KR20040094065A - 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자 - Google Patents

탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자 Download PDF

Info

Publication number
KR20040094065A
KR20040094065A KR1020030028000A KR20030028000A KR20040094065A KR 20040094065 A KR20040094065 A KR 20040094065A KR 1020030028000 A KR1020030028000 A KR 1020030028000A KR 20030028000 A KR20030028000 A KR 20030028000A KR 20040094065 A KR20040094065 A KR 20040094065A
Authority
KR
South Korea
Prior art keywords
electrode
semiconductor device
wiring
forming
gas
Prior art date
Application number
KR1020030028000A
Other languages
English (en)
Other versions
KR100982419B1 (ko
Inventor
최원봉
배은주
호리이히데끼
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030028000A priority Critical patent/KR100982419B1/ko
Priority to EP04252117A priority patent/EP1473767B1/en
Priority to CNB2004100348285A priority patent/CN100369205C/zh
Priority to US10/835,044 priority patent/US7060543B2/en
Priority to JP2004137261A priority patent/JP4777619B2/ja
Publication of KR20040094065A publication Critical patent/KR20040094065A/ko
Priority to US11/258,037 priority patent/US7247897B2/en
Priority to JP2009233559A priority patent/JP5264672B2/ja
Application granted granted Critical
Publication of KR100982419B1 publication Critical patent/KR100982419B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8418Electrodes adapted for focusing electric field or current, e.g. tip-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/16Memory cell being a nanotube, e.g. suspended nanotube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled

Abstract

탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자가 개시된다. 개시된 반도체 소자의 배선 형성 방법은, 반도체 소자의 전극의 표면을 전처리하여 활성화시키는 단계와, 전극 위에 절연층을 형성한 뒤 절연층에 전극의 활성화된 표면의 일부를 노출시키는 컨택홀을 형성하는 단계와, 컨택홀을 통해 전극의 활성화된 표면에 탄소가 함유된 가스를 주입하여 전극의 활성화된 표면으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계를 구비한다. 한편, 전극의 표면을 활성화시키는 단계는 전극의 표면에 촉매금속층을 형성하는 단계로 대체될 수 있다. 이와 같은 배선 형성 방법에 의하면, 높은 전류밀도를 가지는 탄소나노튜브를 사용하여 반도체 소자의 배선을 형성할 수 있게 되어, 초고집적의 반도체 소자를 제조할 수 있게 된다.

Description

탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자{Method of forming conductive line of semiconductor device using carbon nanotube and semiconductor device manufactured by the method}
본 발명은 반도체 소자의 배선 형성 방법에 관한 것으로, 보다 상세하게는 탄소나노튜브를 이용하여 반도체 소자의 배선을 형성하는 방법과 이 방법에 의해 제조된 반도체 소자에 관한 것이다.
반도체 소자, 특히 반도체 메모리 소자에는 DRAM(Dynamic RAM), SRAM(Static RAM), PRAM(Phase-change RAM) 및 MRAM(Magnetic RAM) 등의 다양한 종류가 있다. 이러한 메모리 소자에는 스위칭 소자로서, 일반적으로 MOS(Metal Oxide Semiconductor) 트랜지스터가 사용되고 있다. 그리고, 메모리 소자에는 컨택트(contact) 및 인터컨넥트(interconnect)와 같은 전자 이동 통로인 배선이 마련된다.
최근, 반도체 메모리 소자의 고집적화에 따라 배선의 선폭은 좁아지고 단위 면적당 전류의 양, 즉 전류밀도는 높아지고 있다. 이에 따라, 반도체 소자의 배선의 전류밀도는 대략 2010년 경에 106A/㎠ 에 이를 것으로 예상된다.
그런데, 종래에 반도체 소자에는 주로 금속 배선이 사용되고 있는데, 이러한 금속 배선의 선폭은 70nm가 한계인 것으로 알려져 있으며, 금속 배선의 최대 전류밀도는 대략 106A/㎠ 가 한계인 것으로 알려져 있다. 반도체 소자의 고집적화를 위해서는 배선의 선폭을 줄이고 전류밀도를 높이는 것이 필수적이나, 상기한 바와 같은 이유로 인해 금속 배선을 사용하는 반도체 소자는 가까운 장래에 그 집적화가 한계에 도달할 것으로 예상된다.
따라서, 반도체 소자의 고집적화가 계속적으로 이루어지려면 금속 배선에 비해 작은 선폭으로도 높은 전류밀도를 가질 수 있는 새로운 배선 물질이 필요하게 되었다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 창출된 것으로서, 특히 반도체 소자의 고집적화가 가능하도록 전극의 표면에 탄소나노튜브를 성장시켜 배선을 형성하는 반도체 소자의 배선 형성 방법을 제공하는데 그 일 목적이 있다.
또한, 상기 방법에 의해 탄소나노튜브로 이루어진 배선을 가짐으로써 고집적화가 가능한 반도체 소자를 제공하는데 그 다른 목적이 있다.
도 1a 내지 도 1d는 본 발명의 제1 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 단계적으로 보여주는 수직 단면도들이다.
도 2a와 도 2b는 본 발명의 제2 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 개략적으로 보여주는 수직 단면도들이다.
도 3은 도 1c에 도시된 단계를 거친 후에, 전극 위에 활성층과 컨택홀이 형성된 상태를 보여주는 사진이다.
도 4와 도 5는 전극의 표면으로부터 성장된 탄소나노튜브를 보여주는 사진이다.
도 6은 본 발명의 반도체 소자의 배선 형성 방법에 의해 컨택홀 내부에 형성된 탄소나노튜브가 규칙적으로 배열된 상태를 보여주는 사진들이다.
도 7은 본 발명의 배선 형성 방법에 따라 탄소나노튜브로 이루어진 배선을 가진 반도체 소자의 일 례를 개략적으로 보여주는 수직 단면도이다.
<도면의 주요 부분에 대한 부호의 설명>
110,210...기판 120...전극
122,222,252...활성층 124...촉매금속층
130,230,260,290...절연층 132,232,262,292...컨택홀
140,240,270...탄소나노튜브 221...소스 전극
223...드레인 전극 224...게이트 전극
250...중간 전극 280...메모리 박막
295...상부 전극
상기의 기술적 과제를 달성하기 위한 본 발명의 일 특징에 따른 반도체 소자의 배선 형성 방법은,
(가) 반도체 소자의 전극의 표면을 전처리하여 활성화시키는 단계;
(나) 상기 전극 위에 절연층을 형성한 뒤, 상기 절연층에 상기 전극의 활성화된 표면의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
(다) 상기 컨택홀을 통해 상기 전극의 활성화된 표면에 탄소가 함유된 가스를 주입하여 상기 전극의 활성화된 표면으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비한다.
여기에서, 상기 (가) 단계는, 300 ~ 700℃의 온도에서, 상기 전극의 표면에 질소 가스(N2), 아르곤 가스(Ar) 및 암모니아 가스(NH3)로 이루어진 군 중에서 선택된 적어도 하나의 전처리 가스를 흘려줌으로써 상기 전극의 표면을 다공질 상태로 활성화시키는 것이 바람직하다.
한편, 상기 (가) 단계는, 아르곤 가스(Ar)나 질소 가스(N2)를 이온화시켜 그 이온을 상기 전극의 표면에 충돌시킴으로써 상기 전극의 표면을 다공질 상태로 활성화시키는 것도 바람직하다. 이 경우, 상기 (가) 단계는 상온 상태에서 수행될 수 있다.
그리고, 본 발명의 다른 특징에 따른 반도체 소자의 배선 형성 방법은,
(가) 반도체 소자의 전극의 표면에 촉매금속층을 형성하는 단계;
(나) 상기 촉매금속층 위에 절연층을 형성한 뒤, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
(다) 상기 컨택홀을 통해 상기 촉매금속층에 탄소가 함유된 가스를 주입하여 상기 촉매금속층으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비한다.
여기에서, 상기 (가) 단계는 RF 마그네트론 스퍼터 또는 전자빔 증착기에 의해 촉매금속을 상기 전극의 표면에 소정 두께로 증착하는 것이 바람직하다.
한편, 상기 (가) 단계는 촉매금속을 분발의 상태로 상기 전극의 표면에 스프레이함으로써 소정 두께로 도포하는 것도 바람직하다.
그리고, 상기 (가) 단계에서, 상기 촉매금속층은 W, Ni, Fe, Co, Y, Pd, Pt 및 Au 로 이루어진 군 중에서 선택된 적어도 하나의 전이금속으로 이루어질 수 있다.
본 발명의 일 특징과 다른 특징에 따른 반도체 소자의 배선 형성 방법에 있어서, 상기 (나) 단계에서, 상기 절연층은 산화물로 이루어질 수 있으며, 상기 컨택홀은 수 nm ~ 수십 nm의 직경을 가지도록 형성될 수 있다.
그리고. 상기 (다) 단계는 500 ~ 900℃의 온도에서 열화학기상증착 방법 또는 플라즈마 화학기상증착 방법에 의해 수행될 수 있다.
또한, 상기 (다) 단계에서, 상기 탄소를 함유한 가스는 CH4, C2H2, C2H4, C2H6, CO 및 CO2로 이루어진 군 중에서 선택된 적어도 하나의 가스인 것이 바람직하며, 상기 탄소를 함유한 가스는 수소 가스(H2), 질소 가스(N2)및 아르곤 가스(Ar)으로 이루어진 군 중에서 선택된 적어도 하나의 가스와 함께 주입되는 것이 바람직하다.
그리고, 상기의 기술적 과제를 달성하기 위한 본 발명의 일 특징에 따른 반도체 소자는,
기판과; 상기 기판에 형성된 전극과; 상기 전극의 표면에 형성된 다공질의 활성층과; 상기 활성층 위에 형성되며, 상기 활성층의 일부를 노출시키는 컨택홀을 가지는 절연층과; 상기 컨택홀 내부에서, 상기 활성층으로부터 성장되어 전자 이동의 통로가 되는 배선을 이루는 탄소나노튜브와; 상기 절연층의 상부에 형성되어 상기 탄소나노튜브와 전기적으로 연결되는 메모리 박막;을 구비한다.
여기에서, 상기 활성층은 상기한 본 발명의 일 특징에 따른 배선 형성 방법에 의해 형성될 수 있다.
또한, 본 발명의 다른 특징에 따른 반도체 소자는,
기판과; 상기 기판에 형성된 전극과; 상기 전극의 표면에 형성된 촉매금속층과; 상기 촉매금속층 위에 형성되며, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 가지는 절연층과; 상기 컨택홀 내부에서, 상기 촉매금속층으로부터 성장되어 전자 이동의 통로가 되는 배선을 이루는 탄소나노튜브와; 상기 절연층의 상부에 형성되어 상기 탄소나노튜브와 전기적으로 연결되는 메모리 박막;을 구비한다.
여기에서, 상기 촉매금속층은 상기한 본 발명의 디른 특징에 따른 배선 형성 방법에 의해 형성될 수 있다.
본 발명의 일 특징과 다른 특징에 따른 반도체 소자에 있어서, 상기 기판은 실리콘 또는 산화물로 이루어질 수 있으며, 상기 전극은 MOSFET의 소스 전극일 수있고, 상기 메모리 박막은 상변화 물질로 이루어질 수 있다.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예들을 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 가리킨다.
도 1a 내지 도 1d는 본 발명의 제1 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 단계적으로 보여주는 수직 단면도들이다.
도 1a에는 반도체 소자의 기판(110) 상에 형성된 전극(120)이 도시되어 있다. 도 1a를 참조하면, 상기 기판(110)으로는 실리콘 웨이퍼 또는 유리 등이 사용될 수 있다. 한편, 상기 전극(120)은 기판(110) 대신에 소정의 물질층, 예컨대 절연층 위에 형성될 수도 있다. 상기 전극(120)은 도전성이 양호한 금속이나 도핑된 실리콘으로 이루어질 수 있다. 예컨대, 상기 전극(120)이 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)의 소스 전극과 같이 실리콘 기판(110) 상에 형성될 경우에는 도핑된 실리콘으로 이루어질 수 있으며, 상기 전극(120)이 절연층 위에 형성될 경우에는 도전성이 양호한 금속으로 이루어질 수 있다.
도 1b는 전극의 표면을 전처리하여 활성화시키는 단계를 보여주는 단면도이다. 도 1b를 참조하면, 상기 기판(110)과 전극(120)을 대략 300 ~ 700℃의 온도로 가열한 상태에서, 상기 전극(110)의 표면에 전처리 가스를 흘려줌으로써 전극(120)의 표면을 다공질 상태로 활성화시킨다. 그러면, 도시된 바와 같이 전극(120)의 표면에 탄소나노튜브가 성장할 수 있는 활성층(122)이 형성된다. 이 때, 전처리 가스로는 질소 가스(N2), 아르곤 가스(Ar) 또는 암모니아 가스(NH3)가 사용될 수 있다.그리고, 상기 활성층(122)의 두께가 대략 수 nm ~ 수십 nm 정도가 되도록 전처리 가스를 흘려주는 시간과 유량을 조절한다.
한편, 아르곤 가스(Ar)나 질소 가스(N2)를 이온화시켜 그 이온을 상기 전극(120)의 표면에 충돌시킴으로써, 상기 전극(120)의 표면을 다공질 상태로 활성화시키는 방법도 사용 가능하다. 이와 같은 방법에 의해서도 상기 전극(120)의 표면에 탄소나노튜브가 성장할 수 있는 다공질의 활성층(122)이 형성될 수 있다. 그리고, 이 방법은 반응성 이온 식각(RIE: Reactive Ion Etching) 장치를 사용하여 수행될 수 있다. 또한, 이 방법은 기판(110)과 전극(120)을 가열할 필요없이 상온 상태에서도 수행될 수 있는 장점이 있다.
도 1c는 전극 위에 절연층과 컨택홀을 형성한 상태를 도시한 단면도이다. 도 1c를 참조하면, 먼저 전술한 단계에서 표면에 활성층(122)이 형성된 전극(120) 위에 절연층(130)을 형성한다. 이 때, 상기 절연층(130)은 산화물, 예컨대 실리콘 산화물(SiO2)로 이루어질 수 있다.
다음으로, 상기 절연층(130)에 활성층(122)의 표면 일부를 노출시키는 컨택홀(132)을 형성한다. 구체적으로, 상기 절연층(130) 위에 포토레지스트를 도포한 후 이를 소정 패턴으로 패터닝한다. 이어서, 패터닝된 포토레지스트를 식각 마스크로 하여 상기 절연층(130)을 이방성 식각함으로써 상기 컨택홀(132)을 형성한다. 이 때, 상기 컨택홀(132)은 수 nm ~ 수십 nm의 직경을 가지도록 형성될 수 있다.
도 1c의 단계를 거치게 되면, 도 3의 사진에 도시된 바와 같이 전극(120)의표면에 활성층(122)이 형성되고, 활성층(122) 위에 컨택홀(132)이 된다.
도 1d는 컨택홀의 내부에서 전극의 활성층으로부터 탄소나노튜브를 성장시킨 상태를 도시한 단면도이다. 도 1d의 단계에서, 탄소나노튜브의 성장은 열화학기상증착 방법 또는 플라즈마 화학기상증착 방법에 의해 수행될 수 있으며, 또한 알려진 다른 방법들에 의해서도 수행될 수 있다.
도 1d를 참조하면, 전술한 단계를 거친 결과물을 반응로 내에 장입한 다음, 상기 반응로 내부의 온도를 대략 500 ~ 900℃의 온도로 조절한다. 이어서, 상기 반응로 내에 CH4, C2H2, C2H4, C2H6, CO 또는 CO2와 같은 탄소를 함유한 가스를 주입한다. 이 때, 상기 탄소함유가스를 주입할 때, 수소 가스(H2), 질소 가스(N2) 또는 아르곤 가스(Ar) 등을 함께 흘려주게 된다. 이와 같이 반응로 내에 주입된 탄소함유가스는 컨택홀(132)을 통해 전극(120)의 표면에 형성된 활성층(122)에 접촉하게 되고, 이에 따라 활성층(140)으로부터 수직 방향으로 탄소나노튜브(140)가 성장하게 된다.
다음으로, 도시되지는 않았지만 절연층(130)의 상부에 탄소나노튜브(140)와 연결되는 다른 전극 또는 메모리 박막을 형성하면, 상기 탄소나노튜브(140)는 두 개의 전극 또는 전극과 메모리 박막을 연결하는 컨택트(contact) 또는 인터컨넥트(interconnect)와 같은 배선을 이루게 된다.
도 2a와 도 2b는 본 발명의 제2 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 개략적으로 보여주는 수직 단면도들이다. 본 실시예는전극 위에 촉매금속층을 형성하는 단계를 제외하고는 전술한 제1 실시예와 동일하다. 따라서, 본 실시예는 전술한 제1 실시예와의 차이점을 중심으로 간략하게 설명된다.
도 2a는 기판 상에 형성된 전극의 표면에 촉매금속층을 형성한 상태를 도시한 단면도이다. 도 2a를 참조하면, F 마그네트론 스퍼터(magnetron sputter) 또는 전자빔 증착기(e-beam evaporator)를 사용하여 기판(110) 상에 형성된 전극(120)의 표면에 촉매금속을 소정 두께로 증착하여 탄소나노튜브가 성장할 수 있는 촉매금속층(124)을 형성한다. 이 때, 상기 촉매금속으로는 W, Ni, Fe, Co, Y, Pd, Pt 또는 Au 와 같은 전이금속이 사용될 수 있다. 그리고, 촉매금속층(124)은 수 nm ~ 수십 nm의 두께로 형성될 수 있다.
한편, 상기 촉매금속층(124)은 상기 전이금속들을 분말의 상태로 전극(120)의 표면에 소정 두께로 도포함으로써 형성될 수도 있다. 이 때, 전이금속 분말의 도포는 스프레이 방법에 의해 수 nm ~ 수십 nm의 두께로 이루어질 수 있다. 이 방법에 의하면, 촉매금속층(124)이 치밀하지 않은 다공질의 상태로 보다 용이하게 형성될 수 있는 장점이 있다.
이와 같이, 본 발명의 제2 실시예에서는 전극(120)의 표면에 탄소나노튜브를 성장시키기 위한 별도의 촉매금속층(124)을 형성하게 되므로, 전극(120) 자체의 표면을 탄소나노튜브가 성장할 수 있도록 활성화시키는 전술한 제1 실시예와 차이가 있다. 그러나, 본 발명의 제2 실시예에서 전극(120)의 표면에 촉매금속층(124)을 형성한 이후의 단계는 전술한 제1 실시예와 동일하다. 따라서, 이후의 단계들은 도2b를 참조하며 간략하게 설명한다.
도 2에 도시된 바와 같이, 전극(120)의 표면에 형성된 촉매금속층(124) 위에 예컨대 산화물로 이루어진 절연층(130)을 형성한다. 이어서, 패터닝된 포토레지스트를 식각 마스크로 하여 상기 절연층(130)을 이방성 식각함으로써 식각하여 수 nm ~ 수십 nm의 직경을 가지는 컨택홀(132)을 형성한다. 이로써, 상기 컨택홀(132)을 통해 촉매금속층(124)의 표면 일부가 노출된다.
다음으로, 대략 500 ~ 900℃의 온도를 유지하는 반응로 내에 CH4, C2H2, C2H4, C2H6, CO 또는 CO2와 같은 탄소 함유 가스와 H2, N2또는 Ar 가스를 함께 주입하면서, 촉매금속층(124)의 표면으로부터 수직 방향으로 탄소나노튜브(140)를 성장시킨다.
도 4와 도 5의 사진에서는, 전극의 활성화된 표면으로부터 탄소나노튜브가 성장되어 있음을 볼 수 있으며, 도 6의 사진에서는, 본 발명의 반도체 소자의 배선 형성 방법에 의해 컨택홀 내부에 형성된 탄소나노튜브가 규칙적으로 배열된 상태를 볼 수 있다.
상기한 바와 같이, 본 발명의 제1 실시예 및 제2 실시예에 따른 반도체 소자의 배선 형성 방법에 의하면, 탄소나노튜브를 사용하여 두 개의 전극 또는 전극과 메모리 박막을 연결하는 컨택트 또는 인터컨넥트와 같은 배선을 형성할 수 있다. 이러한 탄소나노튜브의 전류밀도는 1010A/㎠ 정도로서 종래의 금속 배선에 비해 대략 10,000배 정도의 전류밀도를 가진다. 따라서, 상기 배선을 수 nm ~ 수십 nm 정도의 직경으로 형성할 수 있게 되어 초고집적의 반도체 소자를 제조할 수 있게 된다.
도 7은 본 발명의 배선 형성 방법에 따라 탄소나노튜브로 이루어진 배선을 가진 반도체 소자의 일 례를 개략적으로 보여주는 수직 단면도이다.
도 7에 도시된 적용예는 본 발명에 따른 배선 형성 방법을 스위칭 소자로서 MOSFET이 마련된 상변화 메모리(PRAM: Phase-change RAM) 소자에 적용한 예이다. 상변화 메모리(PRAM) 소자는 결정 상태에 따라 전기적 저항이 변하는 상변화 물질을 이용하는 메모리 소자이다. 상변화 물질막으로 인가되는 전류의 양의 차이에 의하여 상변화 물질막 일부의 결정 상태가 변화된다.
도 7을 참조하면, 잘 알려져 있는 바와 같이, MOSFET은 기판(210)의 소정 영역에 형성된 소스 전극(221) 및 드레인 전극(223)과, 절연층(230)에 의해 상기 소스 전극(211) 및 드레인 전극(223) 각각과 이격되는 게이트 전극(224)으로 구성된다. 상기 소스 전극(221)과 드레인 전극(223)은 도핑된 실리콘이나 금속으로 이루어질 수 있으며, 상기 게이트 전극(224)은 주로 금속으로 이루어진다.
상기 소스 전극(221)의 표면에는 상기한 배선 형성 방법에 의해 다공질의 활성층(222)이 형성된다. 한편, 상기 활성층(222) 대신에 촉매금속층이 형성될 수도 있다. 상기 활성층(222) 위에는 제1 절연층(230)이 형성되고, 제1 절연층(230)에는 제1 컨택홀(232)이 형성된다. 상기 제1 컨택홀(232) 내부에서, 상기 활성층(222)으로부터 탄소나노튜브(240)가 수직으로 성장한다. 이 때, 상기 탄소나노튜브(240)는 제1 컨택홀(232)의 직경에 따라 수 nm ~ 수십 nm 의 직경을 가지게 된다.
그리고, 상기 제1 절연층(230)의 상부에 탄소나노튜브(240)와 연결되는 중간 전극(250)이 형성된다. 이에 따라, 상기 탄소나노튜브(240)는 MOSFET의 소스 전극(221)과 중간 전극(250)을 전기적으로 연결하는 배선을 이루게 된다.
상기 중간 전극(250)의 표면에도 본 발명에 따른 배선 형성 방법에 의해 다공질의 활성층(252) 또는 촉매금속층이 형성된다. 상기 활성층(252) 위에는 제2 절연층(260)이 형성되고, 제2 절연층(260)에는 제2 컨택홀(262)이 형성된다. 상기 제2 컨택홀(262) 내부에서, 상기 활성층(252)으로부터 탄소나노튜브(270)가 수직으로 성장한다.
그리고, 상기 제2 절연층(260)의 상부에 탄소나노튜브(270)와 연결되는 메모리 박막(280)이 형성된다. 상기 메모리 박막(280)은 상변화 물질로 이루어진다. 이에 따라, 상기 탄소나노튜브(270)는 중간 전극(250)과 메모리 박막(280)을 전기적으로 연결하는 배선을 이루게 된다.
한편, 상기 중간 전극(250)과 그 위에 형성되는 탄소나노튜브(270) 없이 소스 전극(221)으로부터 성장된 탄소나노튜브(240) 위에 상기 메모리 박막(280)이 직접 형성될 수도 있다.
상기 메모리 박막(280) 위에는 제3 절연층(290)이 형성되고, 제3 절연층(290)에는 제3 컨택홀(292)이 형성된다. 상기 제3 컨택홀(292)을 통해 메모리 박막(280)과 상부 전극(295)이 연결된다.
위에서, 본 발명에 따른 배선 형성 방법은 상변화 메모리(PRAM) 소자에 적용된 것으로 도시되고 설명되었다. 그러나, 본 발명에 따른 배선 형성 방법은 상기PRAM 뿐만 아니라 다양한 반도체 메모리 소자, 즉 DRAM, SRAM 및 MRAM 등에도 적용될 수 있다. 그리고, 상기 반도체 메모리 소자에는 상기 스위칭 소자로서 MOSFET 뿐만 아니라 다양한 트랜지스터가 마련될 수 있다.
본 발명은 개시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
이상에서 설명된 바와 같이 본 발명에 따른 반도체 소자의 배선 형성 방법에 의하면, 탄소나노튜브를 사용하여 두 개의 전극 또는 전극과 메모리 박막을 연결하는 컨택트 또는 인터컨넥트와 같은 배선을 형성할 수 있다. 이러한 탄소나노튜브의 전류밀도는 1010A/㎠ 정도로서 종래의 금속 배선에 비해 대략 10,000배 정도의 전류밀도를 가진다. 따라서, 상기 배선을 수 nm ~ 수십 nm 정도의 직경으로 형성할 수 있게 되어 초고집적의 반도체 소자를 제조할 수 있게 된다.

Claims (26)

  1. (가) 반도체 소자의 전극의 표면을 전처리하여 활성화시키는 단계;
    (나) 상기 전극 위에 절연층을 형성한 뒤, 상기 절연층에 상기 전극의 활성화된 표면의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
    (다) 상기 컨택홀을 통해 상기 전극의 활성화된 표면에 탄소가 함유된 가스를 주입하여 상기 전극의 활성화된 표면으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  2. 제 1항에 있어서,
    상기 (가) 단계는, 300 ~ 700℃의 온도에서, 상기 전극의 표면에 질소 가스(N2), 아르곤 가스(Ar) 및 암모니아 가스(NH3)로 이루어진 군 중에서 선택된 적어도 하나의 전처리 가스를 흘려줌으로써 상기 전극의 표면을 다공질 상태로 활성화시키는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  3. 제 1항에 있어서,
    상기 (가) 단계는, 아르곤 가스(Ar)나 질소 가스(N2)를 이온화시켜 그 이온을 상기 전극의 표면에 충돌시킴으로써 상기 전극의 표면을 다공질 상태로 활성화시키는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  4. 제 3항에 있어서,
    상기 (가) 단계는 상온 상태에서 수행되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  5. 제 1항에 있어서,
    상기 (가) 단계에서, 상기 전극의 활성화된 표면층은 수 nm ~ 수십 nm의 두께로 형성되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  6. (가) 반도체 소자의 전극의 표면에 촉매금속층을 형성하는 단계;
    (나) 상기 촉매금속층 위에 절연층을 형성한 뒤, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
    (다) 상기 컨택홀을 통해 상기 촉매금속층에 탄소가 함유된 가스를 주입하여 상기 촉매금속층으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  7. 제 6항에 있어서,
    상기 (가) 단계는 RF 마그네트론 스퍼터 또는 전자빔 증착기에 의해 촉매금속을 상기 전극의 표면에 소정 두께로 증착하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  8. 제 6항에 있어서,
    상기 (가) 단계는 촉매금속을 분말의 상태로 상기 전극의 표면에 스프레이함으로써 소정 두께로 도포하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  9. 제 6항에 있어서,
    상기 (가) 단계에서, 상기 촉매금속층은 수 nm ~ 수십 nm의 두께로 형성되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  10. 제 6항에 있어서,
    상기 (가) 단계에서, 상기 촉매금속층은 W, Ni, Fe, Co, Y, Pd, Pt 및 Au 로 이루어진 군 중에서 선택된 적어도 하나의 전이금속으로 이루어지는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  11. 제 1항 또는 제 6항에 있어서,
    상기 (나) 단계에서, 상기 절연층은 산화물로 이루어진 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  12. 제 1항 또는 제 6항에 있어서,
    상기 (나) 단계에서, 패터닝된 포토레지스트를 식각 마스크로 하여 상기 절연층을 이방성 식각함으로써 상기 컨택홀을 형성하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  13. 제 1항 또는 제 6항에 있어서,
    상기 (나) 단계에서, 상기 컨택홀은 수 nm ~ 수십 nm의 직경을 가지도록 형성되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  14. 제 1항 또는 제 6항에 있어서,
    상기 (다) 단계는 500 ~ 900℃의 온도에서 수행되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  15. 제 1항 또는 제 6항에 있어서,
    상기 (다) 단계에서, 상기 탄소를 함유한 가스는 CH4, C2H2, C2H4, C2H6, CO 및 CO2로 이루어진 군 중에서 선택된 적어도 하나의 가스인 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  16. 제 1항 또는 제 6항에 있어서,
    상기 (다) 단계에서, 상기 탄소를 함유한 가스는 수소 가스(H2), 질소 가스(N2)및 아르곤 가스(Ar)으로 이루어진 군 중에서 선택된 적어도 하나의 가스와 함께 주입되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  17. 제 1항 또는 제 6항에 있어서,
    상기 (다) 단계는 열화학기상증착 방법 또는 플라즈마 화학기상증착 방법에 의해 수행되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  18. 기판;
    상기 기판에 형성된 전극;
    상기 전극의 표면에 형성된 다공질의 활성층;
    상기 활성층 위에 형성되며, 상기 활성층의 일부를 노출시키는 컨택홀을 가지는 절연층;
    상기 컨택홀 내부에서, 상기 활성층으로부터 성장되어 전자 이동의 통로가 되는 배선을 이루는 탄소나노튜브; 및
    상기 절연층의 상부에 형성되어 상기 탄소나노튜브와 전기적으로 연결되는 메모리 박막;을 구비하는 것을 특징으로 하는 반도체 소자.
  19. 제 18항에 있어서,
    상기 활성층은, 300 ~ 700℃의 온도에서, 상기 전극의 표면에 질소 가스(N2), 아르곤 가스(Ar) 및 암모니아 가스(NH3)로 이루어진 군 중에서 선택된 적어도 하나의 전처리 가스를 흘려줌으로써 형성된 것을 특징으로 하는 반도체 소자.
  20. 제 18항에 있어서,
    상기 활성층은, 아르곤 가스(Ar)나 질소 가스(N2)를 이온화시켜 그 이온을 상기 전극의 표면에 충돌시킴으로써 형성된 것을 특징으로 하는 반도체 소자.
  21. 기판;
    상기 기판에 형성된 전극;
    상기 전극의 표면에 형성된 촉매금속층;
    상기 촉매금속층 위에 형성되며, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 가지는 절연층;
    상기 컨택홀 내부에서, 상기 촉매금속층으로부터 성장되어 전자 이동의 통로가 되는 배선을 이루는 탄소나노튜브; 및
    상기 절연층의 상부에 형성되어 상기 탄소나노튜브와 전기적으로 연결되는 메모리 박막;을 구비하는 것을 특징으로 하는 반도체 소자.
  22. 제 21항에 있어서,
    상기 촉매금속층은, W, Ni, Fe, Co, Y, Pd, Pt 및 Au 로 이루어진 군 중에서 선택된 적어도 하나의 전이금속을 RF 마그네트론 스퍼터 또는 전자빔 증착기에 의해 상기 전극의 표면에 증착함으로써 형성된 것을 특징으로 하는 반도체 소자.
  23. 제 21항에 있어서,
    상기 촉매금속층은, W, Ni, Fe, Co, Y, Pd, Pt 및 Au 로 이루어진 군 중에서 선택된 적어도 하나의 전이금속을 분말의 상태로 상기 전극의 표면에 도포함으로써 형성된 것을 특징으로 하는 반도체 소자.
  24. 제 18항 또는 제 21항에 있어서,
    상기 기판은 실리콘 또는 산화물로 이루어진 것을 특징으로 하는 반도체 소자.
  25. 제 18항 또는 제 21항에 있어서,
    상기 전극은 MOSFET의 소스 전극인 것을 특징으로 하는 반도체 소자.
  26. 제 18항 또는 제 21항에 있어서,
    상기 메모리 박막은 상변화 물질로 이루어진 것을 특징으로 하는 반도체 소자.
KR1020030028000A 2003-05-01 2003-05-01 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자 KR100982419B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020030028000A KR100982419B1 (ko) 2003-05-01 2003-05-01 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자
EP04252117A EP1473767B1 (en) 2003-05-01 2004-04-08 Method of forming conductive line for semiconductor device using carbon nanotube and semiconductor device manufactured using the method
CNB2004100348285A CN100369205C (zh) 2003-05-01 2004-04-15 用碳纳米管形成半导体装置用导电线的方法及半导体装置
US10/835,044 US7060543B2 (en) 2003-05-01 2004-04-30 Method of forming a conductive line for a semiconductor device using a carbon nanotube and semiconductor device manufactured using the method
JP2004137261A JP4777619B2 (ja) 2003-05-01 2004-05-06 カーボンナノチューブを利用した半導体素子の配線形成方法およびその方法により製造された半導体素子
US11/258,037 US7247897B2 (en) 2003-05-01 2005-10-26 Conductive line for a semiconductor device using a carbon nanotube including a memory thin film and semiconductor device manufactured
JP2009233559A JP5264672B2 (ja) 2003-05-01 2009-10-07 カーボンナノチューブを利用した半導体素子の配線形成方法およびその方法により製造された半導体素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030028000A KR100982419B1 (ko) 2003-05-01 2003-05-01 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020100006502A Division KR101015507B1 (ko) 2010-01-25 2010-01-25 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자

Publications (2)

Publication Number Publication Date
KR20040094065A true KR20040094065A (ko) 2004-11-09
KR100982419B1 KR100982419B1 (ko) 2010-09-15

Family

ID=32985946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030028000A KR100982419B1 (ko) 2003-05-01 2003-05-01 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자

Country Status (5)

Country Link
US (2) US7060543B2 (ko)
EP (1) EP1473767B1 (ko)
JP (2) JP4777619B2 (ko)
KR (1) KR100982419B1 (ko)
CN (1) CN100369205C (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100604419B1 (ko) * 2004-12-21 2006-07-25 매그나칩 반도체 유한회사 메탈로센 화합물을 이용한 탄소나노튜브 배선 형성 방법
KR100701693B1 (ko) * 2005-05-26 2007-03-29 주식회사 하이닉스반도체 상변환 기억 소자 및 그의 제조방법
KR100713936B1 (ko) * 2006-04-14 2007-05-07 주식회사 하이닉스반도체 상변환 기억 소자 및 그의 제조방법
KR100738060B1 (ko) * 2005-12-27 2007-07-12 삼성에스디아이 주식회사 탄소나노튜브의 형성방법 및 이를 이용한 반도체 소자의배선 형성 방법
KR100771926B1 (ko) * 2006-03-23 2007-11-01 삼성전자주식회사 플라즈마 화학기상증착을 이용한 카본 폴리머 필름 형성방법
KR100791347B1 (ko) 2006-10-26 2008-01-03 삼성전자주식회사 반도체 집적 회로 장치의 제조 방법과 그에 의해 제조된반도체 집적 회로 장치
KR100813243B1 (ko) * 2006-07-04 2008-03-13 삼성에스디아이 주식회사 탄소나노튜브를 이용한 반도체 소자의 층간 배선 및 그제조 방법
US7566945B2 (en) 2005-05-07 2009-07-28 Samsung Electronics Co., Ltd. Semiconductor devices including nanotubes
US7982318B2 (en) 2006-01-20 2011-07-19 Samsung Electronics Co., Ltd. Device including contact structure and method of forming the same
KR20220089321A (ko) * 2020-12-21 2022-06-28 한국세라믹기술원 칼코지나이드 나노선 메모리 소자 및 그의 제조방법

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285116A1 (en) * 2004-06-29 2005-12-29 Yongqian Wang Electronic assembly with carbon nanotube contact formations or interconnections
EP1766678A1 (en) * 2004-06-30 2007-03-28 Koninklijke Philips Electronics N.V. Method for manufacturing an electric device with a layer of conductive material contacted by nanowire
WO2006011073A1 (en) * 2004-07-20 2006-02-02 Koninklijke Philips Electronics N.V. Semiconductor device and method of manufacturing the same
DE102004049452A1 (de) * 2004-10-11 2006-04-20 Infineon Technologies Ag Mikroelektronisches Halbleiterbauelement und Verfahren zum Herstellen eines mikroelektronischen Halbleiterbauelements
DE102004049453A1 (de) * 2004-10-11 2006-04-20 Infineon Technologies Ag Elektrischer Schaltkreis mit einer Nanostruktur und Verfahren zum Herstellen einer Kontaktierung einer Nanostruktur
DE102004054598A1 (de) * 2004-11-11 2006-05-24 Infineon Technologies Ag Halbleiterbauteil mit mindestens einem Halbleiterchip und Abdeckmasse und Verfahren zur Herstellung desselben
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
JP4591821B2 (ja) * 2005-02-09 2010-12-01 エルピーダメモリ株式会社 半導体装置
JP4660221B2 (ja) * 2005-02-10 2011-03-30 学校法人 東洋大学 局所的巨大磁場発生装置
KR100707190B1 (ko) * 2005-05-07 2007-04-13 삼성전자주식회사 나노 와이어를 포함하는 상변환 메모리 소자 및 그 제조방법
KR100645064B1 (ko) * 2005-05-23 2006-11-10 삼성전자주식회사 금속 산화물 저항 기억소자 및 그 제조방법
US7420199B2 (en) * 2005-07-14 2008-09-02 Infineon Technologies Ag Resistivity changing memory cell having nanowire electrode
US7312531B2 (en) * 2005-10-28 2007-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
DE102005051973B3 (de) 2005-10-31 2007-06-28 Infineon Technologies Ag Herstellungsverfahren für vertikale Leitbahnstruktur, Speichervorrichtung sowie zugehöriges Herstellungsverfahren
US20070105356A1 (en) * 2005-11-10 2007-05-10 Wei Wu Method of controlling nanowire growth and device with controlled-growth nanowire
CN100383994C (zh) * 2005-11-25 2008-04-23 中国科学院上海微***与信息技术研究所 采用硫系化合物纳米材料制备相变存储器器件单元的方法
KR100718142B1 (ko) * 2005-12-02 2007-05-14 삼성전자주식회사 금속층-절연층-금속층 구조의 스토리지 노드를 구비하는불휘발성 메모리 소자 및 그 동작 방법
KR100745735B1 (ko) * 2005-12-13 2007-08-02 삼성에스디아이 주식회사 탄소나노튜브의 형성방법 및 이를 이용한 전계방출소자의제조방법
KR100695166B1 (ko) * 2006-01-03 2007-03-14 삼성전자주식회사 플러렌층을 구비한 상변화 메모리 소자의 제조 방법
KR100674144B1 (ko) * 2006-01-05 2007-01-29 한국과학기술원 탄소 나노 튜브를 이용한 상변화 메모리 및 이의 제조 방법
JP4911037B2 (ja) * 2006-01-18 2012-04-04 富士通株式会社 抵抗記憶素子及びその製造方法
US20070183189A1 (en) * 2006-02-08 2007-08-09 Thomas Nirschl Memory having nanotube transistor access device
JP4735314B2 (ja) * 2006-02-14 2011-07-27 ソニー株式会社 半導体装置およびその製造方法
WO2007093190A1 (de) * 2006-02-16 2007-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrische kontakte minimaler kontaktfläche für nicht-flüchtige speicherzellen
US7473950B2 (en) * 2006-06-07 2009-01-06 Ovonyx, Inc. Nitrogenated carbon electrode for chalcogenide device and method of making same
US20070292985A1 (en) * 2006-06-16 2007-12-20 Yuegang Zhang Phase change memory with nanofiber heater
US20080135892A1 (en) * 2006-07-25 2008-06-12 Paul Finnie Carbon nanotube field effect transistor and method of making thereof
EP2074660A1 (en) * 2006-09-04 2009-07-01 Nxp B.V. Control of carbon nanostructure growth in an interconnect structure
KR100791948B1 (ko) * 2006-09-27 2008-01-04 삼성전자주식회사 탄소나노튜브 배선 형성방법 및 이를 이용한 반도체 소자의배선 형성방법
DE102007050843A1 (de) * 2006-10-26 2008-05-21 Samsung Electronics Co., Ltd., Suwon Integrierte Schaltung mit Kohlenstoffnanoröhren und Verfahren zu deren Herstellung unter Verwendung von geschützten Katalysatorschichten
US8188569B2 (en) * 2006-12-15 2012-05-29 Qimonda Ag Phase change random access memory device with transistor, and method for fabricating a memory device
JP5119436B2 (ja) * 2006-12-28 2013-01-16 国立大学法人大阪大学 不揮発性メモリセルおよびその製造方法、抵抗可変型不揮発性メモリ装置、並びに不揮発性メモリセルの設計方法
DE102008004183A1 (de) 2007-01-12 2008-07-31 Samsung Electronics Co., Ltd., Suwon Integriertes Schaltkreisbauelement mit Kohlenstoffnanoröhren darin und Verfahren zur Herstellung desselben
KR100881621B1 (ko) * 2007-01-12 2009-02-04 삼성전자주식회사 반도체 장치 및 그 형성방법
JP5233125B2 (ja) * 2007-02-01 2013-07-10 富士通株式会社 半導体装置
US7859036B2 (en) 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
JP2008270680A (ja) * 2007-04-25 2008-11-06 Ulvac Japan Ltd Cnt成長用微細ホール形成方法、cnt成長用基板、及びcnt成長方法
US20090004851A1 (en) * 2007-06-29 2009-01-01 Taiwan Semiconductor Manufacturing Co., Ltd. Salicidation process using electroless plating to deposit metal and introduce dopant impurities
TW200903724A (en) * 2007-07-09 2009-01-16 Ind Tech Res Inst Phase change memory device and method of fabricating the same
KR101478540B1 (ko) * 2007-09-17 2015-01-02 삼성전자 주식회사 트랜지스터의 채널로 나노 물질을 이용하는 바이오 센서 및그 제조 방법
JP2009117591A (ja) * 2007-11-06 2009-05-28 Panasonic Corp 配線構造及びその形成方法
KR20160078517A (ko) * 2008-02-25 2016-07-04 스몰텍 에이비 나노구조 프로세싱을 위한 도전성 보조층의 증착과 선택적 제거
US8845996B2 (en) * 2008-07-29 2014-09-30 Honda Motor Co., Ltd. Preferential growth of single-walled carbon nanotubes with metallic conductivity
DE102008044985B4 (de) * 2008-08-29 2010-08-12 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Halbleiterbauelements mit einem kohlenstoffenthaltenden leitenden Material für Durchgangskontakte
KR20100032572A (ko) * 2008-09-18 2010-03-26 주식회사 하이닉스반도체 저항성 메모리 소자 및 그 제조 방법
KR101013445B1 (ko) * 2008-09-19 2011-02-14 주식회사 하이닉스반도체 미세한 접촉 면적을 갖는 가열 전극을 구비한 상변화 메모리 소자 및 그 제조방법
JP2010228970A (ja) * 2009-03-27 2010-10-14 Nippon Telegr & Teleph Corp <Ntt> カーボンナノチューブの製造方法およびカーボンナノチューブ構造
KR101585210B1 (ko) * 2009-04-01 2016-01-13 삼성전자주식회사 콘택 구조체 형성방법
KR20110008553A (ko) * 2009-07-20 2011-01-27 삼성전자주식회사 반도체 메모리 장치 및 그 제조 방법
US9099537B2 (en) * 2009-08-28 2015-08-04 International Business Machines Corporation Selective nanotube growth inside vias using an ion beam
KR101243837B1 (ko) 2009-10-23 2013-03-20 한국전자통신연구원 다층 배선 연결 구조 및 그의 제조 방법
CN101789439B (zh) * 2010-02-11 2013-02-27 复旦大学 一种可用在柔性电路中的阻变存储器及其制备方法
US20110298132A1 (en) * 2010-06-04 2011-12-08 Azad Naeemi Ultra-low power swnt interconnects for sub-threshold circuits
EP2541581A1 (en) * 2011-06-29 2013-01-02 Khalid Waqas Device comprising nanostructures and method of manufacturing thereof
US8647977B2 (en) * 2011-08-17 2014-02-11 Micron Technology, Inc. Methods of forming interconnects
CN102403304B (zh) * 2011-12-06 2016-03-16 上海集成电路研发中心有限公司 一种互连结构及其制作方法
US8883639B2 (en) * 2012-01-25 2014-11-11 Freescale Semiconductor, Inc. Semiconductor device having a nanotube layer and method for forming
CN102842568A (zh) * 2012-09-24 2012-12-26 复旦大学 一种基于碳纳米管的互连结构及其制造方法
KR102014988B1 (ko) * 2013-04-05 2019-10-21 삼성전자주식회사 위치 특이적으로 저항이 조절된 그래핀, 카본나노튜브, 풀러렌, 그래파이트, 또는 그 조합물을 제조하는 방법
JP2015032662A (ja) 2013-08-01 2015-02-16 株式会社東芝 半導体装置及びその製造方法
CN104979468A (zh) * 2014-04-10 2015-10-14 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
US9171796B1 (en) * 2014-06-19 2015-10-27 International Business Machines Corporation Sidewall image transfer for heavy metal patterning in integrated circuits
CN115057431A (zh) * 2022-06-24 2022-09-16 中山烯利来设备科技有限公司 一种碳纳米管的制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818700A (en) 1996-09-24 1998-10-06 Texas Instruments Incorporated Microelectronic assemblies including Z-axis conductive films
JPH11354499A (ja) * 1998-04-07 1999-12-24 Oki Electric Ind Co Ltd コンタクトホール等の形成方法
CA2335449A1 (en) * 1998-06-19 1999-12-23 The Research Foundation Of The State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US6204158B1 (en) * 1998-12-18 2001-03-20 Advanced Technology Materials, Inc. Reduced diffusion of a mobile specie from a metal oxide ceramic into the substrate
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
KR100376197B1 (ko) 1999-06-15 2003-03-15 일진나노텍 주식회사 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법
US6046084A (en) * 1999-09-03 2000-04-04 Vanguard International Semiconductor Corporation Isotropic etching of a hemispherical grain silicon layer to improve the quality of an overlying dielectric layer
DE10006964C2 (de) * 2000-02-16 2002-01-31 Infineon Technologies Ag Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
JP3539630B2 (ja) * 2000-03-22 2004-07-07 Tdk株式会社 薄膜磁気ヘッドの製造方法
KR100382879B1 (ko) * 2000-09-22 2003-05-09 일진나노텍 주식회사 탄소 나노튜브 합성 방법 및 이에 이용되는 탄소 나노튜브합성장치.
JP4212258B2 (ja) 2001-05-02 2009-01-21 富士通株式会社 集積回路装置及び集積回路装置製造方法
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP2002373937A (ja) * 2001-06-15 2002-12-26 Fujitsu Ltd 半導体装置及びその製造方法
JP3822806B2 (ja) * 2001-07-11 2006-09-20 喜萬 中山 カーボンナノコイルの量産方法
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US7183568B2 (en) * 2002-12-23 2007-02-27 International Business Machines Corporation Piezoelectric array with strain dependant conducting elements and method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100604419B1 (ko) * 2004-12-21 2006-07-25 매그나칩 반도체 유한회사 메탈로센 화합물을 이용한 탄소나노튜브 배선 형성 방법
US7566945B2 (en) 2005-05-07 2009-07-28 Samsung Electronics Co., Ltd. Semiconductor devices including nanotubes
KR100701693B1 (ko) * 2005-05-26 2007-03-29 주식회사 하이닉스반도체 상변환 기억 소자 및 그의 제조방법
KR100738060B1 (ko) * 2005-12-27 2007-07-12 삼성에스디아이 주식회사 탄소나노튜브의 형성방법 및 이를 이용한 반도체 소자의배선 형성 방법
US7982318B2 (en) 2006-01-20 2011-07-19 Samsung Electronics Co., Ltd. Device including contact structure and method of forming the same
KR100771926B1 (ko) * 2006-03-23 2007-11-01 삼성전자주식회사 플라즈마 화학기상증착을 이용한 카본 폴리머 필름 형성방법
KR100713936B1 (ko) * 2006-04-14 2007-05-07 주식회사 하이닉스반도체 상변환 기억 소자 및 그의 제조방법
US7589342B2 (en) * 2006-04-14 2009-09-15 Hynix Semiconductor Inc. Phase change memory device having carbon nano tube lower electrode material and method of manufacturing the same
KR100813243B1 (ko) * 2006-07-04 2008-03-13 삼성에스디아이 주식회사 탄소나노튜브를 이용한 반도체 소자의 층간 배선 및 그제조 방법
KR100791347B1 (ko) 2006-10-26 2008-01-03 삼성전자주식회사 반도체 집적 회로 장치의 제조 방법과 그에 의해 제조된반도체 집적 회로 장치
KR20220089321A (ko) * 2020-12-21 2022-06-28 한국세라믹기술원 칼코지나이드 나노선 메모리 소자 및 그의 제조방법

Also Published As

Publication number Publication date
KR100982419B1 (ko) 2010-09-15
CN1542920A (zh) 2004-11-03
US7247897B2 (en) 2007-07-24
EP1473767A2 (en) 2004-11-03
US20040219773A1 (en) 2004-11-04
JP4777619B2 (ja) 2011-09-21
EP1473767A3 (en) 2006-05-10
EP1473767B1 (en) 2012-05-09
CN100369205C (zh) 2008-02-13
JP2004336054A (ja) 2004-11-25
US7060543B2 (en) 2006-06-13
US20060046445A1 (en) 2006-03-02
JP5264672B2 (ja) 2013-08-14
JP2010004087A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
KR100982419B1 (ko) 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자
US6248674B1 (en) Method of aligning nanowires
JP4229648B2 (ja) 電子デバイスの製造方法
US6566704B2 (en) Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US20150207074A1 (en) Deposition method and a deposition apparatus of fine particles, a forming method and a forming apparatus of carbon nanotubes, and a semiconductor device and a manufacturing method of the same
CN100423245C (zh) 金属硅化物纳米线及其制作方法
US7553472B2 (en) Nanotube forming methods
US20050235906A1 (en) Method for catalytic growth of nanotubes or nanofibers comprising a nisi alloy diffusion barrier
JP2008016849A (ja) カーボンナノチューブを用いた半導体素子の層間配線およびその製造方法
CN101873992A (zh) 碳纳米管的气相官能化
JP2006508523A (ja) 自己整合型ナノチューブ電界効果トランジスタおよびこれを製造する方法
US7989286B2 (en) Electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof
JPH1197667A (ja) 超微粒子あるいは超細線の形成方法およびこの形成方法による超微粒子あるいは超細線を用いた半導体素子
KR20060023064A (ko) 탄소나노튜브를 가진 반도체 메모리 장치 및 이의 제조 방법
KR100738060B1 (ko) 탄소나노튜브의 형성방법 및 이를 이용한 반도체 소자의배선 형성 방법
JP2007180546A (ja) カーボンナノチューブの形成方法、及びそれを利用した半導体素子の配線形成方法
KR100327496B1 (ko) 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
KR20020003782A (ko) 탄소나노튜브의 제작 방법
KR101015507B1 (ko) 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자
US20060102889A1 (en) Tri-gated molecular field effect transistor and method of fabricating the same
JP5246938B2 (ja) カーボンナノチューブ成長用基板、トランジスタ及びカーボンナノチューブ成長用基板の製造方法
KR100434271B1 (ko) 탄소나노튜브 길이별 제조방법
KR20040050588A (ko) 단전자 소자, 그 제조 방법 및 단전자 소자와 mos트랜지스터를 동시에 형성하는 제조방법
JP2003165713A (ja) 炭素元素円筒型構造体の製造方法
WO2008069485A1 (en) The electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160817

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190820

Year of fee payment: 10