KR101849818B1 - 고당량 이오노머를 갖는 단위화 전극 조립체 - Google Patents

고당량 이오노머를 갖는 단위화 전극 조립체 Download PDF

Info

Publication number
KR101849818B1
KR101849818B1 KR1020137022741A KR20137022741A KR101849818B1 KR 101849818 B1 KR101849818 B1 KR 101849818B1 KR 1020137022741 A KR1020137022741 A KR 1020137022741A KR 20137022741 A KR20137022741 A KR 20137022741A KR 101849818 B1 KR101849818 B1 KR 101849818B1
Authority
KR
South Korea
Prior art keywords
catalyst
ionomer
palladium
platinum
core
Prior art date
Application number
KR1020137022741A
Other languages
English (en)
Other versions
KR20140012074A (ko
Inventor
크리스타 마리 슈메이커
로버트 메이슨 달링
로라 로엔 스톨러
앨리스 로랜 이쪼
Original Assignee
아우디 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아우디 아게 filed Critical 아우디 아게
Publication of KR20140012074A publication Critical patent/KR20140012074A/ko
Application granted granted Critical
Publication of KR101849818B1 publication Critical patent/KR101849818B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

연료 전지에 사용되는 촉매층은 촉매 나노입자와 퍼플루오로술폰산(PFSA) 이오노머를 포함한다. 촉매 나노입자는 팔라듐 또는 팔라듐 합금 코어와, 팔라듐 또는 팔라듐 합금 코어의 외부 표면상에 원자형태의 박층의 백금 또는 백금 합금을 갖는다. PFSA 이오노머는 약 830 이상의 당량을 가진다. 단위화 전극 조립체가 또한 개시된다.

Description

고당량 이오노머를 갖는 단위화 전극 조립체{UNITIZED ELECTRODE ASSEMBLY WITH HIGH EQUIVALENT WEIGHT IONOMER}
연료 전지용 단위화 전극 조립체(UEA)는 애노드, 캐소드 및 애노드와 캐소드 사이의 전해질을 포함한다. 일 예에서는, 수소 가스가 애노드에 공급되고 공기 또는 순수 산소가 캐소드에 공급된다. 그러나 다른 유형의 연료와 산화제가 사용될 수 있다고 인정된다. 애노드에서는 애노드 촉매에 의해 수소 분자가 양자(H+)와 전자(e-)로 분열된다. 양자가 전해질을 통해 캐소드로 이동하는 한편, 전자가 외부 회로를 통해 캐소드로 이동하여 전기가 생산된다. 캐소드에서는 캐소드 촉매에 의해 산소 분자가 애노드로부터의 양자 및 전자와 반응하여 물을 형성하는데, 물은 시스템으로부터 제거된다.
애노드 촉매와 캐소드 촉매는 일반적으로 담지된 백금 원자를 포함한다. 백금은 고가의 귀금속이다. 제조 원가를 낮추기 위해 캐소드의 백금 로딩량을 저감하고자 하는 많은 연구가 수행되었다. 또한 연료 전지의 효율을 향상시키기 위해 백금 산소 환원 캐소드의 산소 환원의 반응 속도를 향상시키고 전위 손실을 저감하고자 하는 연구가 수행되었다.
연료 전지에 사용되는 촉매층은 촉매 나노입자와 퍼플루오로술폰산(PFSA) 이오노머를 포함한다. 촉매 나노입자는 팔라듐 또는 팔라듐 합금 코어와, 팔라듐 또는 팔라듐 합금 코어의 외부 표면상에 원자형태 박층(atomically thin layer)의 백금을 갖는다. PFSA 이오노머는 약 830 이상의 당량(equivalent weight)을 가진다. 단위화 전극 조립체도 설명된다.
도 1은 촉매층을 가지는 연료 전지 반복 유닛의 사시도이다.
도 2a는 이오노머와 코어-쉘 촉매 나노입자를 가지는 도 1의 촉매층의 확대사시도이다.
도 2b는 도 2a의 하나의 코어-쉘 촉매 나노입자의 확대단면도이다.
도 3은 도 2a의 촉매층을 형성하는 방법을 도시한다.
도 4는 상이한 당량의 이오노머와 상이한 팔라듐 도핑 레벨을 가지는 세 개의 전극에 대한 0.5 V에서의 Koutecky-Levich 좌표이다.
도 5는 상이한 당량의 이오노머와 상이한 팔라듐 도핑 레벨을 가지는 세 개의 전극에 대한 850 mV에서의 Koutecky-Levich 좌표이다.
830 이상의 당량을 갖는 퍼플루오르술폰산(RFSA) 이오노머와 코어-쉘 촉매 나노입자를 포함하는 연료 전지용 촉매층이 본 명세서에서 설명된다. 코어-쉘 촉매 나노입자 구조는 산소 환원에 대한 향상된 활성을 가지며 백금 사용량을 저감한다는 이유로 연료 전지의 촉매층에 사용하기 위해 연구 중에 있다. 코어-쉘 촉매 나노입자의 코어는 팔라듐 또는 팔라듐 합금으로 형성되고 쉘은 백금 또는 백금 합금으로 형성된다. 코어-쉘 촉매는 팔라듐 용해를 겪은 후 막(membrane)으로 전환된다. 팔라듐은 0.8 볼트(V)를 상회하는 전위(본 명세서에 설명되는 모든 전위는 수소를 기준으로 함)에서 용이하게 용해되며, 백금 쉘의 결함은 연료 전지의 사용 중에 팔라듐 코어를 노출하게 된다. 이오노머의 물성은 팔라듐 이온이 양자와 교환되어 촉매 입자를 둘러싸는 이오노머로 전환될 때 변화한다. 더 상세히 후술되는 바와 같이, 단위화 전극 조립체(UEA)에 사용되는 이오노머는 팔라듐으로 오염될 때 물성 변화를 거의 또는 전혀 나타내지 않았다.
연료 전지는 하나 이상의 연료 전지 반복 유닛을 사용하여 화학 에너지를 전기 에너지로 변환한다. 도 1은 (애노드 촉매층(CL)(14), 전해질(16), 캐소드 촉매층(CL)(18), 애노드 가스 확산층(GDL)(20) 및 캐소드 가스 확산층(GDL)(22)을 가지는) 단위화 전극 조립체(UEA)(12), 애노드 유동장(24) 및 캐소드 유동장(26)을 포함하는 일 예시적인 연료 전지 반복 유닛(10)의 사시도를 도시한다. 연료 전지 반복 유닛(10)은 애노드 유동장(24)과 캐소드 유동장(26)에 인접한 냉각제 유동장을 가질 수 있다. 도 1에는 냉각제 유동장이 도시되어 있지 않다.
애노드 GDL(20)은 애노드 유동장(24)에 대면하고 캐소드 GDL(22)은 캐소드 유동장(26)에 대면한다. 애노드 CL(14)은 애노드 GDL(20)과 전해질(16) 사이에 배치되고 캐소드 CL(18)은 캐소드 GDL(22)과 전해질(16) 사이에 배치된다. 연료 전지 반복 유닛(10)은 수소 연료(즉, 수소 가스)와 산소 산화제(즉, 산소 가스 또는 공기)를 수용하는 것으로서 설명될 것이다. 그러나 다른 연료와 산화제도 사용될 수 있다.
작동시, 애노드 GDL(20)은 애노드 유동장(24)을 통해 수소 가스(H2)를 받아들인다. 백금과 같은 촉매를 함유하는 애노드 CL(14)로 인해 수소 분자는 양자(H+)와 전자(e-)로 분열된다. 양자와 전자는 캐소드 CL(18)로 이동하는데, 이때 양자는 전해질(16)을 통해 캐소드 CL(18)로 이동하는 반면 전자는 외부 회로(28)를 통해 이동함으로써, 전력이 생산된다. 공기 또는 순수 산소(O2)는 캐소드 유동장(26)을 통해 캐소드 GDL(22)로 공급된다. 캐소드 CL(18)에서는 산소 분자가 애노드 CL(14)로부터의 양자 및 전자와 반응하여 물(H2O)을 형성하는데, 물은 초과열과 함께 연료 전지(10)에서 방출된다.
전해질(16)은 애노드 CL(14)과 캐소드 CL(18) 사이에 배치된다. 전해질(16)은 양자와 물의 이동은 허용하지만 전자를 전도하지는 않는다. 애노드 CL(14)로부터의 양자와 물은 전해질(16)을 통해 캐소드 CL(18)로 이동할 수 있다. 일 실시예에서, 전해질(16)은 미국 E.I. Dupont에서 판매하는 Nafion®과 같은 퍼플루오로술폰산(PFSA) 함유 폴리머 또는 이오노머이다. PFSA 폴리머는 술포네이트기가 짧은 플루오로카본 측쇄에 부착된 플루오로카본 백본으로 구성된다. 다른 실시예에서, 전해질(16)은 탄화수소계 퍼술폰산(persulfonic acid)이다.
애노드 CL(14)은 전해질(16)의 애노드측에 인접한다. 애노드 CL(14)은 연료(즉, 수소)의 전기화학적 산화를 촉진하는 촉매를 포함한다. 예시적인 애노드 CL(14)용 촉매로는 탄소 담지 백금 원자와, 캐소드 CL(18)과 관련하여 더 자세히 후술되는 코어-쉘 촉매 나노입자가 있다.
캐소드 CL(18)은 전해질(16)의 캐소드측에 인접하며 애노드 CL(14)의 대향측에 위치한다. 캐소드 CL(18)은 더 자세히 후술되는 코어-쉘 촉매 나노입자를 포함한다. 캐소드 CL(18)의 코어-쉘 촉매 나노입자는 산화제(즉, 산소)의 전기화학적 환원을 촉진한다. 코어-쉘 촉매 나노입자는 이전의 탄소 담지 백금 촉매에 비해 산소 환원에 대한 향상된 활성을 가진다. 또한 얇은 백금층만이 코어-쉘 촉매 나노입자의 외면에 사용되기 때문에 코어-쉘 구조는 백금의 사용량을 저감하며, 따라서 재료비를 저감한다. 또한 코어는 팔라듐과 같은 저렴한 금속을 포함한다.
도 2a는 (코어-쉘 촉매 나노입자(32)와 촉매 담지체(34)를 가지는) 촉매(30)와 이오노머(36)를 포함하는 도 1의 캐소드 CL(18)의 확대도이다. 캐소드 CL(18)의 이오노머(36)는 촉매(30)와 접촉하여 코어-쉘 나노입자(32)가 전역에 미세 분산된 층을 형성한다. 캐소드 CL(18)은 촉매 담지체(34), 이오노머(36) 및 코어-쉘 촉매 나노입자(32)의 매트릭스이다. 매트릭스는 전자, 양자, 물 및 반응제가 매트릭스를 통과할 수 있도록 한다. 촉매 담지체는 또한 유효 표면적을 증가시킨다.
캐소드 CL(18)의 촉매(30)는 산화제의 전기화학적 환원을 촉진한다. 도 2a에 도시된 바와 같이, 촉매(30)는 촉매 담지체(34)에 의해 담지되거나 촉매 담지체 상에 배치되는 코어-쉘 촉매 나노입자(32)를 포함한다. 촉매 담지체(34)는 카본 블랙 담지체와 같은 전기 도전성 담지체이다. 코어-쉘 촉매 나노입자(32)는 촉매 담지체(34) 상에 분포한다. 코어-쉘 촉매 나노입자(32)은 나노입자이다. 일 실시예에서, 코어-쉘 촉매 나노입자(32)는 약 2 nm와 약 50 nm 사이의 직경을 가진다.
캐소드 CL(18)에서, 코어-쉘 촉매 나노입자(32)는 산화 환원 반응: O2 + 4H+ + 4e- → 2H2O에 따른 물의 형성을 촉진하다.
캐소드 CL(18)의 이오노머(36)는 이온 전도체 레벨 상의 코어-쉘 촉매 나노입자(32)에 전해질(16)을 연결한다. 도 2에 도시된 바와 같이, 이노노머(36)는 촉매(30)의 촉매 담지체(34) 사이에 비계(scaffolding) 구조물을 생성한다. 이오노머(36)는 가스가 캐소드 CL(18)을 통과할 수 있도록 하고 물이 캐소드 CL(18)로부터 제거될 수 있도록 하는 다공성 구조물을 생성한다. 이오노머(36)는 또한 전해질(16)로부터의 양자를 코어-쉘 촉매 나노입자(32) 상의 활성 촉매 부위로 이송한다. 애노드 CL(14)는 캐소드 CL(18)과 동일한 구조를 갖는다.
코어-쉘 촉매 나노입자(32)의 확대 단면도가 도 2b에 도시되어 있다. 코어-쉘 촉매 나노입자(32)는 팔라듐 코어(38)와 백금 쉘(40)로 형성된다. 팔라듐 코어(38)는 팔라듐 또는 팔라듐 합금으로부터 형성된다. 백금 쉘(40)은 팔라듐 코어(38)를 둘러싸거나 캡슐화한다. 백금 쉘(40)은 팔라듐 코어(38)의 외부 표면을 피복하는 원자형태 박층의 백금 또는 백금 합금 원자이다. 일 실시예에서, 백금 쉘(40)은 백금 원자의 단층, 이중층 또는 삼중층이다. 도 2b에서는 코어-쉘 촉매 나노입자(32)가 대체로 구체(spherical)로서 도시되어 있긴 하지만, 코어-쉘 촉매 나노입자(32)는 임의의 공지된 형상을 가질 수 있다. 예컨대 코어-쉘 촉매 나노입자(32)는 6-8면체(cubo-octahedron)형상을 가질 수 있다.
백금 쉘(40)의 백금 원자는 팔라듐 코어(38)의 외면을 실질적으로 피복하거나 캡슐화한다. 그러나 백금 쉘(40)의 결함(즉, 핀홀)은 팔라듐 코어(38)의 선택부를 주위 환경에 노출한다. UEA(12)에 이로운 pH 범위에서, 팔라듐은 백금보다 용해되기 쉽다. 따라서 팔라듐 코어(38)를 노출하는 백금 쉘(40)의 결함은 팔라듐의 용해를 초래할 수 있다. 팔라듐의 용해는 확산 또는 위치 교환(site exchange)에 의해 팔라듐이 백금 쉘(40)로 이동함으로써 초래될 수도 있다.
팔라듐 코어(38)로부터의 팔라듐 이온은 이오노머(36)의 양자와 교환될 수 있다. 이런 교환은 이오노머(36)의 물성을 변화시킨다. 양자가 팔라듐 이온으로 치환되면 이오노머(36)의 전도성이 저감된다. 양자의 치환은 또한 물과 용해된 가스의 수송성과 평형 농도를 변화시킬 수 있다. 가용 양자 농도의 저감은 산화 환원 반응의 속도를 늦출 수 있으며, 연료 전지의 과전위(overpotential)에 영향을 미치는 양자 농도 구배의 형성으로 이어질 수 있다.
도 2a의 캐소드 CL(18)에서, 이노노머(36)는 약 830 이상의 당량(EW)을 갖는 PFSA 폴리머이다. 다른 예에서, 이오노머(36)는 약 830과 약 1100 사이의 EW를 갖는 PFSA 폴리머이다. 추가 실시예에서, 이오노머(36)는 약 830과 약 1000 사이의 EW를 갖는 PFSA 폴리머이다. 또 다른 실시예에서, 이오노머(36)는 약 830과 약 900 사이의 EW를 갖는 PFSA 폴리머이다. EW는 1 몰의 이온기를 함유하는 분자의 중량이며 폴리머의 이온 함량을 나타낸다. 보다 구체적으로, 낮은 EW의 이오노머는 높은 EW의 이오노머에 비해 높은 이온 함량을 가지며, 따라서 전도성이 보다 높다. 약 830 이상의 EW를 갖는 PFSA 이오노머의 낮은 전도도에도 불구하고, 실험 결과는 예상외로 팔라듐의 존재시 약 830 이상의 EW를 갖는 PFSA 이오노머가 보다 낮은 EW를 갖는 이오노머에 비해 우월한 수송성을 가진다는 것을 보여주었다.
더 자세히 후술되는 회전 디스크 전극 실시예에서는, 회전 디스크 전극(RDE) 상에 필름을 형성하였다. 필름은 탄소 담지 백금 원자와 PFSA 이오노머를 포함하였다. 필름은 상이한 EW를 갖는 PFSA 이오노머를 함유하였다. 이어서 각각의 RDE를 다양한 양의 팔라듐으로 도핑하여 팔라듐 오염을 시뮬레이트하였다. 실험은 팔라듐 이온 오염이 높은 EW의 이오노머의 물성에 거의 또는 전혀 영향을 미치지 않는 반면 낮은 EW의 이오노머의 수송성에는 큰 영향을 미친다는 것을 보여준다. 이 결과는 이오노머(36)가 예컨대 750과 같은 보다 낮은 EW를 가지는 PFSA 폴리머의 경우에 비해 이오노머(36)가 약 850보다 높은 EW를 가지는 PFSA 폴리머인 경우에 캐소드 CL(18)의 팔라듐 용해가 이오노머(36)의 물성에 덜 영향을 끼친다는 것을 예증하는 것이다.
캐소드 CL(18)은 다양한 기술을 사용하여 형성될 수 있다. 예시적인 제조 방법(42)이 도 5에 도시되어 있는데, 이는 촉매 잉크를 제조하는 단계(단계 44)와, 촉매 잉크를 혼합하는 단계(단계 46)와, 촉매층을 형성하는 단계(단계 48)를 포함한다. 촉매 잉크는 촉매 입자와 액체 형태의 이오노머(즉, 이소프로필 알코올, 물 등의 용매에 용해되거나 분산된 이오노머)를 혼합함으로서 단계 44에서 형성된다. 이오노머는 약 830 이상의 EW를 가지는 PFSA 이오노머이다. 일 실시예에서, 이오노머는 미국 E.I. DuPont에서 판매하는 Nafion®이다. 전술한 바와 같이, 촉매 입자는 탄소 담지 코어-쉘 촉매 나노입자일 수 있다.
다음으로 촉매 잉크가 침습 혼합 절차를 사용하여 혼합되어 분산액을 형성한다(단계 46). 이오노머와 촉매 입자가 균질한 혼합물을 확실히 형성하도록 충분한 혼합이 이루어져야 한다. 예시적인 혼합 기술로는 볼 밀링, 초음파 처리 및 전단 혼합이 있다.
단계 48에서는, 촉매층이 촉매 잉크에 의해 형성된다. 일 실시예에서, 촉매층은 분무 또는 메이어 로드 코팅과 같은 도포 방법에 의해 릴리스 필름 상에 촉매층을 형성하는 전사(decal transfer) 공정에 의해 형성될 수 있다. 이어서 촉매층은 열간 프레스에 의해 UEA 상에 전사된다. 전사 공정에 적절한 예시적인 릴리스 필름으로는 미국 E.I. DuPont에서 판매하는 Teflon®과 Kapton®, 그리고 Teflon® 유도 기재가 있다. 다른 실시예에서, 촉매층은 촉매 잉크를 UEA 상에 직접 도포함으로써 형성된다. 예시적인 직접 증착용 도포 방법으로는 분무와 메이어 로드 코팅이 있다.
하기 실시예에 도시된 바와 같이, 팔라듐은 약 830보다 높은 EW를 가지는 이오노머의 물성에 거의 또는 전혀 영향을 미치지 않는다. 높은 EW의 이오노머의 낮은 전도도에도 불구하고, 이들 이오노머는 낮은 EW의 이오노머에 비해 우월한 수송성을 나타낸다. 기술분야의 기술자라면 본 발명의 범위를 벗어나지 않는 다양한 변경과 변형이 분명하게 파악할 수 있기 때문에, 하기 실시예는 단지 예로서 제시되도록 의도된 것이다.
회전 디스크 전극 실시예
0.05 ㎛의 알루미나를 사용하여 유리질 탄소 전극을 연마한 후, 미량의 금속을 제거하기 위해 세정 및 초음파 처리를 가하였다. 케첸(Ketjen) 블랙 카본 상의 50% 백금 15 mg, 밀리포어수(Millipore water) 13 mL, 농축 질산 2.5 μL, 이소프로판올 3 mL 및 백금 대 이오노머 고체의 비가 1:1이 되도록 하는 표 1의 적정량의 이오노머를 사용하여 잉크를 제조하였다. 잉크가 잘 혼합되어 개별 입자가 보이지 않을 때까지 잉크에 초음파 처리를 가했다. 이어서 잉크 10 μL을 깨끗한 유리질 탄소 전극 상에 증착한 후 램프를 쬐어 건조하였다.
이어서 Pd(NO3)2 용액에 전극을 침지함으로써 전극을 도핑하였다. 산소 기포를 갖는 0.1N H2SO4 내에 배치된 적정 농도의 Pd(NO3)2 30 mL에 두 시간 동안 전극을 침지하였다. 표 1의 팔라듐 도핑 레벨을 달성하기 위해 이오노머와 교환되어야 하는 이온의 비율을 계산하여 Pd(NO3)2 농도를 결정하였다. 하기 계산식에 따라 도핑 레벨(%)을 계산하였다. (팔라듐 양이온의 수×팔라듐의 전하(+2))/이오노머의 양자의 수×양자의 전하(+1))×100.
전극 EW Pd 도핑 레벨(%)
A 1100 0
B 1100 200
C 830 0
D 830 500
E 750 0
F 750 500
G 750 50
표 1에 도시된 바와 같이, 세 가지의 상이한 EW를 갖는 이오노머(1100, 830, 750)를 대상으로 깨끗한 미도핑 필름 및 도핑 필름으로 나누어 RDE 실험을 완료하였다. 각각의 실험에서, Ag/AgCl 전극을 기준 전극으로 사용하고 백금 거즈를 상대 전극으로 사용하였다. 각각의 실험은 0.1N H2SO4에서 실시되었으며 실험 전에 최소 20분 동안 전지에 산소를 유동시켰다. 10 mV/s 및 1600 RPM에서 1.05 VRHE에서 0.1 VRHE까지 두 개의 사이클을 기록하였다. 이를 900, 600, 400 및 200 RPM에 대해서도 반복하였다.
도 4는 표 1에 명시된 전극 A-G에 대한 0.5 V에서의 Koutecky-Levich(KL) 좌표를 도시하는데, 여기서 ω는 RPM 단위의 회전 속도이고 J는 mA/㎠ 단위의 전류 밀도이다. 모든 데이터 샘플의 기울기는 동일하며 액체 전해질을 통한 수송 특성을 나타낸다. 전극 F와 전극 G에 대한 실험 데이터는 다른 데이터 세트로부터 수직으로 변위되어 있다. 전극 F와 G는 750 EW의 이노노머를 함유하는 팔라듐 도핑 전극이었다. 박막 RDE 샘플의 경우, 수직축 기준 절편값이 클수록 담지된 촉매를 피복하는 이오노머 필름을 통한 반응 손실이 보다 크거나 수송 손실이 보다 크다는 것을 가리킨다. 따라서 팔라듐 오염은 750의 EW를 갖는 이오노머(즉, 전극 F와 전극 G)의 수송성에 큰 영향을 미치는 반면, 예컨대 830(즉, 전극 D) 또는 1100(즉, 전극 B)과 같은 높은 EW를 갖는 이오노머의 물성에는 거의 또는 전혀 영향을 미치지 않는다. 또한 750 EW 이오노머 전극(즉, 전극 F와 전극 G)의 수직 변위의 변화량은 도핑의 레벨에 비례한다. 보다 구체적으로, 500% 팔라듐 도핑된 전극 G는 50% 팔라듐 도핑된 전극 F에 비해 대부분의 데이터 지점에서 더 크게 변위된다. 따라서 팔라듐 오염도가 높을수록 EW가 낮은(즉, 750 이하의 EW를 가지는) 이오노머의 수송 손실이 커지게 된다.
도 4는 0.5 V에서 이오노머 필름을 통한 확산 손실을 강조한다. 반응 과전위는 0.5 V에서 상당히 커야 하는데, 이는 이오노머 필름을 통한 산소 확산의 한계 전류보다 훨씬 큰 고유 반응 전류를 초래하게 된다.
도 5는 850 mV에서 전극 A 내지 G에 대한 KL 좌표를 도시한다. 이 전위에서는 이오노머를 통한 확산 손실에 비해 반응 손실이 강조된다. 도 4의 결과와 유사하게, 전극 F와 전극 G는 다른 전극으로부터 수직으로 변위되어 있다. 여기서도 변위는 도핑의 레벨에 비례하는 것으로 나타난다. 이 전위에서, 보다 높은 EW를 갖는 이오노머를 함유하는 전극 B 및 전극 D에 비해 EW 750 이오노머를 함유하는 전극 F 및 전극 G 간의 현격한 차는 팔라듐에 의한 EW 750 이오노머의 양자의 치환이 산소 환원 반응의 고유 반응 속도에도 영향을 미친다는 것을 시사한다.
요컨대, 팔라듐 오염은 예컨대 저감된 전도도, 수송성의 변화 및 산소 환원 속도의 저감 등을 포함하지만 이에 한정되지는 않는 이오노머의 많은 물성을 변화시킬 수 있다. 도 4와 도 5는 팔라듐이 750의 EW를 가지는 이오노머로 형성되는 전극 또는 촉매층에 높은 수송 손실을 초래한다는 것을 보여준다. 이에 반해 팔라듐은 약 830 이상의 EW를 갖는 이오노머로 형성되는 전극의 산소 수송에는 부정적인 영향을 미치지 않는다.
위에서 검토한 바와 같이, 도 2a의 캐소드 CL(18)은 팔라듐 코어(38)와 백금 쉘(40)을 가지는 코어-쉘 촉매 나노입자(32)를 포함한다. 팔라듐의 용해는 0.8 V를 상회하는 전위에서 발생할 수 있으며, 따라서 팔라듐의 용해와 이오노머(36)로의 전환이 관심사가 된다. 위의 실험 데이터에 도시된 바와 같이, 약 830 이상의 EW를 가지는 이오노머(36)는 팔라듐 오염 후에도 거의 또는 전혀 수송 손실을 입지 않는다. 따라서 이오노머의 전도도를 증가시키기 위해 낮은 EW의 이오노머를 생성하는 데 집중된 최근의 연구와는 반대로, 팔라듐 오염의 부정적인 영향을 저감하기 위해 이오노머(36)는 약 830 이상의 EW를 가지는 PFSA 이오노머로 형성된다. 일 실시예에서, 이오노머(36)는 약 830 이상의 EW를 가진다. 다른 실시예에서, 이오노머(36)는 약 830과 약 1100 사이의 EW를 가진다. 다른 실시예에서, 이오노머(36)는 약 830과 1000 사이의 EW를 가진다. 또 다른 실시예에서, 이오노머(36)는 약 830과 약 900 사이의 EW를 가진다.
바람직한 실시형태를 참조하여 본 발명을 설명하긴 했지만 기술분야의 기술자라면 본 발명의 사상과 범위를 벗어나지 않고 형태 및 세부사항에 대한 변경이 시행될 수 있음을 알 수 있을 것이다.

Claims (13)

  1. 연료 전지에 사용되는 촉매층으로서,
    촉매 나노입자를 담지하는 촉매 담지체를 포함하는 촉매, 상기 촉매 담지체는 전기적으로 도전성을 띠고, 상기 촉매 나노입자는 팔라듐 또는 팔라듐 합금 코어와 상기 코어의 외부 표면 상의 백금 또는 백금 합금의 원자형태 박층을 가지는 것; 및
    상기 촉매 담지체 사이에 비계 구조물을 생성하고, 830 내지 900의 당량을 가지는 퍼플루오로술폰산(PFSA) 이오노머를 포함하는 촉매층.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 상기 원자형태의 박층은 백금 금속 원자의 단층, 이중층 또는 삼중층으로 이루어진 그룹에서 선택되는 촉매층.
  6. 제1항에 있어서, 상기 촉매 나노입자는 2 nm와 50 nm 사이의 직경을 가지는 촉매층
  7. 단위화 전극 조립체(UEA)이며,
    전극; 및
    상기 전극의 제1 면에 배치되는 촉매층을 포함하되, 상기 촉매층은:
    촉매 나노입자를 담지하는 촉매 담지체를 포함하는 촉매, 상기 촉매 담지체는 전기적으로 도전성을 띠고, 상기 촉매 나노입자는 팔라듐 또는 팔라듐 합금 코어 및 상기 코어를 캡슐화하는 백금 또는 백금 합금 쉘을 가지는 것; 및
    상기 촉매 담지체 사이에 비계구조를 생성하고, 830 내지 900의 당량을 가지는 퍼플루오로술폰산(PFSA) 이오노머를 포함하는 단위화 전극 조립체(UEA).
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제7항에 있어서, 상기 백금 또는 백금 합금은 상기 코어의 외부 표면 상의 원자형태의 박층인 단위화 전극 조립체(UEA).
  12. 제11항에 있어서, 상기 원자형태의 박층은 백금 금속 원자의 단층, 이중층 및 삼중층으로 이루어진 그룹에서 선택되는 단위화 전극 조립체(UEA).
  13. 제7항에 있어서, 상기 촉매 나노입자는 2 nm와 50 nm 사이의 직경을 가지는 단위화 전극 조립체(UEA).
KR1020137022741A 2011-03-11 2011-03-11 고당량 이오노머를 갖는 단위화 전극 조립체 KR101849818B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/028060 WO2012125138A1 (en) 2011-03-11 2011-03-11 Unitized electrode assembly with high equivalent weight ionomer

Publications (2)

Publication Number Publication Date
KR20140012074A KR20140012074A (ko) 2014-01-29
KR101849818B1 true KR101849818B1 (ko) 2018-04-17

Family

ID=46831005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137022741A KR101849818B1 (ko) 2011-03-11 2011-03-11 고당량 이오노머를 갖는 단위화 전극 조립체

Country Status (6)

Country Link
US (1) US10505197B2 (ko)
EP (1) EP2684239A4 (ko)
JP (1) JP5680770B2 (ko)
KR (1) KR101849818B1 (ko)
CN (1) CN103403936B (ko)
WO (1) WO2012125138A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158863B2 (en) 2018-10-17 2021-10-26 Hyundai Motor Company Catalyst composite for fuel cell and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724030B2 (ja) 2011-07-25 2015-05-27 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム 高電気化学的安定性及び高費用効率のコア−シェル触媒
KR20150080520A (ko) * 2012-10-22 2015-07-09 아우디 아게 비-백금 코어를 가지는 백금 합금 나노 촉매
JP6165878B2 (ja) 2012-12-21 2017-07-19 アウディ アクチェンゲゼルシャフトAudi Ag 電解質膜、分散体、および分散方法
WO2014098912A1 (en) 2012-12-21 2014-06-26 United Technologies Corporation Proton exchange material and method therefor
CN105637690B (zh) 2012-12-21 2018-06-22 奥迪股份公司 制备电解质材料的方法
GB2509916A (en) 2013-01-16 2014-07-23 Ilika Technologies Ltd A mixed metal oxide material of tantalum and titanium
GB201300810D0 (en) 2013-01-16 2013-02-27 Llika Technologies Ltd Composite Materials
GB2517394A (en) 2013-01-16 2015-02-25 Ilika Technologies Ltd Composite materials
WO2015088472A1 (en) * 2013-12-09 2015-06-18 Audi Ag Method of manufacturing a dry-laid fuel cell precursor substrate and a substrate
JP6206371B2 (ja) 2014-10-14 2017-10-04 トヨタ自動車株式会社 燃料電池用電極触媒層の製造方法
KR20220097006A (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 막-전극 어셈블리 및 이를 포함하는 연료 전지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525638A (ja) * 2004-12-22 2008-07-17 ブルックヘヴン サイエンス アソシエイツ 水素吸収により誘起されるパラジウム及びパラジウム合金粒子上への金属堆積

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
JPS6053059B2 (ja) 1978-07-11 1985-11-22 旭化成株式会社 改良された陽イオン交換膜の製法
US5463005A (en) 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
WO1995010541A1 (fr) 1993-10-12 1995-04-20 Asahi Kasei Kogyo Kabushiki Kaisha Copolymere de perfluorocarbone ayant des groupes fonctionnels et procede pour sa production
JP3334301B2 (ja) 1993-11-25 2002-10-15 日本メクトロン株式会社 フッ素樹脂基質と金属との接着剤
CA2233575A1 (en) 1995-10-06 1997-04-10 The Dow Chemical Company Flow field structures for membrane electrode assemblies of fuel cells
US5702755A (en) 1995-11-06 1997-12-30 The Dow Chemical Company Process for preparing a membrane/electrode assembly
US5882810A (en) * 1996-03-08 1999-03-16 The Dow Chemicalcompany Active layer for membrane electrode assembly
EP0900249B1 (en) 1996-04-30 2003-10-22 W.L. Gore & Associates, Inc. Integral multi-layered ion-exchange composite membranes
JP3714766B2 (ja) 1997-04-04 2005-11-09 旭化成ケミカルズ株式会社 固体高分子型燃料電池用電極及び膜・電極接合体
JP3988206B2 (ja) 1997-05-15 2007-10-10 トヨタ自動車株式会社 燃料電池装置
JP3578307B2 (ja) 1997-06-06 2004-10-20 株式会社豊田中央研究所 固体電解質複合膜
US6294612B1 (en) 1998-02-02 2001-09-25 E. I. Du Pont De Nemours And Company Highly fluorinated ion exchange/nonfunctional polymer blends
US6232264B1 (en) 1998-06-18 2001-05-15 Vanderbilt University Polymetallic precursors and compositions and methods for making supported polymetallic nanocomposites
JP3307891B2 (ja) 1998-12-22 2002-07-24 株式会社豊田中央研究所 高耐熱性高分子電解質及びこれを用いた電気化学デバイス
US6277512B1 (en) 1999-06-18 2001-08-21 3M Innovative Properties Company Polymer electrolyte membranes from mixed dispersions
CA2384202A1 (en) 1999-10-12 2001-04-19 Millipore Corporation Fluorocarbon polymeric compositions having hydrophilic functional groups and process
US6733914B1 (en) 2000-02-18 2004-05-11 Ion Power, Inc. Fuel cell membranes
JP2002042825A (ja) 2000-05-18 2002-02-08 Matsushita Electric Ind Co Ltd 燃料電池用電極触媒、その製造方法および燃料電池
DE10039643A1 (de) * 2000-08-14 2002-02-28 Max Planck Gesellschaft Funktionalisierte Perylentetracarbonsäurediimide
JP4815672B2 (ja) 2001-01-22 2011-11-16 旭硝子株式会社 含フッ素スルホンイミドポリマーの製造方法
US7112363B2 (en) 2001-01-31 2006-09-26 Entegris, Inc. Porous or non-porous substrate coated with a polymeric composition having hydrophilic functional groups and process
JP3630306B2 (ja) 2001-02-23 2005-03-16 株式会社豊田中央研究所 多官能化電解質及びこれを用いた電気化学デバイス並びに多官能化電解質の製造方法
US20020160272A1 (en) 2001-02-23 2002-10-31 Kabushiki Kaisha Toyota Chuo Process for producing a modified electrolyte and the modified electrolyte
US6689501B2 (en) 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
US6542973B2 (en) * 2001-07-03 2003-04-01 Ibm Corporation Integrated redundancy architecture system for an embedded DRAM
DE60228303D1 (de) 2001-10-15 2008-09-25 Du Pont Festpolymermembran für eine brennstoffzelle mit darin eingebettetem polyvinylamin für verringerte methanoldurchlässigkeit
JP2003157857A (ja) 2001-11-20 2003-05-30 Toyota Central Res & Dev Lab Inc 燃料電池用電極触媒体、それを用いた燃料電池用空気極、およびその触媒活性評価方法
US7094851B2 (en) 2001-12-06 2006-08-22 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
JP2003246906A (ja) 2002-02-25 2003-09-05 Asahi Kasei Corp フッ素系共重合体含有組成物
US7740974B2 (en) 2002-04-04 2010-06-22 The Board Of Trustees Of The University Of Illinois Formic acid fuel cells and catalysts
US7785728B2 (en) 2002-04-04 2010-08-31 The Board Of Trustees Of The University Of Illinois Palladium-based electrocatalysts and fuel cells employing such electrocatalysts
US6996311B1 (en) * 2002-11-07 2006-02-07 Pentax Corporation Optical communication device
KR100534658B1 (ko) 2003-09-24 2005-12-08 한국과학기술원 메탄올 투과도가 감소된 직접 메탄올 연료전지용 고분자전해질 조성물
JP5082187B2 (ja) 2003-10-06 2012-11-28 日産自動車株式会社 固体高分子型燃料電池用電極触媒粒子の製造方法
US7285349B2 (en) 2003-10-30 2007-10-23 3M Innovative Properties Company Polymer electrolyte membrane and method of making
CN1973391A (zh) 2003-11-12 2007-05-30 伊利诺伊大学受托管理委员会 甲酸燃料电池和催化剂
US7060756B2 (en) 2003-11-24 2006-06-13 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
GB0400166D0 (en) 2004-01-06 2004-02-11 Ic Innovations Ltd Catalyst
JP4334375B2 (ja) 2004-03-08 2009-09-30 旭化成株式会社 N−アルキルビススルホニルイミド基含有ビニルモノマー
JP2005235706A (ja) 2004-02-23 2005-09-02 Aisin Seiki Co Ltd 固体高分子型燃料電池用電極
JP2005272970A (ja) 2004-03-25 2005-10-06 Kyushu Univ 合金粒子とその製造方法
JP2005353581A (ja) 2004-05-10 2005-12-22 Toray Ind Inc 電解質膜および膜電極複合体ならびに高分子電解質型燃料電池
JPWO2005120703A1 (ja) 2004-06-10 2008-04-03 住友電気工業株式会社 金属触媒とその製造方法
US20060093885A1 (en) 2004-08-20 2006-05-04 Krusic Paul J Compositions containing functionalized carbon materials
KR100647287B1 (ko) 2004-08-31 2006-11-23 삼성에스디아이 주식회사 폴리머 전해질막 및 이를 채용한 연료전지
US8642228B2 (en) 2004-08-31 2014-02-04 Samsung Sdi Co., Ltd. Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane
KR100723389B1 (ko) 2005-12-21 2007-05-30 삼성에스디아이 주식회사 폴리머 전해질막 및 이를 채용한 연료전지
US7855021B2 (en) 2004-12-22 2010-12-21 Brookhaven Science Associates, Llc Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof
US7691780B2 (en) * 2004-12-22 2010-04-06 Brookhaven Science Associates, Llc Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
JP4265561B2 (ja) 2005-04-04 2009-05-20 株式会社デンソー 自動車の排ガス浄化用触媒体
JP5323478B2 (ja) 2005-06-27 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物
EP1911118B1 (en) 2005-07-15 2014-03-05 Cymbet Corporation Thin-film batteries with soft and hard electrolyte layers
US20090117257A1 (en) 2005-09-13 2009-05-07 University Of South Carolina Catalysts for Fuel Cell Applications Using Electroless Deposition
WO2008010824A2 (en) 2005-09-13 2008-01-24 University Of South Carolina Improved catalysts for fuel cell applications using electroless deposition
KR20080047606A (ko) 2005-09-16 2008-05-29 스미또모 가가꾸 가부시끼가이샤 고분자 전해질, 그리고, 이것을 사용한 고분자 전해질막,막-전극 접합체 및 연료 전지
EP1954393B1 (en) 2005-11-14 2019-10-16 Agency for Science, Technology and Research Highly dispersed metal calatysts
US20070128425A1 (en) 2005-12-07 2007-06-07 3M Innovative Properties Company Reinforced ion-conductive membranes
JP2007157645A (ja) 2005-12-08 2007-06-21 Canon Inc 燃料電池用膜電極接合体、その製造方法および燃料電池
TW200742157A (en) 2005-12-21 2007-11-01 Du Pont Membrane electrode assembly for organic/air fuel cells
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
JP4719796B2 (ja) 2006-03-14 2011-07-06 株式会社トクヤマ 直接液体型燃料電池用隔膜
KR20070095055A (ko) 2006-03-20 2007-09-28 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료 전지 시스템
US20070281198A1 (en) 2006-06-01 2007-12-06 Lousenberg Robert D Membranes electrode assemblies prepared from fluoropolymer dispersions
US20070282023A1 (en) 2006-06-01 2007-12-06 Lousenberg Robert D Fluoropolymer dispersions and membranes
JP2007335265A (ja) 2006-06-15 2007-12-27 Kaneka Corp 高分子電解質膜の製造方法、並びに当該製造方法によって製造された高分子電解質膜およびその利用
GB0614909D0 (en) 2006-07-27 2006-09-06 Johnson Matthey Plc Catalyst
JP2008034216A (ja) 2006-07-28 2008-02-14 Mitsubishi Heavy Ind Ltd 燃料電池用電極触媒
EP2059360B1 (en) 2006-08-30 2019-04-17 Umicore AG & Co. KG Core/shell-type catalyst particles and methods for their preparation
KR100821789B1 (ko) 2006-10-31 2008-04-14 현대자동차주식회사 고강도 복합막 및 이를 이용한 막-전극 접합체
CN100442578C (zh) 2006-12-06 2008-12-10 厦门大学 燃料电池纳米电催化剂及其制备方法
JP2008186798A (ja) * 2007-01-31 2008-08-14 Nissan Motor Co Ltd 電解質膜−電極接合体
JP2008210572A (ja) 2007-02-23 2008-09-11 Nissan Motor Co Ltd 電極触媒およびそれを用いた発電システム
US20080206616A1 (en) 2007-02-27 2008-08-28 Cabot Corporation Catalyst coated membranes and sprayable inks and processes for forming same
US20090026944A1 (en) 2007-07-24 2009-01-29 Riviere-Cazaux Lionel J Field emission cathode structure and method of making the same
US8088491B2 (en) 2007-08-20 2012-01-03 Huey-Shen Wu Fluorochloro ionomers
JP5046383B2 (ja) 2007-08-24 2012-10-10 トヨタ自動車株式会社 燃料電池及び燃料電池の製造方法
US8617770B2 (en) 2007-09-12 2013-12-31 GM Global Technology Operations LLC Electrodes containing oxygen evolution reaction catalysts
US20100285392A1 (en) 2007-09-28 2010-11-11 Drexel University Electrocatalysts for fuel cells
CN101318131A (zh) 2008-02-04 2008-12-10 中国科学院长春应用化学研究所 直接甲酸燃料电池碳载钯纳米催化剂制备方法
WO2009116630A1 (ja) 2008-03-21 2009-09-24 旭硝子株式会社 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池
US20090269644A1 (en) 2008-04-24 2009-10-29 3M Innovative Properties Company Proton conducting materials
US8389175B2 (en) 2008-05-16 2013-03-05 Utc Power Corporation Fuel cell having a stabilized cathode catalyst
WO2009139748A1 (en) 2008-05-16 2009-11-19 Utc Power Corporation Method of producing a stabilized platinum catalyst
US8304365B2 (en) 2008-05-16 2012-11-06 Utc Power Corporation Stabilized platinum catalyst
JP2010089031A (ja) 2008-10-09 2010-04-22 Jgc Catalysts & Chemicals Ltd 金属粒子担持触媒およびその製造方法
JP2010092799A (ja) 2008-10-10 2010-04-22 Nippon Shokubai Co Ltd 固体高分子型燃料電池用電極触媒
US20100099012A1 (en) 2008-10-17 2010-04-22 Brookhaven Science Associates, Llc Electrocatalyst Synthesized by Depositing a Contiguous Metal Adlayer on Transition Metal Nanostructures
JP5497049B2 (ja) 2008-10-24 2014-05-21 ナノシス・インク. 燃料電池用電気化学的触媒
JP5482095B2 (ja) 2008-10-30 2014-04-23 ソニー株式会社 白金含有触媒を含有する電極及びその製造方法、並びに、電気化学デバイス
FI124466B (fi) 2008-11-19 2014-09-15 Canatu Oy Kiteisiä pintarakenteita ja menetelmiä niiden valmistamiseksi
JP2010129397A (ja) 2008-11-27 2010-06-10 Nissan Motor Co Ltd 燃料電池用電極
US20100216632A1 (en) 2009-02-25 2010-08-26 Brookhaven Science Associates, Llc High Stability, Self-Protecting Electrocatalyst Particles
JP5443029B2 (ja) * 2009-03-18 2014-03-19 トヨタ自動車株式会社 コア‐シェル粒子の製造方法
EP2409351A1 (en) 2009-03-18 2012-01-25 UTC Power Corporation Method of forming a ternary alloy catalyst for fuel cell
US20120034550A1 (en) 2009-04-21 2012-02-09 Washington University In St. Louis Palladium-Platinum Nanostructures And Methods For Their Preparation
JP2011137216A (ja) 2009-04-23 2011-07-14 Toyota Motor Corp 金属粒子及びその製造方法
CN101875010A (zh) 2009-04-29 2010-11-03 中国科学院福建物质结构研究所 一种钯纳米颗粒催化剂及其制备方法和用途
WO2010132050A1 (en) 2009-05-13 2010-11-18 Utc Power Corporation Pem fuel cell catalyst and diffusion layer structure for increased water storage capacity and improved cold start performance
JP5353437B2 (ja) 2009-05-18 2013-11-27 トヨタ自動車株式会社 膜電極接合体の製造方法、燃料電池の製造方法
US8221934B2 (en) 2009-05-27 2012-07-17 GM Global Technology Operations LLC Method to enhance the durability of conductive carbon coating of PEM fuel cell bipolar plates
JP5456561B2 (ja) 2009-06-11 2014-04-02 本田技研工業株式会社 酸化還元反応用合金触媒
JP5540681B2 (ja) 2009-07-14 2014-07-02 株式会社豊田中央研究所 改質電解質及びその製造方法、並びに、改質剤
JP2011089143A (ja) 2009-10-20 2011-05-06 Japan Advanced Institute Of Science & Technology Hokuriku 一元系及び二元系の立方体型金属ナノ粒子の製造方法
CN102039124B (zh) 2009-10-21 2012-11-21 国家纳米科学中心 铂诱导的金核/钯铂岛状合金壳结构纳米棒溶液及制法
JP2011134477A (ja) * 2009-12-22 2011-07-07 Shinshu Univ 燃料電池用電極触媒の製造方法
US20130133483A1 (en) 2010-03-08 2013-05-30 University Of Rochester Synthesis of Nanoparticles Using Reducing Gases
JP5672752B2 (ja) * 2010-04-07 2015-02-18 トヨタ自動車株式会社 カーボン担持コアシェル型触媒微粒子の製造方法、当該製造方法により得られるコアシェル型触媒微粒子を用いた触媒インクの製造方法
JP5516722B2 (ja) 2010-04-07 2014-06-11 トヨタ自動車株式会社 コアシェル型金属ナノ微粒子
JP5856145B2 (ja) 2010-04-16 2016-02-09 スリーエム イノベイティブ プロパティズ カンパニー プロトン伝導性材料
US20120251926A1 (en) 2010-04-29 2012-10-04 Ford Global Technologies, Llc Thin Film Catalyst With Heat-Extendable Wires
WO2011148466A1 (ja) 2010-05-25 2011-12-01 トヨタ自動車株式会社 燃料電池システム
JP2012041581A (ja) 2010-08-17 2012-03-01 Sony Corp コアシェル型微粒子及びこれを用いた機能デバイス
JP5758609B2 (ja) 2010-11-05 2015-08-05 公立大学法人大阪府立大学 コアシェル粒子の製造方法
US20130281555A1 (en) 2011-01-11 2013-10-24 Toyota Jidosha Kabushiki Kaisha Proton exchange material and method therefor
KR101905213B1 (ko) 2011-01-19 2018-10-05 아우디 아게 형상 제어된 팔라듐 및 팔라듐 합금 나노 입자 촉매
KR101556580B1 (ko) 2011-02-01 2015-10-01 도요타 지도샤(주) 촉매 미립자, 카본 담지 촉매 미립자, 촉매 합제, 및 전극의 각 제조 방법
JP5425825B2 (ja) 2011-02-17 2014-02-26 株式会社豊田中央研究所 置換メッキ前駆体の製造方法
WO2012144974A1 (en) 2011-04-18 2012-10-26 Utc Power Corporation Shape controlled core-shell catalysts
JP2012226970A (ja) 2011-04-19 2012-11-15 Toyota Central R&D Labs Inc 電解質
WO2012174463A1 (en) 2011-06-17 2012-12-20 E. I. Du Pont De Nemours And Company Improved composite polymer electrolyte membrane
KR20150080520A (ko) 2012-10-22 2015-07-09 아우디 아게 비-백금 코어를 가지는 백금 합금 나노 촉매
CN105637690B (zh) 2012-12-21 2018-06-22 奥迪股份公司 制备电解质材料的方法
JP6165878B2 (ja) 2012-12-21 2017-07-19 アウディ アクチェンゲゼルシャフトAudi Ag 電解質膜、分散体、および分散方法
WO2014098912A1 (en) 2012-12-21 2014-06-26 United Technologies Corporation Proton exchange material and method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525638A (ja) * 2004-12-22 2008-07-17 ブルックヘヴン サイエンス アソシエイツ 水素吸収により誘起されるパラジウム及びパラジウム合金粒子上への金属堆積

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158863B2 (en) 2018-10-17 2021-10-26 Hyundai Motor Company Catalyst composite for fuel cell and method of manufacturing the same

Also Published As

Publication number Publication date
JP5680770B2 (ja) 2015-03-04
EP2684239A4 (en) 2014-10-08
US20130330657A1 (en) 2013-12-12
JP2014511556A (ja) 2014-05-15
KR20140012074A (ko) 2014-01-29
CN103403936A (zh) 2013-11-20
EP2684239A1 (en) 2014-01-15
WO2012125138A1 (en) 2012-09-20
US10505197B2 (en) 2019-12-10
CN103403936B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
KR101849818B1 (ko) 고당량 이오노머를 갖는 단위화 전극 조립체
CN101171711B (zh) 燃料电池催化剂的载体
CN101384360A (zh) 用于电化学燃料电池的催化剂载体
JPH05258755A (ja) 高分子固体電解質型燃料電池の製造方法
CN112331858B (zh) 一种催化剂原位生长于有序结构微孔层上的燃料电池电极及膜电极的制备方法
JP5683721B2 (ja) 形状制御パラジウムおよびパラジウム合金ナノ粒子触媒
JP2004311225A (ja) 触媒粉体及び触媒電極、並びに電気化学デバイス
JPH09167622A (ja) 電極触媒およびそれを用いた固体高分子型燃料電池
JP3649061B2 (ja) 燃料電池用電極およびその製造方法
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
CN101124688A (zh) 用于燃料电池的电极催化剂和燃料电池
JP3035079B2 (ja) 固体高分子電解質型燃料電池
JP4992185B2 (ja) 燃料電池用触媒、膜電極複合体、および固体高分子電解質型燃料電池
JP2010161034A (ja) 金属触媒担持カーボン粉末の製造方法
CN104037427A (zh) 一种高活性核壳结构催化剂的制备方法及其应用
JP3049267B2 (ja) 高分子膜型燃料電池用の組成物、電極及び接合体
JP2006092957A (ja) 固体高分子形燃料電池用カソード触媒、該触媒を備えてなるカソード電極、該電極を有する固体高分子形燃料電池、ならびに該触媒の製造方法
JP4087651B2 (ja) 固体高分子電解質型燃料電池用電極触媒
Ornelas et al. Accelerated degradation tests for Pt/C catalysts in sulfuric acid
CN1221050C (zh) 直接甲醇燃料电池甲醇氧化电极制备方法
CN111446458A (zh) 用于燃料电池的阴极催化剂
JP2005276443A (ja) 固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体およびその製造方法
KR20070032343A (ko) 전기화학적 연료 전지용 촉매 지지체
JP2006004662A (ja) 燃料電池用触媒および燃料電池用触媒層の製造方法
JP3873387B2 (ja) 高分子電解質膜−反応部接合体の製造方法

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant