JP6330768B2 - エンジン冷却装置 - Google Patents

エンジン冷却装置 Download PDF

Info

Publication number
JP6330768B2
JP6330768B2 JP2015183239A JP2015183239A JP6330768B2 JP 6330768 B2 JP6330768 B2 JP 6330768B2 JP 2015183239 A JP2015183239 A JP 2015183239A JP 2015183239 A JP2015183239 A JP 2015183239A JP 6330768 B2 JP6330768 B2 JP 6330768B2
Authority
JP
Japan
Prior art keywords
relief
coolant
path
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015183239A
Other languages
English (en)
Other versions
JP2017057792A (ja
Inventor
金子 理人
理人 金子
高木 登
登 高木
高木 功
功 高木
直也 河本
直也 河本
憲史 木村
憲史 木村
慎治 弓
慎治 弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015183239A priority Critical patent/JP6330768B2/ja
Priority to CN201610817554.XA priority patent/CN107035505B/zh
Priority to US15/264,309 priority patent/US10287968B2/en
Publication of JP2017057792A publication Critical patent/JP2017057792A/ja
Application granted granted Critical
Publication of JP6330768B2 publication Critical patent/JP6330768B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/18Indicating devices; Other safety devices concerning coolant pressure, coolant flow, or liquid-coolant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Multiple-Way Valves (AREA)

Description

本発明は、エンジンの内部を通って冷却液を循環させることでエンジンを冷却するエンジン冷却装置に関する。
液冷式エンジンでは、エンジンの内部とラジエータとの間で冷却液をポンプにより循環させることでエンジンを冷却している。従来、特許文献1に見られるように、こうした液冷式エンジンの冷却装置において、冷却液が循環される冷却液回路が、エンジンの外部において、ラジエータを通るラジエータ経路を含む複数の経路に分岐されるとともに、それら経路の分岐位置に、各経路に流入する冷却液の流量比を可変とする多方弁が設けられたものがある。こうしたエンジン冷却装置では、冷却装置の冷却能力をエンジンの運転状況に応じて適宜に調整することが可能となる。例えば、エンジンの暖機完了前には、ラジエータを通る冷却液の流量が少なくなるように多方弁を制御して、冷却装置の冷却能力を抑えてエンジンの暖機を促進したり、エンジンの発熱が多いときには、ラジエータを通る冷却液の流量が多くなるように多方弁を制御して、冷却装置の冷却能力を高めたり、することができる。
特開2015−010577号公報
ところで、上記のような多方弁を備えるエンジン冷却装置では、多方弁を通過する冷却液の総流量がポンプの冷却液吐出量に対して少ない状態が続くと、冷却液回路における多方弁よりも上流側の部分の冷却液の圧力が過上昇する虞がある。そのため、こうしたエンジン冷却装置では、そうした場合の圧力上昇を考慮して、冷却液回路の各部に高い耐圧性能を持たせなければならず、より耐圧性能が高い、より高価な部品が必要となることから、製造コストの増加を招く要因となっていた。
本発明は、こうした実情に鑑みてなされたものであり、その解決しようとする課題は、冷却液圧力の過上昇を好適に抑えることのできるエンジン冷却装置を提供することにある。
上記課題を解決するエンジン冷却装置は、ポンプからエンジンの内部を通って前記ポンプに戻るように冷却液が流れるとともに、前記エンジンの内部よりも下流側で分岐され、前記ポンプに各々接続された複数の経路を備え、且つ前記複数の経路として、ラジエータを通るラジエータ経路、冷却液の熱で空気を加熱するヒータコアに冷却液を供給するヒータ経路、及び前記エンジンの熱が伝達されるデバイスに冷却液を供給するデバイス経路を有した冷却液回路と、前記冷却液回路における前記複数の経路の分岐位置に設けられて、前記複数の経路のそれぞれに流入する冷却液の流量比を可変とする多方弁と、を備える。また、同エンジン冷却装置は、前記冷却液回路における前記ポンプよりも上流側、且つ前記多方弁よりも上流側の部分をリリーフ元とし、同冷却液回路における前記多方弁よりも下流側、且つ前記ポンプよりも上流側の部分をリリーフ先として、前記多方弁を迂回して前記リリーフ元から前記リリーフ先へと冷却液を流すためのリリーフ経路と、前記リリーフ経路を通じた冷却液の流通を、閉弁時に遮断するとともに、開弁に応じて許容するリリーフ弁と、を備える。
こうしたエンジン冷却装置では、多方弁にて冷却液の流れが滞り、その上流側の冷却液の圧力が上昇した場合にも、リリーフ弁を開弁して、リリーフ経路を通じて多方弁の上流側から下流側に冷却液をリリーフすることで、上昇した圧力を逃がすことができる。しかしながら、リリーフ経路を通過した冷却液がラジエータに流入するようになっていると、リリーフ弁が開弁固着した場合に、リリーフ経路を通じてラジエータに冷却液が常時流れ込む状態となってしまい、エンジンが必要以上に冷却されてしまう虞がある。その点、上記エンジン冷却装置では、リリーフ経路のリリーフ先が、前記冷却液回路における前記多方弁よりも下流側、且つ前記ポンプよりも上流側の部分にあって、前記ヒータ経路における前記ヒータコアよりも上流側の部分、又は前記デバイス経路における前記デバイスよりも上流側の部分とされている。そのため、リリーフ弁が開弁固着した場合にも、ラジエータに冷却液が常時流入する状態とはならなくなり、その常時流入に起因したエンジンの過冷却も生じないようになる。すなわち、上記エンジン冷却装置では、多方弁上流側の冷却液圧力の過上昇の抑制を図りつつ、そのために設置したリリーフ弁が開弁固着した場合にも、エンジンが過冷却されないようになっている。したがって、上記エンジン冷却装置によれば、冷却液圧力の過上昇を好適に抑えることができる。
第1実施形態のエンジン冷却装置の構成を模式的に示す略図。 同エンジン冷却装置に設けられた多方弁の斜視図。 同多方弁の分解斜視図。 同多方弁の構成部品であるハウジングの本体の斜視図。 (a)は上記多方弁の構成部品である弁体の斜視図であり、(b)は別方向から見た同弁体の斜視図である。 同多方弁の弁位相と各吐出ポートの開口率との関係を示すグラフ。 第2実施形態のエンジン冷却装置における冷却液回路の構成を模式的に示す略図。 第3実施形態のエンジン冷却装置における冷却液回路の構成を模式的に示す略図。
(第1実施形態)
以下、エンジン冷却装置の第1実施形態を、図1〜図6を参照して詳細に説明する。
(冷却液回路の構成)
まず、本実施形態のエンジン冷却装置において、エンジンを冷却するための冷却液が流れる冷却液回路の構成を、図1を参照して説明する。
図1に示すように、エンジン10のシリンダブロック11及びシリンダヘッド12の内部には、冷却液回路の一部となるウォータジャケット11A,12Aがそれぞれ設けられている。冷却液回路におけるウォータジャケット11A,12Aよりも上流側の部分には、冷却液回路に冷却液を循環させるための冷却液ポンプ13が設けられている。冷却液ポンプ13には、エンジン10からの動力伝達により駆動する機械式のポンプが採用されている。そして、冷却液ポンプ13が吐出した冷却液がウォータジャケット11A,12Aに導入されるようになっている。
なお、シリンダヘッド12のウォータジャケット12Aには、シリンダブロック11のウォータジャケット11Aから流入した直後の冷却液の温度(入口液温)を検出する入口液温センサ23が設けられている。また、ウォータジャケット12Aには、同ウォータジャケット12Aから外部に流出する直前の冷却液の温度(出口液温)を検出する出口液温センサ24も設けられている。
シリンダブロック11におけるウォータジャケット12Aの冷却液出口が設けられた部分には、多方弁14が取り付けられており、ウォータジャケット11A,12Aを通過した冷却液が多方弁14に流入するようになっている。冷却液回路は、この多方弁14において、ラジエータ経路R1、ヒータ経路R2、及びデバイス経路R3の3つの経路に分岐している。このうち、ラジエータ経路R1は、外気との熱交換により冷却液を冷却するラジエータ15に冷却液を供給するための経路である。また、ヒータ経路R2は、車室内の暖房時に、冷却液の熱で車室内に送風される空気を加熱するための熱交換器であるヒータコア16に冷却液を供給するための経路である。さらにデバイス経路R3は、冷却液を搬送媒体としてエンジン10の熱が伝達される各デバイスに冷却液を供給するための経路である。なお、ラジエータ経路R1の流路断面積は、より多量の冷却液を流せるように、ヒータ経路R2及びデバイス経路R3の流路断面積よりも大きくされている。
ラジエータ経路R1は、ラジエータ15に冷却液を供給した後、そのラジエータ15の下流側の部分において冷却液ポンプ13に接続されている。
デバイス経路R3は、まず3つに分岐しており、各々の分岐先においてスロットルボディ17、EGR(排気再循環:Exhaust Gas Recirculation)バルブ18、EGRクーラ19にそれぞれ冷却液を供給する。さらに、デバイス経路R3は、それらスロットルボディ17、EGRバルブ18及びEGRクーラ19の下流側で一旦合流した後、2つに分岐し、各々の分岐先においてオイルクーラ20及びATF(Automatic Transmission Fluid)ウォーマ21にそれぞれ冷却液を供給する。また、デバイス経路R3は、オイルクーラ20及びATFウォーマ21の下流側で再び合流されている。そして、デバイス経路R3は、その合流位置の下流側の部分において、ラジエータ経路R1におけるラジエータ15の下流側の部分に合流し、ラジエータ経路R1と一体となって冷却液ポンプ13に接続されている。
一方、ヒータ経路R2は、ヒータコア16に冷却液を供給した後、そのヒータコア16の下流側の部分において、デバイス経路R3におけるオイルクーラ20及びATFウォーマ21の下流側の部分に合流してデバイス経路R3と一体となり、さらにその下流側ではラジエータ経路R1とも一体となって冷却液ポンプ13に接続されている。
以上のように、冷却液回路は、冷却液ポンプ13からエンジン10の内部(ウォータジャケット11A,12A)を通って冷却液ポンプ13に戻るよう冷却液を流すように構成されている。また、冷却液回路は、エンジン10の内部よりも下流側で分岐して、冷却液ポンプ13に各々接続された複数の経路、すなわちラジエータ経路R1、ヒータ経路R2、及びデバイス経路R3の3つの経路を有する。そして、冷却液回路における上記3つの経路R1〜R3の分岐位置には、それら経路R1〜R3のそれぞれに流入する冷却液の流量比を可変とする多方弁14が設けられている。
さらに、本実施形態のエンジン冷却装置は、多方弁14上流の冷却液圧力が過上昇した際に、その圧力を逃がすためのリリーフ構造を備える。このリリーフ構造は、リリーフ弁22及びリリーフ経路R4を備えてなる。リリーフ経路R4は、冷却液経路における冷却液ポンプ13よりも下流側、且つ多方弁14よりも上流側の部分をリリーフ元とし、冷却液回路における多方弁14よりも下流側、且つ冷却液ポンプ13よりも上流側の部分をリリーフ先として、多方弁14を迂回してリリーフ元からリリーフ先へと冷却液を流すように設けられている。また、リリーフ弁22は、リリーフ経路R4を通じた冷却液の流通を、閉弁時に遮断するとともに、開弁に応じて許容する。このエンジン冷却装置では、リリーフ弁22として、リリーフ元及びリリーフ先の冷却液の差圧に応じて開閉する差圧弁が採用されている。リリーフ弁22は、多方弁14に内蔵されており、リリーフ経路R4は、その多方弁14から発して、ラジエータ経路R1におけるラジエータ15よりも下流側の部分に合流するように設けられている。すなわち、このエンジン冷却装置では、リリーフ経路R4のリリーフ先は、ラジエータ経路R1におけるラジエータ15よりも下流側の部分とされている。
多方弁14は、エンジン制御を司る電子制御ユニット25により制御されている。電子制御ユニット25は、エンジン制御に係る各種の演算処理を行う中央演算処理装置、制御用のプログラムやデータが予め記憶された読出専用メモリ、中央演算処理装置の演算結果やセンサの検出結果などを一時的に記憶する読書可能メモリを備える。こうした電子制御ユニット25には、上述の入口液温センサ23及び出口液温センサ24に加え、クランク角センサ26、エアフローメータ27、外気温センサ28、車速センサ29などの車両各部に設けられたセンサの検出信号が入力されている。クランク角センサ26は、エンジン10の出力軸であるクランクシャフトの回転位相(クランク角)を検出する。電子制御ユニット25は、そうしたクランク角の検出結果から、エンジン10の回転速度(エンジン回転数)を演算する。また、エアフローメータ27は、エンジン10の吸入空気量を、外気温センサ28は、車両の外気の温度(外気温)を、車速センサ29は、車両の走行速度(車速)をそれぞれ検出する。さらに、電子制御ユニット25には、イグニッションスイッチがオフであるか、オフであるかを示すIG信号も入力されている。
(多方弁の構成)
続いて、こうしたエンジン冷却装置の冷却液回路に設けられた多方弁14の構成を、図2〜図5を参照して説明する。なお、以下の説明では、図2〜図5において矢印Uで示す方向を多方弁14の上方とし、矢印Dで示す方向を多方弁14の下方とする。
図2に示すように、多方弁14は、冷却液の吐出口となる4つの吐出ポートを、すなわちラジエータポートP1、ヒータポートP2、デバイスポートP3、及びリリーフポートP4を備える。多方弁14がエンジン10に組み付けられた際に、ラジエータポートP1はラジエータ経路R1に、ヒータポートP2はヒータ経路R2に、デバイスポートP3はデバイス経路R3、リリーフポートP4はリリーフ経路R4に、それぞれ接続される。
図3に示すように、多方弁14は、その構成部品として、ハウジング30、弁体33、カバー34、モータ35、3つのギア36A〜36Cからなる減速ギア機構を備える。多方弁14の骨格をなすハウジング30には、上記4つの吐出ポートP1〜P4が設けられている。なお、ハウジング30は、本体30Aと、各経路R1〜R4がそれぞれ接続されるコネクタ部30B〜30Dとに分割形成されている。具体的には、コネクタ部30Bにはラジエータ経路R1及びリリーフ経路R4が、コネクタ部30Cにはヒータ経路R2が、コネクタ部30Dにはデバイス経路R3が、それぞれ接続される。図3には、こうしたハウジング30が、本体30Aからコネクタ部30Bが分離された状態で示されている。
ハウジング30の本体30Aの下部には、ラジエータポートP1、ヒータポートP2及びデバイスポートP3の3つの吐出ポートの開口面積を回転に応じて可変とする弁体33が収容される。また、ハウジング30の本体30Aの上部には、モータ35及び減速ギア機構が収容される。モータ35は、減速ギア機構を構成する各ギア36A〜36Cを介して、弁体33の回転軸である弁軸33Aに連結された状態でハウジング30に収容され、これにより、モータ35の回転が減速された上で弁体33に伝達されるようになっている。
一方、ハウジング30には、モータ35及び減速ギア機構が収容された部分の上方を覆うようにカバー34が取り付けられる。カバー34の内部には、ハウジング30に対する弁体33の相対回転位相(以下、弁位相と記載する)を検出するための弁位相センサ37が取り付けられている。弁位相センサ37の検出信号は、上述の電子制御ユニット25に入力される。さらに、ハウジング30内には、上述のリリーフ弁22が収容されるようにもなっている。
図4に、下方から見たハウジング30の本体30Aの斜視構造を示す。本体30Aの下側の面は、シリンダヘッド12への取付面30Eとされており、多方弁14は、この取付面30Eがシリンダヘッド12の外壁に接した状態でエンジン10に組み付けられる。本体30Aにおける弁体33の収容空間は、取付面30Eに開口しており、その開口は、シリンダヘッド12のウォータジャケット12Aから冷却液が流入する流入ポート30Fとなっている。そして、ラジエータポートP1、ヒータポートP2及びデバイスポートP3は、ハウジング30の内側において、こうした弁体33の収容空間にそれぞれ開口している。一方、リリーフポートP4は、弁体33の収容空間を介さず、流入ポート30Fに開口するように設けられている。そして、リリーフ弁22は、こうしたリリーフポートP4に設置されている。
図5(a)に示すように、弁体33は、2つの樽型の物体を上下に重ね合わせた形状とされている。そして弁体33には、その上面中央から上方に突出すように弁軸33Aが設けられている。弁体33は、ハウジング30に収容された際に流入ポート30Fに連通する開口を下面に有した中空構造とされている。弁体33の、上記2つの樽型の部分の側周には、冷却液が流通可能な2つの孔39,40が設けられている。
ハウジング30に収容された状態において、弁体33の下部に設けられた孔39は、上記弁位相がある範囲内にあるときに、ヒータポートP2及びデバイスポートP3の少なくとも一方と連通する。また、弁体33の上部に設けられた孔40は、弁位相が別の範囲内にあるときに、ラジエータポートP1と連通する。各吐出ポートP1〜P3は、対応する孔39又は孔40に対して完全に重なり合わない状態となる位置に弁体33が位置するときに閉じて、接続された経路R1〜R3への冷却液の吐出を遮断する。また、各吐出ポートP1〜P3は、孔39又は孔40に対してその一部又は全部が重なり合った状態となる位置に弁体33が位置するときに開いて、接続された経路R1〜R3への冷却液の吐出を許容する。ちなみに、リリーフポートP4は、多方弁14の弁位相に拘らず、常時全開の状態となっている。
さらに、弁体33の上面には、一部をストッパ43として残すように、弁軸33Aの根本部分を囲んで円弧状に延びる溝42が形成されている。一方、図4に示すように、ハウジング30における弁体33の収容空間の奥部には、弁体33を収容した際に、そうした溝42内に収容されるストッパ44が形成されている。そして、それらストッパ43,44との当接により、ハウジング30内での弁体33の回動範囲が制限されている。すなわち、ハウジング30内での弁体33の回動は、溝42内でのストッパ44の移動が、図5(b)に矢印Lで示す範囲となる限りにおいて許容されている。
図6に、多方弁14における弁位相と各吐出ポートP1〜P3の開口率との関係を示す。なお、弁位相は、すべての吐出ポートP1〜P3が閉じた状態となる位置を、弁位相が「0°」の位置とし、その位置からの上方から見た時計回り方向(プラス方向)、及び半時計回り方向(マイナス方向)の弁体33の回転角度を表している。また、開口率は、全開時の開口面積を「100%」とした、各吐出ポートP1〜P3の開口面積の比率を表している。
同図に示すように、各吐出ポートP1〜P3の開口率は、弁体33の弁位相により変化するように設定されている。なお、弁位相が「0°」の位置よりもプラス側の弁位相の範囲は、車室内の暖房時に使用される弁位相の範囲(冬モード使用域)とされており、弁位相が「0°」の位置よりもマイナス側の弁位相の範囲は、車室内の非暖房時に使用される弁位相の範囲(夏モード使用域)とされている。
弁位相が「0°」の位置から弁体33をプラス方向に回転させると、まずヒータポートP2が開き始め、プラス方向への弁位相の増加に応じてヒータポートP2の開口率が次第に大きくなる。ヒータポートP2が全開に、すなわちその開口率が「100%」に達すると、次にデバイスポートP3が開き始め、プラス方向への弁位相の増加に応じてデバイスポートP3の開口率が次第に大きくなる。そして、デバイスポートP3が全開に、すなわちその開口率が「100%」に達すると、ラジエータポートP1が開き始め、プラス方向への弁位相の増加に応じてラジエータポートP1の開口率が次第に大きくなる。そして、ラジエータポートP1の開口率は、弁体33のそれ以上のプラス方向の回転がストッパ43,44の当接により規制される位置よりも手前の位置で「100%」に達するようになる。
一方、弁位相が「0°」の位置から弁体33をマイナス方向に回転させると、まずデバイスポートP3が開き始め、マイナス方向への弁位相の増加に応じてデバイスポートP3の開口率が次第に大きくなる。そして、デバイスポートP3が全開に、すなわちその開口率が「100%」に達する位置よりも少し手前の位置から、ラジエータポートP1が開き始め、マイナス方向への弁位相の増加に応じてラジエータポートP1の開口率が次第に大きくなる。そして、ラジエータポートP1の開口率は、弁体33のそれ以上のマイナス方向への回転がストッパ43,44の当接により規制される位置よりも手前の位置で「100%」に達するようになる。ちなみに、弁位相が「0°」の位置よりもマイナス側の夏モード使用域では、ヒータポートP2は常に全閉となっている。
次に、電子制御ユニット25による多方弁14の制御について説明する。
電子制御ユニット25は、エンジン10の暖機完了前、すなわち出口水温が規定の暖機完了温度よりも低いときには、次のように多方弁14を制御する。すなわち、出口液温が規定の水止完了温度(<暖機完了温度)未満の場合、電子制御ユニット25は、エンジン10の冷間始動開始時には、各吐出ポートP1〜P3の開口率がいずれも「0%」となる、弁位相が「0°」の位置に弁体33が位置するように多方弁14を制御する。これにより、エンジン10の内部からの冷却液の流出を遮断する、いわゆる水止制御を行うことで、シリンダ壁面の昇温を促進するようにしている。そして、出口液温が水止完了温度を超えると、電子制御ユニット25は、出口液温の上昇に応じて弁位相をプラス側、又はマイナス側に増加させる。このとき、外気温が基準温度以下であって暖房が使用される可能性が高ければ、弁位相はプラス側に増加され、外気温が基準温度を超えていて暖房が使用される可能性が低いときには、弁位相はマイナス側に増加される。このときの弁位相の増加は、出口液温が暖機完了温度に達した時点で、ラジエータポートP1が開き始める直前の位置となるように行われる。
そして、電子制御ユニット25は、エンジン10の暖機が完了すると、出口液温のフィードバック制御を開始する。このフィードバック制御は、エンジン10の運転状態に応じて設定された目標液温と出口液温の偏差に応じて、多方弁14の弁位相を調整することで行われる。具体的には、出口液温が目標液温よりも高いときには、ラジエータポートP1の開口率が大きくなる側に弁位相を徐々に変更し、出口液温が目標液温よりも低いときには、ラジエータポートP1の開口率が小さくなる側に弁位相を徐々に変更するようにしている。
(作用)
続いて、以上のように構成された本実施形態のエンジン冷却装置の作用を説明する。
上記エンジン冷却装置では、エンジン10の回転数が高く、冷却液ポンプ13の冷却液の吐出量が多い状態で、多方弁14における各吐出ポートP1〜P3の開口率がいずれも小さくなっていると、冷却液回路における多方弁14よりも上流側の部分(以下、多方弁上流側と記載する)の冷却液の圧力が上昇する。多方弁上流側の冷却液圧力がある程度よりも高くなると、リリーフ弁22が開いてリリーフ経路R4が開通し、リリーフ経路R4のリリーフ先に、上昇した多方弁上流側の冷却液圧力が逃される。これにより、多方弁上流側の冷却液圧力の過上昇による冷却液の漏れなどが防止される。
なお、多方弁上流側の冷却液圧力の過上昇の抑制だけを言えば、リリーフ経路R4のリリーフ先は、冷却液回路における多方弁14よりも下流側、且つ冷却液ポンプ13よりも上流側の部分であれば、何処でも良いことになる。ただし、本実施形態のエンジン冷却装置では、以下の理由から、リリーフ経路R4のリリーフ先を、ラジエータ経路R1におけるラジエータ15よりも下流側の部分としている。
異物の噛み込みなどにより、リリーフ弁22が開弁固着することが考えられる。そうした場合、リリーフ経路R4は、常時開通した状態となり、多方弁14の開弁状態に拘らず、リリーフ経路R4を通じて冷却液が流れることになる。ここで、リリーフ経路R4を通過した冷却液がラジエータ15に流入するようになっていると、リリーフ弁22が開弁固着した場合に、リリーフ経路R4を通じてラジエータ15に冷却液が常時流れ込む状態となってしまい、エンジン10が必要以上に冷却されてしまう虞がある。すなわち、エンジン10の暖機完了前の、本来であればラジエータ15に冷却液を供給しない期間にも、冷却液がラジエータ15に供給されて冷却されてしまうため、エンジン10の暖機が遅れるようになる。また、エンジン10の暖機完了後にも、本来よりも多い量の冷却液がラジエータ15に供給されてしまうため、エンジン10が必要以上に冷却されてしまうようになる。
その点、ラジエータ経路R1におけるラジエータ15よりも下流側の部分をリリーフ経路R4のリリーフ先とした本実施形態のエンジン冷却装置では、リリーフ弁22が開弁固着した場合にも、ラジエータ15に冷却液が常時流入する状態とはならなくなり、それに起因したエンジン10の過冷却も生じないようになる。すなわち、本実施形態のエンジン冷却装置では、多方弁上流側の冷却液圧力の過上昇の抑制を図りつつも、そのために設置したリリーフ弁22が開弁固着した場合にも、エンジン10が過冷却されないようになる。
以上説明した本実施形態のエンジン冷却装置によれば、以下の効果を奏することができる。
(1)リリーフ弁22が設けられたリリーフ経路R4の設置により多方弁上流側の冷却液圧力の過上昇を防止しつつも、そのために設置した本実施形態のエンジン冷却装置では、リリーフ弁22が開弁固着した場合にも、エンジン10が過冷却されないようにすることができる。
(2)リリーフ弁22の開弁固着時におけるエンジン10の過冷却は、リリーフ弁22の開弁固着の有無を監視し、開弁固着の発生が確認された場合、多方弁14においてラジエータ経路R1に吐出される冷却液の流量を減らすように多方弁14を制御することでも防止可能ではある。しかしながら、そうした場合、リリーフ弁22の開弁固着を監視するためのセンサの追加設置が必要となり、部品点数の増加を招く。その点、本実施形態のエンジン冷却装置では、リリーフ経路R4のリリーフ先を変更するだけで、リリーフ弁22の開弁固着時におけるエンジン10の過冷却を防止しているため、その防止のための部品点数の増加を抑えることが可能である。
(3)ヒータ経路R2やデバイス経路R3に比して通路断面積の大きいラジエータ経路R1をリリーフ経路R4のリリーフ先としている。そのため、ヒータ経路R2やデバイス経路R3をリリーフ先とした場合よりも速やか且つ確実に、リリーフ弁22の開弁時に多方弁上流側の冷却液圧力を下げることが可能となる。
(4)ラジエータ15に加え、ヒータ経路R2に設置されたヒータコア16やデバイス経路R3に設置された各デバイス(17〜21)のいずれにも流入することなく、リリーフ経路R4を通じて冷却液を流すことができる。そのため、リリーフ弁22の開弁固着時に、ヒータコア16や各デバイス(17〜21)に冷却液が不必要に供給されないようにすることが可能となる。
(第2実施形態)
次に、エンジン冷却装置の第2実施形態を、図7を併せ参照して詳細に説明する。なお本実施形態にあって、上記実施形態と共通する構成については、同一の符号を付してその詳細な説明は省略する。
第1実施形態では、リリーフ経路R4のリリーフ先を、ラジエータ経路R1におけるラジエータ15よりも下流側の部分としていた。もっとも、冷却液回路における多方弁14よりも下流側、且つ冷却液ポンプ13よりも上流側の部分にあって、ラジエータ経路R1におけるラジエータ15よりも上流側の部分以外の部分であれば、リリーフ経路R4のリリーフ先がどの位置にあっても、リリーフ弁22の開弁固着時におけるエンジン10の過冷却を防止する目的は達成できる。
図7に示すように、本実施形態のエンジン冷却装置では、多方弁14の流入ポート30Fとデバイス経路R3における各デバイス(17〜21)よりも上流側の部分とを、多方弁14を迂回して繋ぐようにリリーフ経路R4が設けられている。すなわち、本実施形態のエンジン冷却装置では、デバイス経路R3における各デバイスよりも上流側の部分が、リリーフ経路R4のリリーフ先とされている。
こうした本実施形態でも、リリーフ弁22が開弁固着した場合、リリーフ経路R4を通ってデバイス経路R3に冷却液が流れることになり、冷却液の冷却能力の高いラジエータ15には流れない。そのため、第1実施形態と同様に、リリーフ弁22の開弁固着時におけるエンジン10の過冷却を防止することができる。また、こうした場合には、第1実施形態の場合よりも、リリーフ経路R4のリリーフ元、リリーフ先の距離を短くすることができ、リリーフ経路R4を構成する配管(パイプやホース)をより短くしたり、或いはリリーフ経路R4の全体を多方弁14内に設けたり、することが可能となって、部品コストの低減が可能にもなる。
なお、リリーフ経路R4のリリーフ先を、デバイス経路R3の上記以外の部分としたり、ヒータ経路R2としたりすることも可能である。そうした場合にも、リリーフ弁22の開弁固着時に冷却液がラジエータ15に常時流入する状態となることを回避して、エンジン10の過冷却を防止することができる。ちなみに、暖房を使用しない場合を考えると、リリーフ経路R4のリリーフ先をヒータ経路R2とする場合には、ヒータコア16よりも下流側の部分をリリーフ先とすることがより望ましい。
(第3実施形態)
次に、エンジン冷却装置の第3実施形態を、図8を併せ参照して詳細に説明する。
第1及び第2実施形態では、リリーフ経路R4のリリーフ元を、多方弁14における流入ポート30Fの部分としていた。もっとも、冷却液回路における冷却液ポンプ13よりを下流側、且つ多方弁14よりも上流側の部分であれば、リリーフ経路R4のリリーフ元がどの位置にあっても、多方弁上流側の冷却液圧力の過上昇を防止するという目的は達成することができる。
図8に示すように、本実施形態のエンジン冷却装置では、シリンダブロック11内のウォータジャケット11Aとデバイス経路R3における各デバイス(17〜21)よりも下流側の部分とを、多方弁14を迂回して繋ぐようにリリーフ経路R4が設けられている。そして、そうしたリリーフ経路R4におけるウォータジャケット11Aからの出口部分にリリーフ弁22を設けるようにしている。すなわち、本実施形態では、ウォータジャケット11Aが、リリーフ経路R4のリリーフ元とされている。
こうした本実施形態でも、多方弁上流側の冷却液圧力が上昇した際には、リリーフ弁22が開くことで、その上昇した圧力を、リリーフ経路R4を通じて逃がすことができる。また、リリーフ経路R4のリリーフ先がデバイス経路R3とされているため、リリーフ弁22が開弁固着した際にも、リリーフ経路R4を通じてラジエータ15に冷却液が常時流れ込む状態とはならないようになる。よって、本実施形態のエンジン冷却装置によっても、リリーフ弁22の開弁固着時におけるエンジン10の過冷却を防止することが可能となる。
ちなみに、本実施形態のエンジン冷却装置では、リリーフ経路R4を通じて、ラジエータ15、ヒータコア16、及びデバイス経路R3上の各デバイス(17〜21)のいずれも通らずに冷却液を流すことができる。そのため、リリーフ弁22が開弁固着した場合に、それらに不要に冷却液が供給されないようにすることができる。第1実施形態のエンジン冷却装置のように、多方弁14とラジエータ経路R1におけるラジエータ15よりも下流側の部分とを繋ぐようにリリーフ経路R4を設けても、同様の効果を奏することができる。ただし、多方弁14がシリンダヘッド12に、冷却液ポンプ13がシリンダブロック11に取り付けられている場合、第1実施形態の構成では、リリーフ経路R4の経路長が長くなってしまう場合がある。そうした場合にも、本実施形態のように、リリーフ元をシリンダブロック11のウォータジャケット11Aとすれば、第1実施形態の場合よりも短い経路長でリリーフ経路R4を構成することができる場合がある。
なお、上記実施形態は以下のように変更して実施することもできる。
・上記実施形態では、リリーフ弁22として差圧弁を用いていたが、流入する冷却液の温度に応じて開閉するサーモスタット弁をリリーフ弁22として採用することもできる。多方弁14からの冷却液の流出が滞ると、多方弁上流側の冷却液圧力と共に冷却液の温度が上昇する。そのため、リリーフ弁22にサーモスタット弁を用いても、多方弁上流側の冷却液圧力を逃がすことが可能となる。
・上記実施形態では、多方弁14より分岐される経路として、ラジエータ経路R1、ヒータ経路R2及びデバイス経路R3の3つの経路を有した冷却液回路を例示したが、多方弁14にて分岐する経路の数が異なる冷却液回路を備えるエンジン冷却装置にも、同様のリリーフ構造を適用することができる。
P1…ラジエータポート(吐出ポート)、P2…ヒータポート(吐出ポート)、P3…デバイスポート(吐出ポート)、P4…リリーフポート、R1…ラジエータ経路(複数の経路の一つ)、R2…ヒータ経路(複数の経路の一つ)、R3…デバイス経路(複数の経路の一つ)、R4…リリーフ経路、10…エンジン、11…シリンダブロック、12…シリンダヘッド、11A,12A…ウォータジャケット(エンジンの内部)、13…冷却液ポンプ(ポンプ)、14…多方弁、15…ラジエータ、16…ヒータコア、17…スロットルボディ、18…EGRバルブ、19…EGRクーラ、20…オイルクーラ、21…ATFウォーマ、22…リリーフ弁、23…入口液温センサ、24…出口液温センサ、25…電子制御ユニット、26…クランク角センサ、27…エアフローメータ、28…外気温センサ、29…車速センサ、30…ハウジング、30A…本体、30B〜30D…コネクタ部、30E…取付面、30F…流入ポート、33…弁体、33A…弁軸、34…カバー、35…モータ、36A〜36C…ギア、37…弁位相センサ、39…孔、40…孔、42…溝、43,44…ストッパ。

Claims (1)

  1. ポンプからエンジンの内部を通って前記ポンプに戻るように冷却液が流れるとともに、前記エンジンの内部よりも下流側で分岐され、前記ポンプに各々接続された複数の経路を備え、且つ前記複数の経路として、ラジエータを通るラジエータ経路、冷却液の熱で空気を加熱するヒータコアに冷却液を供給するヒータ経路、及び前記エンジンの熱が伝達されるデバイスに冷却液を供給するデバイス経路を有した冷却液回路と、前記冷却液回路における前記複数の経路の分岐位置に設けられて、前記複数の経路のそれぞれに流入する冷却液の流量比を可変とする多方弁と、を備えるエンジン冷却装置において、
    前記冷却液回路における前記ポンプよりも下流側、且つ前記多方弁よりも上流側の部分をリリーフ元とし、同冷却液回路における前記多方弁よりも下流側、且つ前記ポンプよりも上流側の部分をリリーフ先として、前記多方弁を迂回して前記リリーフ元から前記リリーフ先へと冷却液を流すためのリリーフ経路と、
    前記リリーフ経路を通じた冷却液の流通を、閉弁時に遮断するとともに、開弁に応じて許容するリリーフ弁と、
    を備えるとともに、前記リリーフ先が、前記冷却液回路における前記多方弁よりも下流側、且つ前記ポンプよりも上流側の部分にあって、前記ヒータ経路における前記ヒータコアよりも上流側の部分、又は前記デバイス経路における前記デバイスよりも上流側の部分とされた
    ことを特徴とするエンジン冷却装置。
JP2015183239A 2015-09-16 2015-09-16 エンジン冷却装置 Expired - Fee Related JP6330768B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015183239A JP6330768B2 (ja) 2015-09-16 2015-09-16 エンジン冷却装置
CN201610817554.XA CN107035505B (zh) 2015-09-16 2016-09-12 发动机冷却***
US15/264,309 US10287968B2 (en) 2015-09-16 2016-09-13 Engine cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183239A JP6330768B2 (ja) 2015-09-16 2015-09-16 エンジン冷却装置

Publications (2)

Publication Number Publication Date
JP2017057792A JP2017057792A (ja) 2017-03-23
JP6330768B2 true JP6330768B2 (ja) 2018-05-30

Family

ID=58236630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183239A Expired - Fee Related JP6330768B2 (ja) 2015-09-16 2015-09-16 エンジン冷却装置

Country Status (3)

Country Link
US (1) US10287968B2 (ja)
JP (1) JP6330768B2 (ja)
CN (1) CN107035505B (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443824B2 (ja) * 2017-02-21 2018-12-26 マツダ株式会社 エンジンの冷却装置
JP6465135B2 (ja) 2017-03-23 2019-02-06 トヨタ自動車株式会社 内燃機関システム
KR102371256B1 (ko) * 2017-10-24 2022-03-04 현대자동차 주식회사 냉각수 제어 밸브유닛, 및 이를 구비한 냉각시스템
KR102440603B1 (ko) * 2017-10-24 2022-09-05 현대자동차 주식회사 이지알 쿨러를 구비한 엔진 냉각시스템
JP6992479B2 (ja) * 2017-12-15 2022-01-13 トヨタ自動車株式会社 冷却装置の異常診断装置
DE112018000019B4 (de) * 2018-03-28 2022-07-14 Komatsu Ltd. Motor-Kühlvorrichtung mit Ventilen zum Umschalten von Zirkulationswegen für ein Kühlmittel in Abhängigkeit von der Temperatur des Kühlmittels
WO2019230752A1 (ja) 2018-05-31 2019-12-05 株式会社デンソー バルブ装置
JP7084279B2 (ja) * 2018-11-01 2022-06-14 トヨタ自動車株式会社 エンジン冷却装置
KR102540891B1 (ko) * 2018-11-21 2023-06-08 현대자동차주식회사 엔진 분리 냉각이 가능한 전자식 서모스탯 및 이를 이용한 엔진 냉각 시스템
KR20200101671A (ko) * 2019-02-20 2020-08-28 현대자동차주식회사 통합 유량제어 밸브 어셈블리 및 이를 포함하는 엔진 냉각시스템
US10961897B2 (en) * 2019-03-01 2021-03-30 Hyundai Motor Company Methods of controlling electrical coolant valve for internal combustion engine
JP7226030B2 (ja) * 2019-04-03 2023-02-21 マツダ株式会社 エンジンの冷却システム
KR20210049494A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049490A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049492A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049493A (ko) 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
KR20210049491A (ko) * 2019-10-25 2021-05-06 현대자동차주식회사 통합유량제어 밸브를 적용한 차량 열관리 시스템 및 냉각회로 제어 방법
JP7331646B2 (ja) * 2019-11-07 2023-08-23 株式会社デンソー バルブ装置
JP2022175443A (ja) * 2021-05-13 2022-11-25 マツダ株式会社 エンジンの冷却システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743739A (en) * 1944-12-29 1956-05-01 Elgin Softener Corp Multiport valves
JPH04370317A (ja) * 1991-06-14 1992-12-22 Kubota Corp エンジンの強制循環式水冷装置
DE4324749A1 (de) * 1993-07-23 1995-01-26 Freudenberg Carl Fa Regelventil
DE19932313A1 (de) * 1999-07-10 2001-01-18 Daimler Chrysler Ag Steuervorrichtung für den Kühl- und Heizungskreislauf einer Brennkraftmaschine
US6681805B2 (en) * 2001-11-28 2004-01-27 Ranco Incorporated Of Delaware Automotive coolant control valve
US6539899B1 (en) * 2002-02-11 2003-04-01 Visteon Global Technologies, Inc. Rotary valve for single-point coolant diversion in engine cooling system
US6745726B2 (en) * 2002-07-29 2004-06-08 Visteon Global Technologies, Inc. Engine thermal management for internal combustion engine
DE10323900A1 (de) * 2003-05-26 2005-01-05 J. Eberspächer GmbH & Co. KG Mehrwegeventil für ein Fahrzeug-Kühl/Heiz-System
US6920845B2 (en) * 2003-08-14 2005-07-26 Visteon Global Technologies, Inc. Engine cooling disc valve
AT503228B1 (de) * 2004-05-26 2009-02-15 Neuhofer Franz Jun Vorrichtung zur befestigung einer abschlussleiste
JP2007291928A (ja) * 2006-04-24 2007-11-08 Mazda Motor Corp エンジンの冷却装置
US8181610B2 (en) * 2006-05-08 2012-05-22 Magna Powertrain, Inc. Vehicle cooling system with directed flows
JP2010096138A (ja) * 2008-10-20 2010-04-30 Mazda Motor Corp エンジンの冷却装置
JP5235704B2 (ja) 2009-01-29 2013-07-10 日本サーモスタット株式会社 内燃機関の冷却装置
DE102009020186B4 (de) * 2009-05-06 2011-07-14 Audi Ag, 85057 Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf
JP2011099400A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 車両の冷却装置
JP2012031800A (ja) * 2010-07-30 2012-02-16 Honda Motor Co Ltd エンジンの冷却装置
JP5925456B2 (ja) * 2011-09-22 2016-05-25 株式会社ミクニ 冷却水制御バルブ装置
JP5919031B2 (ja) * 2012-02-28 2016-05-18 株式会社ミクニ 冷却水制御バルブ装置
JP6050952B2 (ja) * 2012-05-15 2016-12-21 株式会社ミクニ 冷却水制御バルブ装置
GB201209680D0 (en) * 2012-05-31 2012-07-18 Jaguar Cars Fluid flow control device and method
JP5914176B2 (ja) * 2012-05-31 2016-05-11 株式会社ミクニ ロータリ式バルブ
JP6056519B2 (ja) 2013-02-05 2017-01-11 マツダ株式会社 火花点火式エンジンの制御装置
JP6197408B2 (ja) 2013-07-01 2017-09-20 日産自動車株式会社 内燃機関の冷却装置及び内燃機関の冷却方法

Also Published As

Publication number Publication date
CN107035505A (zh) 2017-08-11
US20170074154A1 (en) 2017-03-16
CN107035505B (zh) 2019-08-27
US10287968B2 (en) 2019-05-14
JP2017057792A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6330768B2 (ja) エンジン冷却装置
JP6264348B2 (ja) エンジン冷却装置
JP6134129B2 (ja) 車両用熱交換器
JP5754503B2 (ja) 流体制御システム
CN108019270B (zh) 用于快速发动机冷却剂暖机的***和方法
JP6330748B2 (ja) 内燃機関の冷却装置
US9758017B2 (en) Refrigerant circulation system
JPWO2015177930A1 (ja) 内燃機関の冷却回路
JP2013217344A (ja) エンジン冷却装置
US20200072117A1 (en) Cooling water control valve device
JP2006125274A (ja) 車両搭載パワーユニットの冷却装置
JP2007016651A (ja) 油温制御装置
JP5853911B2 (ja) 内燃機関の冷却装置
JP2004084882A (ja) トランスミッションの油温制御装置
US20220063394A1 (en) Cooling apparatus for hybrid vehicle
JP2017155672A (ja) 車両の液体循環システム
JP2016210298A (ja) 内燃機関の冷却装置
JP2009287508A (ja) 冷却水循環装置
KR101219693B1 (ko) 실린더 헤드의 냉각수 라인 구조
JP6577828B2 (ja) 冷却水流動制御システム
JP2016151215A (ja) 内燃機関の冷却装置
JP2006037874A (ja) エンジンの冷却装置
JP2009184441A (ja) 車両用油圧駆動装置
JP2012241609A (ja) 流体制御システム
JP2008151035A (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees