JPH01117066A - Mos型半導体装置の製造方法 - Google Patents

Mos型半導体装置の製造方法

Info

Publication number
JPH01117066A
JPH01117066A JP27478087A JP27478087A JPH01117066A JP H01117066 A JPH01117066 A JP H01117066A JP 27478087 A JP27478087 A JP 27478087A JP 27478087 A JP27478087 A JP 27478087A JP H01117066 A JPH01117066 A JP H01117066A
Authority
JP
Japan
Prior art keywords
oxide film
gate electrode
ions
ion implantation
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27478087A
Other languages
English (en)
Inventor
Michihiko Hasegawa
長谷川 充彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27478087A priority Critical patent/JPH01117066A/ja
Publication of JPH01117066A publication Critical patent/JPH01117066A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔概 要〕 MOS型半導体装置の製造方法に関し、ゲート電極の闇
値電圧のシフトのないMOS型半導体装置の製造方法の
提供を目的とし、ゲート電極形成後に、シリコン基板と
前記ゲート電極の側面とのなす角度の中の斜め方向から
イオンの注入を行い、前記ゲート電極の周辺部の下部の
前記シリコン基板(1)に低濃度のイオン注入層を形成
する工程を含むよう構成する。
〔産業上の利用分野〕
本発明は、半導体装置の製造方法に係り、特にMOS型
半導体装置の製造方法に関するものである。
MOS型半導体装置の高集積化に伴う微細化に伴い、ゲ
ート電極部で制御するチャネル長が1μm以下の微細構
造の場合には、ソース、ドレイン間の電圧によるブレイ
クダウンを防ぐために、ドレインの近傍に低濃度の拡散
層を形成し、ソース。
ドレイン耐圧の向上を図るライトリ−・ドープド・ドレ
イン構造(L、D、D、構造)が用いられている。
しかしながら、従来のプロセスではゲート電極の側壁に
ヘパシリコン酸化膜を残す構造が採用されているが、こ
の構造では低濃度拡散層の直上にはゲート電極が存在し
ないうえ、ソース近傍にも低濃度拡散層が形成されるた
め、低濃度拡散層が抵抗層として働き、トランジスタの
0Njl抗の増加や電界集中によって発生したホットエ
レクトロンはゲート電極で制御できず、シリコン基板と
ゲート酸化膜界面にトラップされるために起きる闇値電
圧の低い方へのシフト等の悪影響が生じている。
以上のような状況からゲート電極の闇値電圧が低い方ヘ
シフトするのを防止することが可能なMO8型半導体装
置の製造方法が要望されている。
〔従来の技術〕
従来のMOS型半導体装置の製造方法を工程順に第3図
により説明する。
先ず第3図(alに示すように、シリコン基板21の表
面に周知の選択酸化法により表面保護及び素子分離層と
してのフィールド酸化膜24を形成し、このフィールド
酸化膜24により素子形成領域を画定する。
次にフィールド酸化膜24により画定した素子形成領域
のシリコン基板21の表面に熱酸化膜よりなるゲート酸
化膜25を形成し、その表面にCVD法によりポリシリ
コン膜を形成し、周知のリソグラフィー技術によりポリ
シリコン膜をエツチングしてゲート電極26を形成する
次いで第3図(blに示すように、ゲート電極26をマ
スクとしてゲート酸化膜25を通して低濃度の不純物イ
オンを注入して低濃度のソース27a及びドレイン28
aを形成する。
次いで第3図(C)に示すように、ゲート電極26゜ソ
ース27a及びドレイン28aの表面にCVD法により
シリコン酸化膜よりなるカバー絶縁膜29aを形成する
最後に第3図+d)に示すように、カバー絶縁膜29a
を異方性の全面エツチングすることにより、カバー絶縁
膜29aのゲート電極26の側壁部についている部分を
残存させてゲート電極26の周囲にヘパシリコン酸化膜
29を形成し、高濃度のイオンの注入を行ってソース2
7及びドレイン28の拡散領域を形成する。
このようにして素子形成領域に素子を形成した=3− 後、CVD法により全面にPSG膜30を形成し、リソ
グラフィー技術によりソース電極31及びドレイン電極
32用のコンタクトホールを形成し、アルミニウムより
なるソース電極31及びドレイン電極32を形成してM
OS型半導体装置を製造する。
〔発明が解決しようとする問題点〕
以上説明の従来のMOS型半導体装置で問題となるのは
、従来のプロセスによるゲート電極の側壁にヘパシリコ
ン酸化膜を残す構造では低濃度拡散層の直上にはゲート
電極が存在しないため、低濃度拡散層が抵抗層となり、
トランジスタのON抵抗の増加や電界集中によって発生
したホットエレクトロンはゲート電極で制御できず、シ
リコン基板とゲート酸化膜界面にトラップされるために
起きる闇値電圧の低い方へのシフト等の悪影響が生じて
いることである。
本発明は以上のような状況から、容易に実施し得る工程
により、ゲート電極の闇値電圧のシフトのないMOS型
半導体装置の製造方法の提供を目、づ− 的としたものである。
〔問題点を解決するための手段〕
上記問題点は、MOS型半導体装置において、ゲート電
極形成後に、シリコン基板と前記ゲート電極の側面との
なす角度の中の斜め方向からイオンの注入を行い、前記
ゲート電極の周辺部の下部のシリコン基板に低濃度のイ
オン注入層を形成するMOS型半導体装置の製造方法に
よって解決される。
〔作用〕
即ち、本発明においては、ゲート電極形成後にシリコン
基板とゲート電極の側面とのなす角度の中の斜め方向か
らイオンの注入を行い、ゲート電極の周辺部の下部のシ
リコン基板に低濃度のイオン注入層を形成するので、電
界集中により発生したホットエレクトロンは、ゲート電
極で制御できるため、ゲート酸化膜界面にトラップされ
なくなり、閾値電圧の低い方へのシフト等の悪影響が生
じなくなる。
〔実施例〕
以下第1図について本発明の一実施例、第2図について
他の実施例を説明する。
第1図の実施例は、ドレイン側にのみ低濃度のイオン注
入層を形成する例であり、第2図の実施例は、ソース側
とドレイン側の両方に低濃度のイオン注入層を形成する
例である。
先ず第1図(alに示すように、P型のシリコン基板1
の表面に厚さ500人のシリコン酸化膜2を形成し、更
にその上に厚さ1 、000人のシリコン窒化膜3を形
成する。
次に第1図(blに示すように、シリコン基板1の素子
形成領域以外のシリコン窒化膜3を除去し、チャネルカ
ット用のイオン注入を下記条件にて行う。
イオン種−−−−−−−−−一−−−−−−−−−−−
−−−−−−−−一・−一一−−−−−・−硼素(B)
イオン注入の加速電圧−−−−−−−−−−−−−−−
−−−−−−30K e Vドーズ量−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−一一一
一−I X 10 ” cffI−”次いで第1図(C
)に示すように、ウェット酸素中で950℃に加熱し、
厚さ6.000人のフィールド酸化膜4を形成する。
次にシリコン窒化膜3を除去した後、弗酸系エツチング
液により厚さ500人のシリコン酸化膜2をエツチング
して除去する。
その後第1図+d)に示すように、フィールド酸化膜4
により画定した素子形成領域のシリコン基板10表面に
厚さ200人の熱酸化膜よりなるゲート酸化膜5を形成
し、その表面にCVD法により厚さ4.000人のポリ
シリコン膜を堆積し、リソグラフィー技術によるパター
ニング法により反応ガスとしてCαzF’tを用いるポ
リシリコン膜の異方性エツチングでゲート電極6を形成
する。
更に第1図(e)に示すように、ゲート電極6をマスク
としてゲート酸化膜5を通してシリコン基板1の表面に
下記の条件にてイオンの注入を行い、ソース7及びドレ
イン8を形成する。
イオン種−一−−−−−−−−・・・・・・−・−・−
m−−−−−−−−−−−−−−−−−一砒素(ΔS)
イオン注入の加速電圧−・−m−−−−−−・・・・−
・−・・−・−70KeVドーズ量−−−−−−−−−
−−−−−−−−−−−−−−−−一−−−−−−−−
−・−4X10′5印−2この際ゲート電極6のポリシ
リコン膜にもイオン注入が行われ、ゲート電極6のシー
ト抵抗が低下する。
ここで第1図(flに示すように、シリコン基板1の表
面に対して456の角度の斜めイオン注入をドレイン側
から行い低濃度のイオン注入層9を形成する。
このイオン注入の条件は下記の通りである。
イオン種−一一一一−−−−−−−−−−−−−−−−
−−−−−一一一−−−−−−−−−−−−−−砒素(
As)イオン注入の加速電圧−−−−−−−−−−−−
−−−−−−−−−−150KeVドーズ量−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−2X I Q ’ ” c+n −2
この結果第1図tg>に示すように、ゲート電極6の周
辺部の下部に低濃度のイオン注入層9を形成することが
できる。
この場合のゲート電極6の下部へのイオン注入層9のく
い込み長はゲート酸化膜5の膜厚、イオン注入の加速電
圧、イオン注入角度、ゲート電極側壁の角度等によって
制御可能であり、ゲート酸化膜5の厚さが200人の本
実施例では、深さ600人、ゲート電極4側壁より内部
600人の部分に低濃度イオンのイオン注入層9を形成
することができた。
最後に第1図(hlに示すように厚さ1μmのPSG膜
10を堆積し、窒素ガス中で900℃のアニールを30
分間行って不純物の活性化を行い、コンタクトホールを
形成してアルミニウムでソース電極11及びドレイン電
極12を形成してMOS型半導体装置を製造する。
第2図に示す本発明の他の実施例においては、第1図(
a)から第1図(aまでの工程を終えた後、シリコン基
板1の表面に対して45°の角度の斜めイオン注入をソ
ース側から行い、低濃度のイオン注入層9を形成する。
このイオン注入条件は下記の通りである。
イオン種−−−−−−一−−−−−−−−−・−−−−
−−・・−一−−−−−−−−−−−・−砒素(As)
イオン注入の加速電圧・−−−−−−−−−−−−−−
−−−−−−150KeVドーズ量−・−−−−−−−
−−−・−−−−−m−・−・−−−−−−−−−−−
−−L X 10’秘「2この結果第2図(a)に示す
ように、ゲート電極6の周囲の下部のソース側に低濃度
のイオン注入層9を形成することができる。
本実施例においては、ソース側の低濃度のイオン注入層
のドーズ量(濃度)をドレイン側の低濃度のイオン注入
層のドーズ量(?1度)より低く設定している。
最後に第2図(b)に示すように、厚さ1μmのPSG
膜10を堆積し、窒素ガス中で900℃のアニールを3
0分間行って不純物の活性化を行い、コンタクトホール
を形成してアルミニウムでソース電極11及びドレイン
電極12を形成してMOS型半導体装置を製造する。
本実施例では、両側に形成した低濃度のイオン注入層の
濃度をドレイン側とソース側で変えているが、本発明が
この場合に限定されることはない。
また、低濃度のイオン注入層を形成してからソース、ド
レインの高濃度イオン注入をおこなってもよいことは明
らかである。
〔発明の効果〕
以上の説明から明らかなように、本発明によれば容易に
実施し得るイオン注入により、ゲート電極の周辺部の下
部に低濃度イオンのイオン注入層を形成することが可能
となり、この低濃度イオンのイオン注入層の周囲のくう
ぼう層が厚くなり、電界の集中が起こり難くなるので、
ブレイクダウンを防止することが可能で、しかもホット
エレクトロンのトラップによる閾値電圧の変動が発生し
にくい等の利点があり、経済的及び信頼性向上の効果が
期待でき工業的には極めて有用なものである。
【図面の簡単な説明】
第1図は本発明による一実施例を工程順に示す側断面図
、 第2図は本発明による他の実施例を工程順に示す側断面
図、 第3図は従来のMOS型半導体装置の製造方法を工程順
に示す側断面図、 である。 図において、 1はシリコン基板、 2はシリコン酸化膜、 3はシリコン窒化膜、 4はフィールド酸化膜、 5はゲート酸化膜、 6はゲート電極、 7はソース、 8はドレイン、 9は低濃度のイオン注入層、 10はPSG膜、 11はソース電極、 12はドレイン電極、 ド            跡 −L−L−SC−i 単

Claims (1)

    【特許請求の範囲】
  1.  ゲート電極(6)形成後に、シリコン基板(1)と前
    記ゲート電極(6)の側面とのなす角度の中の斜め方向
    からイオンの注入を行い、前記ゲート電極(6)の周辺
    部の下部の前記シリコン基板(1)に低濃度のイオン注
    入層(9)を形成する工程を含むことを特徴とするMO
    S型半導体装置の製造方法。
JP27478087A 1987-10-29 1987-10-29 Mos型半導体装置の製造方法 Pending JPH01117066A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27478087A JPH01117066A (ja) 1987-10-29 1987-10-29 Mos型半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27478087A JPH01117066A (ja) 1987-10-29 1987-10-29 Mos型半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPH01117066A true JPH01117066A (ja) 1989-05-09

Family

ID=17546459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27478087A Pending JPH01117066A (ja) 1987-10-29 1987-10-29 Mos型半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JPH01117066A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250331A (ja) * 1989-03-24 1990-10-08 Hitachi Ltd 半導体装置およびその製造方法
US5158903A (en) * 1989-11-01 1992-10-27 Matsushita Electric Industrial Co., Ltd. Method for producing a field-effect type semiconductor device
JP2006332110A (ja) * 2005-05-23 2006-12-07 Asahi Kasei Microsystems Kk 半導体装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250331A (ja) * 1989-03-24 1990-10-08 Hitachi Ltd 半導体装置およびその製造方法
US5158903A (en) * 1989-11-01 1992-10-27 Matsushita Electric Industrial Co., Ltd. Method for producing a field-effect type semiconductor device
JP2006332110A (ja) * 2005-05-23 2006-12-07 Asahi Kasei Microsystems Kk 半導体装置及びその製造方法

Similar Documents

Publication Publication Date Title
US5296401A (en) MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
JPH0426542B2 (ja)
JPH01117066A (ja) Mos型半導体装置の製造方法
JP3088547B2 (ja) 半導体装置の製造方法
JP2001036071A (ja) 半導体装置の製造方法
JPS6126264A (ja) 半導体装置の製造方法
JPH0637106A (ja) 半導体製造装置の製造方法
JPH04343437A (ja) 半導体装置の製造方法
JPS61154172A (ja) 半導体装置の製造方法
JPS62273774A (ja) 電界効果トランジスタの製造方法
JPS6373667A (ja) Mos半導体装置の製造方法
KR100588777B1 (ko) 반도체 소자 및 그 제조방법
JPH0778979A (ja) 半導体装置の製造方法
JP3532494B2 (ja) 半導体装置の製造方法
KR940007663B1 (ko) 모스 트랜지스터의 제조방법
JPS59231863A (ja) 絶縁ゲ−ト半導体装置とその製造法
JPH06350086A (ja) 半導体装置の製造方法
JP3030569B2 (ja) 不揮発性半導体メモリの製造方法
KR0157910B1 (ko) 엘디디 구조를 갖는 모스형 전계효과 트랜지스터의 제조방법
KR100657754B1 (ko) 반도체 소자의 얇은 접합 제조 방법
JPH0226034A (ja) 半導体装置の製造方法
JP2658163B2 (ja) Mis型半導体装置の製造方法
JP2887902B2 (ja) 半導体装置の製造方法
JPH04139834A (ja) 半導体装置の製造方法
JPH01175259A (ja) 半導体装置及びその製造方法