound thus produced is thermally decomposed to produce ultrafine silver particles.
前記シュウ酸銀と、前記オレイルアミンに加えて飽和脂肪族アミンを反応させて前記錯化合物を生成することを特徴とする請求項1に記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 1, wherein the complex compound is produced by reacting the silver oxalate with a saturated aliphatic amine in addition to the oleylamine. 前記飽和脂肪族アミンの総炭素数は、1〜18であることを特徴とする請求項2に記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 2, wherein the saturated aliphatic amine has 1 to 18 total carbon atoms. 前記飽和脂肪族アミンの少なくとも一部が前記シュウ酸銀に被着していることを特徴とする請求項2又は3に記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 2 or 3, wherein at least a part of the saturated aliphatic amine is deposited on the silver oxalate. 前記シュウ酸銀のシュウ酸イオンの20モル%以下が、炭酸イオン、硝酸イオン、酸化物イオンの少なくともいずれか一種以上で置換されていることを特徴とする請求項1〜4のいずれか一項に記載の銀超微粒子の製造方法。   The oxalate ion of 20 mol% or less of the silver oxalate is substituted with at least one of carbonate ion, nitrate ion, and oxide ion. A method for producing the ultrafine silver particles described in 1.
JP2007054077A 2007-03-05 2007-03-05 Method for producing silver ultrafine particles Active JP4978242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054077A JP4978242B2 (en) 2007-03-05 2007-03-05 Method for producing silver ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054077A JP4978242B2 (en) 2007-03-05 2007-03-05 Method for producing silver ultrafine particles

Publications (2)

Publication Number Publication Date
JP2008214695A true JP2008214695A (en) 2008-09-18
JP4978242B2 JP4978242B2 (en) 2012-07-18

Family

ID=39835099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054077A Active JP4978242B2 (en) 2007-03-05 2007-03-05 Method for producing silver ultrafine particles

Country Status (1)

Country Link
JP (1) JP4978242B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119630A1 (en) 2009-04-17 2010-10-21 国立大学法人山形大学 Coated silver nanoparticles and manufacturing method therefor
JP2011058041A (en) * 2009-09-09 2011-03-24 Osaka Municipal Technical Research Institute Silver-copper based mixed powder and joining method using the same
JP2012018957A (en) * 2010-07-06 2012-01-26 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing the same, and solar cell
WO2012043399A1 (en) * 2010-09-27 2012-04-05 国立大学法人山形大学 Fine coated copper particles and method for producing same
WO2012105682A1 (en) 2011-02-04 2012-08-09 国立大学法人山形大学 Coated metal microparticle and manufacturing method thereof
JP2013007067A (en) * 2011-06-22 2013-01-10 Toshiba Tec Corp Method of manufacturing silver nanoparticles
WO2013105531A1 (en) 2012-01-11 2013-07-18 株式会社ダイセル Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
WO2013105530A1 (en) 2012-01-11 2013-07-18 国立大学法人山形大学 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
JP2013159856A (en) * 2012-02-02 2013-08-19 Xerox Corp Composition of palladium-unsaturated organoamine and palladium nanoparticles
WO2014021270A1 (en) 2012-08-02 2014-02-06 株式会社ダイセル Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
WO2014024721A1 (en) 2012-08-07 2014-02-13 株式会社ダイセル Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
WO2014024901A1 (en) * 2012-08-07 2014-02-13 Daicel Corporation Method for producing silver nano-particles and silver nano-particles
WO2014024630A1 (en) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
WO2014119793A1 (en) * 2013-02-04 2014-08-07 国立大学法人山形大学 Metallic silver separation method, coated silver fine particles, and thin, linear, coated metallic silver
JP2014194057A (en) * 2013-03-29 2014-10-09 Kyocera Chemical Corp Method for producing silver fine grain, and silver fine grain
JP2014195794A (en) * 2013-03-07 2014-10-16 独立行政法人産業技術総合研究所 Method of forming conductive pattern
WO2014189025A1 (en) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 Method for producing silver particles
WO2014189024A1 (en) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 Method for manufacturing silver particles
WO2015005373A1 (en) * 2013-07-09 2015-01-15 株式会社ダイセル Light-emitting device using silver nanoparticles and method for producing same
WO2015060084A1 (en) 2013-10-24 2015-04-30 株式会社ダイセル Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
WO2015075929A1 (en) * 2013-11-20 2015-05-28 国立大学法人山形大学 Silver nanoparticles, method for producing silver nanoparticles, and silver nanoparticle ink
WO2015087967A1 (en) * 2013-12-11 2015-06-18 田中貴金属工業株式会社 Method for producing silver particles, and silver particles produced by said method
US20150231698A1 (en) * 2012-08-02 2015-08-20 National University Corporation Yamagata University Process for producing coated silver fine particles and coated silver fine particles produced by said production process
WO2015163076A1 (en) 2014-04-25 2015-10-29 株式会社ダイセル Silver particle coating composition
JP2016033260A (en) * 2015-09-18 2016-03-10 国立大学法人山形大学 Composite compound, and suspension
WO2016052036A1 (en) 2014-10-02 2016-04-07 株式会社ダイセル Silver particle coating composition
WO2016132649A1 (en) * 2015-02-19 2016-08-25 株式会社ダイセル Silver particle coating composition
JP2017066501A (en) * 2015-10-02 2017-04-06 アルプス電気株式会社 Method for producing coated silver particle, liquid composition, coated silver particle, coated silver particle-containing composition, conductive member, method for producing conductive member, electric/electronic component and electric/electronic equipment
JP2017101330A (en) * 2017-01-25 2017-06-08 株式会社ダイセル Method for producing silver nanoparticles, and silver nanoparticles
KR20200103105A (en) 2018-01-09 2020-09-01 가부시키가이샤 노리타케 캄파니 리미티드 Method for producing silver nanoparticles and silver paste containing silver nanoparticles
CN114049981A (en) * 2021-11-30 2022-02-15 重庆英诺维节能环保科技有限公司 Silver-tin nano material conductive silver paste and application thereof to vacuum glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064068A (en) * 2001-05-24 2003-03-05 Eastman Chem Co Method for selectively epoxidizing conjugated diolefin
WO2006049831A1 (en) * 2004-10-14 2006-05-11 Tokusen U.S.A., Inc. Method of production of high purity silver particles
JP2006307341A (en) * 2005-03-31 2006-11-09 National Institute Of Advanced Industrial & Technology Method for producing metallic nanoparticle, and metallic nanoparticle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064068A (en) * 2001-05-24 2003-03-05 Eastman Chem Co Method for selectively epoxidizing conjugated diolefin
WO2006049831A1 (en) * 2004-10-14 2006-05-11 Tokusen U.S.A., Inc. Method of production of high purity silver particles
JP2006307341A (en) * 2005-03-31 2006-11-09 National Institute Of Advanced Industrial & Technology Method for producing metallic nanoparticle, and metallic nanoparticle

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496068B2 (en) 2009-04-17 2016-11-15 Yamagata University Coated silver nanoparticles and manufacturing method therefor
JP2010265543A (en) * 2009-04-17 2010-11-25 Yamagata Univ Coated ultrafine particle of silver and production method therefor
KR101395704B1 (en) 2009-04-17 2014-05-21 야마가타 유니버시티 Coated silver nanoparticles and manufacturing method therefor
WO2010119630A1 (en) 2009-04-17 2010-10-21 国立大学法人山形大学 Coated silver nanoparticles and manufacturing method therefor
JP2011058041A (en) * 2009-09-09 2011-03-24 Osaka Municipal Technical Research Institute Silver-copper based mixed powder and joining method using the same
JP2012018957A (en) * 2010-07-06 2012-01-26 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing the same, and solar cell
CN103180072A (en) * 2010-09-27 2013-06-26 国立大学法人山形大学 Fine coated copper particles and method for producing same
US9168587B2 (en) 2010-09-27 2015-10-27 Yamagata University Fine coated copper particles and method for producing same
DE112011103233T5 (en) 2010-09-27 2013-10-24 Yamagata University Fine, coated copper particles and method of making the same
CN103180072B (en) * 2010-09-27 2017-05-31 国立大学法人山形大学 Coated copper particulate and its manufacture method
JP2012072418A (en) * 2010-09-27 2012-04-12 Yamagata Univ Fine coated copper particles and method for producing the same
WO2012043399A1 (en) * 2010-09-27 2012-04-05 国立大学法人山形大学 Fine coated copper particles and method for producing same
KR20140037043A (en) 2011-02-04 2014-03-26 야마가타 유니버시티 Coated metal microparticle and manufacturing method thereof
US9490044B2 (en) 2011-02-04 2016-11-08 Yamagata University Coated metal fine particle and manufacturing method thereof
WO2012105682A1 (en) 2011-02-04 2012-08-09 国立大学法人山形大学 Coated metal microparticle and manufacturing method thereof
US10071426B2 (en) 2011-02-04 2018-09-11 Yamagata University Coated metal fine particle and manufacturing method thereof
JP2013007067A (en) * 2011-06-22 2013-01-10 Toshiba Tec Corp Method of manufacturing silver nanoparticles
WO2013105530A1 (en) 2012-01-11 2013-07-18 国立大学法人山形大学 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
WO2013105531A1 (en) 2012-01-11 2013-07-18 株式会社ダイセル Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
KR20190089080A (en) 2012-01-11 2019-07-29 야마가타 유니버시티 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
US9860983B2 (en) 2012-01-11 2018-01-02 National University Corporation Yamagata University Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
JP2013159856A (en) * 2012-02-02 2013-08-19 Xerox Corp Composition of palladium-unsaturated organoamine and palladium nanoparticles
KR20150040278A (en) 2012-08-02 2015-04-14 주식회사 다이셀 Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
US9422443B2 (en) 2012-08-02 2016-08-23 Daicel Corporation Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
US20150231698A1 (en) * 2012-08-02 2015-08-20 National University Corporation Yamagata University Process for producing coated silver fine particles and coated silver fine particles produced by said production process
WO2014021270A1 (en) 2012-08-02 2014-02-06 株式会社ダイセル Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
WO2014024721A1 (en) 2012-08-07 2014-02-13 株式会社ダイセル Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
US9776250B2 (en) 2012-08-07 2017-10-03 Daicel Corporation Method for producing silver nano-particles and silver nano-particles
US9674953B2 (en) 2012-08-07 2017-06-06 Tanaka Kikinzoku Kogyo K.K. Fine silver particle ink, fine silver particle sintered body, and method for producing fine silver particle ink
KR101758541B1 (en) 2012-08-07 2017-07-26 다나카 기킨조쿠 고교 가부시키가이샤 Nano size silver particle ink and silver particle sintered body
KR20150040889A (en) 2012-08-07 2015-04-15 주식회사 다이셀 Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
KR20150040890A (en) 2012-08-07 2015-04-15 주식회사 다이셀 Method for producing silver nano-particles and silver nano-particles
CN104520034A (en) * 2012-08-07 2015-04-15 株式会社大赛璐 Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
KR101758536B1 (en) 2012-08-07 2017-07-14 다나카 기킨조쿠 고교 가부시키가이샤 Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
US9656322B2 (en) 2012-08-07 2017-05-23 Daicel Corporation Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
JPWO2014024721A1 (en) * 2012-08-07 2016-07-25 株式会社ダイセル Silver nanoparticle production method, silver nanoparticle, and silver coating composition
WO2014024901A1 (en) * 2012-08-07 2014-02-13 Daicel Corporation Method for producing silver nano-particles and silver nano-particles
WO2014024630A1 (en) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 Silver particle ink, silver particle sintered body and method for manufacturing silver particle ink
JP2015531022A (en) * 2012-08-07 2015-10-29 株式会社ダイセル Method for producing silver nanoparticles and silver nanoparticles
JP2014034602A (en) * 2012-08-07 2014-02-24 Tanaka Kikinzoku Kogyo Kk Silver fine particle ink, silver fine particle sintered body and method for manufacturing silver fine particle ink
JP2014152337A (en) * 2013-02-04 2014-08-25 Yamagata Univ Precipitation method of metallic silver, coated silver fine particle, thin wire-like coated metallic silver
WO2014119793A1 (en) * 2013-02-04 2014-08-07 国立大学法人山形大学 Metallic silver separation method, coated silver fine particles, and thin, linear, coated metallic silver
JP2014195794A (en) * 2013-03-07 2014-10-16 独立行政法人産業技術総合研究所 Method of forming conductive pattern
JP2014194057A (en) * 2013-03-29 2014-10-09 Kyocera Chemical Corp Method for producing silver fine grain, and silver fine grain
KR20160007562A (en) * 2013-05-24 2016-01-20 다나카 기킨조쿠 고교 가부시키가이샤 Method for producing silver particles
JP2015004123A (en) * 2013-05-24 2015-01-08 田中貴金属工業株式会社 Production method of silver particle
US9901985B2 (en) 2013-05-24 2018-02-27 Tanaka Kikinzoku Kogyo K.K. Method for manufacturing silver particles
CN105246622A (en) * 2013-05-24 2016-01-13 田中贵金属工业株式会社 Method for manufacturing silver particles
DE112014002552B4 (en) 2013-05-24 2020-08-06 Tanaka Kikinzoku Kogyo K.K. Process for producing silver particles
DE112014002558B4 (en) 2013-05-24 2020-06-18 Tanaka Kikinzoku Kogyo K.K. Process for producing silver particles
KR102019536B1 (en) * 2013-05-24 2019-09-06 다나카 기킨조쿠 고교 가부시키가이샤 Method for producing silver particles
WO2014189024A1 (en) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 Method for manufacturing silver particles
JPWO2014189024A1 (en) * 2013-05-24 2017-02-23 田中貴金属工業株式会社 Method for producing silver particles
WO2014189025A1 (en) * 2013-05-24 2014-11-27 田中貴金属工業株式会社 Method for producing silver particles
CN105246622B (en) * 2013-05-24 2017-03-15 田中贵金属工业株式会社 The manufacture method of silver particles
CN105263656A (en) * 2013-05-24 2016-01-20 田中贵金属工业株式会社 Method for producing silver particles
WO2015005373A1 (en) * 2013-07-09 2015-01-15 株式会社ダイセル Light-emitting device using silver nanoparticles and method for producing same
WO2015060084A1 (en) 2013-10-24 2015-04-30 株式会社ダイセル Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
EP3369501A1 (en) 2013-10-24 2018-09-05 Daicel Corporation Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
KR20160073972A (en) 2013-10-24 2016-06-27 주식회사 다이셀 Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
US11091663B2 (en) 2013-10-24 2021-08-17 Daicel Corporation Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
KR20170100046A (en) 2013-10-24 2017-09-01 주식회사 다이셀 Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
KR20160146643A (en) * 2013-11-20 2016-12-21 국립대학법인 야마가타대학 Silver nanoparticles, method for producing silver nanoparticles, and silver nanoparticle ink
JPWO2015075929A1 (en) * 2013-11-20 2017-03-16 国立大学法人山形大学 Method for producing silver nanoparticles
WO2015075929A1 (en) * 2013-11-20 2015-05-28 国立大学法人山形大学 Silver nanoparticles, method for producing silver nanoparticles, and silver nanoparticle ink
US10144066B2 (en) 2013-11-20 2018-12-04 National University Corporation Yamagata University Silver nanoparticles, method for producing silver nanoparticles, and silver nanoparticle ink
JP2016135916A (en) * 2013-11-20 2016-07-28 国立大学法人山形大学 Silver nanoparticles and silver nanoparticle ink
KR102300937B1 (en) 2013-11-20 2021-09-10 국립대학법인 야마가타대학 Silver nanoparticles, method for producing silver nanoparticles, and silver nanoparticle ink
JP5867842B2 (en) * 2013-11-20 2016-02-24 国立大学法人山形大学 Method for producing silver nanoparticles
JP2015113488A (en) * 2013-12-11 2015-06-22 田中貴金属工業株式会社 Manufacturing method of silver particles, and silver particles manufactured by the method
KR102085744B1 (en) * 2013-12-11 2020-03-06 다나카 기킨조쿠 고교 가부시키가이샤 Method for producing silver particles
DE112014005640B4 (en) 2013-12-11 2021-10-07 Tanaka Kikinzoku Kogyo K.K. A method of making silver particles and silver particles made by the method
KR20160088919A (en) * 2013-12-11 2016-07-26 다나카 기킨조쿠 고교 가부시키가이샤 Method for producing silver particles, and silver particles produced by said method
US10486235B2 (en) 2013-12-11 2019-11-26 Tanaka Kikinzoku Kogyo K.K. Method for producing silver particles, and silver particles produced by the method
WO2015087967A1 (en) * 2013-12-11 2015-06-18 田中貴金属工業株式会社 Method for producing silver particles, and silver particles produced by said method
US20160303659A1 (en) * 2013-12-11 2016-10-20 Tanka Kikinzoku Kogyo K.K. Method for producing silver particles, and silver particles produced by said method
WO2015163076A1 (en) 2014-04-25 2015-10-29 株式会社ダイセル Silver particle coating composition
KR20160149220A (en) 2014-04-25 2016-12-27 주식회사 다이셀 Silver particle coating composition
WO2016052036A1 (en) 2014-10-02 2016-04-07 株式会社ダイセル Silver particle coating composition
KR20220145418A (en) 2014-10-02 2022-10-28 주식회사 다이셀 Silver particle coating composition
KR20170121206A (en) 2015-02-19 2017-11-01 주식회사 다이셀 Silver particle coating composition
WO2016132649A1 (en) * 2015-02-19 2016-08-25 株式会社ダイセル Silver particle coating composition
US11254827B2 (en) 2015-02-19 2022-02-22 Daicel Corporation Silver particle coating composition
JP2016033260A (en) * 2015-09-18 2016-03-10 国立大学法人山形大学 Composite compound, and suspension
JP2017066501A (en) * 2015-10-02 2017-04-06 アルプス電気株式会社 Method for producing coated silver particle, liquid composition, coated silver particle, coated silver particle-containing composition, conductive member, method for producing conductive member, electric/electronic component and electric/electronic equipment
JP2017101330A (en) * 2017-01-25 2017-06-08 株式会社ダイセル Method for producing silver nanoparticles, and silver nanoparticles
KR20200103105A (en) 2018-01-09 2020-09-01 가부시키가이샤 노리타케 캄파니 리미티드 Method for producing silver nanoparticles and silver paste containing silver nanoparticles
CN114049981A (en) * 2021-11-30 2022-02-15 重庆英诺维节能环保科技有限公司 Silver-tin nano material conductive silver paste and application thereof to vacuum glass
CN114049981B (en) * 2021-11-30 2024-03-15 四川英诺维新材料科技有限公司 Silver tin nano material conductive silver paste and application thereof to vacuum glass

Also Published As

Publication number Publication date
JP4978242B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4978242B2 (en) Method for producing silver ultrafine particles
JP2009270146A (en) Method for producing silver hyperfine particle
KR101886263B1 (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP5858374B2 (en) Method for producing coated copper fine particles
WO2010119630A1 (en) Coated silver nanoparticles and manufacturing method therefor
US7604679B2 (en) Fine nickel powder and process for producing the same
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
KR101541930B1 (en) Organoamine stabilized silver nanoparticles and process for producing same
TWI716526B (en) Nickel powder
JP5975440B2 (en) Method for producing coated silver fine particles and coated silver fine particles produced by the production method
JP2009144197A (en) Silver fine particle, method for producing the same, and method for producing conductive film
TW201710416A (en) Composition for manufacturing metal nanoparticles
JP5773148B2 (en) Silver fine particles, and conductive paste, conductive film and electronic device containing the silver fine particles
JP2021105214A (en) Nickel powder and method for producing the same, and nickel paste
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
WO2014013557A1 (en) Silver-containing composition, and base for use in formation of silver element
KR20160088919A (en) Method for producing silver particles, and silver particles produced by said method
CN110461503B (en) Nickel powder and nickel paste
JP6414085B2 (en) Method for producing metal nanoparticles
KR101096059B1 (en) Method for manufacturing of copper nanopowders
JP2006037145A (en) Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP2005213626A (en) Method for manufacturing metal element-containing nanoparticle powder
KR20170019157A (en) Copper Nano Particle Method For Low Temperature Sintering Copper Nano Ink Method
JP3645504B2 (en) Metal powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250