JPWO2014208404A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JPWO2014208404A1
JPWO2014208404A1 JP2015523996A JP2015523996A JPWO2014208404A1 JP WO2014208404 A1 JPWO2014208404 A1 JP WO2014208404A1 JP 2015523996 A JP2015523996 A JP 2015523996A JP 2015523996 A JP2015523996 A JP 2015523996A JP WO2014208404 A1 JPWO2014208404 A1 JP WO2014208404A1
Authority
JP
Japan
Prior art keywords
type
hydrogen
semiconductor device
ion implantation
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015523996A
Other languages
English (en)
Other versions
JP6037012B2 (ja
Inventor
勇一 小野澤
勇一 小野澤
博 瀧下
博 瀧下
吉村 尚
尚 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Application granted granted Critical
Publication of JP6037012B2 publication Critical patent/JP6037012B2/ja
Publication of JPWO2014208404A1 publication Critical patent/JPWO2014208404A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/2605Bombardment with radiation using natural radiation, e.g. alpha, beta or gamma radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

まず、n-型半導体基板のおもて面側におもて面素子構造を形成する。次に、電子線照射および炉アニールにより、n-型半導体基板全体に欠陥(12)を形成してキャリアライフタイムを調整する。次に、n-型半導体基板の裏面を研削してn-型半導体基板の厚さを薄くする。次に、n-型半導体基板の研削後の裏面側からn型不純物をイオン注入し、n-型半導体基板の裏面の表面層にn+型カソード層(4)を形成する。n-型半導体基板の裏面側から水素イオン注入(14)し、n-型半導体基板の裏面の表面層に、バルク基板の水素濃度以上の水素濃度を有する水素注入領域を形成する。次に、レーザーアニールによりn+型カソード層(4)を活性化させた後、カソード電極を形成する。これにより、漏れ電流の増加や製造ラインの汚染を生じさせることなく、安価に、局所的なキャリアライフタイム制御を行うことができる。

Description

この発明は、半導体装置および半導体装置の製造方法に関する。
電力用半導体装置に用いられる半導体装置として、400V、600V、1200V、1700V、3300Vまたはそれ以上の耐圧を有するダイオードやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)等が公知である。これらダイオードやIGBT等は、コンバータやインバータ等の電力変換装置に用いられており、低損失、低ノイズ、高破壊耐量などが求められるとともに、低コストであることが求められている。電力用半導体装置に用いられる半導体装置として、例えばpin(p−intrinsic−n)ダイオードを例に説明する。
図36は、従来のダイオードの要部を示す断面図である。図36に示すように、従来のダイオードにおいて、n-型ドリフト層101となるn-型半導体基板のおもて面側には、p型アノード層102が選択的に設けられ、p型アノード層102の周囲を囲む外周に終端耐圧構造を構成するp型層(不図示)が選択的に設けられている。n-型半導体基板の裏面側には、p型アノード層102に対して反対側の位置にn+型カソード層104が設けられている。符号103はアノード電極であり、符号105はカソード電極である。
また、従来のダイオードでは、n-型ドリフト層101内に重金属や欠陥を導入してn-型ドリフト層101のキャリアライフタイムを短くすることによって、逆回復時のキャリアの消滅を早めて逆回復損失を低減させている。このとき、n-型ドリフト層101のカソード側のキャリアライフタイムをアノード側のキャリアライフタイムよりも長くしたキャリアライフタイム分布とすることで、逆回復時の電流・電圧波形の発振や、電圧波形の発振によるサージ(過渡的な異常電圧によって生じる電流)が生じにくくソフトリカバリーな逆回復電流・電圧波形が得られる。
このようにキャリアライフタイムが制御された半導体装置として、シリコン基板の裏面から水素イオンを照射したときにドリフト領域内に形成された欠陥が基板おもて面からドリフト領域の中間深さより深い位置にピークを有し、基板おもて面からドリフト領域の中間深さより深い位置におけるキャリアの再結合が促進されることで、キャリアのライフタイム制御機能を実現した装置が提案されている(例えば、下記特許文献1(第0037段落)参照。)。
また、別の装置として、n-型ドリフト層の、p型アノード層とn-型ドリフト層との間のpn接合近傍のキャリアのライフタイム制御、および、n-型ドリフト層とn+型カソード層との間のn-+接合近傍のキャリアのライフタイム制御を、それぞれプロトンの両面照射またはプロトンと電子線との2重照射により制御し、pn接合近傍のキャリアライフタイムをn-+接合近傍のキャリアライフタイムよりも短く制御した装置が提案されている(例えば、下記特許文献2参照。)。
特開2011−049300号公報 特開平08−102545号公報
しかしながら、ヘリウム(He)やプロトンのような軽イオンをn-型ドリフト層のアノード側に選択的に照射し、軽イオンを照射した部分のキャリアライフタイムを短くすることによって上述した所定のキャリアライフタイム分布を得る方法があるが、この場合、軽イオン照射装置自体が高価であることにより製造コストの増大につながったり、漏れ電流が増加する虞がある。また、白金(Pt)などの重金属拡散によっても局所的にキャリアライフタイムを短くすることが可能であるが、逆回復電流−電圧(I−V)曲線の温度特性が負になるという問題や、重金属汚染防止のために製造ラインを専用化する必要があるという問題がある。
このような軽イオン照射や重金属拡散による問題を生じさせることなく、安価にキャリアのライフタイムを制御する方法として、電子線照射によって半導体基板内に欠陥を形成することによりキャリアのライフタイムを短くする方法がある。しかしながら、電子線照射では、加速エネルギーが高いため、電子線が半導体基板を通り抜けてしまい、一様なキャリアライフタイムとなってしまう。また、局所的にキャリアライフタイムを低くするために加速エネルギーを低くした場合、電子の質量が小さいことにより欠陥が形成されない虞がある。このように、電子線照射では、半導体基板内に選択的に欠陥を形成することが難しく、キャリアライフタイムを局所的に制御することは難しいという問題がある。
この発明は、上述した従来技術による問題点を解消するため、漏れ電流の増加や製造ラインの汚染を生じさせることなく、安価に、局所的なキャリアライフタイム制御を行うことができる半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、キャリアのライフタイムが局所的に制御された半導体装置の製造方法であって、次の特徴を有する。半導体基板のおもて面側から電子線を照射し、前記半導体基板を構成する原子の原子間結合を切断して未結合手を生じさせることにより前記半導体基板に欠陥を形成する電子線照射工程を行う。前記電子線照射工程後、前記半導体基板の裏面側から水素原子を注入して、前記半導体基板の裏面側の水素濃度を前記半導体装置の製造を開始する前の前記半導体基板の水素濃度よりも高くすることにより、前記水素原子を注入した領域内の前記欠陥を回復させて、前記水素原子を注入した領域のキャリアのライフタイムを長くする第1注入工程を行う。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記電子線照射工程後、前記半導体基板の裏面側から不純物を注入する第2注入工程をさらに含み、前記第1注入工程は、前記第2注入工程と同時に行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程後、かつ前記第2注入工程後に、前記半導体基板の裏面側からレーザーを照射して前記不純物を活性化させるレーザー照射工程をさらに含み、前記第1注入工程では、前記レーザーの侵入深さ以下の深さで前記水素原子を注入することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、第1導電型の前記半導体基板のおもて面の表面層に第2導電型層を形成する工程をさらに含み、前記第2注入工程では、第1導電型の前記不純物を注入して、前記半導体基板の裏面の表面層に第1導電型層を形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記電子線照射工程の前、または前記電子線照射工程の後、前記第1注入工程の前に、前記半導体基板の裏面側からヘリウムを注入して前記ヘリウムを注入した領域のキャリアのライフタイムを短くする第2注入工程をさらに行う。そして、前記第1注入工程では、前記ヘリウムを注入した領域の少なくとも一部のキャリアのライフタイムを長くすることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程では、オン時に空乏化する領域のキャリアのライフタイムを長くすることを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、キャリアのライフタイムが局所的に制御された半導体装置であって、次の特徴を有する。半導体基板内には、前記半導体基板を構成する原子の原子間結合が切断されて生じた未結合手によって欠陥が形成されている。前記半導体基板の裏面の表面層には、水素原子が導入されてなる、前記半導体基板のおもて面側よりも水素濃度が高い高水素濃度領域が形成されている。そして、前記高水素濃度領域では、前記半導体基板のおもて面側よりも前記欠陥が少なく、前記半導体基板のおもて面側よりもキャリアのライフタイムが長くなっている。
また、この発明にかかる半導体装置は、上述した発明において、第1導電型の前記半導体基板のおもて面の表面層に設けられた第2導電型層と、前記半導体基板の裏面の表面層に設けられた第1導電型層と、をさらに備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記高水素濃度領域の水素濃度は、バルク単結晶の水素濃度よりも高いことを特徴とする。
上述した発明によれば、電子線照射により半導体基板全体に欠陥を形成した後に、基板裏面からの水素イオン注入により基板裏面側の欠陥を局所的に回復させることによって、基板裏面側のキャリアライフタイムを基板おもて面側のキャリアライフタイムよりも長くすることができる。このため、電子線照射を用いたキャリアライフタイム制御を行う場合であっても、キャリアライフタイムを局所的に制御することができる。
本発明にかかる半導体装置および半導体装置の製造方法によれば、漏れ電流の増加や製造ラインの汚染を生じさせることなく、安価に、局所的なキャリアライフタイム制御を行うことができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。 図2は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図3は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図4は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図5は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図6は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図8Aは、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。 図8Bは、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。 図9は、実施の形態1にかかる半導体装置のオン電圧の水素ドーズ量依存性を示す特性図である。 図10は、実施の形態1にかかる半導体装置の逆回復波形の水素ドーズ量依存性を示す特性図である。 図11は、実施の形態2にかかる半導体装置の製造方法の概要を示すフローチャートである。 図12Aは、実施の形態2にかかる半導体装置の不純物濃度分布を示す特性図である。 図12Bは、実施の形態2にかかる半導体装置の不純物濃度分布を示す特性図である。 図13は、実施の形態3にかかる半導体装置の製造方法の概要を示すフローチャートである。 図14は、実施の形態4にかかる半導体装置の製造方法の概要を示すフローチャートである。 図15は、実施の形態5にかかる半導体装置の製造方法の概要を示すフローチャートである。 図16は、実施の形態6にかかる半導体装置の製造方法の概要を示すフローチャートである。 図17は、実施の形態7にかかる半導体装置の製造方法の概要を示すフローチャートである。 図18は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図19は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図20は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図21は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図22は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図23は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図24は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図25は、実施の形態8にかかる半導体装置の製造方法の概要を示すフローチャートである。 図26は、実施の形態9にかかる半導体装置の製造方法の概要を示すフローチャートである。 図27は、実施の形態10にかかる半導体装置の製造方法の概要を示すフローチャートである。 図28は、実施の形態11にかかる半導体装置の製造方法の概要を示すフローチャートである。 図29Aは、実施の形態12にかかる半導体装置の製造方法の概要を示すフローチャートである。 図29Bは、実施の形態12にかかる半導体装置の構造の一例を示す平面図である。 図29Cは、図29Bにおける切断線A−A’の断面構造を示す断面図である。 図30は、実施の形態13にかかる半導体装置の製造方法の概要を示すフローチャートである。 図31は、実施の形態14にかかる半導体装置の製造方法の概要を示すフローチャートである。 図32は、実施の形態14にかかる半導体装置の製造方法によって製造される半導体装置の一例を示す断面図である。 図33は、実施の形態15にかかる半導体装置の製造方法の概要を示すフローチャートである。 図34は、実施の形態16にかかる半導体装置の製造方法の概要を示す説明図である。 図35は、実施の形態16にかかる半導体装置の製造方法の概要を示す説明図である。 従来のダイオードの要部を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体装置の製造方法について、pinダイオードを作製(製造)する場合を例に説明する。図1は、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。図2〜7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。図8A,8Bは、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。まず、n-型ドリフト層1となるn-型半導体基板のおもて面側に、p型アノード層2、アノード電極3、終端耐圧構造(不図示)およびパッシベーション膜(不図示)などからなるおもて面素子構造を形成する(ステップS1)。具体的には、n-型半導体基板のおもて面の表面層に、p型アノード層2となるp型層や、終端耐圧構造を構成するガードリングとなるp型層を選択的に形成する。
次に、n-型半導体基板のおもて面を覆うように、層間絶縁膜(不図示)として例えばPSG(Phospho Silicate Glass)を形成する。次に、層間絶縁膜を選択的に除去し、p型アノード層2およびガードリングを露出するコンタクトホールを形成する。次に、アノード電極3および終端耐圧構造のフィールドプレートとして、コンタクトホールに埋め込むように例えばAl−Si(アルミニウム−シリコン)膜を堆積し、Al−Si膜上にパッシベーション膜を形成する。終端耐圧構造とは、p型アノード層2が形成された活性領域の周囲を囲み、基板おもて面側の電界を緩和して耐圧を保持する領域である。活性領域は、オン状態のときに電流が流れる領域である。
次に、図2に示すように、n-型半導体基板のおもて面側から例えばn-型半導体基板全体に電子線を照射(以下、電子線照射とする)11とする(ステップS2)。電子線照射11は、例えば、加速エネルギーを1MeV以上10MeV以下とし、線量を20kGy以上600kGy以下(好ましくは90kGy以上200kGy以下)としてもよい。次に、図3に示すように、例えば、330℃以上380℃以下程度(例えば360℃)の温度で1時間以上5時間以下程度の炉アニール(熱処理)を行う(ステップS3)。
ステップS2,S3の電子線照射11および炉アニールにより、例えばn-型半導体基板全体に欠陥(格子欠陥)12を形成し、適切なオン電圧および逆回復損失となるようにキャリアライフタイムを調整する。電子線照射11により形成される欠陥12は、主に、電子線照射11によりn-型半導体基板のシリコン(Si)原子間結合が切断され未結合手(ダングリングボンド)が生じることによって形成された空孔である。図3において×印は欠陥12を表している(図4〜7においても同様)。
次に、図4に示すように、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置1aまで研削する(ステップS4)。次に、図5に示すように、n-型半導体基板の研削後の裏面側から例えばリン(P)や砒素(As)などのn型不純物をイオン注入(以下、n型不純物イオン注入とする:第2注入工程)13することにより、n-型半導体基板の裏面の表面層にn+型カソード層4を形成する(ステップS5)。
n型不純物イオン注入13のドーズ量は、例えば1.0×1015/cm2以上1.0×1016/cm2以下程度であってもよい。n型不純物イオン注入13の加速エネルギーは、n+型カソード層4内に欠陥(格子欠陥)が生じない程度、または、n型不純物イオン注入13によって生じた欠陥が後述する水素イオン注入やレーザーアニールによって回復する程度であるのがよい。具体的には、n型不純物イオン注入13の加速エネルギーは、例えば20keV〜100keV程度であってもよく、好ましくは70keV〜80keV程度であるのがよい。
次に、図6に示すように、n-型半導体基板の研削後の裏面側から水素(H)をイオン注入(以下、水素イオン注入とする:第1注入工程)14することにより、製造工程投入前のn-型半導体基板の水素濃度以上の水素濃度を有する水素注入領域を形成する(ステップS6)。製造工程投入前のn-型半導体基板の水素濃度とは、バルク基板の水素濃度、すなわちチョクラルスキー法やフロートゾーン法など一般的な結晶成長法によって成長させたバルク単結晶シリコンの水素濃度である。図6のハッチングされた領域は水素注入領域を表している。水素イオン注入14の注入深さは、例えば、後述するレーザーアニールにおけるレーザーの基板裏面からの侵入深さ以下程度であるのがよい。
具体的には、水素イオン注入14の加速エネルギーは、例えば5keV以上500keV以下程度、好ましくは5keV以上250keV以下程度であってもよい。水素イオン注入14の飛程Rp(すなわち水素注入領域の基板裏面からの深さ)は、例えば0.1μm以上3μm以下程度(この場合の加速エネルギーは例えば5keV以上250keV以下程度)と比較的浅いのがよい。その理由は、未結合手の水素終端化が進みやすく、電子線照射11によって生じた欠陥12が回復されやすくなるからである。水素注入領域内においては、電子線照射11によって生じた欠陥12が局所的に回復されるとともに、n型不純物イオン注入13によって生じた欠陥が局所的に回復される。これにより、n-型半導体基板の裏面側(カソード側)のキャリアのライフタイムが、n-型半導体基板のおもて面側(アノード側)のキャリアのライフタイムよりも長くなる。水素イオン注入14のRpが0.1μmとなる加速エネルギーは約5keVであり、同じく3μmとなる加速エネルギーは約500keVである。水素イオン注入14の水素ドーズ量は、例えば1.0×1013/cm2以上程度であるのが好ましい。その理由は、水素ドーズ量を増加させるほど、オン電圧Vfを低減することができ、かつダイオードのソフトリカバリー特性を向上させることができるからである。
n型不純物イオン注入13および水素イオン注入14は、順番を入れ替えて行ってもよいし(質量分離注入)、同時に行ってもよい(非質量分離注入)。非質量分離注入によりn型不純物イオン注入13および水素イオン注入14を同時に行う場合には、例えばリン化水素(PHx(x=1〜5):例えばホスフィン(PH3))や、ヒ化水素(AsHx:例えばアルシン(AsH3))など、n型不純物および水素(水素原子(H)および水素分子(H2))を含む混合ガスをイオン源とするイオン注入を例えば10keV〜1MeV程度の加速エネルギーで行えばよい。この場合、例えば、上述したn型不純物イオン注入13の加速エネルギーで、n型不純物のドーズ量が上述したn型不純物イオン注入13のドーズ量となるようにイオン注入を行う。このイオン注入における水素ドーズ量は、イオン源となる混合ガスの組成式に含まれる水素原子の個数によって決まるため、上述した好適な範囲内となる。
次に、例えばレーザーアニールによりn+型カソード層4を活性化させる(ステップS7)。ステップS7のレーザーアニールには、例えばYAGレーザーや半導体レーザーを用いてもよいし、さらにYAGレーザーや半導体レーザーにCWレーザー(Continuous wave laser)を組み合わせて用いてもよい。また、ステップS7において、レーザーアニールに代えて、RTA(高速熱処理)などの炉アニールを行ってもよい。ステップS7を炉アニールで行う場合は、例えば、300℃以上500℃以下の温度で30分間以上10時間以下程度、具体的には例えば350℃の温度で1時間程度行うことがよい。その後、裏面電極としてn+型カソード層4に接するカソード電極5を形成することにより(ステップS8)、図7に示すpinダイオードが完成する。
完成後のpinダイオードのn-型半導体基板の裏面側(カソード側)の不純物濃度分布を図8A,8Bに示す。図8Aには、非質量分離注入によりn型不純物イオン注入13および水素イオン注入14を同時に行った場合の不純物濃度分布を示す。図8Bには、質量分離注入によりn型不純物イオン注入13および水素イオン注入14を別々に行った場合の不純物濃度分布を示す。図8A,8Bにおいて深さ=0μmは、n-型半導体基板の研削後の裏面位置(すなわちn+型カソード層4とカソード電極5との界面)であり、n+型カソード層4よりも深い部分はn-型ドリフト層1である(図12A,12Bにおいても同様)。
非質量分離注入とした場合、図8Aに示すように、水素イオン注入14により形成される水素注入領域6は、水素分子(H2)の第1濃度ピーク6−1と、第1濃度ピーク6−1よりも基板裏面から深い位置に形成された水素原子(H)の第2濃度ピーク6−2とを有する。水素注入領域6の第1,2濃度ピーク6−1,6−2は、n+型カソード層4の濃度ピーク4−1よりも基板裏面から深い位置に形成される。第1濃度ピーク6−1は水素分子に対応して形成され、第2濃度ピーク6−2は水素原子に対応して形成される。図8Aにおいて、符号dは、水素注入領域6の基板裏面からの深さ(すなわち水素イオン注入14の注入深さ)である。水素注入領域6の第1,2濃度ピーク6−1,6−2は互いに重なるように形成される。すなわち、非質量分離注入による水素注入領域6の深さ方向の幅(厚さ)は、水素分子(H2)の第1濃度ピークの基板裏面側端部から、水素原子の第2濃度ピークとの基板おもて面側端部までの幅となる。したがって、水素注入領域6が形成される広い範囲で電子線照射により形成された欠陥を回復させることができる。
一方、質量分離注入とした場合、図8B(a)に示すように、水素イオン注入14により形成される水素注入領域6は、水素原子の1つの濃度ピーク6−3を有する。このため、非質量分離注入とした場合と比べて水素注入領域6の深さ方向の幅は狭くなるが、質量分離注入においては、専用のイオン注入装置を必要とせず、既存のイオン注入装置を用いることができる。このため、コストを低減することができる。また、図8(b)に示すように、質量分離注入による複数回の水素イオン注入14を異なる加速エネルギーで行うことにより、基板裏面から異なる深さに水素原子の複数の濃度ピーク6−3〜6−5を形成することができる。具体的には、例えば、質量分離注入による1回の水素イオン注入14を加速エネルギー20keVで行うことによって、水素原子の1つの濃度ピーク6−3が形成されたとする。この場合に、さらに加速エネルギー10keVおよび30keVの2回の水素イオン注入14を行うことにより、基板裏面から1μm以下の深さの領域に、水素原子の1つの濃度ピーク6−3と、この濃度ピーク6−3の基板裏面側およびおもて面側にそれぞれ水素原子の濃度ピーク6−4,6−5と、を形成することができる。このため、複数回の水素イオン注入14の各加速エネルギーを適宜調整して複数の濃度ピーク6−3と濃度ピーク6−4,6−5とを互いに重なるように形成することで、非質量分離注入と同程度の範囲に水素注入領域6を形成することができる。
次に、実施の形態1にかかる半導体装置のオン電圧および逆回復時の電流・電圧波形について説明する。図9は、実施の形態1にかかる半導体装置のオン電圧の水素ドーズ量依存性を示す特性図である。図10は、実施の形態1にかかる半導体装置の逆回復波形の水素ドーズ量依存性を示す特性図である。図9には、質量分離注入によりn型不純物イオン注入13および水素イオン注入14を別々に行った場合の逆回復波形の水素ドーズ量依存性を示す。図9に示すように、水素イオン注入14によって注入される水素ドーズ量(H+ dose)の増加とともに、オン電圧Vfが低減することがわかる。図9には、水素イオン注入14の水素ドーズ量が1.0×1012/cm2〜1.0×1016/cm2までの測定値を示すが、水素イオン注入14の水素ドーズ量が1.0×1016/cm2より多い場合においても同様に水素ドーズ量の増加とともにオン電圧Vfが低減する。また、図10に示すように、逆回復ピーク電流Irp(逆回復時のアノード電流のピーク値A)は、基板おもて面側のキャリア濃度で決まるため、水素イオン注入14の水素ドーズ量に依らずほぼ同一の値である。それに対して、逆回復電流波形のテール電流B(逆回復電荷)は、水素イオン注入14の水素ドーズ量が増加するほど増加しており、ソフトリカバリーになっていることがわかる。したがって、図9,10に示す結果より、水素イオン注入14によってn-型ドリフト層1のカソード側のキャリアライフタイムが回復されていることがわかる。以上より、水素イオン注入14の水素ドーズ量の範囲は、1.0×1012/cm2〜1.0×1016/cm2である。好ましくは、オン電圧が低下する1.0×1013/cm2〜1.0×1016/cm2である。さらに好ましくは十分オン電圧が低くなる1.0×1014/cm2〜1.0×1016/cm2、あるいはさらにオン電圧が安定する1.0×1015/cm2〜1.0×1016/cm2である。
図示省略するが、例えばホスフィンを用いて非質量分離注入により、水素イオン注入14の水素ドーズ量が上記範囲内となるように水素注入領域6を形成した場合、オン電圧Vfを1.40V以下にすることができ、質量分離注入によりオン電圧Vfを1.38Vに低減させることができることが本発明者らによって確認されている。非質量分離注入とすることでよりオン電圧Vfを低減させることができる理由は、上述したように基板裏面から異なる深さに濃度ピークを有する第1,2濃度ピーク6−1,6−2が形成されるため、質量分離注入のように水素原子の濃度ピーク6−3のみが形成される場合よりも水素注入領域6の深さ方向の幅を広くすることができるからである。
以上、説明したように、実施の形態1によれば、電子線照射によりn-型半導体基板全体に欠陥を形成した後に、基板裏面からの水素イオン注入により基板裏面側の欠陥を局所的に回復させることによって、基板裏面側のキャリアライフタイムを基板おもて面側のキャリアライフタイムよりも長くすることができる。このため、電子線照射を用いたキャリアライフタイム制御を行う場合であっても、キャリアライフタイムを局所的に制御することができる。したがって、漏れ電流を増加させることなく、かつ製造ラインを汚染させることなく、安価に、局所的なキャリアライフタイム制御を行うことができる。このため、例えば、n-型ドリフト層のカソード側(基板裏面側)のキャリアライフタイムを、n-型ドリフト層のアノード側(基板おもて面側)のキャリアライフタイムよりも長くすることができ、ダイオードのソフトリカバリー特性を向上させることができる。この結果、逆回復時の電流・電圧波形の発振や、電圧波形の発振によるサージを低減させたダイオードを提供することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の製造方法について、n-型ドリフト層の内部に水素誘起ドナーからなるn型フィールドストップ(FS)層を備えたpinダイオードを作製する場合を例に説明する。図11は、実施の形態2にかかる半導体装置の製造方法の概要を示すフローチャートである。図12A,12Bは、実施の形態2にかかる半導体装置の不純物濃度分布を示す特性図である。実施の形態2にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、基板裏面からの水素イオン注入の注入深さを、n+型カソード層4を活性化させるためのレーザーアニールにおける基板裏面からのレーザーの侵入深さよりも深くする点である。
まず、n-型ドリフト層となるn-型半導体基板のおもて面側に、実施の形態1と同様におもて面素子構造を形成する(ステップS11)。次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する(ステップS12)。n-型半導体基板を裏面研削する方法は、実施の形態1と同様である。次に、n-型半導体基板の裏面側から水素イオン注入を行い、n-型ドリフト層の内部のn型フィールドストップ(FS)層21の形成領域に水素を注入する(ステップS13)。ステップS13においては、基板裏面からの深さが異なるn型FS層21a〜21cを形成するために、加速エネルギーを種々変更して複数回の水素イオン注入を行ってもよい。
ステップS13の水素イオン注入は、例えばプロトン注入であり、例えば実施の形態1の水素イオン注入よりも高加速エネルギーで行われる。すなわち、ステップS13において、水素イオン注入の注入深さ(すなわち、水素イオン注入の飛程Rp)は、後述するn+型カソード層を活性化させるためのレーザーアニール工程において基板裏面から照射するレーザーの侵入深さよりも深い。水素イオン注入のドーズ量は例えば1×1013/cm2以上1×1015/cm2以下であってもよく、好ましくは1×1014/cm2以上であるのがよい。水素イオン注入の加速エネルギーは、例えば500keV以上、好ましくは1MeV以上3MeV以下であってもよい。また、水素イオン注入は、例えば500keV以下の低加速エネルギーで複数回行ってもよい。
また、水素イオン注入は、高加速エネルギー(1MeV〜3MeV)と低加速エネルギー(1MeV未満で特に500keV以下)とを複数回組み合せてもよい。この場合、水素イオン注入は、例えば基板裏面から最も浅いn型FS層21cを形成するためのイオン注入の加速エネルギーを500keV以下で行えばよい。具体的には、高加速エネルギーと低加速エネルギーとを複数回組み合せて行う各水素イオン注入の加速エネルギーは、例えば、それぞれ400keV、800keV、1100keV、(1500keV)であってもよいし、400keV、1500keVおよび2100keVであってもよい。このときの各水素イオン注入のドーズ量は、各n型FS層21として必要な不純物濃度となるようなドーズ量であればよく、特に限定しないが、例えば、それぞれ3×1014/cm2、1×1013/cm2、1×1013/cm2、(1×1013/cm2)であってもよい。
図12Aには、水素イオン注入を複数回行うことにより形成されたn型FS層21a〜21cの不純物濃度分布を示している。n型FS層21a〜21cを形成するための各水素イオン注入の加速エネルギーは、それぞれ2100keV、1500keVおよび400keVである。このとき、n型FS層21a〜21cの飛程は、それぞれ52μm、30μmおよび4.4μmである。図12Bには、1回の水素イオン注入により形成されたn型FS層21の不純物濃度分布を示している。n型FS層21を形成するための水素イオン注入の加速エネルギーは550keVである。このとき、n型FS層21の飛程は、6.9μmである。
次に、n-型半導体基板に導入された水素原子をイオン化して水素誘起ドナーを生成するための炉アニール(以下、第1炉アニールとする)を行う(ステップS14)。第1炉アニールの温度は、後に行われる電子線照射後の第2炉アニールの温度よりも高く、例えば300℃以上500℃以下程度であるのがよく、具体的には例えば380℃以上400℃以下程度である。あるいは、330℃以上350℃以下であってもよい。第1炉アニールの処理時間は、例えば30分間以上10時間以下であってもよい。より具体的には、第1炉アニールは、例えば350℃程度の温度で1時間程度行う。第1炉アニールにより、水素誘起ドナー生成が促進され、n-型ドリフト層の内部にn-型半導体基板のキャリア濃度より高い濃度ピークを持つドナー層が形成される。このドナー層がn型FS層21である。また、高加速エネルギーによる水素イオン注入と第1炉アニールにより、基板裏面からn型FS層21よりも浅い領域(n-型半導体基板のカソード側)に、実施の形態1と同様にバルク基板の水素濃度以上の水素濃度を有する水素注入領域22が形成される。この水素注入領域22はドナー化されていてもよい。
次に、実施の形態1と同様に電子線照射および炉アニール(以下、第2炉アニールとする)を行い(ステップS15,S16)、n-型半導体基板全体に欠陥12を形成する。このとき、n-型半導体基板のカソード側には水素注入領域22が形成されているため、n-型半導体基板の欠陥12は、アノード側よりもカソード側で少なくなる。次に、実施の形態1と同様に、n型不純物イオン注入(ステップS17)およびレーザーアニール(ステップS18)によりn+型カソード層4を形成し、裏面電極形成(ステップS19)を順に行うことで、水素誘起ドナーからなるn型FS層21を備えたpinダイオードが完成する。
なお、ステップS13の水素イオン注入を高加速エネルギーと低加速エネルギーとを複数回組み合せて行った場合、また、ステップS13の水素イオン注入を低加速エネルギーで複数回行った場合には、低加速エネルギーの水素イオン注入によって、より確実に基板裏面から3μmといった浅い深さの水素濃度をバルク基板濃度以上とすることができる。
以上、説明したように、実施の形態2によれば、基板裏面側のキャリアライフタイムを長くしたい部分よりも深い領域を狙って水素イオン注入を行った場合においても、基板裏面側のキャリアライフタイムを長くしたい部分に水素注入領域が形成されるため、実施の形態1と同様の効果を得ることができる。
(実施の形態3)
次に、実施の形態3にかかる半導体装置の製造方法について説明する。図13は、実施の形態3にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態3にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、レーザーアニール後に、電子線照射および炉アニールを行う点である。実施の形態3にかかる半導体装置の製造方法は、水素イオン注入によって基板裏面から例えば3μm以下程度の浅い領域に形成された欠陥を回復させる場合(例えばFS層を備えていないpinダイオードを作製する場合)に有用である。
具体的には、まず、実施の形態1と同様に、おもて面素子構造の形成を行う(ステップS21)。次に、その後、裏面研削(ステップS22)、水素イオン注入(ステップS23)、n型不純物イオン注入(ステップS24)、レーザーアニール(ステップS25)、電子線照射(ステップS26)、炉アニール(ステップS27)および裏面電極の形成(ステップS28)を順に行うことで、pinダイオードが完成する。ステップS23においては、実施の形態1と同様に水素イオン注入を複数回行ってもよい。裏面研削、水素イオン注入、n型不純物イオン注入、レーザーアニール、電子線照射、炉アニールおよび裏面電極の形成の条件は実施の形態1と同様である。
上述したように、レーザーアニール後に電子線照射および炉アニールを行う。このため、水素注入領域の不純物濃度分布に基づいて電子線照射および炉アニールによって調整されるキャリアライフタイム分布は、レーザーアニールのばらつきによる悪影響を受けない。このため、水素イオン注入および電子線照射によって得られる所望のキャリアライフタイム分布が変わることを防止することができる。
以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。
(実施の形態4)
次に、実施の形態4にかかる半導体装置の製造方法について説明する。図14は、実施の形態4にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態4にかかる半導体装置の製造方法が実施の形態3にかかる半導体装置の製造方法と異なる点は、レーザーアニールの後、電子線照射の前に、水素イオン注入を行う点である。
具体的には、まず、実施の形態3と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS31、S32)。その後、n型不純物イオン注入(ステップS33)、レーザーアニール(ステップS34)、水素イオン注入(ステップS35)、電子線照射(ステップS36)、炉アニール(ステップS37)および裏面電極の形成(ステップS38)を順に行うことで、pinダイオードが完成する。n型不純物イオン注入、レーザーアニール、水素イオン注入、電子線照射、炉アニールおよび裏面電極の形成の条件は実施の形態3と同様である。
レーザーアニールでは、レーザーを照射した半導体基板の照射面が溶融する場合がある。そのため、レーザーアニールの前に水素イオン注入を行うと、レーザー照射による基板照射面の溶融により、注入した水素が基板表面の外側に放出され、水素終端効果が小さくなる場合がある。実施の形態4のようにレーザーアニールの後に水素イオン注入を行えば、水素の基板表面の外側への放出が抑えられ、水素終端効果の減少を抑えることができる。
以上、説明したように、実施の形態4によれば、実施の形態3と同様の効果を得ることができる。
(実施の形態5)
次に、実施の形態5にかかる半導体装置の製造方法について説明する。図15は、実施の形態5にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態5にかかる半導体装置の製造方法が実施の形態3にかかる半導体装置の製造方法と異なる点は、レーザーアニールの後、電子線照射の前に、不純物活性化のための第1炉アニールを行う点である。実施の形態5にかかる半導体装置の製造方法は、基板裏面から深い領域に注入された例えばプロトンを活性化させる場合(例えば複数段のFS層を備えたpinダイオードを作製する場合)に有用である。
具体的には、まず、実施の形態3と同様に、おもて面素子構造の形成(ステップS41)、裏面研削(ステップS42)、水素イオン注入(ステップS43)、n型不純物イオン注入(ステップS44)およびレーザーアニール(ステップS45)を順に行う。ステップS43においては、実施の形態2と同様に、複数回の水素イオン注入により、基板裏面から例えば3μm以上、特に10μm以上程度の深い領域に配置されるn型FS層の形成領域に水素が注入され、かつ基板裏面からn型FS層よりも浅い領域に水素注入領域が形成される。次に、不純物活性化のための炉アニール(第1炉アニール)を行う(ステップS46)。第1炉アニールの条件は、例えば実施の形態2の第1炉アニールと同様であってもよい。この第1炉アニールによって、基板裏面から深い位置に注入されたプロトンが活性化され、例えば複数段のn型FS層が形成される。その後、実施の形態3と同様に、電子線照射(ステップS47)、欠陥を形成するための炉アニール(第2炉アニール)(ステップS48)および裏面電極の形成(ステップS49)を順に行うことで、pinダイオードが完成する。
以上、説明したように、実施の形態5によれば、実施の形態1〜4と同様の効果を得ることができる。
(実施の形態6)
次に、実施の形態6にかかる半導体装置の製造方法について説明する。図16は、実施の形態6にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態6にかかる半導体装置の製造方法が実施の形態5にかかる半導体装置の製造方法と異なる点は、レーザーアニールの後、第1炉アニールの前に、水素イオン注入を行う点である。
具体的には、まず、実施の形態5と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS51、S52)。その後、n型不純物イオン注入(ステップS53)、レーザーアニール(ステップS54)、水素イオン注入(ステップS55)、第1炉アニール(ステップS56)、電子線照射(ステップS57)、第2炉アニール(ステップS58)および裏面電極の形成(ステップS59)を順に行うことで、pinダイオードが完成する。n型不純物イオン注入、レーザーアニール、水素イオン注入、第1炉アニール、電子線照射、第2炉アニールおよび裏面電極の形成の条件は実施の形態5と同様である。
以上、説明したように、実施の形態6によれば、実施の形態4,5と同様の効果を得ることができる。
(実施の形態7)
次に、実施の形態7にかかる半導体装置の製造方法について説明する。図17は、実施の形態7にかかる半導体装置の製造方法の概要を示すフローチャートである。図18〜24は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。実施の形態7にかかる半導体装置の製造方法は、実施の形態2を適用して、基板裏面から深い領域にn型FS層を備えたIGBT(例えば図24参照)を作製する方法である。IGBTを作製する場合においても、実施の形態2と同様に、n型FS層40の形成領域に水素を注入する水素イオン注入54によって、基板裏面からn型FS層40よりも浅い領域に水素注入領域を形成することができ、キャリアライフタイムの調整が可能である。実施の形態7にかかる半導体装置の製造方法は、リンや砒素といった水素よりも飛程が短い元素のイオン注入によって不純物を導入することができない基板裏面から深い領域にn型FS層を形成する場合に有用である。
具体的には、まず、図18に示すように、n-型ドリフト層31となるn-型半導体基板のおもて面側に、例えば、一般的なMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造と、エミッタ電極38、終端耐圧構造(不図示)およびパッシベーション膜(不図示)などからなるおもて面素子構造を形成する(ステップS61)。MOSゲート構造は、p型ベース層32、トレンチ33、ゲート絶縁膜34、ゲート電極35およびn+型エミッタ領域36からなる。符号37は層間絶縁膜である。次に、図19に示すように、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置31aまで研削する(ステップS62)。
次に、図20に示すように、n-型半導体基板の研削後の裏面側から例えばボロン(B)などのp型不純物をイオン注入(以下、p型不純物イオン注入とする:第2注入工程)51し、p+型コレクタ層39の形成領域にp型不純物52を導入する(ステップS63)。図20において×印はp+型コレクタ層39の形成領域に導入されたp型不純物52を表している。次に、図21に示すように、レーザーアニール53により、n-型半導体基板の裏面側に注入されたp型不純物52を活性化させる(ステップS64)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層39が形成される。
次に、図22に示すように、n-型半導体基板の研削後の裏面側から水素イオン注入54を行い、n-型ドリフト層31の内部のn型FS層40の形成領域に水素を注入する(ステップS65)。ステップS65の水素イオン注入として、例えば実施の形態2と同様にプロトン注入を行う。ステップS65においては、基板裏面からの深さが異なる複数のn型FS層40を形成するために、加速エネルギーを種々変更して複数回の水素イオン注入を行ってもよい。この水素イオン注入54により、n型FS層40よりも基板裏面から浅い領域に水素注入領域が形成される。図22において×印は欠陥55を表している。
次に、図23に示すように、水素原子をイオン化して水素誘起ドナーを生成するための炉アニールにより、水素注入領域の内部の水素原子の水素誘起ドナー生成を促進してn型FS層40となるドナー層を形成する(ステップS66)。ステップS66の炉アニールの条件は、例えば実施の形態2の第1炉アニールと同様であってもよい。その後、図24に示すように、n-型半導体基板の裏面に、裏面電極としてp+型コレクタ層39に接するコレクタ電極41を形成することで(ステップS67)、水素誘起ドナーからなるn型FS層40を備えたIGBTが完成する。
+型コレクタ層39をボロンイオン注入により形成すると、p+型コレクタ層39とその近辺の半導体基板には、空孔や複空孔といった格子欠陥が残留する。p+型コレクタ層39形成後に水素イオンを注入すると、残留した格子欠陥によるダングリングボンドを水素が終端する。これにより、p+型コレクタ層39のライフタイムが増加し、正孔の注入効率を高くすることができる。その結果、IGBTのオン電圧を下げることが可能となる。
上述したように、p+型コレクタ層39を活性化させるためのレーザーアニール53後に、n型FS層40を形成するための水素イオン注入54および炉アニールを行う。このため、n型FS層40はレーザーアニール53のばらつきによる悪影響を受けない。このため、水素イオン注入54および炉アニールによって得られる所望のn型FS層40の不純物濃度分布や拡散深さが変わることを防止することができる。
以上、説明したように、実施の形態7によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態8)
次に、実施の形態8にかかる半導体装置の製造方法について説明する。図25は、実施の形態8にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態8にかかる半導体装置の製造方法が実施の形態7にかかる半導体装置の製造方法と異なる点は、裏面研削の後、p型不純物イオン注入の前に、水素イオン注入を行う点である。水素イオン注入と、p型不純物イオン注入およびレーザーアニールとを順番を入れ替えた場合においても、実施の形態7と同様に、基板裏面から深い領域にn型FS層を形成するとともに、基板裏面からn型FS層よりも浅い領域に形成された水素注入領域の水素ドーズ量に基づいてキャリアライフタイムを調整することができる。
具体的には、まず、実施の形態7と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS71,S72)。次に、水素イオン注入(ステップS73)、p型不純物イオン注入(ステップS74)、レーザーアニール(ステップS75)、炉アニール(ステップS76)および裏面電極の形成(ステップS77)を順に行うことで、n型FS層を備えたIGBTが完成する。水素イオン注入、p型不純物イオン注入、レーザーアニール、炉アニールおよび裏面電極の形成の条件は実施の形態7と同様である。
以上、説明したように、実施の形態8によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態9)
次に、実施の形態9にかかる半導体装置の製造方法について説明する。図26は、実施の形態9にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態9にかかる半導体装置の製造方法が実施の形態8にかかる半導体装置の製造方法と異なる点は、n型不純物イオン注入およびレーザーアニールにより、基板裏面から浅い領域にn型FS層を形成する点である。実施の形態9にかかる半導体装置の製造方法は、リンや砒素といった水素よりも飛程が短い元素のイオン注入によって不純物を導入可能な基板裏面から浅い領域にn型FS層を形成する場合に有用である。
具体的には、まず、実施の形態8と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS81,S82)。次に、n-型半導体基板の研削後の裏面側から水素イオン注入を行い、基板裏面から所定深さで水素注入領域を形成する(ステップS83)。ステップS83の水素イオン注入においては、実施の形態1と同様に、水素注入領域のみが形成される。この水素イオン注入の条件は、例えば実施の形態1と同様である。次に、n-型半導体基板の裏面側から例えばリンなどのn型不純物をイオン注入し(n型不純物イオン注入)、n型FS層の形成領域にn型不純物を導入する(ステップS84)。
次に、p型不純物イオン注入により、p+型コレクタ層の形成領域にp型不純物を導入する(ステップS85)。次に、レーザーアニールにより、n-型半導体基板の裏面側に注入されたn型不純物およびp型不純物を活性化させる(ステップS86)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層が形成され、基板裏面からp+型コレクタ層よりも深い領域にn型FS層が形成される。その後、裏面電極の形成を行うことで(ステップS87)、n型FS層を備えたIGBTが完成する。p型不純物イオン注入および裏面電極の形成の条件は、実施の形態8と同様であってもよい。なお、n型不純物を導入するステップS84と、p型不純物を導入するステップS85とを、入れ替えても構わない。
以上、説明したように、実施の形態9によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態10)
次に、実施の形態10にかかる半導体装置の製造方法について説明する。図27は、実施の形態10にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態10にかかる半導体装置の製造方法が実施の形態9にかかる半導体装置の製造方法と異なる点は、n型不純物イオン注入とp型不純物イオン注入との間に、水素イオン注入を行う点である。
具体的には、まず、実施の形態9と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS91,S92)。次に、n型不純物イオン注入(ステップS93)、水素イオン注入(ステップS94)、p型不純物イオン注入(ステップS95)、レーザーアニール(ステップS96)および裏面電極の形成(ステップS97)を順に行うことで、n型FS層を備えたIGBTが完成する。n型不純物イオン注入、水素イオン注入、p型不純物イオン注入、レーザーアニールおよび裏面電極の形成の条件は実施の形態9と同様である。なお、n型不純物を導入するステップS93と、p型不純物を導入するステップS95とを、入れ替えても構わない。
以上、説明したように、実施の形態10によれば、実施の形態9と同様の効果を得ることができる。
(実施の形態11)
次に、実施の形態11にかかる半導体装置の製造方法について説明する。図28は、実施の形態11にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態11にかかる半導体装置の製造方法が実施の形態9にかかる半導体装置の製造方法と異なる点は、p型不純物イオン注入とレーザーアニールとの間に、水素イオン注入を行う点である。
具体的には、まず、実施の形態9と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS101,S102)。次に、n型不純物イオン注入(ステップS103)、p型不純物イオン注入(ステップS104)、水素イオン注入(ステップS105)、レーザーアニール(ステップS106)および裏面電極の形成(ステップS107)を順に行うことで、n型FS層を備えたIGBTが完成する。n型不純物イオン注入、p型不純物イオン注入、水素イオン注入、レーザーアニールおよび裏面電極の形成の条件は実施の形態9と同様である。n型不純物イオン注入とp型不純物イオン注入との順番を入れ替えてもよい。
以上、説明したように、実施の形態11によれば、実施の形態9,10と同様の効果を得ることができる。
(実施の形態12)
次に、実施の形態12にかかる半導体装置の製造方法について説明する。図29Aは、実施の形態12にかかる半導体装置の製造方法の概要を示すフローチャートである。図29Bは、実施の形態12にかかる半導体装置の構造の一例を示す平面図である。図29Cは、図29Bにおける切断線A−A’の断面構造を示す断面図である。実施の形態12にかかる半導体装置の製造方法は、実施の形態2を適用して、同一のn-型半導体基板上に、n型FS層40を備えたIGBTと還流ダイオード(FWD:Free Wheeling Diode)とを設けた逆導通IGBT(RC−IGBT:Reverse Conducting−IGBT)を作製する方法である。
RC−IGBTを作製する場合においても、実施の形態2と同様に、n型FS層40の形成領域に水素を注入する水素イオン注入によって、基板裏面からn型FS層40よりも浅い領域に水素注入領域を形成することができる。これにより、漏れ電流を低減させることができる。実施の形態12にかかる半導体装置の製造方法は、イオン注入によって不純物を導入することができない基板裏面から深い領域にn型FS層40を形成する場合に有用である。
具体的には、まず、n-型ドリフト層31となるn-型半導体基板のおもて面側に、IGBTの一般的なMOSゲート構造と、FWDのp型アノード層2、エミッタ電極38とアノード電極とを兼ねるおもて面電極(以下、エミッタ電極38)、終端耐圧構造およびパッシベーション膜などからなるおもて面素子構造を形成する(ステップS110)。MOSゲート構造は、p型ベース層32、トレンチ33、ゲート絶縁膜34、ゲート電極35およびn+型エミッタ領域36からなる。符号37は層間絶縁膜である。次に、裏面研削を行う(ステップS111)。次に、n-型半導体基板の研削後の裏面側からのp型不純物イオン注入により、p+型コレクタ層39の形成領域にp型不純物を導入する(ステップS112)。次に、n-型半導体基板の研削後の裏面側からのn型不純物イオン注入により、n+型カソード層4の形成領域にn型不純物を導入する(ステップS113)。
次に、レーザーアニールにより、n-型半導体基板の裏面側に注入されたn型不純物およびp型不純物を活性化させる(ステップS114)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層39が選択的に形成されるとともに、基板主面に平行な方向にp+型コレクタ層39と並列に、かつp+型コレクタ層39に接するn+型カソード層4が形成される。次に、n-型半導体基板の研削後の裏面側から水素イオン注入を行い、n-型ドリフト層31の内部のn型FS層40の形成領域に水素を注入する(ステップS115)。ステップS115の水素イオン注入として、例えば実施の形態2と同様にプロトン注入を行う。この水素イオン注入により、n型FS層40よりも基板裏面から浅い領域に水素注入領域が形成される。
次に、n-型半導体基板に導入された水素原子をイオン化して水素誘起ドナーを生成するための第1炉アニールにより、水素誘起ドナー生成を促進してn型FS層40となるドナー層を形成する(ステップS116)。次に、基板裏面からn型FS層40よりも浅い領域にライフタイムキラー(欠陥や不純物)を導入するための電子線照射またはヘリウム(He)のイオン注入(以下、ヘリウムイオン注入とする)を行った後(ステップS117)、第2炉アニールを行う(ステップS118)。これにより、水素注入領域の水素ドーズ量に基づく適切なオン電圧および逆回復損失となるようにキャリアライフタイムが調整される。その後、コレクタ電極とカソード電極とを兼ねる、p+型コレクタ層39およびn+型カソード層4に接する裏面電極41を形成することで(ステップS119)、RC−IGBTが完成する。
裏面研削、n型不純物イオン注入、水素イオン注入および第1炉アニールの条件は、例えば実施の形態2と同様であってもよい。p型不純物イオン注入およびレーザーアニールの条件は、例えば実施の形態7と同様であってもよい。ステップS117において電子線照射を行う場合、ステップS117,S118の電子線照射および第2炉アニールの条件は、実施の形態2と同様であってもよい。FWDのソフトリカバリー化を図ることができる。ステップS117においてヘリウムイオン注入を行う場合、ステップS117,S118のヘリウムイオン注入および第2炉アニールの条件は、後述する実施の形態16と同様であってもよい。また、レーザーアニールの後に水素イオン注入を行うため、n型FS層40はレーザーアニールのばらつきによる悪影響を受けない。
以上、説明したように、実施の形態12によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態13)
次に、実施の形態13にかかる半導体装置の製造方法について説明する。図30は、実施の形態13にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態13にかかる半導体装置の製造方法が実施の形態12にかかる半導体装置の製造方法と異なる点は、n型不純物イオン注入およびレーザーアニールによりn型FS層を形成する点である。実施の形態13にかかる半導体装置の製造方法は、イオン注入によって不純物を導入可能な基板裏面から浅い領域にn型FS層を形成する場合に有用である。
具体的には、まず、実施の形態12と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS120,S121)。次に、n-型半導体基板の研削後の裏面側から水素イオン注入を行い、基板裏面から所定深さで水素注入領域を形成する(ステップS122)。ステップS122の水素イオン注入においては、実施の形態1と同様に、水素注入領域のみが形成される。この水素イオン注入の条件は、例えば実施の形態1と同様である。次に、n-型半導体基板の裏面側から例えばリンなどのn型不純物をイオン注入し(以下、第1n型不純物イオン注入とする)、n型FS層の形成領域にn型不純物を導入する(ステップS123)。
次に、p型不純物イオン注入により、p+型コレクタ層の形成領域にp型不純物を導入する(ステップS124)。次に、n-型半導体基板の裏面側からn型不純物をイオン注入し(以下、第2n型不純物イオン注入とする)、n+型カソード層の形成領域にn型不純物を導入する(ステップS125)。次に、レーザーアニールにより、n-型半導体基板の裏面側に注入されたn型不純物およびp型不純物を活性化させる(ステップS126)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層およびn+型カソード層が形成され、基板裏面からp+型コレクタ層よりも深い領域にn型FS層が形成される。
その後、ライフタイムキラー照射(ステップS127)、炉アニール(ステップS128)および裏面電極の形成(ステップS129)を順に行うことで、RC−IGBTが完成する。第1n型不純物イオン注入の条件は、実施の形態9のn型不純物イオン注入と同様であってもよい。p型不純物イオン注入、第2n型不純物イオン注入、レーザーアニール、ライフタイムキラー照射および裏面電極の形成の条件は、実施の形態12と同様であってもよい。炉アニールの条件は、実施の形態12の第2炉アニールと同様であってもよい。また、水素イオン注入は、裏面研削の後、レーザーアニールの前までに行えばよく、裏面研削の後、レーザーアニールの前までのいずれのタイミングに行ってもよい。特に、水素により裏面のリンあるいはボロンのイオン注入によって残留した空孔、複空孔等の格子欠陥によるダングリングボンドを終端する効果を奏する。その結果、IGBTの正孔注入、ダイオードの電子注入効率を、それぞれ増加させることができる。
以上、説明したように、実施の形態13によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態14)
次に、実施の形態14にかかる半導体装置の製造方法について説明する。図31は、実施の形態14にかかる半導体装置の製造方法の概要を示すフローチャートである。図32は、実施の形態14にかかる半導体装置の製造方法によって製造される半導体装置の一例を示す断面図である。実施の形態14にかかる半導体装置の製造方法は、実施の形態1を適用して、図32に示す逆阻止型IGBT(RB−IGBT:Reverse Blocking−IGBT)を作製する方法である。RB−IGBTのp+型コレクタ層68の内部に、水素誘起ドナー生成を促進させた水素注入層70を形成することにより、逆漏れ電流を低減させることができる。
具体的には、n-型ドリフト層61となるn-型半導体基板のおもて面側に、例えば、一般的なMOSゲート構造、エミッタ電極67と、p型分離拡散層73、終端耐圧構造およびパッシベーション膜(不図示)などからなるおもて面素子構造を形成する(ステップS131)。MOSゲート構造は、p型ベース層62、n+型エミッタ領域63、ゲート絶縁膜64およびゲート電極65からなる。終端耐圧構造は、p型ガードリング領域71およびフィールドプレート72からなる。p型分離拡散層73の深さは、例えばp型ベース層62やp型ガードリング領域71の深さよりも深い。符号66は層間絶縁膜である。
次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する(ステップS132)。ステップS132においては、n-型半導体基板の研削後の裏面にp型分離拡散層73を露出させる。これにより、p型分離拡散層73は、基板おもて面から裏面に貫通するように配置され、かつ後の工程においてp+型コレクタ層68に接する。次に、p型不純物イオン注入により、p+型コレクタ層68の形成領域にp型不純物を導入する(ステップS133)。次に、レーザーアニール53により、n-型半導体基板の裏面側に注入されたp型不純物を活性化させる(ステップS134)。これにより、n-型半導体基板の裏面の表面層に、p型分離拡散層73に接するp+型コレクタ層68が形成される。
次に、水素イオン注入により、p+型コレクタ層68の内部に水素注入領域を形成する(ステップS135)。次に、水素原子をイオン化して水素誘起ドナーを生成するための炉アニールにより、水素注入領域の内部の水素原子の水素誘起ドナー生成を促進させ、p+型コレクタ層68の内部に水素注入層70を形成する(ステップS136)。その後、p+型コレクタ層68に接するコレクタ電極69を形成することで(ステップS137)、RB−IGBTが完成する。裏面研削、水素イオン注入および炉アニールの条件は、実施の形態1と同様であってもよい。p型不純物イオン注入、レーザーアニールおよび裏面電極の形成の条件は、実施の形態7と同様であってもよい。
RB−IGBTの場合、注入した水素が、裏面のp+型コレクタ層68で、空孔や複空孔といった格子欠陥によるダングリングボンドを終端する効果を奏する。その結果、裏面のp+型コレクタ層68とn-型ドリフト層61との間のpn接合に逆バイアス電圧が印加されたときの漏れ電流(逆漏れ電流という)を低減することができる。
以上、説明したように、実施の形態14によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態15)
次に、実施の形態15にかかる半導体装置の製造方法について説明する。図33は、実施の形態15にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態15にかかる半導体装置の製造方法が実施の形態14にかかる半導体装置の製造方法と異なる点は、裏面研削の後、p型不純物イオン注入の前に、水素イオン注入を行う点である。すなわち、水素イオン注入と、p型不純物イオン注入およびレーザーアニールとの順番を入れ替えてもよい。
具体的には、まず、実施の形態14と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS141,S142)。次に、水素イオン注入(ステップS143)、p型不純物イオン注入(ステップS144)、レーザーアニール(ステップS145)、炉アニール(ステップS146)および裏面電極の形成(ステップS147)を順に行うことで、RB−IGBTが完成する。ステップS143においては、p+型コレクタ層68の形成領域に水素注入領域が形成されるように水素イオン注入を行えばよい。水素イオン注入、p型不純物イオン注入、レーザーアニール、炉アニールおよび裏面電極の形成の条件は実施の形態14と同様である。また、例えばジボラン(B26)などのp型不純物と水素とを含む混合ガスをイオン源とするイオン注入により、水素イオン注入およびp型不純物イオン注入を同時に行ってもよい。
以上、説明したように、実施の形態15によれば、実施の形態14と同様の効果を得ることができる。
(実施の形態16)
次に、実施の形態16にかかる半導体装置の製造方法について説明する。図34,35は、実施の形態16にかかる半導体装置の製造方法の概要を示す説明図である。実施の形態16にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、ヘリウム(He)のイオン注入(以下、ヘリウムイオン注入とする)81および水素イオン注入82によってキャリアライフタイムを調整している点である。具体的には、実施の形態16にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法において、電子線照射に代えてヘリウムイオン注入81を行ってもよいし、電子線照射の前または後にヘリウムイオン注入81を行ってもよい。
図34(a)には、実施の形態16にかかる半導体装置の製造方法によって作製されるpinダイオードの不純物濃度分布の一例を示す。図34(b),34(c),35には、実施の形態16にかかる半導体装置の製造途中におけるキャリアライフタイム分布を示す。図34において深さ=0μmは、n-型半導体基板のおもて面位置(すなわちp型アノード層2とアノード電極との界面)である(図35においても同様)。図34(a)に示すpinダイオードにおいて、p型アノード層2とn-型ドリフト層1との間のpn接合からn型FS層21のアノード側の部分までの領域(2本の縦点線に挟まれた領域)は、定格電流印加時に空乏化する領域(以下、空乏化領域とする)80である。
このようなpinダイオードを作製するにあたって、まず、実施の形態1と同様に、おもて面素子構造の形成工程を行う(ステップS1)。次に、図34(b)に示すように、電子線照射(ステップS2)に代えて、または電子線照射の前後に、アノード側からn-型半導体基板に、例えばサイクロトロン(加速器)によって加速させたヘリウムイオンを注入(ヘリウムイオン注入81)する。これにより、基板裏面から所定の深さまでの領域(以下、欠陥領域とする)83aに欠陥が形成され、n-型半導体基板のおもて面側(アノード側)のキャリアライフタイムがn-型半導体基板の裏面側(カソード側)のキャリアライフタイムよりも短くなる。欠陥領域83aのキャリアライフタイム分布は、キャリアライフタイムが短くなる方向に1つのピークをもつ幅の広い分布(ブロードな分布)になる。このため、欠陥領域83aは、空乏化領域80にオーバーラップ(重なる)する深さにまで達する。
次に、実施の形態1と同様に、炉アニールからn型不純物イオン注入までの工程(ステップS3〜S5)を順に行う。次に、図34(c)に示すように、実施の形態1と同様に水素イオン注入82(ステップS6)を行うことにより水素注入領域22を形成し、欠陥領域83a(点線)の、空乏化領域80にオーバーラップした部分84の欠陥を回復させる。例えば、上述したように欠陥領域83aが空乏化領域80にオーバーラップした状態では漏れ電流(回復ピーク電流Irp)が増加するが、水素イオン注入82によって水素注入領域22を形成することにより、水素注入領域22の幅よりも基板おもて面側および裏面側へそれぞれ40μm程度広い範囲のキャリアライフタイムが回復する。これによって、欠陥領域83aの、空乏化領域80にオーバーラップした部分84のキャリアライフタイムがほぼヘリウムイオン注入81前の状態に戻り、水素イオン注入82後の欠陥領域83b(実線)の幅は空乏化領域80とオーバーラップしない狭い幅になる。したがって、漏れ電流を低減させることができる。
また、図35に示すように、ヘリウムイオン注入81によってキャリアライフタイムの短い欠陥領域83c(点線)を形成し、その一部を水素イオン注入82によって回復させることで、ヘリウムイオン注入81単独で同じ量のライフタイムキラーを導入した領域83a(実線)と同程度のキャリアライフタイムに戻すことができる。また、pinダイオードの特性が改質され、ヘリウムイオン注入81単独でライフタイムキラーを形成する場合よりも漏れ電流を低減させることができる可能性がある。通常、粒子系のライフタイムキラーを形成する場合、粒子照射後に水素雰囲気で熱処理することで、漏れ電流の増加に大きく寄与するエネルギーバンドの中心付近のエネルギー準位の欠陥を選択的に除去する。この水素雰囲気での熱処理によって得られる効果が水素イオン注入82によっても得られるものと推測される。水素イオン注入82の後、実施の形態1と同様に、レーザーアニール(ステップS7)以降の工程を順に行うことで、pinダイオードが完成する。
図34(a)に示すようにn型FS層21を備えたpinダイオードを作製する場合、実施の形態2に実施の形態16を適用すればよい。また、実施の形態3〜15に実施の形態16を適用してもよい。
以上、説明したように、実施の形態16によれば、実施の形態1〜15と同様の効果を得ることができる。
以上において本発明では、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態では、ダイオードを例に説明しているが、半導体領域内のキャリアライフタイムを局所的に制御する必要があるさまざまな装置に適用可能である。また、上述した実施の形態2に示す製造工程にしたがって、実施の形態1にかかる半導体装置を作製してもよい。すなわち、実施の形態2において、基板裏面側のキャリアライフタイムを長くしたい部分を狙って水素イオン注入を行ってもよい。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、コンバータやインバータなどの電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
1 n-型ドリフト層
2 p型アノード層
3 アノード電極
4 n+型カソード層
5 カソード電極
6,22 水素注入領域
11 電子線照射
12 欠陥
13 n型不純物イオン注入
14 水素イオン注入
21 n型フィールドストップ層
この発明は、半導体装置および半導体装置の製造方法に関する。
電力用半導体装置に用いられる半導体装置として、400V、600V、1200V、1700V、3300Vまたはそれ以上の耐圧を有するダイオードやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)等が公知である。これらダイオードやIGBT等は、コンバータやインバータ等の電力変換装置に用いられており、低損失、低ノイズ、高破壊耐量などが求められるとともに、低コストであることが求められている。電力用半導体装置に用いられる半導体装置として、例えばpin(p−intrinsic−n)ダイオードを例に説明する。
図36は、従来のダイオードの要部を示す断面図である。図36に示すように、従来のダイオードにおいて、n-型ドリフト層101となるn-型半導体基板のおもて面側には、p型アノード層102が選択的に設けられ、p型アノード層102の周囲を囲む外周に終端耐圧構造を構成するp型層(不図示)が選択的に設けられている。n-型半導体基板の裏面側には、p型アノード層102に対して反対側の位置にn+型カソード層104が設けられている。符号103はアノード電極であり、符号105はカソード電極である。
また、従来のダイオードでは、n-型ドリフト層101内に重金属や欠陥を導入してn-型ドリフト層101のキャリアライフタイムを短くすることによって、逆回復時のキャリアの消滅を早めて逆回復損失を低減させている。このとき、n-型ドリフト層101のカソード側のキャリアライフタイムをアノード側のキャリアライフタイムよりも長くしたキャリアライフタイム分布とすることで、逆回復時の電流・電圧波形の発振や、電圧波形の発振によるサージ(過渡的な異常電圧によって生じる電流)が生じにくくソフトリカバリーな逆回復電流・電圧波形が得られる。
このようにキャリアライフタイムが制御された半導体装置として、シリコン基板の裏面から水素イオンを照射したときにドリフト領域内に形成された欠陥が基板おもて面からドリフト領域の中間深さより深い位置にピークを有し、基板おもて面からドリフト領域の中間深さより深い位置におけるキャリアの再結合が促進されることで、キャリアのライフタイム制御機能を実現した装置が提案されている(例えば、下記特許文献1(第0037段落)参照。)。
また、別の装置として、n-型ドリフト層の、p型アノード層とn-型ドリフト層との間のpn接合近傍のキャリアのライフタイム制御、および、n-型ドリフト層とn+型カソード層との間のn-+接合近傍のキャリアのライフタイム制御を、それぞれプロトンの両面照射またはプロトンと電子線との2重照射により制御し、pn接合近傍のキャリアライフタイムをn-+接合近傍のキャリアライフタイムよりも短く制御した装置が提案されている(例えば、下記特許文献2参照。)。
特開2011−049300号公報 特開平08−102545号公報
しかしながら、ヘリウム(He)やプロトンのような軽イオンをn-型ドリフト層のアノード側に選択的に照射し、軽イオンを照射した部分のキャリアライフタイムを短くすることによって上述した所定のキャリアライフタイム分布を得る方法があるが、この場合、軽イオン照射装置自体が高価であることにより製造コストの増大につながったり、漏れ電流が増加する虞がある。また、白金(Pt)などの重金属拡散によっても局所的にキャリアライフタイムを短くすることが可能であるが、逆回復電流−電圧(I−V)曲線の温度特性が負になるという問題や、重金属汚染防止のために製造ラインを専用化する必要があるという問題がある。
このような軽イオン照射や重金属拡散による問題を生じさせることなく、安価にキャリアのライフタイムを制御する方法として、電子線照射によって半導体基板内に欠陥を形成することによりキャリアのライフタイムを短くする方法がある。しかしながら、電子線照射では、加速エネルギーが高いため、電子線が半導体基板を通り抜けてしまい、一様なキャリアライフタイムとなってしまう。また、局所的にキャリアライフタイムを低くするために加速エネルギーを低くした場合、電子の質量が小さいことにより欠陥が形成されない虞がある。このように、電子線照射では、半導体基板内に選択的に欠陥を形成することが難しく、キャリアライフタイムを局所的に制御することは難しいという問題がある。
この発明は、上述した従来技術による問題点を解消するため、漏れ電流の増加や製造ラインの汚染を生じさせることなく、安価に、局所的なキャリアライフタイム制御を行うことができる半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、キャリアのライフタイムが局所的に制御された半導体装置であって、次の特徴を有する。第1導電型の半導体基板に形成され、当該半導体基板を構成する原子の原子間結合が切断された未結合手を有する欠陥と、前記半導体基板の裏面側に形成され、前記半導体基板のおもて面側よりも水素濃度が高い高水素濃度領域と、を備えている。前記高水素濃度領域では、前記半導体基板の前記高水素濃度領域以外の領域よりも前記欠陥が少なく、前記半導体基板のおもて面側よりもキャリアのライフタイムが長くなっている。
また、この発明にかかる半導体装置は、上述した発明において、前記高水素濃度領域のキャリア濃度は、前記半導体基板のおもて面側のキャリア濃度よりも高いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板のおもて面側に対する前記高水素濃度領域のキャリア濃度の増加は水素誘起ドナーによることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記高水素濃度領域では、水素原子によって前記未結合手が終端されていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板のおもて面の表面層に設けられた第2導電型層と、前記半導体基板の裏面の表面層に設けられた第1導電型または第2導電型のコンタクト層と、をさらに備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体装置がダイオードであり、前記コンタクト層が第1導電型であり、前記高水素濃度領域が前記ダイオードのフィールドストップ層であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体装置が前記第2導電型層の表面に金属−酸化膜−半導体からなる絶縁ゲートを備える絶縁ゲート型バイポーラトランジスタであり、前記コンタクト層が第2導電型であり、前記高水素濃度領域が前記絶縁ゲート型バイポーラトランジスタのフィールドストップ層であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、複数の前記フィールドストップ層を備え、前記半導体基板のおもて面側のキャリアのライフタイムは、前記半導体基板の裏面から最も深い前記フィールドストップ層よりも前記半導体基板の裏面側の浅い部分のキャリアのライフタイムより短いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記高水素濃度領域の水素濃度は、バルク単結晶の水素濃度よりも高いことを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、キャリアのライフタイムが局所的に制御された半導体装置の製造方法であって、次の特徴を有する。半導体基板のおもて面側から電子線を照射し、前記半導体基板を構成する原子の原子間結合を切断して未結合手を生じさせることにより前記半導体基板に欠陥を形成する電子線照射工程を行う。さらに、前記電子線照射工程の前または後に、前記半導体基板の裏面側から水素原子を注入して、前記半導体基板の裏面側の水素濃度を前記半導体装置の製造を開始する前の前記半導体基板の水素濃度よりも高くする第1注入工程を行う。そして、前記水素原子を注入した領域内の前記欠陥の未結合手を前記水素原子で終端させることにより、前記水素原子を注入した領域のキャリアのライフタイムを、前記水素原子を注入した領域以外の前記半導体基板のキャリアのライフタイムよりも長くする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記電子線照射工程後、前記半導体基板の裏面側から不純物を注入する第2注入工程をさらに含み、前記第1注入工程は、前記第2注入工程と同時に行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程後、かつ前記第2注入工程後に、前記半導体基板の裏面側からレーザーを照射して前記不純物を活性化させるレーザー照射工程をさらに含み、前記第1注入工程では、前記レーザーの侵入深さ以下の深さで前記水素原子を注入することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、第1導電型の前記半導体基板のおもて面の表面層に第2導電型層を形成する工程をさらに含み、前記第2注入工程では、第1導電型の前記不純物を注入して、前記半導体基板の裏面の表面層に第1導電型層を形成することを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。半導体基板の一方の主面に素子構造を形成する素子表面構造形成工程を行う。前記半導体基板に荷電粒子線を照射して、前記半導体基板を構成する原子の原子間結合を切断して未結合手を生じさせることにより前記半導体基板に欠陥を形成する荷電粒子線照射工程を行う。さらに、前記半導体基板の他方の主面側から水素原子を注入して、前記半導体基板の他方の主面側の水素濃度を半導体装置の製造を開始する前の前記半導体基板の水素濃度よりも高くする第1注入工程を行う。そして、前記水素原子を注入した領域内の前記欠陥の未結合手を前記水素原子で終端させることにより、前記水素原子を注入した領域のキャリアのライフタイムを、前記水素原子を注入した領域以外の前記半導体基板のキャリアのライフタイムよりも長くする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記荷電粒子線照射工程を、前記第1注入工程の後に行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記素子表面構造形成工程の後、前記第1注入工程の前に、前記半導体基板を前記他方の主面から研削し、前記半導体基板を薄板化する薄板化工程を含むことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程では、前記半導体基板の研削面から前記水素原子を注入することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程の後、アニールを行い、前記水素原子を注入した領域に当該水素原子による水素誘起ドナー層を形成する第1炉アニール工程をさらに含むこと特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記荷電粒子線照射工程は、前記半導体基板に荷電粒子線を照射した後にアニールを行う第2炉アニール工程を含むこと特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程では、前記水素原子の注入量が1×1013/cm2以上であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1注入工程では、前記水素原子の加速エネルギーが3MeV以下であることを特徴とする。
上述した発明によれば、電子線照射により半導体基板全体に欠陥を形成した後に、基板裏面からの水素イオン注入により基板裏面側の欠陥を局所的に回復させることによって、基板裏面側のキャリアライフタイムを基板おもて面側のキャリアライフタイムよりも長くすることができる。このため、電子線照射を用いたキャリアライフタイム制御を行う場合であっても、キャリアライフタイムを局所的に制御することができる。
本発明にかかる半導体装置および半導体装置の製造方法によれば、漏れ電流の増加や製造ラインの汚染を生じさせることなく、安価に、局所的なキャリアライフタイム制御を行うことができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。 図2は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図3は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図4は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図5は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図6は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図8Aは、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。 図8Bは、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。 図9は、実施の形態1にかかる半導体装置のオン電圧の水素ドーズ量依存性を示す特性図である。 図10は、実施の形態1にかかる半導体装置の逆回復波形の水素ドーズ量依存性を示す特性図である。 図11は、実施の形態2にかかる半導体装置の製造方法の概要を示すフローチャートである。 図12Aは、実施の形態2にかかる半導体装置の不純物濃度分布を示す特性図である。 図12Bは、実施の形態2にかかる半導体装置の不純物濃度分布を示す特性図である。 図13は、実施の形態3にかかる半導体装置の製造方法の概要を示すフローチャートである。 図14は、実施の形態4にかかる半導体装置の製造方法の概要を示すフローチャートである。 図15は、実施の形態5にかかる半導体装置の製造方法の概要を示すフローチャートである。 図16は、実施の形態6にかかる半導体装置の製造方法の概要を示すフローチャートである。 図17は、実施の形態7にかかる半導体装置の製造方法の概要を示すフローチャートである。 図18は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図19は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図20は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図21は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図22は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図23は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図24は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。 図25は、実施の形態8にかかる半導体装置の製造方法の概要を示すフローチャートである。 図26は、実施の形態9にかかる半導体装置の製造方法の概要を示すフローチャートである。 図27は、実施の形態10にかかる半導体装置の製造方法の概要を示すフローチャートである。 図28は、実施の形態11にかかる半導体装置の製造方法の概要を示すフローチャートである。 図29Aは、実施の形態12にかかる半導体装置の製造方法の概要を示すフローチャートである。 図29Bは、実施の形態12にかかる半導体装置の構造の一例を示す平面図である。 図29Cは、図29Bにおける切断線A−A'の断面構造を示す断面図である。 図30は、実施の形態13にかかる半導体装置の製造方法の概要を示すフローチャートである。 図31は、実施の形態14にかかる半導体装置の製造方法の概要を示すフローチャートである。 図32は、実施の形態14にかかる半導体装置の製造方法によって製造される半導体装置の一例を示す断面図である。 図33は、実施の形態15にかかる半導体装置の製造方法の概要を示すフローチャートである。 図34は、実施の形態16にかかる半導体装置の製造方法の概要を示す説明図である。 図35は、実施の形態16にかかる半導体装置の製造方法の概要を示す説明図である。 従来のダイオードの要部を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体装置の製造方法について、pinダイオードを作製(製造)する場合を例に説明する。図1は、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。図2〜7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。図8A,8Bは、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。まず、n-型ドリフト層1となるn-型半導体基板のおもて面側に、p型アノード層2、アノード電極3、終端耐圧構造(不図示)およびパッシベーション膜(不図示)などからなるおもて面素子構造を形成する(ステップS1)。具体的には、n-型半導体基板のおもて面の表面層に、p型アノード層2となるp型層や、終端耐圧構造を構成するガードリングとなるp型層を選択的に形成する。
次に、n-型半導体基板のおもて面を覆うように、層間絶縁膜(不図示)として例えばPSG(Phospho Silicate Glass)を形成する。次に、層間絶縁膜を選択的に除去し、p型アノード層2およびガードリングを露出するコンタクトホールを形成する。次に、アノード電極3および終端耐圧構造のフィールドプレートとして、コンタクトホールに埋め込むように例えばAl−Si(アルミニウム−シリコン)膜を堆積し、Al−Si膜上にパッシベーション膜を形成する。終端耐圧構造とは、p型アノード層2が形成された活性領域の周囲を囲み、基板おもて面側の電界を緩和して耐圧を保持する領域である。活性領域は、オン状態のときに電流が流れる領域である。
次に、図2に示すように、n-型半導体基板のおもて面側から例えばn-型半導体基板全体に電子線を照射(以下、電子線照射とする)11とする(ステップS2)。電子線照射11は、例えば、加速エネルギーを1MeV以上10MeV以下とし、線量を20kGy以上600kGy以下(好ましくは90kGy以上200kGy以下)としてもよい。次に、図3に示すように、例えば、330℃以上380℃以下程度(例えば360℃)の温度で1時間以上5時間以下程度の炉アニール(熱処理)を行う(ステップS3)。
ステップS2,S3の電子線照射11および炉アニールにより、例えばn-型半導体基板全体に欠陥(格子欠陥)12を形成し、適切なオン電圧および逆回復損失となるようにキャリアライフタイムを調整する。電子線照射11により形成される欠陥12は、主に、電子線照射11によりn-型半導体基板のシリコン(Si)原子間結合が切断され未結合手(ダングリングボンド)が生じることによって形成された空孔である。図3において×印は欠陥12を表している(図4〜7においても同様)。
次に、図4に示すように、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置1aまで研削する(ステップS4)。次に、図5に示すように、n-型半導体基板の研削後の裏面側から例えばリン(P)や砒素(As)などのn型不純物をイオン注入(以下、n型不純物イオン注入とする:第2注入工程)13することにより、n-型半導体基板の裏面の表面層にn+型カソード層4を形成する(ステップS5)。
n型不純物イオン注入13のドーズ量は、例えば1.0×1015/cm2以上1.0×1016/cm2以下程度であってもよい。n型不純物イオン注入13の加速エネルギーは、n+型カソード層4内に欠陥(格子欠陥)が生じない程度、または、n型不純物イオン注入13によって生じた欠陥が後述する水素イオン注入やレーザーアニールによって回復する程度であるのがよい。具体的には、n型不純物イオン注入13の加速エネルギーは、例えば20keV〜100keV程度であってもよく、好ましくは70keV〜80keV程度であるのがよい。
次に、図6に示すように、n-型半導体基板の研削後の裏面側から水素(H)をイオン注入(以下、水素イオン注入とする:第1注入工程)14することにより、製造工程投入前のn-型半導体基板の水素濃度以上の水素濃度を有する水素注入領域を形成する(ステップS6)。製造工程投入前のn-型半導体基板の水素濃度とは、バルク基板の水素濃度、すなわちチョクラルスキー法やフロートゾーン法など一般的な結晶成長法によって成長させたバルク単結晶シリコンの水素濃度である。図6のハッチングされた領域は水素注入領域を表している。水素イオン注入14の注入深さは、例えば、後述するレーザーアニールにおけるレーザーの基板裏面からの侵入深さ以下程度であるのがよい。
具体的には、水素イオン注入14の加速エネルギーは、例えば5keV以上500keV以下程度、好ましくは5keV以上250keV以下程度であってもよい。水素イオン注入14の飛程Rp(すなわち水素注入領域の基板裏面からの深さ)は、例えば0.1μm以上3μm以下程度(この場合の加速エネルギーは例えば5keV以上250keV以下程度)と比較的浅いのがよい。その理由は、未結合手の水素終端化が進みやすく、電子線照射11によって生じた欠陥12が回復されやすくなるからである。水素注入領域内においては、電子線照射11によって生じた欠陥12が局所的に回復されるとともに、n型不純物イオン注入13によって生じた欠陥が局所的に回復される。これにより、n-型半導体基板の裏面側(カソード側)のキャリアのライフタイムが、n-型半導体基板のおもて面側(アノード側)のキャリアのライフタイムよりも長くなる。水素イオン注入14のRpが0.1μmとなる加速エネルギーは約5keVであり、同じく3μmとなる加速エネルギーは約500keVである。水素イオン注入14の水素ドーズ量は、例えば1.0×1013/cm2以上程度であるのが好ましい。その理由は、水素ドーズ量を増加させるほど、オン電圧Vfを低減することができ、かつダイオードのソフトリカバリー特性を向上させることができるからである。
n型不純物イオン注入13および水素イオン注入14は、順番を入れ替えて行ってもよいし(質量分離注入)、同時に行ってもよい(非質量分離注入)。非質量分離注入によりn型不純物イオン注入13および水素イオン注入14を同時に行う場合には、例えばリン化水素(PHx(x=1〜5):例えばホスフィン(PH3))や、ヒ化水素(AsHx:例えばアルシン(AsH3))など、n型不純物および水素(水素原子(H)および水素分子(H2))を含む混合ガスをイオン源とするイオン注入を例えば10keV〜1MeV程度の加速エネルギーで行えばよい。この場合、例えば、上述したn型不純物イオン注入13の加速エネルギーで、n型不純物のドーズ量が上述したn型不純物イオン注入13のドーズ量となるようにイオン注入を行う。このイオン注入における水素ドーズ量は、イオン源となる混合ガスの組成式に含まれる水素原子の個数によって決まるため、上述した好適な範囲内となる。
次に、例えばレーザーアニールによりn+型カソード層4を活性化させる(ステップS7)。ステップS7のレーザーアニールには、例えばYAGレーザーや半導体レーザーを用いてもよいし、さらにYAGレーザーや半導体レーザーにCWレーザー(Continuous wave laser)を組み合わせて用いてもよい。また、ステップS7において、レーザーアニールに代えて、RTA(高速熱処理)などの炉アニールを行ってもよい。ステップS7を炉アニールで行う場合は、例えば、300℃以上500℃以下の温度で30分間以上10時間以下程度、具体的には例えば350℃の温度で1時間程度行うことがよい。その後、裏面電極としてn+型カソード層4に接するカソード電極5を形成することにより(ステップS8)、図7に示すpinダイオードが完成する。
完成後のpinダイオードのn-型半導体基板の裏面側(カソード側)の不純物濃度分布を図8A,8Bに示す。図8Aには、非質量分離注入によりn型不純物イオン注入13および水素イオン注入14を同時に行った場合の不純物濃度分布を示す。図8Bには、質量分離注入によりn型不純物イオン注入13および水素イオン注入14を別々に行った場合の不純物濃度分布を示す。図8A,8Bにおいて深さ=0μmは、n-型半導体基板の研削後の裏面位置(すなわちn+型カソード層4とカソード電極5との界面)であり、n+型カソード層4よりも深い部分はn-型ドリフト層1である(図12A,12Bにおいても同様)。
非質量分離注入とした場合、図8Aに示すように、水素イオン注入14により形成される水素注入領域6は、水素分子(H2)の第1濃度ピーク6−1と、第1濃度ピーク6−1よりも基板裏面から深い位置に形成された水素原子(H)の第2濃度ピーク6−2とを有する。水素注入領域6の第1,2濃度ピーク6−1,6−2は、n+型カソード層4の濃度ピーク4−1よりも基板裏面から深い位置に形成される。第1濃度ピーク6−1は水素分子に対応して形成され、第2濃度ピーク6−2は水素原子に対応して形成される。図8Aにおいて、符号dは、水素注入領域6の基板裏面からの深さ(すなわち水素イオン注入14の注入深さ)である。水素注入領域6の第1,2濃度ピーク6−1,6−2は互いに重なるように形成される。すなわち、非質量分離注入による水素注入領域6の深さ方向の幅(厚さ)は、水素分子(H2)の第1濃度ピークの基板裏面側端部から、水素原子の第2濃度ピークとの基板おもて面側端部までの幅となる。したがって、水素注入領域6が形成される広い範囲で電子線照射により形成された欠陥を回復させることができる。
一方、質量分離注入とした場合、図8B(a)に示すように、水素イオン注入14により形成される水素注入領域6は、水素原子の1つの濃度ピーク6−3を有する。このため、非質量分離注入とした場合と比べて水素注入領域6の深さ方向の幅は狭くなるが、質量分離注入においては、専用のイオン注入装置を必要とせず、既存のイオン注入装置を用いることができる。このため、コストを低減することができる。また、図8(b)に示すように、質量分離注入による複数回の水素イオン注入14を異なる加速エネルギーで行うことにより、基板裏面から異なる深さに水素原子の複数の濃度ピーク6−3〜6−5を形成することができる。具体的には、例えば、質量分離注入による1回の水素イオン注入14を加速エネルギー20keVで行うことによって、水素原子の1つの濃度ピーク6−3が形成されたとする。この場合に、さらに加速エネルギー10keVおよび30keVの2回の水素イオン注入14を行うことにより、基板裏面から1μm以下の深さの領域に、水素原子の1つの濃度ピーク6−3と、この濃度ピーク6−3の基板裏面側およびおもて面側にそれぞれ水素原子の濃度ピーク6−4,6−5と、を形成することができる。このため、複数回の水素イオン注入14の各加速エネルギーを適宜調整して複数の濃度ピーク6−3と濃度ピーク6−4,6−5とを互いに重なるように形成することで、非質量分離注入と同程度の範囲に水素注入領域6を形成することができる。
次に、実施の形態1にかかる半導体装置のオン電圧および逆回復時の電流・電圧波形について説明する。図9は、実施の形態1にかかる半導体装置のオン電圧の水素ドーズ量依存性を示す特性図である。図10は、実施の形態1にかかる半導体装置の逆回復波形の水素ドーズ量依存性を示す特性図である。図9には、質量分離注入によりn型不純物イオン注入13および水素イオン注入14を別々に行った場合の逆回復波形の水素ドーズ量依存性を示す。図9に示すように、水素イオン注入14によって注入される水素ドーズ量(H+ dose)の増加とともに、オン電圧Vfが低減することがわかる。図9には、水素イオン注入14の水素ドーズ量が1.0×1012/cm2〜1.0×1016/cm2までの測定値を示すが、水素イオン注入14の水素ドーズ量が1.0×1016/cm2より多い場合においても同様に水素ドーズ量の増加とともにオン電圧Vfが低減する。また、図10に示すように、逆回復ピーク電流Irp(逆回復時のアノード電流のピーク値A)は、基板おもて面側のキャリア濃度で決まるため、水素イオン注入14の水素ドーズ量に依らずほぼ同一の値である。それに対して、逆回復電流波形のテール電流B(逆回復電荷)は、水素イオン注入14の水素ドーズ量が増加するほど増加しており、ソフトリカバリーになっていることがわかる。したがって、図9,10に示す結果より、水素イオン注入14によってn-型ドリフト層1のカソード側のキャリアライフタイムが回復されていることがわかる。以上より、水素イオン注入14の水素ドーズ量の範囲は、1.0×1012/cm2〜1.0×1016/cm2である。好ましくは、オン電圧が低下する1.0×1013/cm2〜1.0×1016/cm2である。さらに好ましくは十分オン電圧が低くなる1.0×1014/cm2〜1.0×1016/cm2、あるいはさらにオン電圧が安定する1.0×1015/cm2〜1.0×1016/cm2である。
図示省略するが、例えばホスフィンを用いて非質量分離注入により、水素イオン注入14の水素ドーズ量が上記範囲内となるように水素注入領域6を形成した場合、オン電圧Vfを1.40V以下にすることができ、質量分離注入によりオン電圧Vfを1.38Vに低減させることができることが本発明者らによって確認されている。非質量分離注入とすることでよりオン電圧Vfを低減させることができる理由は、上述したように基板裏面から異なる深さに濃度ピークを有する第1,2濃度ピーク6−1,6−2が形成されるため、質量分離注入のように水素原子の濃度ピーク6−3のみが形成される場合よりも水素注入領域6の深さ方向の幅を広くすることができるからである。
以上、説明したように、実施の形態1によれば、電子線照射によりn-型半導体基板全体に欠陥を形成した後に、基板裏面からの水素イオン注入により基板裏面側の欠陥を局所的に回復させることによって、基板裏面側のキャリアライフタイムを基板おもて面側のキャリアライフタイムよりも長くすることができる。このため、電子線照射を用いたキャリアライフタイム制御を行う場合であっても、キャリアライフタイムを局所的に制御することができる。したがって、漏れ電流を増加させることなく、かつ製造ラインを汚染させることなく、安価に、局所的なキャリアライフタイム制御を行うことができる。このため、例えば、n-型ドリフト層のカソード側(基板裏面側)のキャリアライフタイムを、n-型ドリフト層のアノード側(基板おもて面側)のキャリアライフタイムよりも長くすることができ、ダイオードのソフトリカバリー特性を向上させることができる。この結果、逆回復時の電流・電圧波形の発振や、電圧波形の発振によるサージを低減させたダイオードを提供することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の製造方法について、n-型ドリフト層の内部に水素誘起ドナーからなるn型フィールドストップ(FS)層を備えたpinダイオードを作製する場合を例に説明する。図11は、実施の形態2にかかる半導体装置の製造方法の概要を示すフローチャートである。図12A,12Bは、実施の形態2にかかる半導体装置の不純物濃度分布を示す特性図である。実施の形態2にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、基板裏面からの水素イオン注入の注入深さを、n+型カソード層4を活性化させるためのレーザーアニールにおける基板裏面からのレーザーの侵入深さよりも深くする点である。
まず、n-型ドリフト層となるn-型半導体基板のおもて面側に、実施の形態1と同様におもて面素子構造を形成する(ステップS11)。次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する(ステップS12)。n-型半導体基板を裏面研削する方法は、実施の形態1と同様である。次に、n-型半導体基板の裏面側から水素イオン注入を行い、n-型ドリフト層の内部のn型フィールドストップ(FS)層21の形成領域に水素を注入する(ステップS13)。ステップS13においては、基板裏面からの深さが異なるn型FS層21a〜21cを形成するために、加速エネルギーを種々変更して複数回の水素イオン注入を行ってもよい。
ステップS13の水素イオン注入は、例えばプロトン注入であり、例えば実施の形態1の水素イオン注入よりも高加速エネルギーで行われる。すなわち、ステップS13において、水素イオン注入の注入深さ(すなわち、水素イオン注入の飛程Rp)は、後述するn+型カソード層を活性化させるためのレーザーアニール工程において基板裏面から照射するレーザーの侵入深さよりも深い。水素イオン注入のドーズ量は例えば1×1013/cm2以上1×1015/cm2以下であってもよく、好ましくは1×1014/cm2以上であるのがよい。水素イオン注入の加速エネルギーは、例えば500keV以上、好ましくは1MeV以上3MeV以下であってもよい。また、水素イオン注入は、例えば500keV以下の低加速エネルギーで複数回行ってもよい。
また、水素イオン注入は、高加速エネルギー(1MeV〜3MeV)と低加速エネルギー(1MeV未満で特に500keV以下)とを複数回組み合せてもよい。この場合、水素イオン注入は、例えば基板裏面から最も浅いn型FS層21cを形成するためのイオン注入の加速エネルギーを500keV以下で行えばよい。具体的には、高加速エネルギーと低加速エネルギーとを複数回組み合せて行う各水素イオン注入の加速エネルギーは、例えば、それぞれ400keV、800keV、1100keV、(1500keV)であってもよいし、400keV、1500keVおよび2100keVであってもよい。このときの各水素イオン注入のドーズ量は、各n型FS層21として必要な不純物濃度となるようなドーズ量であればよく、特に限定しないが、例えば、それぞれ3×1014/cm2、1×1013/cm2、1×1013/cm2、(1×1013/cm2)であってもよい。
図12Aには、水素イオン注入を複数回行うことにより形成されたn型FS層21a〜21cの不純物濃度分布を示している。n型FS層21a〜21cを形成するための各水素イオン注入の加速エネルギーは、それぞれ2100keV、1500keVおよび400keVである。このとき、n型FS層21a〜21cの飛程は、それぞれ52μm、30μmおよび4.4μmである。図12Bには、1回の水素イオン注入により形成されたn型FS層21の不純物濃度分布を示している。n型FS層21を形成するための水素イオン注入の加速エネルギーは550keVである。このとき、n型FS層21の飛程は、6.9μmである。
次に、n-型半導体基板に導入された水素原子をイオン化して水素誘起ドナーを生成するための炉アニール(以下、第1炉アニールとする)を行う(ステップS14)。第1炉アニールの温度は、後に行われる電子線照射後の第2炉アニールの温度よりも高く、例えば300℃以上500℃以下程度であるのがよく、具体的には例えば380℃以上400℃以下程度である。あるいは、330℃以上350℃以下であってもよい。第1炉アニールの処理時間は、例えば30分間以上10時間以下であってもよい。より具体的には、第1炉アニールは、例えば350℃程度の温度で1時間程度行う。第1炉アニールにより、水素誘起ドナー生成が促進され、n-型ドリフト層の内部にn-型半導体基板のキャリア濃度より高い濃度ピークを持つドナー層が形成される。このドナー層がn型FS層21である。また、高加速エネルギーによる水素イオン注入と第1炉アニールにより、基板裏面からn型FS層21よりも浅い領域(n-型半導体基板のカソード側)に、実施の形態1と同様にバルク基板の水素濃度以上の水素濃度を有する水素注入領域22が形成される。この水素注入領域22はドナー化されていてもよい。
次に、実施の形態1と同様に電子線照射および炉アニール(以下、第2炉アニールとする)を行い(ステップS15,S16)、n-型半導体基板全体に欠陥12を形成する。このとき、n-型半導体基板のカソード側には水素注入領域22が形成されているため、n-型半導体基板の欠陥12は、アノード側よりもカソード側で少なくなる。次に、実施の形態1と同様に、n型不純物イオン注入(ステップS17)およびレーザーアニール(ステップS18)によりn+型カソード層4を形成し、裏面電極形成(ステップS19)を順に行うことで、水素誘起ドナーからなるn型FS層21を備えたpinダイオードが完成する。
なお、ステップS13の水素イオン注入を高加速エネルギーと低加速エネルギーとを複数回組み合せて行った場合、また、ステップS13の水素イオン注入を低加速エネルギーで複数回行った場合には、低加速エネルギーの水素イオン注入によって、より確実に基板裏面から3μmといった浅い深さの水素濃度をバルク基板濃度以上とすることができる。
以上、説明したように、実施の形態2によれば、基板裏面側のキャリアライフタイムを長くしたい部分よりも深い領域を狙って水素イオン注入を行った場合においても、基板裏面側のキャリアライフタイムを長くしたい部分に水素注入領域が形成されるため、実施の形態1と同様の効果を得ることができる。
(実施の形態3)
次に、実施の形態3にかかる半導体装置の製造方法について説明する。図13は、実施の形態3にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態3にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、レーザーアニール後に、電子線照射および炉アニールを行う点である。実施の形態3にかかる半導体装置の製造方法は、水素イオン注入によって基板裏面から例えば3μm以下程度の浅い領域に形成された欠陥を回復させる場合(例えばFS層を備えていないpinダイオードを作製する場合)に有用である。
具体的には、まず、実施の形態1と同様に、おもて面素子構造の形成を行う(ステップS21)。次に、その後、裏面研削(ステップS22)、水素イオン注入(ステップS23)、n型不純物イオン注入(ステップS24)、レーザーアニール(ステップS25)、電子線照射(ステップS26)、炉アニール(ステップS27)および裏面電極の形成(ステップS28)を順に行うことで、pinダイオードが完成する。ステップS23においては、実施の形態1と同様に水素イオン注入を複数回行ってもよい。裏面研削、水素イオン注入、n型不純物イオン注入、レーザーアニール、電子線照射、炉アニールおよび裏面電極の形成の条件は実施の形態1と同様である。
上述したように、レーザーアニール後に電子線照射および炉アニールを行う。このため、水素注入領域の不純物濃度分布に基づいて電子線照射および炉アニールによって調整されるキャリアライフタイム分布は、レーザーアニールのばらつきによる悪影響を受けない。このため、水素イオン注入および電子線照射によって得られる所望のキャリアライフタイム分布が変わることを防止することができる。
以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。
(実施の形態4)
次に、実施の形態4にかかる半導体装置の製造方法について説明する。図14は、実施の形態4にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態4にかかる半導体装置の製造方法が実施の形態3にかかる半導体装置の製造方法と異なる点は、レーザーアニールの後、電子線照射の前に、水素イオン注入を行う点である。
具体的には、まず、実施の形態3と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS31、S32)。その後、n型不純物イオン注入(ステップS33)、レーザーアニール(ステップS34)、水素イオン注入(ステップS35)、電子線照射(ステップS36)、炉アニール(ステップS37)および裏面電極の形成(ステップS38)を順に行うことで、pinダイオードが完成する。n型不純物イオン注入、レーザーアニール、水素イオン注入、電子線照射、炉アニールおよび裏面電極の形成の条件は実施の形態3と同様である。
レーザーアニールでは、レーザーを照射した半導体基板の照射面が溶融する場合がある。そのため、レーザーアニールの前に水素イオン注入を行うと、レーザー照射による基板照射面の溶融により、注入した水素が基板表面の外側に放出され、水素終端効果が小さくなる場合がある。実施の形態4のようにレーザーアニールの後に水素イオン注入を行えば、水素の基板表面の外側への放出が抑えられ、水素終端効果の減少を抑えることができる。
以上、説明したように、実施の形態4によれば、実施の形態3と同様の効果を得ることができる。
(実施の形態5)
次に、実施の形態5にかかる半導体装置の製造方法について説明する。図15は、実施の形態5にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態5にかかる半導体装置の製造方法が実施の形態3にかかる半導体装置の製造方法と異なる点は、レーザーアニールの後、電子線照射の前に、不純物活性化のための第1炉アニールを行う点である。実施の形態5にかかる半導体装置の製造方法は、基板裏面から深い領域に注入された例えばプロトンを活性化させる場合(例えば複数段のFS層を備えたpinダイオードを作製する場合)に有用である。
具体的には、まず、実施の形態3と同様に、おもて面素子構造の形成(ステップS41)、裏面研削(ステップS42)、水素イオン注入(ステップS43)、n型不純物イオン注入(ステップS44)およびレーザーアニール(ステップS45)を順に行う。ステップS43においては、実施の形態2と同様に、複数回の水素イオン注入により、基板裏面から例えば3μm以上、特に10μm以上程度の深い領域に配置されるn型FS層の形成領域に水素が注入され、かつ基板裏面からn型FS層よりも浅い領域に水素注入領域が形成される。次に、不純物活性化のための炉アニール(第1炉アニール)を行う(ステップS46)。第1炉アニールの条件は、例えば実施の形態2の第1炉アニールと同様であってもよい。この第1炉アニールによって、基板裏面から深い位置に注入されたプロトンが活性化され、例えば複数段のn型FS層が形成される。その後、実施の形態3と同様に、電子線照射(ステップS47)、欠陥を形成するための炉アニール(第2炉アニール)(ステップS48)および裏面電極の形成(ステップS49)を順に行うことで、pinダイオードが完成する。
以上、説明したように、実施の形態5によれば、実施の形態1〜4と同様の効果を得ることができる。
(実施の形態6)
次に、実施の形態6にかかる半導体装置の製造方法について説明する。図16は、実施の形態6にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態6にかかる半導体装置の製造方法が実施の形態5にかかる半導体装置の製造方法と異なる点は、レーザーアニールの後、第1炉アニールの前に、水素イオン注入を行う点である。
具体的には、まず、実施の形態5と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS51、S52)。その後、n型不純物イオン注入(ステップS53)、レーザーアニール(ステップS54)、水素イオン注入(ステップS55)、第1炉アニール(ステップS56)、電子線照射(ステップS57)、第2炉アニール(ステップS58)および裏面電極の形成(ステップS59)を順に行うことで、pinダイオードが完成する。n型不純物イオン注入、レーザーアニール、水素イオン注入、第1炉アニール、電子線照射、第2炉アニールおよび裏面電極の形成の条件は実施の形態5と同様である。
以上、説明したように、実施の形態6によれば、実施の形態4,5と同様の効果を得ることができる。
(実施の形態7)
次に、実施の形態7にかかる半導体装置の製造方法について説明する。図17は、実施の形態7にかかる半導体装置の製造方法の概要を示すフローチャートである。図18〜24は、実施の形態7にかかる半導体装置の製造途中の状態を示す断面図である。実施の形態7にかかる半導体装置の製造方法は、実施の形態2を適用して、基板裏面から深い領域にn型FS層を備えたIGBT(例えば図24参照)を作製する方法である。IGBTを作製する場合においても、実施の形態2と同様に、n型FS層40の形成領域に水素を注入する水素イオン注入54によって、基板裏面からn型FS層40よりも浅い領域に水素注入領域を形成することができ、キャリアライフタイムの調整が可能である。実施の形態7にかかる半導体装置の製造方法は、リンや砒素といった水素よりも飛程が短い元素のイオン注入によって不純物を導入することができない基板裏面から深い領域にn型FS層を形成する場合に有用である。
具体的には、まず、図18に示すように、n-型ドリフト層31となるn-型半導体基板のおもて面側に、例えば、一般的なMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造と、エミッタ電極38、終端耐圧構造(不図示)およびパッシベーション膜(不図示)などからなるおもて面素子構造を形成する(ステップS61)。MOSゲート構造は、p型ベース層32、トレンチ33、ゲート絶縁膜34、ゲート電極35およびn+型エミッタ領域36からなる。符号37は層間絶縁膜である。次に、図19に示すように、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置31aまで研削する(ステップS62)。
次に、図20に示すように、n-型半導体基板の研削後の裏面側から例えばボロン(B)などのp型不純物をイオン注入(以下、p型不純物イオン注入とする:第2注入工程)51し、p+型コレクタ層39の形成領域にp型不純物52を導入する(ステップS63)。図20において×印はp+型コレクタ層39の形成領域に導入されたp型不純物52を表している。次に、図21に示すように、レーザーアニール53により、n-型半導体基板の裏面側に注入されたp型不純物52を活性化させる(ステップS64)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層39が形成される。
次に、図22に示すように、n-型半導体基板の研削後の裏面側から水素イオン注入54を行い、n-型ドリフト層31の内部のn型FS層40の形成領域に水素を注入する(ステップS65)。ステップS65の水素イオン注入として、例えば実施の形態2と同様にプロトン注入を行う。ステップS65においては、基板裏面からの深さが異なる複数のn型FS層40を形成するために、加速エネルギーを種々変更して複数回の水素イオン注入を行ってもよい。この水素イオン注入54により、n型FS層40よりも基板裏面から浅い領域に水素注入領域が形成される。図22において×印は欠陥55を表している。
次に、図23に示すように、水素原子をイオン化して水素誘起ドナーを生成するための炉アニールにより、水素注入領域の内部の水素原子の水素誘起ドナー生成を促進してn型FS層40となるドナー層を形成する(ステップS66)。ステップS66の炉アニールの条件は、例えば実施の形態2の第1炉アニールと同様であってもよい。その後、図24に示すように、n-型半導体基板の裏面に、裏面電極としてp+型コレクタ層39に接するコレクタ電極41を形成することで(ステップS67)、水素誘起ドナーからなるn型FS層40を備えたIGBTが完成する。
+型コレクタ層39をボロンイオン注入により形成すると、p+型コレクタ層39とその近辺の半導体基板には、空孔や複空孔といった格子欠陥が残留する。p+型コレクタ層39形成後に水素イオンを注入すると、残留した格子欠陥によるダングリングボンドを水素が終端する。これにより、p+型コレクタ層39のライフタイムが増加し、正孔の注入効率を高くすることができる。その結果、IGBTのオン電圧を下げることが可能となる。
上述したように、p+型コレクタ層39を活性化させるためのレーザーアニール53後に、n型FS層40を形成するための水素イオン注入54および炉アニールを行う。このため、n型FS層40はレーザーアニール53のばらつきによる悪影響を受けない。このため、水素イオン注入54および炉アニールによって得られる所望のn型FS層40の不純物濃度分布や拡散深さが変わることを防止することができる。
以上、説明したように、実施の形態7によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態8)
次に、実施の形態8にかかる半導体装置の製造方法について説明する。図25は、実施の形態8にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態8にかかる半導体装置の製造方法が実施の形態7にかかる半導体装置の製造方法と異なる点は、裏面研削の後、p型不純物イオン注入の前に、水素イオン注入を行う点である。水素イオン注入と、p型不純物イオン注入およびレーザーアニールとを順番を入れ替えた場合においても、実施の形態7と同様に、基板裏面から深い領域にn型FS層を形成するとともに、基板裏面からn型FS層よりも浅い領域に形成された水素注入領域の水素ドーズ量に基づいてキャリアライフタイムを調整することができる。
具体的には、まず、実施の形態7と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS71,S72)。次に、水素イオン注入(ステップS73)、p型不純物イオン注入(ステップS74)、レーザーアニール(ステップS75)、炉アニール(ステップS76)および裏面電極の形成(ステップS77)を順に行うことで、n型FS層を備えたIGBTが完成する。水素イオン注入、p型不純物イオン注入、レーザーアニール、炉アニールおよび裏面電極の形成の条件は実施の形態7と同様である。
以上、説明したように、実施の形態8によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態9)
次に、実施の形態9にかかる半導体装置の製造方法について説明する。図26は、実施の形態9にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態9にかかる半導体装置の製造方法が実施の形態8にかかる半導体装置の製造方法と異なる点は、n型不純物イオン注入およびレーザーアニールにより、基板裏面から浅い領域にn型FS層を形成する点である。実施の形態9にかかる半導体装置の製造方法は、リンや砒素といった水素よりも飛程が短い元素のイオン注入によって不純物を導入可能な基板裏面から浅い領域にn型FS層を形成する場合に有用である。
具体的には、まず、実施の形態8と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS81,S82)。次に、n-型半導体基板の研削後の裏面側から水素イオン注入を行い、基板裏面から所定深さで水素注入領域を形成する(ステップS83)。ステップS83の水素イオン注入においては、実施の形態1と同様に、水素注入領域のみが形成される。この水素イオン注入の条件は、例えば実施の形態1と同様である。次に、n-型半導体基板の裏面側から例えばリンなどのn型不純物をイオン注入し(n型不純物イオン注入)、n型FS層の形成領域にn型不純物を導入する(ステップS84)。
次に、p型不純物イオン注入により、p+型コレクタ層の形成領域にp型不純物を導入する(ステップS85)。次に、レーザーアニールにより、n-型半導体基板の裏面側に注入されたn型不純物およびp型不純物を活性化させる(ステップS86)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層が形成され、基板裏面からp+型コレクタ層よりも深い領域にn型FS層が形成される。その後、裏面電極の形成を行うことで(ステップS87)、n型FS層を備えたIGBTが完成する。p型不純物イオン注入および裏面電極の形成の条件は、実施の形態8と同様であってもよい。なお、n型不純物を導入するステップS84と、p型不純物を導入するステップS85とを、入れ替えても構わない。
以上、説明したように、実施の形態9によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態10)
次に、実施の形態10にかかる半導体装置の製造方法について説明する。図27は、実施の形態10にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態10にかかる半導体装置の製造方法が実施の形態9にかかる半導体装置の製造方法と異なる点は、n型不純物イオン注入とp型不純物イオン注入との間に、水素イオン注入を行う点である。
具体的には、まず、実施の形態9と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS91,S92)。次に、n型不純物イオン注入(ステップS93)、水素イオン注入(ステップS94)、p型不純物イオン注入(ステップS95)、レーザーアニール(ステップS96)および裏面電極の形成(ステップS97)を順に行うことで、n型FS層を備えたIGBTが完成する。n型不純物イオン注入、水素イオン注入、p型不純物イオン注入、レーザーアニールおよび裏面電極の形成の条件は実施の形態9と同様である。なお、n型不純物を導入するステップS93と、p型不純物を導入するステップS95とを、入れ替えても構わない。
以上、説明したように、実施の形態10によれば、実施の形態9と同様の効果を得ることができる。
(実施の形態11)
次に、実施の形態11にかかる半導体装置の製造方法について説明する。図28は、実施の形態11にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態11にかかる半導体装置の製造方法が実施の形態9にかかる半導体装置の製造方法と異なる点は、p型不純物イオン注入とレーザーアニールとの間に、水素イオン注入を行う点である。
具体的には、まず、実施の形態9と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS101,S102)。次に、n型不純物イオン注入(ステップS103)、p型不純物イオン注入(ステップS104)、水素イオン注入(ステップS105)、レーザーアニール(ステップS106)および裏面電極の形成(ステップS107)を順に行うことで、n型FS層を備えたIGBTが完成する。n型不純物イオン注入、p型不純物イオン注入、水素イオン注入、レーザーアニールおよび裏面電極の形成の条件は実施の形態9と同様である。n型不純物イオン注入とp型不純物イオン注入との順番を入れ替えてもよい。
以上、説明したように、実施の形態11によれば、実施の形態9,10と同様の効果を得ることができる。
(実施の形態12)
次に、実施の形態12にかかる半導体装置の製造方法について説明する。図29Aは、実施の形態12にかかる半導体装置の製造方法の概要を示すフローチャートである。図29Bは、実施の形態12にかかる半導体装置の構造の一例を示す平面図である。図29Cは、図29Bにおける切断線A−A'の断面構造を示す断面図である。実施の形態12にかかる半導体装置の製造方法は、実施の形態2を適用して、同一のn-型半導体基板上に、n型FS層40を備えたIGBTと還流ダイオード(FWD:Free Wheeling Diode)とを設けた逆導通IGBT(RC−IGBT:Reverse Conducting−IGBT)を作製する方法である。
RC−IGBTを作製する場合においても、実施の形態2と同様に、n型FS層40の形成領域に水素を注入する水素イオン注入によって、基板裏面からn型FS層40よりも浅い領域に水素注入領域を形成することができる。これにより、漏れ電流を低減させることができる。実施の形態12にかかる半導体装置の製造方法は、イオン注入によって不純物を導入することができない基板裏面から深い領域にn型FS層40を形成する場合に有用である。
具体的には、まず、n-型ドリフト層31となるn-型半導体基板のおもて面側に、IGBTの一般的なMOSゲート構造と、FWDのp型アノード層2、エミッタ電極38とアノード電極とを兼ねるおもて面電極(以下、エミッタ電極38)、終端耐圧構造およびパッシベーション膜などからなるおもて面素子構造を形成する(ステップS110)。MOSゲート構造は、p型ベース層32、トレンチ33、ゲート絶縁膜34、ゲート電極35およびn+型エミッタ領域36からなる。符号37は層間絶縁膜である。次に、裏面研削を行う(ステップS111)。次に、n-型半導体基板の研削後の裏面側からのp型不純物イオン注入により、p+型コレクタ層39の形成領域にp型不純物を導入する(ステップS112)。次に、n-型半導体基板の研削後の裏面側からのn型不純物イオン注入により、n+型カソード層4の形成領域にn型不純物を導入する(ステップS113)。
次に、レーザーアニールにより、n-型半導体基板の裏面側に注入されたn型不純物およびp型不純物を活性化させる(ステップS114)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層39が選択的に形成されるとともに、基板主面に平行な方向にp+型コレクタ層39と並列に、かつp+型コレクタ層39に接するn+型カソード層4が形成される。次に、n-型半導体基板の研削後の裏面側から水素イオン注入を行い、n-型ドリフト層31の内部のn型FS層40の形成領域に水素を注入する(ステップS115)。ステップS115の水素イオン注入として、例えば実施の形態2と同様にプロトン注入を行う。この水素イオン注入により、n型FS層40よりも基板裏面から浅い領域に水素注入領域が形成される。
次に、n-型半導体基板に導入された水素原子をイオン化して水素誘起ドナーを生成するための第1炉アニールにより、水素誘起ドナー生成を促進してn型FS層40となるドナー層を形成する(ステップS116)。次に、基板裏面からn型FS層40よりも浅い領域にライフタイムキラー(欠陥や不純物)を導入するための電子線照射またはヘリウム(He)のイオン注入(以下、ヘリウムイオン注入とする)を行った後(ステップS117)、第2炉アニールを行う(ステップS118)。これにより、水素注入領域の水素ドーズ量に基づく適切なオン電圧および逆回復損失となるようにキャリアライフタイムが調整される。その後、コレクタ電極とカソード電極とを兼ねる、p+型コレクタ層39およびn+型カソード層4に接する裏面電極41を形成することで(ステップS119)、RC−IGBTが完成する。
裏面研削、n型不純物イオン注入、水素イオン注入および第1炉アニールの条件は、例えば実施の形態2と同様であってもよい。p型不純物イオン注入およびレーザーアニールの条件は、例えば実施の形態7と同様であってもよい。ステップS117において電子線照射を行う場合、ステップS117,S118の電子線照射および第2炉アニールの条件は、実施の形態2と同様であってもよい。FWDのソフトリカバリー化を図ることができる。ステップS117においてヘリウムイオン注入を行う場合、ステップS117,S118のヘリウムイオン注入および第2炉アニールの条件は、後述する実施の形態16と同様であってもよい。また、レーザーアニールの後に水素イオン注入を行うため、n型FS層40はレーザーアニールのばらつきによる悪影響を受けない。
以上、説明したように、実施の形態12によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態13)
次に、実施の形態13にかかる半導体装置の製造方法について説明する。図30は、実施の形態13にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態13にかかる半導体装置の製造方法が実施の形態12にかかる半導体装置の製造方法と異なる点は、n型不純物イオン注入およびレーザーアニールによりn型FS層を形成する点である。実施の形態13にかかる半導体装置の製造方法は、イオン注入によって不純物を導入可能な基板裏面から浅い領域にn型FS層を形成する場合に有用である。
具体的には、まず、実施の形態12と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS120,S121)。次に、n-型半導体基板の研削後の裏面側から水素イオン注入を行い、基板裏面から所定深さで水素注入領域を形成する(ステップS122)。ステップS122の水素イオン注入においては、実施の形態1と同様に、水素注入領域のみが形成される。この水素イオン注入の条件は、例えば実施の形態1と同様である。次に、n-型半導体基板の裏面側から例えばリンなどのn型不純物をイオン注入し(以下、第1n型不純物イオン注入とする)、n型FS層の形成領域にn型不純物を導入する(ステップS123)。
次に、p型不純物イオン注入により、p+型コレクタ層の形成領域にp型不純物を導入する(ステップS124)。次に、n-型半導体基板の裏面側からn型不純物をイオン注入し(以下、第2n型不純物イオン注入とする)、n+型カソード層の形成領域にn型不純物を導入する(ステップS125)。次に、レーザーアニールにより、n-型半導体基板の裏面側に注入されたn型不純物およびp型不純物を活性化させる(ステップS126)。これにより、n-型半導体基板の裏面の表面層にp+型コレクタ層およびn+型カソード層が形成され、基板裏面からp+型コレクタ層よりも深い領域にn型FS層が形成される。
その後、ライフタイムキラー照射(ステップS127)、炉アニール(ステップS128)および裏面電極の形成(ステップS129)を順に行うことで、RC−IGBTが完成する。第1n型不純物イオン注入の条件は、実施の形態9のn型不純物イオン注入と同様であってもよい。p型不純物イオン注入、第2n型不純物イオン注入、レーザーアニール、ライフタイムキラー照射および裏面電極の形成の条件は、実施の形態12と同様であってもよい。炉アニールの条件は、実施の形態12の第2炉アニールと同様であってもよい。また、水素イオン注入は、裏面研削の後、レーザーアニールの前までに行えばよく、裏面研削の後、レーザーアニールの前までのいずれのタイミングに行ってもよい。特に、水素により裏面のリンあるいはボロンのイオン注入によって残留した空孔、複空孔等の格子欠陥によるダングリングボンドを終端する効果を奏する。その結果、IGBTの正孔注入、ダイオードの電子注入効率を、それぞれ増加させることができる。
以上、説明したように、実施の形態13によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態14)
次に、実施の形態14にかかる半導体装置の製造方法について説明する。図31は、実施の形態14にかかる半導体装置の製造方法の概要を示すフローチャートである。図32は、実施の形態14にかかる半導体装置の製造方法によって製造される半導体装置の一例を示す断面図である。実施の形態14にかかる半導体装置の製造方法は、実施の形態1を適用して、図32に示す逆阻止型IGBT(RB−IGBT:Reverse Blocking−IGBT)を作製する方法である。RB−IGBTのp+型コレクタ層68の内部に、水素誘起ドナー生成を促進させた水素注入層70を形成することにより、逆漏れ電流を低減させることができる。
具体的には、n-型ドリフト層61となるn-型半導体基板のおもて面側に、例えば、一般的なMOSゲート構造、エミッタ電極67と、p型分離拡散層73、終端耐圧構造およびパッシベーション膜(不図示)などからなるおもて面素子構造を形成する(ステップS131)。MOSゲート構造は、p型ベース層62、n+型エミッタ領域63、ゲート絶縁膜64およびゲート電極65からなる。終端耐圧構造は、p型ガードリング領域71およびフィールドプレート72からなる。p型分離拡散層73の深さは、例えばp型ベース層62やp型ガードリング領域71の深さよりも深い。符号66は層間絶縁膜である。
次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する(ステップS132)。ステップS132においては、n-型半導体基板の研削後の裏面にp型分離拡散層73を露出させる。これにより、p型分離拡散層73は、基板おもて面から裏面に貫通するように配置され、かつ後の工程においてp+型コレクタ層68に接する。次に、p型不純物イオン注入により、p+型コレクタ層68の形成領域にp型不純物を導入する(ステップS133)。次に、レーザーアニール53により、n-型半導体基板の裏面側に注入されたp型不純物を活性化させる(ステップS134)。これにより、n-型半導体基板の裏面の表面層に、p型分離拡散層73に接するp+型コレクタ層68が形成される。
次に、水素イオン注入により、p+型コレクタ層68の内部に水素注入領域を形成する(ステップS135)。次に、水素原子をイオン化して水素誘起ドナーを生成するための炉アニールにより、水素注入領域の内部の水素原子の水素誘起ドナー生成を促進させ、p+型コレクタ層68の内部に水素注入層70を形成する(ステップS136)。その後、p+型コレクタ層68に接するコレクタ電極69を形成することで(ステップS137)、RB−IGBTが完成する。裏面研削、水素イオン注入および炉アニールの条件は、実施の形態1と同様であってもよい。p型不純物イオン注入、レーザーアニールおよび裏面電極の形成の条件は、実施の形態7と同様であってもよい。
RB−IGBTの場合、注入した水素が、裏面のp+型コレクタ層68で、空孔や複空孔といった格子欠陥によるダングリングボンドを終端する効果を奏する。その結果、裏面のp+型コレクタ層68とn-型ドリフト層61との間のpn接合に逆バイアス電圧が印加されたときの漏れ電流(逆漏れ電流という)を低減することができる。
以上、説明したように、実施の形態14によれば、実施の形態1〜6と同様の効果を得ることができる。
(実施の形態15)
次に、実施の形態15にかかる半導体装置の製造方法について説明する。図33は、実施の形態15にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態15にかかる半導体装置の製造方法が実施の形態14にかかる半導体装置の製造方法と異なる点は、裏面研削の後、p型不純物イオン注入の前に、水素イオン注入を行う点である。すなわち、水素イオン注入と、p型不純物イオン注入およびレーザーアニールとの順番を入れ替えてもよい。
具体的には、まず、実施の形態14と同様に、おもて面素子構造の形成および裏面研削を順に行う(ステップS141,S142)。次に、水素イオン注入(ステップS143)、p型不純物イオン注入(ステップS144)、レーザーアニール(ステップS145)、炉アニール(ステップS146)および裏面電極の形成(ステップS147)を順に行うことで、RB−IGBTが完成する。ステップS143においては、p+型コレクタ層68の形成領域に水素注入領域が形成されるように水素イオン注入を行えばよい。水素イオン注入、p型不純物イオン注入、レーザーアニール、炉アニールおよび裏面電極の形成の条件は実施の形態14と同様である。また、例えばジボラン(B26)などのp型不純物と水素とを含む混合ガスをイオン源とするイオン注入により、水素イオン注入およびp型不純物イオン注入を同時に行ってもよい。
以上、説明したように、実施の形態15によれば、実施の形態14と同様の効果を得ることができる。
(実施の形態16)
次に、実施の形態16にかかる半導体装置の製造方法について説明する。図34,35は、実施の形態16にかかる半導体装置の製造方法の概要を示す説明図である。実施の形態16にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法と異なる点は、ヘリウム(He)のイオン注入(以下、ヘリウムイオン注入とする)81および水素イオン注入82によってキャリアライフタイムを調整している点である。具体的には、実施の形態16にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法において、電子線照射に代えてヘリウムイオン注入81を行ってもよいし、電子線照射の前または後にヘリウムイオン注入81を行ってもよい。
図34(a)には、実施の形態16にかかる半導体装置の製造方法によって作製されるpinダイオードの不純物濃度分布の一例を示す。図34(b),34(c),35には、実施の形態16にかかる半導体装置の製造途中におけるキャリアライフタイム分布を示す。図34において深さ=0μmは、n-型半導体基板のおもて面位置(すなわちp型アノード層2とアノード電極との界面)である(図35においても同様)。図34(a)に示すpinダイオードにおいて、p型アノード層2とn-型ドリフト層1との間のpn接合からn型FS層21のアノード側の部分までの領域(2本の縦点線に挟まれた領域)は、定格電流印加時に空乏化する領域(以下、空乏化領域とする)80である。
このようなpinダイオードを作製するにあたって、まず、実施の形態1と同様に、おもて面素子構造の形成工程を行う(ステップS1)。次に、図34(b)に示すように、電子線照射(ステップS2)に代えて、または電子線照射の前後に、アノード側からn-型半導体基板に、例えばサイクロトロン(加速器)によって加速させたヘリウムイオンを注入(ヘリウムイオン注入81)する。これにより、基板裏面から所定の深さまでの領域(以下、欠陥領域とする)83aに欠陥が形成され、n-型半導体基板のおもて面側(アノード側)のキャリアライフタイムがn-型半導体基板の裏面側(カソード側)のキャリアライフタイムよりも短くなる。欠陥領域83aのキャリアライフタイム分布は、キャリアライフタイムが短くなる方向に1つのピークをもつ幅の広い分布(ブロードな分布)になる。このため、欠陥領域83aは、空乏化領域80にオーバーラップ(重なる)する深さにまで達する。
次に、実施の形態1と同様に、炉アニールからn型不純物イオン注入までの工程(ステップS3〜S5)を順に行う。次に、図34(c)に示すように、実施の形態1と同様に水素イオン注入82(ステップS6)を行うことにより水素注入領域22を形成し、欠陥領域83a(点線)の、空乏化領域80にオーバーラップした部分84の欠陥を回復させる。例えば、上述したように欠陥領域83aが空乏化領域80にオーバーラップした状態では漏れ電流(回復ピーク電流Irp)が増加するが、水素イオン注入82によって水素注入領域22を形成することにより、水素注入領域22の幅よりも基板おもて面側および裏面側へそれぞれ40μm程度広い範囲のキャリアライフタイムが回復する。これによって、欠陥領域83aの、空乏化領域80にオーバーラップした部分84のキャリアライフタイムがほぼヘリウムイオン注入81前の状態に戻り、水素イオン注入82後の欠陥領域83b(実線)の幅は空乏化領域80とオーバーラップしない狭い幅になる。したがって、漏れ電流を低減させることができる。
また、図35に示すように、ヘリウムイオン注入81によってキャリアライフタイムの短い欠陥領域83c(点線)を形成し、その一部を水素イオン注入82によって回復させることで、ヘリウムイオン注入81単独で同じ量のライフタイムキラーを導入した領域83a(実線)と同程度のキャリアライフタイムに戻すことができる。また、pinダイオードの特性が改質され、ヘリウムイオン注入81単独でライフタイムキラーを形成する場合よりも漏れ電流を低減させることができる可能性がある。通常、粒子系のライフタイムキラーを形成する場合、粒子照射後に水素雰囲気で熱処理することで、漏れ電流の増加に大きく寄与するエネルギーバンドの中心付近のエネルギー準位の欠陥を選択的に除去する。この水素雰囲気での熱処理によって得られる効果が水素イオン注入82によっても得られるものと推測される。水素イオン注入82の後、実施の形態1と同様に、レーザーアニール(ステップS7)以降の工程を順に行うことで、pinダイオードが完成する。
図34(a)に示すようにn型FS層21を備えたpinダイオードを作製する場合、実施の形態2に実施の形態16を適用すればよい。また、実施の形態3〜15に実施の形態16を適用してもよい。
以上、説明したように、実施の形態16によれば、実施の形態1〜15と同様の効果を得ることができる。
以上において本発明では、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態では、ダイオードを例に説明しているが、半導体領域内のキャリアライフタイムを局所的に制御する必要があるさまざまな装置に適用可能である。また、上述した実施の形態2に示す製造工程にしたがって、実施の形態1にかかる半導体装置を作製してもよい。すなわち、実施の形態2において、基板裏面側のキャリアライフタイムを長くしたい部分を狙って水素イオン注入を行ってもよい。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、コンバータやインバータなどの電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
1 n-型ドリフト層
2 p型アノード層
3 アノード電極
4 n+型カソード層
5 カソード電極
6,22 水素注入領域
11 電子線照射
12 欠陥
13 n型不純物イオン注入
14 水素イオン注入
21 n型フィールドストップ層

Claims (9)

  1. キャリアのライフタイムが局所的に制御された半導体装置の製造方法であって、
    半導体基板のおもて面側から電子線を照射し、前記半導体基板を構成する原子の原子間結合を切断して未結合手を生じさせることにより前記半導体基板に欠陥を形成する電子線照射工程と、
    前記電子線照射工程後、前記半導体基板の裏面側から水素原子を注入して、前記半導体基板の裏面側の水素濃度を前記半導体装置の製造を開始する前の前記半導体基板の水素濃度よりも高くすることにより、前記水素原子を注入した領域内の前記欠陥を回復させて、前記水素原子を注入した領域のキャリアのライフタイムを長くする第1注入工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記電子線照射工程後、前記半導体基板の裏面側から不純物を注入する第2注入工程をさらに含み、
    前記第1注入工程は、前記第2注入工程と同時に行うことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第1注入工程後、かつ前記第2注入工程後に、前記半導体基板の裏面側からレーザーを照射して前記不純物を活性化させるレーザー照射工程をさらに含み、
    前記第1注入工程では、前記レーザーの侵入深さ以下の深さで前記水素原子を注入することを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 第1導電型の前記半導体基板のおもて面の表面層に第2導電型層を形成する工程をさらに含み、
    前記第2注入工程では、第1導電型の前記不純物を注入して、前記半導体基板の裏面の表面層に第1導電型層を形成することを特徴とする請求項2または3に記載の半導体装置の製造方法。
  5. キャリアのライフタイムが局所的に制御された半導体装置であって、
    半導体基板を構成する原子の原子間結合が切断されて生じた未結合手によって前記半導体基板内に形成された欠陥と、
    前記半導体基板の裏面の表面層に形成された、水素原子が導入されてなる、前記半導体基板のおもて面側よりも水素濃度が高い高水素濃度領域と、
    を備え、
    前記高水素濃度領域では、前記半導体基板のおもて面側よりも前記欠陥が少なく、前記半導体基板のおもて面側よりもキャリアのライフタイムが長くなっていることを特徴とする半導体装置。
  6. 第1導電型の前記半導体基板のおもて面の表面層に設けられた第2導電型層と、
    前記半導体基板の裏面の表面層に設けられた第1導電型層と、
    をさらに備えることを特徴とする請求項5に記載の半導体装置。
  7. 前記高水素濃度領域の水素濃度は、バルク単結晶の水素濃度よりも高いことを特徴とする請求項5または6に記載の半導体装置。
  8. 前記電子線照射工程の前、または前記電子線照射工程の後、前記第1注入工程の前に、前記半導体基板の裏面側からヘリウムを注入して前記ヘリウムを注入した領域のキャリアのライフタイムを短くする第2注入工程をさらに含み、
    前記第1注入工程では、前記ヘリウムを注入した領域の少なくとも一部のキャリアのライフタイムを長くすることを特徴とする請求項1に記載の半導体装置の製造方法。
  9. 前記第1注入工程では、オン時に空乏化する領域のキャリアのライフタイムを長くすることを特徴とする請求項8に記載の半導体装置の製造方法。
JP2015523996A 2013-06-26 2014-06-17 半導体装置および半導体装置の製造方法 Active JP6037012B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013134329 2013-06-26
JP2013134329 2013-06-26
PCT/JP2014/066069 WO2014208404A1 (ja) 2013-06-26 2014-06-17 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP6037012B2 JP6037012B2 (ja) 2016-11-30
JPWO2014208404A1 true JPWO2014208404A1 (ja) 2017-02-23

Family

ID=52141746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523996A Active JP6037012B2 (ja) 2013-06-26 2014-06-17 半導体装置および半導体装置の製造方法

Country Status (6)

Country Link
US (2) US10546919B2 (ja)
EP (1) EP2930741B1 (ja)
JP (1) JP6037012B2 (ja)
KR (1) KR102206507B1 (ja)
CN (2) CN109065441B (ja)
WO (1) WO2014208404A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880690B2 (ja) * 2012-03-30 2016-03-09 富士電機株式会社 半導体装置の製造方法
JP6090329B2 (ja) 2012-10-23 2017-03-08 富士電機株式会社 半導体装置およびその製造方法
CN104969360B (zh) 2013-03-25 2018-04-20 富士电机株式会社 半导体装置
CN106062960B (zh) * 2014-09-30 2019-12-10 富士电机株式会社 半导体装置及半导体装置的制造方法
WO2016051973A1 (ja) * 2014-10-03 2016-04-07 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6222140B2 (ja) 2015-03-04 2017-11-01 トヨタ自動車株式会社 半導体装置
DE102015208097B4 (de) 2015-04-30 2022-03-31 Infineon Technologies Ag Herstellen einer Halbleitervorrichtung durch Epitaxie
DE102015106979B4 (de) * 2015-05-05 2023-01-12 Infineon Technologies Austria Ag Halbleiterwafer und Verfahren zum Herstellen von Halbleitervorrichtungen in einem Halbleiterwafer
JP6311840B2 (ja) 2015-06-17 2018-04-18 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6272799B2 (ja) * 2015-06-17 2018-01-31 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2017055046A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 半導体装置の製造方法
US10128016B2 (en) * 2016-01-12 2018-11-13 Asml Netherlands B.V. EUV element having barrier to hydrogen transport
DE112017000064T5 (de) 2016-02-23 2018-03-29 Fuji Electric Co., Ltd. Halbleitervorrichtung
JP6846119B2 (ja) * 2016-05-02 2021-03-24 株式会社 日立パワーデバイス ダイオード、およびそれを用いた電力変換装置
DE102016120771B3 (de) 2016-10-31 2018-03-08 Infineon Technologies Ag Verfahren zum Herstellen von Halbleitervorrichtungen und Halbleitervorrichtung, die wasserstoff-korrelierte Donatoren enthält
JP6756376B2 (ja) * 2016-11-16 2020-09-16 富士電機株式会社 半導体装置
JP6903931B2 (ja) * 2017-02-13 2021-07-14 富士電機株式会社 半導体装置および半導体装置の製造方法
JPWO2018168785A1 (ja) * 2017-03-13 2019-11-07 国立大学法人北陸先端科学技術大学院大学 ヘテロ接合型太陽電池の製造方法、ヘテロ接合型太陽電池およびヘテロ接合型結晶シリコン電子デバイス
EP3576135A4 (en) * 2017-03-29 2020-12-23 Fuji Electric Co., Ltd. SEMICONDUCTOR COMPONENT MANUFACTURING METHOD
CN110892514B (zh) * 2017-07-19 2023-07-28 三菱电机株式会社 半导体装置的制造方法以及半导体装置
US10193000B1 (en) 2017-07-31 2019-01-29 Ixys, Llc Fast recovery inverse diode
WO2019181852A1 (ja) 2018-03-19 2019-09-26 富士電機株式会社 半導体装置および半導体装置の製造方法
CN110504167A (zh) * 2018-05-17 2019-11-26 上海先进半导体制造股份有限公司 绝缘栅双极型晶体管及其制造方法
CN110660658B (zh) * 2018-06-28 2022-02-18 上海先进半导体制造有限公司 Vdmos及其制造方法
IT201800007263A1 (it) * 2018-07-17 2020-01-17 Sensore ottico a bassa potenza per applicazioni di consumo, industriali e automobilistiche
DE112019001123B4 (de) 2018-10-18 2024-03-28 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren davon
DE112019001741T5 (de) * 2018-11-16 2020-12-17 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren
DE112019002290T5 (de) * 2018-12-28 2021-04-08 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zum herstellen
WO2020149354A1 (ja) * 2019-01-18 2020-07-23 富士電機株式会社 半導体装置および半導体装置の製造方法
CN113169123A (zh) * 2019-05-16 2021-07-23 富士电机株式会社 半导体装置及半导体装置的制造方法
EP3772749A1 (en) * 2019-08-08 2021-02-10 Infineon Technologies Dresden GmbH & Co . KG Methods and devices related to radio frequency devices
WO2021049499A1 (ja) * 2019-09-11 2021-03-18 富士電機株式会社 半導体装置および製造方法
JP7222435B2 (ja) 2019-10-11 2023-02-15 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2021125147A1 (ja) * 2019-12-18 2021-06-24 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2021099411A (ja) 2019-12-20 2021-07-01 ギガフォトン株式会社 極端紫外光集光ミラー、極端紫外光集光ミラーの製造方法、及び電子デバイスの製造方法
WO2021145397A1 (ja) * 2020-01-17 2021-07-22 富士電機株式会社 半導体装置および半導体装置の製造方法
JP7361634B2 (ja) * 2020-03-02 2023-10-16 三菱電機株式会社 半導体装置及び半導体装置の製造方法
US20230111002A1 (en) * 2020-03-13 2023-04-13 Mitsubishi Electric Corporation Semiconductor device, and method of manufacturing semiconductor device
CN111900087B (zh) * 2020-08-31 2022-09-20 华虹半导体(无锡)有限公司 Igbt器件的制造方法
CN115989563A (zh) 2021-03-17 2023-04-18 富士电机株式会社 半导体装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211394B2 (ja) * 1992-08-13 2001-09-25 ソニー株式会社 半導体装置の製造方法
JPH08102545A (ja) 1994-09-30 1996-04-16 Meidensha Corp 半導体素子のライフタイム制御方法
EP1030375A4 (en) * 1998-09-10 2001-07-04 Mitsubishi Electric Corp SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
JP5382098B2 (ja) * 2004-08-19 2014-01-08 富士電機株式会社 半導体装置の製造方法
DE102005063462B4 (de) * 2004-09-22 2017-10-12 Infineon Technologies Ag Verfahren zur Herstellung einer dotierten Zone in einem Halbleiterkörper
JP5104314B2 (ja) * 2005-11-14 2012-12-19 富士電機株式会社 半導体装置およびその製造方法
JP2008091705A (ja) * 2006-10-03 2008-04-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP5320679B2 (ja) * 2007-02-28 2013-10-23 富士電機株式会社 半導体装置およびその製造方法
JP5365009B2 (ja) * 2008-01-23 2013-12-11 富士電機株式会社 半導体装置およびその製造方法
JP5374883B2 (ja) * 2008-02-08 2013-12-25 富士電機株式会社 半導体装置およびその製造方法
JP4858527B2 (ja) * 2008-11-10 2012-01-18 トヨタ自動車株式会社 半導体装置の製造方法
US8330769B2 (en) * 2009-01-09 2012-12-11 Disney Enterprises, Inc. System and method for monochromatic tinting using saturation maps
JP5261324B2 (ja) 2009-08-26 2013-08-14 トヨタ自動車株式会社 半導体装置とその製造方法
CN105552115B (zh) * 2009-11-02 2019-10-29 富士电机株式会社 半导体器件以及用于制造半导体器件的方法
JP5156059B2 (ja) * 2009-12-16 2013-03-06 株式会社豊田中央研究所 ダイオードとその製造方法
JP5802492B2 (ja) * 2011-09-09 2015-10-28 株式会社東芝 半導体素子及びその製造方法
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
EP2782121B1 (en) * 2011-11-15 2021-01-06 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP6067585B2 (ja) * 2011-12-28 2017-01-25 富士電機株式会社 半導体装置および半導体装置の製造方法
CN103999225B (zh) * 2012-01-19 2017-02-22 富士电机株式会社 半导体装置及其制造方法
EP2790208B1 (en) * 2012-03-19 2020-12-02 Fuji Electric Co., Ltd. Production method for semiconductor device
WO2013141221A1 (ja) * 2012-03-19 2013-09-26 富士電機株式会社 半導体装置の製造方法
EP2793267B1 (en) * 2012-03-23 2020-11-25 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP5880691B2 (ja) 2012-03-30 2016-03-09 富士電機株式会社 半導体装置の製造方法
US8587025B1 (en) * 2012-07-03 2013-11-19 Infineon Technologies Ag Method for forming laterally varying doping concentrations and a semiconductor device
US9263271B2 (en) * 2012-10-25 2016-02-16 Infineon Technologies Ag Method for processing a semiconductor carrier, a semiconductor chip arrangement and a method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
CN104903997B (zh) 2020-11-03
EP2930741A1 (en) 2015-10-14
WO2014208404A1 (ja) 2014-12-31
US10847609B2 (en) 2020-11-24
CN109065441A (zh) 2018-12-21
KR102206507B1 (ko) 2021-01-22
JP6037012B2 (ja) 2016-11-30
US20150311279A1 (en) 2015-10-29
CN104903997A (zh) 2015-09-09
US20200144360A1 (en) 2020-05-07
EP2930741B1 (en) 2022-06-01
CN109065441B (zh) 2023-06-30
KR20160023632A (ko) 2016-03-03
US10546919B2 (en) 2020-01-28
EP2930741A4 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6037012B2 (ja) 半導体装置および半導体装置の製造方法
US10629678B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN109075213B (zh) 半导体装置
CN107408581B (zh) 半导体装置及半导体装置的制造方法
JP4571099B2 (ja) 阻止ゾーンを半導体基板に製造する方法、および、阻止ゾーンを有する半導体部品
CN103943672B (zh) 处理含氧半导体晶片的方法及半导体元件
US10431650B2 (en) Method of manufacturing semiconductor device
JP5754545B2 (ja) 半導体装置および半導体装置の製造方法
JP3684962B2 (ja) 半導体装置の製造方法
US9570541B2 (en) Semiconductor device and method of manufacturing the same
US9887125B2 (en) Method of manufacturing a semiconductor device comprising field stop zone
CN109103247B (zh) 半导体装置及其制造方法
JP2010171057A (ja) 半導体装置およびその製造方法
JP2018082007A (ja) 半導体装置の製造方法
JP2013247248A (ja) 半導体装置の製造方法
JP2018078216A (ja) 半導体装置およびその製造方法
JP5565134B2 (ja) 半導体装置の製造方法
JP2001156299A (ja) 半導体装置及びその製造方法
JP2013065790A (ja) 半導体装置の製造方法
JP2022000882A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6037012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250