JP5355007B2 - Method for producing spherical silver powder - Google Patents

Method for producing spherical silver powder Download PDF

Info

Publication number
JP5355007B2
JP5355007B2 JP2008238373A JP2008238373A JP5355007B2 JP 5355007 B2 JP5355007 B2 JP 5355007B2 JP 2008238373 A JP2008238373 A JP 2008238373A JP 2008238373 A JP2008238373 A JP 2008238373A JP 5355007 B2 JP5355007 B2 JP 5355007B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
aqueous solution
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008238373A
Other languages
Japanese (ja)
Other versions
JP2010070793A (en
Inventor
海里 大谷
靖彦 粟飯原
央 山田
整哉 結城
慎一 紺野
孝造 尾木
晃嗣 平田
剛聡 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008238373A priority Critical patent/JP5355007B2/en
Publication of JP2010070793A publication Critical patent/JP2010070793A/en
Application granted granted Critical
Publication of JP5355007B2 publication Critical patent/JP5355007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical silver powder with an average particle size of 0.1 to 1 &mu;m having a sharp grain size distribution and high dispersibility, and to provide a method for producing the silver powder without generating waste water difficult to be treated. <P>SOLUTION: An aqueous solution of a silver ammine complex and an aqueous solution of a reducing agent are made to flow from different flow passages, and are contact-mixed to be reduced and precipitated, and further, a reaction system before the reduction-precipitation of the silver grains is mixed with grain serving as seed and an imine compound; thus the silver grains are produced. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、球状銀粉およびその製造方法に関し、積層コンデンサの内部電極や回路基板の導体パターン、プラズマディスプレイパネル用基板の電極や回路などの電子部品に使用する導電性ペースト用に好適な球状銀粉およびその製造方法に関する。   The present invention relates to a spherical silver powder and a method for producing the same, and a spherical silver powder suitable for conductive paste used for electronic components such as internal electrodes of multilayer capacitors and conductor patterns of circuit boards, electrodes and circuits of substrates for plasma display panels, and the like. It relates to the manufacturing method.

積層コンデンサの内部電極、回路基板の導体パターン、太陽電池やプラズマディスプレイパネル(PDP)用基板の電極や回路などの電子部品に使用する導電性ペーストとして、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することによって製造される導電性ペーストが使用されている。当該導電性ペースト用の銀粉は、電子部品の小型化、導体パターンの高密度化、ファインライン化などに対応するため、粒径が適度に小さく、粒度が揃い、高分散性であることが要求されている。   Silver powder is added to an organic vehicle together with glass frit as a conductive paste for use in electronic components such as internal electrodes of multilayer capacitors, conductor patterns of circuit boards, and electrodes and circuits of substrates for solar cells and plasma display panels (PDP). A conductive paste produced by kneading is used. The silver paste for the conductive paste is required to have a reasonably small particle size, uniform particle size, and high dispersibility in order to cope with downsizing of electronic parts, high density of conductor patterns, fine lines, etc. Has been.

このような導電性ペースト用の銀粉を製造する方法としては、銀塩含有水溶液へ、アルカリまたは錯化剤を添加して、銀錯体含有水溶液を生成させた後、還元剤としてヒドロキノン等の多価フェノールを添加することで、0.6μm以下の微粒子化した高分散性の球状の銀粉を還元析出させる方法が知られている(特許文献1)。   As a method for producing such silver powder for conductive paste, an alkali or complexing agent is added to a silver salt-containing aqueous solution to form a silver complex-containing aqueous solution, and then a polyvalent such as hydroquinone is used as a reducing agent. A method of reducing and precipitating highly dispersible spherical silver powder having a particle size of 0.6 μm or less by adding phenol is known (Patent Document 1).

しかし、本発明者らの検討によると、銀塩含有水溶液へアルカリ等を添加し、酸化銀含有スラリー等を生成させた後、還元剤としてヒドロキノン等の多価フェノールを添加して銀粉を還元析出させる方法では、微粒子化した球状の銀粉を生成させることができるものの、ヒドロキノン等を含む褐色の排水が生成してしまい、排水処理に課題を残し、その処理に多大なコストを要することが課題となった。   However, according to the study by the present inventors, after adding an alkali or the like to the silver salt-containing aqueous solution to produce a silver oxide-containing slurry or the like, a polyphenol such as hydroquinone is added as a reducing agent to reduce the silver powder. In the method of making it, although it is possible to produce finely divided spherical silver powder, brown wastewater containing hydroquinone or the like is produced, leaving a problem in the wastewater treatment, and requiring a great deal of cost for the treatment became.

この排水処理という課題に対し本発明者らは、銀粒子の還元析出前または還元析出中にイミン化合物を添加し、還元剤にエアーバブリングで分解可能なものを用いることにより、難排水処理水を発生させずに球状の銀粉を製造する方法を開示した(特許文献2)。さらに、銀粒子の還元析出反応を、種粒子の存在下で行うこと、または、銀粒子の還元析出前または還元析出中に、標準電極電位が銀より大きいイオン性の物質を溶液中に添加しておくことにより、所望の平均粒径を有する銀粉を製造する方法を開示した(特許文献3)。   In response to the problem of wastewater treatment, the present inventors added an imine compound before or during the reduction precipitation of silver particles, and used a reductant that can be decomposed by air bubbling, thereby reducing difficult wastewater treatment water. A method for producing spherical silver powder without generating it has been disclosed (Patent Document 2). Further, the reduction precipitation reaction of silver particles is performed in the presence of seed particles, or an ionic substance having a standard electrode potential larger than silver is added to the solution before or during the reduction precipitation of silver particles. The method of manufacturing silver powder which has a desired average particle diameter was disclosed (patent document 3).

特開2005−48237号公報JP 2005-48237 A 特願2007−227171号Japanese Patent Application No. 2007-227171 特願2008−082008号Japanese Patent Application No. 2008-082008

一方、導電性ペーストを用いた導体パターンの形成方法としては、スクリーン印刷方式、感光方式、オフセット方式等ある。ここで、製造コストの低減を目的として検討されているオフセット方式で使用される導電性ペーストは、これまで以上の配線パターンのファインライン化が求められている。そこで、オフセット方式で使用される導電性ペーストに於いては、特に、一次粒径が1μmよりも微粒で、高分散性を有する銀粉が求められている。   On the other hand, as a method for forming a conductive pattern using a conductive paste, there are a screen printing method, a photosensitive method, an offset method, and the like. Here, the conductive paste used in the offset method, which has been studied for the purpose of reducing manufacturing costs, is required to have finer wiring patterns than ever. Therefore, in the conductive paste used in the offset method, in particular, silver powder having a primary particle size smaller than 1 μm and high dispersibility is required.

しかしながら、本発明者等がさらに研究を行ったところ、特許文献2、3に係る製造方法により製造した銀粉を、オフセット用途に適用したところ、ファインラインへの対応が
困難な場合があった。具体的には、配線パターンの直線性、塗膜状態、および導電性に問題が生じる場合があった。
However, when the present inventors conducted further research, when silver powder produced by the production methods according to Patent Documents 2 and 3 was applied to offset use, it was sometimes difficult to cope with fine lines. Specifically, there may be a problem with the linearity of the wiring pattern, the coating film state, and the conductivity.

本発明は、このような状況下でなされたものであり、その解決しようとする課題は、オフセット用途に適用しても問題なくファインラインを形成することの出来る球状銀紛、および難処理排水を発生させずに当該球状銀紛を製造する製造方法を提供することである。   The present invention has been made under such circumstances, and the problem to be solved is a spherical silver powder that can form a fine line without problems even when applied to an offset application, and difficult-to-treat wastewater. It is to provide a production method for producing the spherical silver powder without generating it.

本発明者らは、上記課題を解明するため鋭意研究した。そして、従来の技術に係る銀粉をオフセット用途に適用した際に問題が生じるのは、製造される銀粉の一次粒径は小さいものの、各々の粒子の一次粒径がばらついていること。銀粉の製造過程において、各々の粒子同士が凝集することにより、結果的に銀粉の微粒子の粒度分布が、ブロードとなっていることであることに想到した。
つまり、粒度分布がブロードな銀粉を含んだペーストをオフセット用途に用いると、当該銀粉中に一次粒径や凝集粒径の大きい粒子が存在するため、ファインライン化への対応が困難となることに想到したものである。より具体的には、銀紛粒子の分散性が悪い場合には、形成された配線パターンの直線性が劣り、塗膜状態に問題が生じ、さらには、凝集粒子によるかさばりや粒径の不揃いな粒子の存在により粒子間の空隙が大きくなるという理由で、ペースト中の銀粉の充填性が低下するため、銀紛の膜密度が低くなり、導電性に問題が生じると考えられた。
The present inventors have intensively studied to elucidate the above problems. A problem that arises when the silver powder according to the prior art is applied for offset use is that the primary particle diameter of each particle varies, although the primary particle diameter of the silver powder to be produced is small. It was conceived that the particle size distribution of the fine particles of the silver powder was broadened as a result of aggregation of the particles in the production process of the silver powder.
In other words, if a paste containing silver powder with a broad particle size distribution is used for offset applications, there are particles with large primary particle size and agglomerated particle size in the silver powder, which makes it difficult to cope with fine lines. It has been conceived. More specifically, when the dispersibility of the silver powder particles is poor, the linearity of the formed wiring pattern is inferior, causing a problem in the state of the coating film, and further, bulkiness due to aggregated particles and unevenness in particle size are not obtained. It was considered that the density of silver powder in the paste was reduced because the presence of the particles increased the gap between the particles, so that the film density of the silver powder was lowered, causing a problem in conductivity.

次に、本発明者等は、上記課題を解決できる球状銀粉とその製造方法とを鋭意研究した。そして、当該球状銀紛のレーザー回折法による平均粒径D50が0.1μm以上で1μmより小さく、かつレーザー回折法による平均粒径D50と走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMの比:D50/DSEMが1.3以下であり、かつ(D90−D10)/D50で表わされる値が0.8以下であることが肝要であることに想到した。
これは、D50が0.1μm以上あれば、ファインラインへの対応が可能であると同時に、粒子活性が過剰に高くならないので、400℃以上での焼成も可能になるからであると考えられる。一方、D50が1μm未満であれば、ファインライン化への対応は容易であり、ラインの直線性に優れた微細なパターンを形成することが出来るからであると考えられる。
また、レーザー回折法による粒径測定は、凝集した粒子(二次粒子)が含まれる場合には、二次粒子を含む粒径を表わしているのに対し、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径は、後述のように1次粒子の粒径の平均値である。従って、D50の値が、一次粒子の平均粒径DSEMの値に近いほど、一次粒子同士の凝集が少なく、粒子が分散していることを示す。理論上、D50の値が、DSEMの値以下になることはないため、サンプリング誤差等を考慮しなければ、D50/DSEMの最下限値はD50/DSEM=1となる。ここで、D50/DSEMの値が1.3以下であれば、当該球状銀粉のファインライン化への対応が可能であることに想到したものである。
Next, the present inventors diligently studied spherical silver powder that can solve the above problems and a method for producing the same. Then, obtained by image analysis of less than 1μm in the average particle diameter D 50 0.1μm or more by a laser diffraction method of the spherical silver powder, and the average particle size D 50 and the scanning electron microscope image by the laser diffraction method (SEM) It is important that the ratio of the average particle diameter D SEM of the obtained primary particles: D 50 / D SEM is 1.3 or less and the value represented by (D 90 -D 10 ) / D 50 is 0.8 or less. I came up with that.
This is considered to be because if D 50 is 0.1 μm or more, it is possible to cope with fine lines, and at the same time, the particle activity does not become excessively high, so that baking at 400 ° C. or higher is also possible. . On the other hand, if it is less than D 50 of 1 [mu] m, corresponding to the fine line of is easy, to form a good fine pattern linearity of the line is considered to be because possible.
The particle size measurement by the laser diffraction method represents the particle size including secondary particles when aggregated particles (secondary particles) are included, but by image analysis of a scanning electron microscope image. The average particle diameter of the obtained primary particles is an average value of the particle diameters of the primary particles as will be described later. Thus indicating that the value of D 50 is closer to the value of the average particle diameter D SEM of the primary particles, less aggregation of the primary particles, which particles are dispersed. The value of the theory, D 50 is, for does not become less than or equal to the value of D SEM, to be taken into account sampling error or the like, the lower limit value of D 50 / D SEM becomes D 50 / D SEM = 1. Here, it is conceived that if the value of D 50 / D SEM is 1.3 or less, the spherical silver powder can be adapted to fine lines.

尚、本発明において、D10、D50、D90、とは、銀粉試料0.3gをイソプロピルアルコール30mLに入れ、45W超音波洗浄器にて5分間処理後、当該処理液に対しマイクロトラック9320−X100(ハネウエル−日機装製)を用いて粒径測定した際の、累積10質量%粒径をD10、累積50質量%粒径をD50、累積90質量%粒径をD90と表記したものである。
また、DSEM、とは、SEM(日本電子製JSM−6100、)を用いて10000倍にて撮影を行ない、三谷商事製の画像処理ソフトWinRoofを用いて、Digital Slow Scan image recording System SemAfore ver.5.01(JEOLスカンジナビア社製)により取り込んだ当該SE
M画像のBMPイメージから、一次粒子の輪郭が確認できる当該銀粒子100個以上について、1次粒子円相当径を測定することにより求めた平均粒径をDSEMと表記したものである。
In the present invention, D 10 , D 50 , and D 90 refer to 0.3 g of silver powder sample in 30 mL of isopropyl alcohol, treated with a 45 W ultrasonic cleaner for 5 minutes, and then subjected to Microtrac 9320 for the treated solution. -X100 (Honeywell - manufactured by Nikkiso) of when the particle size measured using, D 10 cumulative 10 wt% particle diameter cumulative 50 wt% particle diameter of D 50, the cumulative 90% particle size was expressed as D 90 Is.
In addition, D SEM is taken at 10,000 times using SEM (JSM-6100, manufactured by JEOL Ltd.), and using Digital Image Scanning System Recording Ver. (Mitani Corporation image processing software WinRof). The SE captured by 5.01 (manufactured by JEOL Scandinavia)
From the BMP image of the M image, the average particle diameter obtained by measuring the primary particle circle equivalent diameter for 100 or more silver particles whose primary particle outline can be confirmed is expressed as DSEM .

さらに本発明者等は、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得、当該銀アンミン錯体水溶液に還元剤水溶液を接触混合して、銀粒子を還元析出させるとともに、この銀粒子の還元析出前の反応系に種になる粒子およびイミン化合物を存在させておくことにより、難処理排水を発生させずに本発明に係る球状銀紛を製造出来ることに想到し、本発明を完成した。   Furthermore, the present inventors mixed silver nitrate aqueous solution and aqueous ammonia to react to obtain a silver ammine complex aqueous solution, contacted and mixed the reducing agent aqueous solution with the silver ammine complex aqueous solution to reduce and precipitate silver particles, It was conceived that the spherical silver powder according to the present invention can be produced without generating difficult-to-treat waste water by making the seed particles and the imine compound present in the reaction system before the silver particles are reduced and precipitated. Was completed.

即ち、上述の課題を解決する第1の発明は、That is, the first invention for solving the above-described problem is
レーザー回折法により測定した累積10質量%粒径をDThe cumulative 10 mass% particle size measured by the laser diffraction method is D 1010 、累積50質量%粒径をD, Cumulative 50 mass% particle size D 5050 、累積90質量%粒径をD, Cumulative 90 mass% particle size D 9090 と表記し、走査型電子顕微鏡像の画像解析から得られる一次粒子の平均粒径をDThe average particle diameter of primary particles obtained from image analysis of a scanning electron microscope image is expressed as D SEMSEM と表記したとき、When written as
D 5050 が0.1μm以上、1μm未満、且つ、DIs 0.1 μm or more and less than 1 μm, and D 5050 /D/ D SEMSEM の値が1.2以下、且つ、(DIs less than or equal to 1.2 and (D 9090 −D-D 1010 )/D) / D 5050 の値が0.8以下であることを特徴とする球状銀粉である。Is a spherical silver powder characterized by having a value of 0.8 or less.

第2の発明は、
第1の発明に記載の球状銀粉の製造方法であって、
硝酸銀水溶液とアンモニア水とを混合して反応させて銀アンミン錯体水溶液を得、種になる粒子およびイミン化合物の存在下において、当該銀アンミン錯体水溶液と還元剤水溶液としてのヒドラジン水溶液とを混合して、銀粒子を還元析出させることを特徴とした球状銀粉の製造方法である。
The second invention is
A method for producing the spherical silver powder according to the first invention,
A silver ammine complex aqueous solution is obtained by mixing and reacting an aqueous silver nitrate solution and aqueous ammonia, and in the presence of seed particles and an imine compound, the aqueous silver ammine complex solution and an aqueous hydrazine solution as a reducing agent aqueous solution are mixed. A method for producing spherical silver powder, characterized in that silver particles are reduced and precipitated.

第3の発明は、The third invention is
前記銀アンミン錯体水溶液と前記還元剤水溶液とを、合流点で合流する別々の流路に流し、The silver ammine complex aqueous solution and the reducing agent aqueous solution are caused to flow in separate flow paths that merge at a confluence,
当該合流点において、前記銀アンミン錯体水溶液と前記還元剤水溶液とを、接触混合させることを特徴とする第2の発明に記載の球状銀粉の製造方法である。The method for producing spherical silver powder according to the second invention, wherein the silver ammine complex aqueous solution and the reducing agent aqueous solution are contact-mixed at the junction.

第4の発明は、
前記合流点で合流する別々の流路とは、Y字型管路、T字型管路、同軸二重管路のいずれかであることを特徴とする第3の発明に記載の球状銀粉の製造方法である。
The fourth invention is:
The separate flow paths that merge at the merge point are any one of a Y-shaped pipe, a T-shaped pipe, and a coaxial double pipe. The spherical silver powder according to the third invention is characterized in that It is a manufacturing method.

第5の発明は、
前記イミン化合物が、ポリエチレンイミンであることを特徴とする第2〜第4の発明のいずれかに記載の球状銀粉の製造方法である。
The fifth invention is:
The method for producing spherical silver powder according to any one of the second to fourth inventions, wherein the imine compound is polyethyleneimine.

第6の発明は、
前記種になる粒子が、金、銀、銅、白金族元素、鉄族元素から選択される1種以上の金属、または金属化合物の粒子であることを特徴とする第2〜第5の発明のいずれかに記載の球状銀粉の製造方法。
The sixth invention is:
According to the second to fifth inventions, the seed particles are particles of one or more metals selected from gold, silver, copper, platinum group elements, and iron group elements, or metal compounds. The manufacturing method of the spherical silver powder in any one.

第7の発明は、
前記種になる粒子が、コロイダルシリカおよび/または酸化物ガラスの粒子であること
を特徴とする第2〜第5の発明のいずれかに記載の球状銀粉の製造方法である。
The seventh invention
The method for producing spherical silver powder according to any one of the second to fifth inventions, wherein the seed particles are colloidal silica and / or oxide glass particles.

第8の発明は、
前記銀粒子の還元析出前に、標準電極電位が銀より大きいイオン性物質を、前記銀アンミン錯体水溶液へ添加し、種粒子を生成させることを特徴とする第2〜第5の発明のいずれかに記載の球状銀粉の製造方法である。
The eighth invention
Any one of the second to fifth inventions, wherein an ionic substance having a standard electrode potential larger than silver is added to the silver ammine complex aqueous solution before the silver particles are reduced and precipitated to form seed particles. It is a manufacturing method of spherical silver powder as described in above.

第9の発明は、
前記銀粒子の還元析出前に、前記銀アンミン錯体水溶液および/または前記還元剤水溶液に分散剤を存在させておくことを特徴とする第2〜第8の発明のいずれかに記載の球状銀粉の製造方法である。
The ninth invention
The spherical silver powder according to any one of the second to eighth inventions, wherein a dispersing agent is present in the silver ammine complex aqueous solution and / or the reducing agent aqueous solution before the reduction precipitation of the silver particles. It is a manufacturing method.

第10の発明は、
前記銀アンミン錯体水溶液と前記還元剤水溶液とを混合して銀粒子を還元析出させた後に、当該混合液へ分散剤を添加することを特徴とする第2〜第8の発明のいずれかに記載の球状銀粉の製造方法である。
The tenth invention is
The silver ammine complex aqueous solution and the reducing agent aqueous solution are mixed to reduce and precipitate silver particles, and then a dispersant is added to the mixed solution. It is a manufacturing method of spherical silver powder.

第11の発明は、
前記還元剤がヒドラジンであることを特徴とする第2〜第10の発明のいずれかに記載の球状銀粉の製造方法である。
The eleventh invention is
The method for producing spherical silver powder according to any one of the second to tenth inventions, wherein the reducing agent is hydrazine.

第12の発明は、
前記銀アンミン錯体水溶液と前記還元剤水溶液とを混合した混合溶液中の銀濃度が0.01〜0.15mol/L、且つ、還元剤量は、当該銀に対し1〜4当量である状態に維持して、銀粒子を還元析出させることを特徴とする第2〜第11の発明のいずれかに記載の球状銀粉の製造方法である。
The twelfth invention
The silver concentration in the mixed solution obtained by mixing the silver ammine complex aqueous solution and the reducing agent aqueous solution is 0.01 to 0.15 mol / L, and the amount of the reducing agent is 1 to 4 equivalents with respect to the silver. The method for producing spherical silver powder according to any one of the second to eleventh inventions, characterized in that the silver particles are reduced and precipitated while being maintained.

本発明によれば、積層セラミックコンデンサの内部電極、回路基板の導体パターン、太陽電池・プラズマディスプレイパネル用基板の電極、及び回路などの電子部品に適用できる微粒の銀粉および、その製造方法を提供することができる。特に、オフセット用途に適用でき、ファインライン化に対応可能な平均粒径が1μm未満で、高分散性およびシャープな粒度分布を有する銀粉を提供する。そして、当該銀粉を、難処理排水を発生させずに製造する方法を提供する。   ADVANTAGE OF THE INVENTION According to this invention, the fine silver powder applicable to the internal electrodes of a multilayer ceramic capacitor, the conductor pattern of a circuit board, the electrode of the board | substrate for solar cells and a plasma display panel, and a circuit, and its manufacturing method are provided. be able to. In particular, the present invention provides a silver powder that can be applied to offset applications and has an average particle size of less than 1 μm that can be applied to fine lines, and has high dispersibility and a sharp particle size distribution. And the method of manufacturing the said silver powder, without generating difficult-to-process waste water is provided.

本発明に係る銀粉および銀粉の製造方法について、以下に説明する。尚、本発明において、「銀イオン含有水性反応系」とは、硝酸銀、銀錯体または、銀中間体等の、銀イオンを含有する水溶液のことをいう。   The silver powder and the method for producing silver powder according to the present invention will be described below. In the present invention, the “silver ion-containing aqueous reaction system” refers to an aqueous solution containing silver ions, such as silver nitrate, a silver complex, or a silver intermediate.

1.球状銀粉
本発明に係る球状銀粉は、レーザー回折法により測定した平均粒径D50が0.1μm以上、1μm未満であるが、0.2μm〜0.6μmであるとより好ましい。D50が0.1μm以上、好ましくは0.2μm以上あれば、ファインラインへの対応は可能であと同時に、粒子活性が過剰に高くならないので、400℃以上での焼成も可能になる。一方、D50が1μm未満、好ましくは0.6μm以下であれば、ファインライン化への対応は容易であり、ラインの直線性に優れた微細なパターンを形成することが出来る。
1. Spherical silver powder according to the spherical silver powder present invention has an average particle diameter D 50 0.1μm or more as measured by a laser diffraction method, of less than 1 [mu] m, and more preferably a 0.2Myuemu~0.6Myuemu. D 50 is 0.1μm or more, preferably if more than 0.2 [mu] m, at the same time after a possible response to the fine line, since the particle activity not excessively high, it becomes possible firing at 400 ° C. or higher. On the other hand, D 50 of less than 1 [mu] m, preferably long 0.6μm or less, corresponding to the fine line of is easy, it is possible to form an excellent fine pattern linearity of the line.

また、レーザー回折法による平均粒径D50と、走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMとの比である、D50/DSEMの値が1.3以下、好ましくは1.2以下、さらに好ましくは1.1以下である。
これは、レーザー回折法による粒径測定は、粒子の回折パターンから粒径を算出しているため凝集粒子は凝集粒子の粒径が測定されるのであって、その値は真の一次粒径の平均粒径を表わしていない。他方、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径は、一次粒子の粒径の平均値である。
従って、D50の値が、一次粒子の平均粒径DSEMの値に近いほど、一次粒子同士の
凝集が少なく、粒子が分散していることを示す。理論上、サンプリング誤差等を考慮しなければ、D50の値が、DSEMの値以下になることはないため、D50/DSEMの最下限値はD50/DSEM=1となる。つまり、D50/DSEMの値が1に近いほど、高分散の状態であると言える。
Further, the value of D 50 / D SEM , which is the ratio of the average particle diameter D 50 by laser diffraction method and the average particle diameter D SEM of primary particles obtained by image analysis of a scanning electron microscope image (SEM), is 1. .3 or less, preferably 1.2 or less, more preferably 1.1 or less.
This is because the particle size measurement by the laser diffraction method calculates the particle size from the diffraction pattern of the particles, so the aggregated particles measure the particle size of the aggregated particles, and the value is the true primary particle size. It does not represent the average particle size. On the other hand, the average particle size of primary particles obtained by image analysis of a scanning electron microscope image is the average value of the particle sizes of primary particles.
Thus indicating that the value of D 50 is closer to the value of the average particle diameter D SEM of the primary particles, less aggregation of the primary particles, which particles are dispersed. In theory, to be taken into account sampling error or the like, the value of D 50 is, for does not become less than or equal to the value of D SEM, lowest limit value of D 50 / D SEM becomes D 50 / D SEM = 1. That is, it can be said that the closer the value of D 50 / D SEM is to 1, the higher the dispersion state.

さらに、(D90−D10)/D50の値は0.8以下が好ましい。(D90−D10)/D50で表わされる値が小さいほど粒度分布の幅がシャープであり、粒度が揃っていることを示すからである。そして、当該粒度分布の幅がシャープな球状銀紛が、高精度パターンへの対応に好適である。
ここで、(D90−D10)/D50が0.8以下であると銀粒子各々の粒径がばらつかず、配線パターンを描く際に直線性に優れる。
Furthermore, the value of (D 90 -D 10) / D 50 is preferably 0.8 or less. (D 90 -D 10) / width of about the particle size distribution value is less represented by D 50 is sharp, because indicating that the uniform particle size. A spherical silver powder having a sharp width of the particle size distribution is suitable for dealing with high-precision patterns.
Here, (D 90 -D 10) / D 50 is the particle diameter of the silver particles, each not fluctuated When it is 0.8 or less, excellent linearity when drawing a wiring pattern.

また、本発明に係る球状銀粉の結晶子径は、15〜40nmが好ましく、より好ましくは15〜30nm、さらに好ましくは20〜30nmである。球状銀粉の結晶子径が15nm以上あれば、早過ぎる焼結を回避できる為、樹脂が銀の焼結体に取り込まれ残存したり、収縮が大き過ぎてライン破断が起きたりする等の問題を回避できる。また、結晶子径が40nm以下であれば焼結が容易で、形成された配線の抵抗値を低く保つことが出来るからである。   The crystallite diameter of the spherical silver powder according to the present invention is preferably 15 to 40 nm, more preferably 15 to 30 nm, and still more preferably 20 to 30 nm. If the crystallite diameter of the spherical silver powder is 15 nm or more, premature sintering can be avoided, so that the resin is taken in and remains in the sintered silver body, or the shrinkage is too large and line breakage occurs. Can be avoided. Further, if the crystallite diameter is 40 nm or less, sintering is easy and the resistance value of the formed wiring can be kept low.

また、本発明に係る球状銀粉は、タップ密度が2g/cm以上であることが好ましく、より好ましくは2.5g/cm以上、さらに好ましいくは3g/cm以上である。タップ密度が2g/cmより大きければ銀粒子同士の凝集が抑えられ充填性が高くなる為、高精度パターンへの対応が容易になるからである。当該観点からタップ密度は高い方が望ましいが、銀の真密度と均一な球状の粉の最密充填を考慮すると、タップ密度の上限値は7g/cmである。 The spherical silver powder according to the present invention preferably has a tap density of 2 g / cm 3 or more, more preferably 2.5 g / cm 3 or more, and further preferably 3 g / cm 3 or more. This is because if the tap density is higher than 2 g / cm 3 , the aggregation of silver particles is suppressed and the filling property becomes high, so that it is easy to cope with a high-precision pattern. From this point of view, it is desirable that the tap density is higher, but considering the true density of silver and the closest packing of uniform spherical powder, the upper limit of the tap density is 7 g / cm 3 .

また、本発明に係る球状銀粉は、比表面積(BET法によって測定された比表面積)が0.3m/g以上、6m/g以下であることが好ましく、より好ましくは0.5m/g以上、2m/g以下である。比表面積が0.3m/gより大きければ、銀粒子の粒径が大き過ぎず高精度パターンへの対応が容易であり、前記比表面積が6m/gより小さければ、ペーストの粘度が高くなりすぎず、作業性に優れ、また400℃以上での焼成であっても、焼結膜にクラックが入ることがなく好ましいからである。 Furthermore, spherical silver powder according to the present invention has a specific surface area (surface area ratio measured by the BET method) of 0.3 m 2 / g or more, preferably 6 m 2 / g or less, more preferably 0.5 m 2 / g or more and 2 m 2 / g or less. If the specific surface area is larger than 0.3 m 2 / g, the particle size of the silver particles is not too large and it is easy to cope with a high precision pattern. If the specific surface area is smaller than 6 m 2 / g, the viscosity of the paste is high. This is because it does not become too much, is excellent in workability, and even when fired at 400 ° C. or higher, the sintered film does not crack and is preferable.

2.球状銀粉の製造方法
本発明に係る球状銀粉の製造方法は、
硝酸銀水溶液とアンモニア水とを混合して反応させて銀アンミン錯体水溶液を得、種になる粒子およびイミン化合物の存在下において、当該銀アンミン錯体水溶液と還元剤水溶液とを混合して、銀粒子を還元析出させるものである。
2. Method for producing spherical silver powder The method for producing spherical silver powder according to the present invention comprises:
An aqueous silver nitrate solution and aqueous ammonia are mixed and reacted to obtain an aqueous silver ammine complex solution. In the presence of seed particles and an imine compound, the aqueous silver ammine complex solution and the reducing agent aqueous solution are mixed to produce silver particles. It is reduced and deposited.

ここで、銀アンミン錯体の配位数は2であるため、銀1モル当たりアンモニアを2モル(すなわち1当量)以上添加する。実際の製造においてはアンモニアの揮発等による濃度の変化を考慮し、1.5当量以上添加するのが望ましい。アンモニアの添加量の上限については特に規定されないが、添加量を増やすにつれ、コストアップにも繋がるため、銀アンミン錯体の適度な安定性を得るために必要な量を添加すればよい。   Here, since the coordination number of the silver ammine complex is 2, 2 mol (that is, 1 equivalent) or more of ammonia is added per 1 mol of silver. In actual production, it is desirable to add 1.5 equivalents or more in consideration of change in concentration due to volatilization of ammonia or the like. The upper limit of the addition amount of ammonia is not particularly defined, but as the addition amount is increased, the cost is increased, so that an amount necessary for obtaining an appropriate stability of the silver ammine complex may be added.

また、銀アンミン錯体水溶液と還元剤水溶液とを接触混合させる際の反応温度は20℃以上が好ましく、より好ましくは30℃以上、さらに好ましくは40℃以上である。反応温度が20℃以上であると、理由は定かではないが、粒子同士が凝集せず粒度分布がシャープになるからである。反応温度の上限については、この銀粉の還元反応が水溶性の反応系であることから100℃となるが、本反応系からの水の沸騰やアンモニアの揮発、ヒド
ラジンの分解等による濃度変化を考慮すると、その上限値は100℃よりも低い値が適当である。
In addition, the reaction temperature when the silver ammine complex aqueous solution and the reducing agent aqueous solution are contact-mixed is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and further preferably 40 ° C. or higher. If the reaction temperature is 20 ° C. or higher, the reason is not clear, but the particles do not aggregate and the particle size distribution becomes sharp. The upper limit of the reaction temperature is 100 ° C because the reduction reaction of the silver powder is a water-soluble reaction system, but changes in concentration due to boiling of water, volatilization of ammonia, decomposition of hydrazine, etc. are taken into account. Then, the upper limit is suitably a value lower than 100 ° C.

3.銀アンミン錯体水溶液を還元する還元剤
上述した、銀アンミン錯体水溶液を還元する還元剤としては、生成した排水が簡易な設備により処理が可能で、排水処理コストを引き上げないものであることが肝要である。例えば、エアーバブリング等の、簡便な排水処理で分解可能なものが望ましい。具体例としては、ヒドラジン水溶液を挙げることができる。尚、銀の反応収率を上げる観点から、還元剤量は、銀に対して1当量以上添加するのが望ましい。
3. Reducing agent that reduces the silver ammine complex aqueous solution As described above, the reducing agent that reduces the silver ammine complex aqueous solution must be capable of treating the generated wastewater with simple equipment and not increasing the wastewater treatment cost. is there. For example, what can be decomposed by a simple waste water treatment such as air bubbling is desirable. Specific examples include hydrazine aqueous solutions. From the viewpoint of increasing the reaction yield of silver, it is desirable to add the reducing agent in an amount of 1 equivalent or more with respect to silver.

4.銀アンミン錯体水溶液と還元剤水溶液とを混合する際の銀濃度
上述した、銀アンミン錯体水溶液を還元する際の銀濃度は、還元析出後の銀濃度として0.15mol/L以下が好ましく、0.1mol/L以下がより好ましく、0.05mol/L以下がさらに好ましい。これは、銀濃度を0.15mol/L以下とすることで、還元生成後の銀粒子の粒子間距離を確保し、凝集が抑制されるからである。当該観点からは、銀濃度が低い方が分散した銀粒子を得る事が容易であるが、経済的な観点からは、銀濃度が0.01mol/L以上あることが好ましい。
4). Silver concentration when mixing silver ammine complex aqueous solution and reducing agent aqueous solution The silver concentration when reducing the silver ammine complex aqueous solution described above is preferably 0.15 mol / L or less as the silver concentration after reduction deposition, 1 mol / L or less is more preferable, and 0.05 mol / L or less is more preferable. This is because by setting the silver concentration to 0.15 mol / L or less, the inter-particle distance of the silver particles after reduction generation is secured and aggregation is suppressed. From this point of view, it is easier to obtain dispersed silver particles when the silver concentration is lower, but from an economical point of view, the silver concentration is preferably 0.01 mol / L or more.

5.銀アンミン錯体水溶液と還元剤水溶液との混合方法
銀アンミン錯体水溶液と還元剤水溶液との混合は、種になる粒子を核として粒子を均一に成長させ、均一な一次粒径を得るという理由から、高速、且つ、十分に行うことが肝要である。
5. Mixing method of silver ammine complex aqueous solution and reducing agent aqueous solution The mixing of the silver ammine complex aqueous solution and the reducing agent aqueous solution allows the particles to grow uniformly with the seed particles as nuclei to obtain a uniform primary particle size. It is important to perform at high speed and sufficiently.

化学工学的観点からは、銀アンミン錯体水溶液と還元剤水溶液の流速は、混合後のレイノルズ数が1500以上を満たす流速が好ましく、9000以上を満たす流速がより好ましい。そのため、混合前の銀アンミン錯体水溶液と還元剤水溶液の流速は異なっていてもよい。ここでレイノルズ数とは液中の流れの状態(混合状態)を表す指標である。混合後のレイノルズ数が1500以下である場合、銀アンミン錯体水溶液と還元剤水溶液の混合が不十分であり、生成する銀粒子の一次粒径がばらつく。レイノルズ数の上限値は特に規定されないが、レイノルズ数を上げるにつれ、生成した銀粒子同士で凝集することが懸念されるため、粒度が揃いかつ高分散性が得られる値であればよく、具体的には、200000以下であればよい。
尚、レイノルズ数は以下の式により求めた(銀アンミン錯体水溶液と還元剤水溶液が接触混合する下流の値)。
レイノルズ数=Duρ/μ
D(cm):管の直径
u(cm/sec):管内の溶液の線速度
ρ(g/cm):溶液の密度
μ(g/(cm・sec)):溶液の粘度
このうち、溶液の密度ρおよび溶液の粘度μは、この銀粉の還元反応が水溶性の反応系であるため、ρ=1(g/cm)、μ=0.01(g/(cm・sec))とする。これにより、レイノルズ数は管の直径Dと管内の溶液の線速度uの二つの値から求まる値となる。例えば、銀アンミン錯体水溶液と還元剤水溶液の混合後の管の直径Dが0.6cmの場合、液の線速度uが25cm/secでは、レイノルズ数は1500と計算できる。
From the viewpoint of chemical engineering, the flow rate of the silver ammine complex aqueous solution and the reducing agent aqueous solution is preferably a flow rate satisfying a Reynolds number of 1500 or more after mixing, more preferably a flow rate satisfying 9000 or more. Therefore, the flow rates of the silver ammine complex aqueous solution and the reducing agent aqueous solution before mixing may be different. Here, the Reynolds number is an index representing the flow state (mixed state) in the liquid. When the Reynolds number after mixing is 1500 or less, mixing of the silver ammine complex aqueous solution and the reducing agent aqueous solution is insufficient, and the primary particle size of the silver particles to be produced varies. The upper limit of the Reynolds number is not particularly specified, but as the Reynolds number is increased, there is a concern that the generated silver particles may agglomerate with each other. May be 200,000 or less.
The Reynolds number was determined by the following formula (a downstream value where the silver ammine complex aqueous solution and the reducing agent aqueous solution are in contact and mixed).
Reynolds number = Duρ / μ
D (cm): Diameter of tube u (cm / sec): Linear velocity of solution in tube ρ (g / cm 3 ): Density of solution μ (g / (cm · sec)): Viscosity of solution The density ρ and the viscosity μ of the solution are ρ = 1 (g / cm 3 ) and μ = 0.01 (g / (cm · sec)) because the reduction reaction of the silver powder is a water-soluble reaction system. To do. Thus, the Reynolds number is a value obtained from two values of the tube diameter D and the linear velocity u of the solution in the tube. For example, when the diameter D of the tube after mixing the silver ammine complex aqueous solution and the reducing agent aqueous solution is 0.6 cm, the Reynolds number can be calculated as 1500 when the liquid linear velocity u is 25 cm / sec.

好ましい混合方法の具体例について、図1〜3を参照しながら説明する。
図1〜3は、後述するY字型管路(図1)、T字型管路(図2)および同軸二重型管路(図3)の模式的な斜視図である。図1〜3において、a管、b管はそれぞれ異なる流入路であり、c管は流出路である。a管、b管からそれぞれ流入した液体は、合流点で混合され、c管から流出する。
ここで、銀アンミン錯体水溶液と、還元剤水溶液のそれぞれを、a管・b管別々の管路に流し、合流部にて接触させ、且つ、混合させる方法、銀アンミン錯体水溶液と、還元剤水溶液のそれぞれを、同軸二重管路のa管、b管である内側管路と外側管路とに流し、当該同軸二重型管路が合流して一重型管路となる合流点にて接触させ、且つ、混合させる方法、等を挙げることが出来る。
A specific example of a preferable mixing method will be described with reference to FIGS.
1 to 3 are schematic perspective views of a Y-shaped pipe (FIG. 1), a T-shaped pipe (FIG. 2), and a coaxial double-type pipe (FIG. 3), which will be described later. 1-3, a pipe and b pipe are respectively different inflow paths, and c pipe is an outflow path. The liquids flowing in from the a tube and the b tube are mixed at the confluence and flow out of the c tube.
Here, the silver ammine complex aqueous solution and the reducing agent aqueous solution are each flowed through separate pipes a and b, and are brought into contact with each other and mixed together, the silver ammine complex aqueous solution and the reducing agent aqueous solution. Of the coaxial double pipe are passed through the inner pipe and the outer pipe, which are the a pipe and the b pipe, and the coaxial double pipe joins at a junction where the single pipe is joined. And a method of mixing them.

6.銀アンミン錯体水溶液と還元剤水溶液との混合の際、存在させるイミン化合物
銀アンミン錯体水溶液と還元剤水溶液との混合の際、存在させるイミン化合物は、当該混合により生成する銀の粒子形状を球状に制御するのに効果を発揮する。当該効果の観点から、当該イミン化合物は高分子のイミン化合物があることが好ましく、中でもポリエチレンイミンが望ましい。
具体的には、銀の粒子形状を球状化し、表面を滑らかにする観点から、平均分子量1000以上のポリエチレンイミンが望ましい。一般に入手可能なポリエチレンイミンの平均分子量の上限値は70,000であるが、平均分子量70,000のものでも粒子形状を球状化し、表面を滑らかにする効果を発揮する。従って、銀イオンを含有する水性反応系に溶解可能な限り、ポリエチレンイミンの平均分子量の上限値は特に規定されない。
6). The imine compound to be present when the silver ammine complex aqueous solution and the reducing agent aqueous solution are mixed. When the silver ammine complex aqueous solution and the reducing agent aqueous solution are mixed, the imine compound to be present has a spherical shape of the silver particles produced by the mixing. It is effective to control. From the viewpoint of the effect, the imine compound is preferably a polymer imine compound, and polyethyleneimine is particularly preferable.
Specifically, polyethyleneimine having an average molecular weight of 1000 or more is desirable from the viewpoint of making the silver particle shape spherical and smoothing the surface. Generally available polyethyleneimine has an upper limit of 70,000 average molecular weight, but even those having an average molecular weight of 70,000 exhibit the effect of making the particle shape spherical and smoothing the surface. Therefore, the upper limit of the average molecular weight of polyethyleneimine is not particularly specified as long as it can be dissolved in an aqueous reaction system containing silver ions.

当該イミン化合物の存在量は、銀の仕込量に対して0.05重量%以上あれば生成する銀の粒子形状を球状に制御することが出来る。一方、銀イオンを含有する水性反応系に溶解可能な限り、添加量の上限値は、特に規定されない。
イミン化合物を存在させる為の添加方法としては、上述した還元剤による還元前に、予め、銀イオン含有水性反応系へイミン化合物を添加しておいてもよいし、予め、還元剤水溶液へ添加しておいても良く、特に限定されない。
If the amount of the imine compound is 0.05% by weight or more based on the amount of silver charged, the shape of the silver particles produced can be controlled to be spherical. On the other hand, as long as it can be dissolved in an aqueous reaction system containing silver ions, the upper limit value of the addition amount is not particularly defined.
As an addition method for allowing the imine compound to exist, the imine compound may be added to the silver ion-containing aqueous reaction system in advance before the reduction with the above-described reducing agent, or added to the reducing agent aqueous solution in advance. There is no particular limitation.

7.種になる粒子
本発明において、種になる粒子とは、還元析出反応時に銀粒子の成長の核となる粒子のことをいう。
本発明に係る銀粉の製造方法においては、生成する銀粒子を微粒子化するために、当該銀還元反応を種になる粒子の存在下で行うことが肝要である。そして、当該種になる粒子の添加量調整により、所望の平均粒径を有する銀粉を再現性よく得ることが可能である。
7). Seed Particles In the present invention, the seed particles refer to particles that become the core of silver particle growth during the reductive precipitation reaction.
In the method for producing silver powder according to the present invention, it is important to perform the silver reduction reaction in the presence of seed particles in order to make the silver particles to be produced fine. And the silver powder which has a desired average particle diameter can be obtained with sufficient reproducibility by the addition amount adjustment of the particle | grains used as the said seed | species.

当該種になる粒子は、本発明に係る還元析出反応とは異なる工程において、予め、微粒子を生成させ、この微粒子を本発明に係る銀還元反応系に添加して用いるものである。尤も、異なる態様として、予め、標準電極電位が銀より大きい物質のイオン化合物を、本発明に係る銀イオン含有水性反応系に添加することで、予め、イオンの状態から微粒子を生成させ、当該微粒子を銀還元反応の際の種になる粒子として生成させることも出来る。   The particles to be the seeds are used by generating fine particles in advance in a step different from the reduction precipitation reaction according to the present invention, and adding the fine particles to the silver reduction reaction system according to the present invention. However, as a different embodiment, by adding an ionic compound of a substance having a standard electrode potential larger than silver to the silver ion-containing aqueous reaction system according to the present invention, fine particles are generated in advance from an ionic state, and the fine particles Can also be produced as particles that become seeds for the silver reduction reaction.

以下、まず、本発明に係る銀の還元析出反応とは異なる工程で微粒子を生成させ、この微粒子を当該銀還元反応系に添加する態様について説明し、次に、予め、標準電極電位が銀より大きいイオン性物質を、銀の還元析出前に銀イオン含有水性反応系に添加することで、当該銀イオン含有水性反応系において金属イオンの状態から微粒子を生成させる態様について説明する。   Hereinafter, first, a mode in which fine particles are generated in a step different from the silver reduction precipitation reaction according to the present invention, and the fine particles are added to the silver reduction reaction system will be described. An embodiment will be described in which a large ionic substance is added to a silver ion-containing aqueous reaction system before silver reduction precipitation to generate fine particles from the state of metal ions in the silver ion-containing aqueous reaction system.

(1)本発明に係る銀の還元析出反応とは異なる工程で生成させた微粒子を添加する態様
種になる粒子は、金属粒子に限られず非金属粒子でも良い。この理由は定かではないが、銀粒子の形状を制御する目的で添加しているイミン化合物が銀イオンと錯体を形成する一方で、種になる粒子とも結合するためであると考えられる。つまり、種になる粒子が非金属粒子であっても表面にイミン化合物が結合し、これを核として銀が、種になる粒子となる非金属粒子表面に析出するためと考えられる。したがって、種になる粒子として使用
できる粒子は、水系に分散できるものであれば特に制限されない。例えば、金、銀、銅、白金族元素、鉄族元素の粒子、さらに、コロイダルシリカ(SiO)や酸化物ガラス等の酸化物の粒子が好ましい様態である。
(1) Embodiment in which fine particles generated in a step different from the silver reductive precipitation reaction according to the present invention are added The seed particles are not limited to metal particles but may be non-metallic particles. The reason for this is not clear, but it is considered that the imine compound added for the purpose of controlling the shape of the silver particles forms a complex with the silver ions, while also binding to the seed particles. In other words, even if the seed particle is a non-metallic particle, the imine compound is bonded to the surface, and silver is precipitated on the surface of the non-metallic particle serving as the seed particle using this as a nucleus. Accordingly, the particles that can be used as seed particles are not particularly limited as long as they can be dispersed in an aqueous system. For example, gold, silver, copper, platinum group element, iron group element particles, and oxide particles such as colloidal silica (SiO 2 ) and oxide glass are preferable.

種になる粒子の粒径は、平均粒径が1nm以上、50nm以下の微粒子であることが好ましい。平均粒径が1nm以上であれば、当該微粒子表面上に銀の析出する箇所を確保することが出来る。一方、平均粒径が50nm以下であれば、当該種になる粒子の粒径が製造される銀粉の粒径と比較して1/2以下となり、種になる粒子の形状によって、製造される銀粉の形状が球状にならなくなることを回避できるからである。   The particle size of the seed particle is preferably a fine particle having an average particle size of 1 nm or more and 50 nm or less. When the average particle diameter is 1 nm or more, a portion where silver is deposited can be secured on the surface of the fine particles. On the other hand, if the average particle size is 50 nm or less, the particle size of the seed particle becomes 1/2 or less compared to the particle size of the silver powder to be manufactured, and the silver powder manufactured by the shape of the seed particle It is because it can avoid that the shape of becomes no spherical shape.

また、種になる粒子に銀以外の材料を使用する場合には、製造される銀粉において、銀の含量が低下する。そこで、銀の含量をあまり下げないように保つ観点からは、平均粒径が小さい方が好ましい。これらの点を考慮すると、種になる粒子の平均粒径は、1nm以上、25nm以下がさらに好ましい。   Further, when a material other than silver is used for the seed particles, the silver content in the produced silver powder is lowered. Therefore, from the viewpoint of keeping the silver content from decreasing so much, it is preferable that the average particle size is small. Considering these points, the average particle size of the seed particles is more preferably 1 nm or more and 25 nm or less.

銀の還元析出反応は、上述した種になる粒子を核として開始するため、生成する銀粒子の平均粒径は、種になる粒子を添加しない場合と比較して、反応バッチごとに大きな変化を示さず、反応毎の再現性が向上する。また、生成する銀粒子の粒径のばらつきを低減することができる。そして、種になる粒子を構成する物質と添加量を一定にすることで、核の個数を一定とし、生成する銀粒子の粒径と粒度分布の再現性を向上することが出来る。   Since the silver reduction precipitation reaction starts with the seed particles described above as the nucleus, the average particle size of the silver particles produced varies greatly from reaction batch to reaction batch compared to the case where no seed particles are added. Not shown, reproducibility for each reaction is improved. Moreover, the dispersion | variation in the particle size of the silver particle to produce | generate can be reduced. Further, by making the substance constituting the seed particles and the addition amount constant, the number of nuclei can be made constant, and the reproducibility of the particle size and particle size distribution of the silver particles to be produced can be improved.

(2)標準電極電位が銀より大きいイオン性物質を、予め、銀の還元析出前に銀イオン含有水性反応系に添加することで、当該銀イオン含有水性反応系において金属イオンの状態から微粒子を生成させる態様
標準電極電位が銀より大きいイオン性物質(例えば、イオン状態の金、白金属化合物)を、予め、銀の還元析出前に銀イオン含有水性反応系に添加することでも、本発明の目的とする効果を得ることができる。
これは、銀の還元析出反応前に、銀イオン含有水性反応系に添加されるイオンの状態の金、白金族元素等の標準電極電位が銀より大きいため、還元反応の初期に銀イオン含有水性反応系中において、金、白金族元素が還元析出して粒子を生成し、この粒子を核として銀粒子が生成する為であると考えられる。この結果、上記(1)で説明した、本発明に係る銀の還元析出反応とは異なる工程で生成させた粒子を添加する態様と、同様な効果が得られるのだと考えられる。
(2) An ionic substance having a standard electrode potential larger than silver is previously added to the silver ion-containing aqueous reaction system before silver reduction precipitation, whereby fine particles are removed from the metal ion state in the silver ion-containing aqueous reaction system. Aspect to be generated An ionic substance having a standard electrode potential larger than silver (for example, gold in an ionic state, a white metal compound) may be added in advance to a silver ion-containing aqueous reaction system in advance of silver prior to reduction precipitation. The intended effect can be obtained.
This is because the standard electrode potential of gold, platinum group elements, etc. in the state of ions added to the silver ion-containing aqueous reaction system before the silver reductive precipitation reaction is larger than silver, so that the silver ion-containing aqueous solution at the beginning of the reduction reaction. This is considered to be because gold and platinum group elements are reduced and precipitated in the reaction system to generate particles, and silver particles are generated using these particles as nuclei. As a result, it is thought that the same effect as the aspect which adds the particle | grains produced | generated by the process different from the silver reductive precipitation reaction based on this invention demonstrated in said (1) is acquired.

結局、種粒子の添加方法は、予め、銀イオン含有水性反応系に添加しておいてもよいし、予め、還元剤に添加しておいてもよい。また上述したように、当該種になる粒子は、銀還元反応系とは異なる系で生成させた粒子でもよいし、系内で生成させた粒子でもよい。   Eventually, the seed particles may be added in advance to the silver ion-containing aqueous reaction system or in advance to the reducing agent. Further, as described above, the particles to be the seed may be particles generated in a system different from the silver reduction reaction system, or may be particles generated in the system.

8.分散剤
本発明の銀粉の製造方法において、生成する銀粒子の分散性を向上させるため、銀粒子の還元析出前の銀アンミン錯体水溶液または還元剤水溶液、または、銀粒子の還元析出後のスラリー状の反応物に、分散剤を添加することも好ましい構成である。当該分散剤の添加により、表面が分散剤で被覆された銀粉を製造することができる。
8). Dispersant In the silver powder production method of the present invention, in order to improve the dispersibility of the silver particles to be generated, a silver ammine complex aqueous solution or a reducing agent aqueous solution before the silver particles are reduced and precipitated, or a slurry after the silver particles are reduced and precipitated. It is also preferable to add a dispersant to the reaction product. By adding the dispersant, silver powder whose surface is coated with the dispersant can be produced.

当該添加する分散剤としては、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート剤、保護コロイド等が挙げられる。また、分散剤の量は、水性反応系に仕込まれる銀に対して0.05〜2%の間で必要とされる特性に合わせて調整される。
以下、添加する分散剤について、具体的に説明する。
Examples of the dispersant to be added include fatty acids, fatty acid salts, surfactants, organic metals, chelating agents, protective colloids and the like. Moreover, the quantity of a dispersing agent is adjusted according to the characteristic required between 0.05 to 2% with respect to the silver with which an aqueous reaction system is prepared.
Hereinafter, the dispersant to be added will be specifically described.

(1)脂肪酸
分散剤として脂肪酸を用いる場合の好ましい例としては、プロピオン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸、等が挙げられる。
(1) Fatty acid Preferred examples of using a fatty acid as a dispersant include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, arachidonic acid, Etc.

(2)脂肪酸塩
分散剤として脂肪酸塩を用いる場合の好ましい例としては、リチウム、ナトリウム、カリウム、バリウム、マグネシウム、カルシウム、アルミニウム、鉄、コバルト、マンガン、鉛、亜鉛、スズ、ストロンチウム、ジルコニウム、銀、銅などの金属と、(1)で説明した脂肪酸とが塩を形成したものが挙げられる。
(2) Fatty acid salt Preferred examples of the fatty acid salt used as a dispersant include lithium, sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, lead, zinc, tin, strontium, zirconium, silver , And a metal such as copper and the fatty acid described in (1) form a salt.

(3)界面活性剤
分散剤として界面活性剤を用いる場合の好ましい例としては、アルキルベンゼンスルホン酸塩、及びポリオキシエチレンアルキルエーテルリン酸塩等の陰イオン界面活性剤、脂肪族4級アンモニウム塩等の陽イオン界面活性剤、イミダゾリニウムベタイン等の両性界面活性剤、ポリオキシエチレンアルキルエーテル、及びポリオキシエチレン脂肪酸エステル等の非イオン界面活性剤、等が挙げられる。
(3) Surfactant Preferred examples when using a surfactant as a dispersant include anionic surfactants such as alkylbenzene sulfonates and polyoxyethylene alkyl ether phosphates, aliphatic quaternary ammonium salts, and the like. Cationic surfactants, amphoteric surfactants such as imidazolinium betaine, polyoxyethylene alkyl ethers, and nonionic surfactants such as polyoxyethylene fatty acid esters.

(4)有機金属
分散剤として有機金属を用いる場合の好ましい例としては、アセチルアセトントリブトキシジルコニウム、クエン酸マグネシウム、ジエチル亜鉛、ジブチルスズオキサイド、ジメチル亜鉛、テトラ−n−ブトキシジルコニウム、トリエチルインジウム、トリエチルガリウム、トリメチルインジイウム、トリメチルガリウム、モノブチルスズオキサイド、テトライソシアネートシラン、テトラメチルシラン、テトラメトキシシラン、モノメチルトリイソシアネートシラン、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、等が挙げられる。
(4) Organometallic Preferred examples in the case of using an organometallic as the dispersant include acetylacetone tributoxyzirconium, magnesium citrate, diethylzinc, dibutyltin oxide, dimethylzinc, tetra-n-butoxyzirconium, triethylindium, triethylgallium, Examples include trimethylindiium, trimethylgallium, monobutyltin oxide, tetraisocyanate silane, tetramethylsilane, tetramethoxysilane, monomethyltriisocyanate silane, silane coupling agent, titanate coupling agent, aluminum coupling agent, and the like. .

(5)キレート形成剤
分散剤としてキレート形成剤を用いる場合の好ましい例としては、イミダゾール、オキサゾール、チアゾール、セレナゾール、ピラゾール、イソオキサゾール、イソチアゾール、1H−1,2,3−トリアゾール、2H−1,2,3−トリアゾール、1H−1,2,4−トリアゾール、4H−1,2,4−トリアゾール、1,2,3−オキサジアゾール、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,3−チアジアゾール、1,2,4−チアジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、1H−1,2,3,4−テトラゾール、1,2,3,4−オキサトリアゾール、1,2,3,4−チアトリアゾール、2H−1,2,3,4−テトラゾール、1,2,3,5−オキサトリアゾール、1,2,3,5−チアトリアゾール、インダゾール、ベンゾイミダゾール、ベンゾトリアゾール、等、および、これらのキレート形成剤の塩、が挙げられる。
(5) Chelate forming agent Preferred examples of using a chelating agent as a dispersant include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, 1H-1,2,3-triazole, and 2H-1. , 2,3-triazole, 1H-1,2,4-triazole, 4H-1,2,4-triazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2 , 5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1H -1,2,3,4-tetrazole, 1,2,3,4-oxatriazole, 1,2,3,4-thiatriazole, 2H-1,2,3,4 -Tetrazole, 1,2,3,5-oxatriazole, 1,2,3,5-thiatriazole, indazole, benzimidazole, benzotriazole, and the like, and salts of these chelating agents.

(6)保護コロイド
分散剤として保護コロイドを用いる場合の好ましい例としては、ペプチド、ゼラチン、アルブミン、アラビアゴム、プロタルビン酸、リサルビン酸、膠、等が挙げられる。
(6) Protective colloid Preferable examples of the case where protective colloid is used as a dispersant include peptides, gelatin, albumin, gum arabic, protalbic acid, risalvic acid, glue and the like.

9.銀アンミン錯体水溶液と還元剤水溶液との混合後の操作
銀アンミン錯体水溶液へ、還元剤、種粒子およびイミン化合物の添加により得られた銀粉含有スラリーを、濾過、水洗することによって、銀重量に対して1〜200質量%の水を含み、流動性がほとんどない塊状のケーキが得られる。
当該ケーキを、強制循環式大気乾燥機、真空乾燥機、気流乾燥装置等の乾燥機で乾燥することにより本発明に係る銀粉が得られる。また、当該ケーキの乾燥を早めるために、ケーキ中の水分を低級アルコール等で置換してもよい。さらに、必要に応じて当該ケーキに
対し、乾式解砕処理や、特開2005−240092号公報に記載するような、高速攪拌機を使用して粒子同士を機械的に衝突させる表面平滑化処理を施した後、分級することで所定粒径より大きい銀粉の凝集体を除去する分級処理を行ってもよい。さらに、当該ケーキに対し、乾燥、解砕および分級を行なうことができる一体型の装置((株)ホソカワミクロン製のドライマイスタや、ミクロンドライヤなど)を用いて、乾燥、粉砕、分級を行なってもよい。
9. Operation after mixing the silver ammine complex aqueous solution and the reducing agent aqueous solution The silver powder-containing slurry obtained by adding the reducing agent, seed particles, and imine compound to the silver ammine complex aqueous solution is filtered and washed with water. A lump cake containing 1 to 200% by mass of water and almost no fluidity is obtained.
Silver powder according to the present invention is obtained by drying the cake with a dryer such as a forced circulation air dryer, a vacuum dryer, or an airflow dryer. In order to accelerate the drying of the cake, the water in the cake may be replaced with a lower alcohol or the like. Further, the cake is subjected to a dry crushing process or a surface smoothing process for mechanically colliding particles with each other using a high-speed stirrer as described in JP-A-2005-240092 as necessary. Then, classification may be performed to remove silver powder aggregates larger than a predetermined particle size by classification. Further, the cake may be dried, pulverized and classified using an integrated apparatus (such as Hosokawa Micron Dry Meister or Micron Dryer) that can dry, crush and classify the cake. Good.

上述の操作を行って得られた銀粉は、粒度分布がシャープでかつ高分散性の微粒であり、オフセット方式をはじめとしたPDP用途等に使用する導電性ペースト用の銀粉として適したものであった。
一方、上述の銀粉含有スラリーを濾過、水洗することによって生成した排水は、流量1〜10L/min程度のエアーのバブリングを1〜5時間程度行うことで、ヒドラジン濃度が1ppm以下となり、容易に分解可能であった。なお、ヒドラジンの分解を促進させるため、エアーのバブリング時のpH調整や加温も有効である。
The silver powder obtained by performing the above operation is a fine particle having a sharp particle size distribution and high dispersibility, and is suitable as a silver powder for conductive pastes used for PDP applications including the offset method. It was.
On the other hand, the wastewater generated by filtering and washing the above-mentioned silver powder-containing slurry is easily decomposed by bubbling air with a flow rate of about 1 to 10 L / min for about 1 to 5 hours, so that the hydrazine concentration becomes 1 ppm or less. It was possible. In addition, in order to accelerate | stimulate decomposition | disassembly of hydrazine, pH adjustment and heating at the time of bubbling of air are also effective.

以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限定されるものではない。
(実施例1)
〈銀粉の製造〉
まず、種になる粒子としてパラジウムナノ粒子を準備した。具体的には、パラジウムを8.5mg含む硝酸パラジウム水溶液738gを25℃とし、そこに0.10質量%のヒドラジン一水加物水溶液20g、および、0.20質量%のポリエチレンイミン水溶液(平均分子量10,000)42.5gを加えることにより生成したパラジウムナノ粒子を含有する水溶液である。ここで、生成した種になる粒子をTEMにより観察し、100個の粒子の平均粒径を求めたところ6nmであった。
Hereinafter, although the Example of this invention is described, this invention is not limited to this Example at all.
Example 1
<Manufacture of silver powder>
First, palladium nanoparticles were prepared as seed particles. Specifically, 738 g of an aqueous palladium nitrate solution containing 8.5 mg of palladium was adjusted to 25 ° C., and 20 g of a 0.10% by mass hydrazine monohydrate aqueous solution and an 0.20% by mass polyethyleneimine aqueous solution (average molecular weight) 10,000) 42.5 g is an aqueous solution containing palladium nanoparticles produced. Here, the generated seed particles were observed with a TEM, and the average particle size of 100 particles was determined to be 6 nm.

次に、銀を13.5g含む硝酸銀水溶液4990gへ、28質量%のアンモニア水を30.4g(銀に対して2当量)添加し、0.025mol/Lの銀濃度の銀アンミン錯体水溶液(A液)を得た。
一方、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)28.3gおよび前記パラジウムナノ粒子を含有する水溶液101.4gを、純水4870gで希釈し、ポリエチレンイミン(銀に対して0.5質量%)および種になる粒子を含んだ0.0075mol/Lのヒドラジン水溶液(B液)を得た(銀に対して1.2当量)。
A液、B液のそれぞれの液温を40℃とした後、図1に示す内径6mmのY字型管路におけるa管、b管に、それぞれの溶液を1.36L/min(80cm/sec)で流し、a管、b管の合流点で、A液、B液を接触混合させ銀粒子を析出させながら内径6mmのc管より排出させた。
Next, 30.4 g of 28% by mass of ammonia water (2 equivalents with respect to silver) was added to 4990 g of an aqueous silver nitrate solution containing 13.5 g of silver, and an aqueous silver ammine complex solution having a silver concentration of 0.025 mol / L (A Liquid).
On the other hand, 2.35 g of an 80% by mass hydrazine monohydrate aqueous solution, 28.3 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000) and 101.4 g of the aqueous solution containing the palladium nanoparticles were added to 4870 g of pure water. To obtain a 0.0075 mol / L hydrazine aqueous solution (liquid B) containing polyethyleneimine (0.5% by mass based on silver) and seed particles (1.2 equivalents based on silver). .
After the liquid temperature of each of liquid A and liquid B was set to 40 ° C., each solution was applied to the pipes a and b in the Y-shaped pipe having an inner diameter of 6 mm shown in FIG. 1 at 1.36 L / min (80 cm / sec). The liquid A and the liquid B were brought into contact with each other at the junction of the pipes a and b, and the silver particles were precipitated, and were discharged from the c pipe having an inner diameter of 6 mm.

1質量%のステアリン酸ナトリウム水溶液13.5g(銀に対して1質量%)を純水1000gにて希釈した水溶液内へ、当該c管より排出させた液を撹拌しながら添加してスラリー化させ、銀粒子に表面処理を行った。
得られたスラリーを加圧濾過し、電気伝導度が0.2mS/m以下になるまで純水洗浄したのち、真空乾燥機で真空雰囲気75℃にて乾燥し、実施例1に係る銀粉を得た。
当該実施例1に係る銀粉の10000倍のSEM写真を図4に示す。
A solution discharged from the c tube is added to an aqueous solution obtained by diluting 13.5 g of a 1% by mass sodium stearate aqueous solution (1% by mass with respect to silver) with 1000 g of pure water while stirring to make a slurry. The silver particles were surface treated.
The obtained slurry was filtered under pressure, washed with pure water until the electric conductivity reached 0.2 mS / m or less, and then dried in a vacuum atmosphere at 75 ° C. with a vacuum dryer to obtain a silver powder according to Example 1. It was.
FIG. 4 shows a 10,000 times SEM photograph of the silver powder according to Example 1.

上記の銀粉製造に際して生成した排水は、無色透明であった。当該排水を40℃とし、撹拌しながら5L/min.のエアーを用いて2時間バブリングした。すると、当該バブリング後には、当該排水中のヒドラジンが分解され、当該ヒドラジンの濃度が1ppm以
下まで低下することを確認した。
The waste water produced during the production of the silver powder was colorless and transparent. The waste water was set to 40 ° C. and stirred at 5 L / min. The air was bubbled for 2 hours. Then, after the bubbling, it was confirmed that hydrazine in the wastewater was decomposed and the concentration of the hydrazine was reduced to 1 ppm or less.

〈銀粉の評価〉
得られた実施例1に係る銀粉のレーザー回折法による粒度分布は、D10=0.39μm、D50=0.53μm、D90=0.74μmであり、粒度分布のバラツキを表す(D90−D10)/D50は0.66であった。これより、実施例1に係る銀粉の粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.52μmであったことから、レーザー回折法による平均粒径D50と走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMの比D50/DSEMは1.02である。この結果から、実施例1に係る銀粉が高分散性であることが確認できた。
得られた実施例1に係る銀粉のタップ密度は3.8g/cm、比表面積が0.84m/gであり、X線結晶子径は23nmであった。
<Evaluation of silver powder>
The particle size distribution of the obtained silver powder according to Example 1 by the laser diffraction method is D 10 = 0.39 μm, D 50 = 0.53 μm, D 90 = 0.74 μm, and represents a variation in the particle size distribution (D 90 -D 10) / D 50 was 0.66. This confirmed that the particle size distribution of the silver powder according to Example 1 was sharp. Since the average particle diameter D SEM of the primary particles obtained by image analysis of the scanning electron microscope image (SEM) was 0.52 μm, the average particle diameter D 50 by the laser diffraction method and the scanning electron microscope image (SEM) The ratio D 50 / D SEM of the average particle diameter D SEM of the primary particles obtained by the image analysis is 1.02. From this result, it was confirmed that the silver powder according to Example 1 was highly dispersible.
The tap density of the obtained silver powder according to Example 1 was 3.8 g / cm 3 , the specific surface area was 0.84 m 2 / g, and the X-ray crystallite diameter was 23 nm.

尚、前記比表面積は、カウンタクローム社製モノソーブによりBET法(測定前の脱気条件は脱気温度60℃、脱気時間10分間)で測定した。   The specific surface area was measured by a BET method (degassing conditions before measurement were a degassing temperature of 60 ° C. and a degassing time of 10 minutes) using a monosorb manufactured by Counterchrome.

X線結晶子径は、下記Scherrerの式によって求めた。
すなわち、
Dhkl=Kλ/βcosθ
ここで、
Dhkl(Å):結晶子径の大きさ(hklに垂直な方向の結晶子の大きさ)
λ(Å):測定X線の波長(Cuターゲット使用時1.5405Å)
β(rad):結晶子の大きさによる回折線の広がりであり、半価幅を用いた。
θ(rad):回折角のブラッグ角であって、入射角と反射角が等しいときの角度であり、ピークトップの角度を使用した。
K:Scherrer定数(Dやβの定義により異なる。βに半価幅を用いる場合K=0.94)
尚、測定は粉末X線回折装置リガクRint RAD−rBを用い、ステップ0.02°、測定速度0.5°/minで行い、計算には(111)面のピークデータを用いた。
The X-ray crystallite diameter was determined by the following Scherrer equation.
That is,
Dhkl = Kλ / βcosθ
here,
Dhkl (Å): size of crystallite (size of crystallite in a direction perpendicular to hkl)
λ (Å): X-ray wavelength (1.5405Å when using Cu target)
β (rad): The broadening of the diffraction line depending on the crystallite size, and the half width was used.
θ (rad): Bragg angle of diffraction angle, which is an angle when the incident angle and the reflection angle are equal, and the peak top angle was used.
K: Scherrer constant (depending on the definition of D or β. When half width is used for β, K = 0.94)
The measurement was performed using a powder X-ray diffractometer Rigaku Rint RAD-rB at a step of 0.02 ° and a measurement speed of 0.5 ° / min, and the peak data of the (111) plane was used for the calculation.

(実施例2)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
次に、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)5.4g、および種粒子を含有する水溶液532.5gを、純水4460gで希釈したものを用いた以外は、実施例1と同様の条件、操作にて反応を行い実施例2に係る銀粉を得た。
当該実施例1に係る銀粉の10000倍のSEM写真を図5に示す。
(Example 2)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Next, as an aqueous hydrazine solution (liquid B), an aqueous solution containing 2.35 g of an 80% by mass hydrazine monohydrate aqueous solution, 5.4 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000), and seed particles. A silver powder according to Example 2 was obtained by reacting under the same conditions and operation as in Example 1 except that 532.5 g diluted with 4460 g of pure water was used.
FIG. 5 shows a 10,000 times SEM photograph of the silver powder according to Example 1.

実施例2に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced by the production of the silver powder according to Example 2 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例2に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.23μm、D50=0.30μm、D90=0.48μmであり、(D90−D10)/D50は0.80であった。これより、実施例2に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.27μmであったことから、D
50/DSEM=1.11であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は2.9g/cm、比表面積が1.58m/gであり、X線結晶子径は30nmであった。
<Evaluation of silver powder>
The silver powder according to Example 2 was evaluated in the same manner as in Example 1. The particle size distribution by laser diffraction method of the obtained silver powder D 10 = 0.23μm, D 50 = 0.30μm, a D 90 = 0.48μm, (D 90 -D 10) / D 50 in 0.80 there were. From this, it was confirmed that the silver powder according to Example 2 had a sharp particle size distribution. Since the average particle diameter D SEM of primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.27 μm, D
50 / D SEM = 1.11. It was confirmed that the dispersion was highly dispersible.
The tap density of the obtained silver powder was 2.9 g / cm 3 , the specific surface area was 1.58 m 2 / g, and the X-ray crystallite diameter was 30 nm.

(実施例3)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
次に、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)31.0g、および種粒子を含有する水溶液50.7gを、純水4920gで希釈して得た以外は、実施例1と同様の条件、操作にて反応を行い実施例3に係る銀粉を得た。
当該実施例3に係る銀粉の10000倍のSEM写真を図6に示す。
(Example 3)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Next, as an aqueous hydrazine solution (Liquid B), 2.35 g of an 80% by mass hydrazine monohydrate aqueous solution, 31.0 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000), and an aqueous solution containing seed particles Except that 50.7 g was obtained by diluting with 4920 g of pure water, the reaction was performed under the same conditions and operations as in Example 1 to obtain a silver powder according to Example 3.
FIG. 6 shows a 10,000 times SEM photograph of the silver powder according to Example 3.

実施例3に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced by the production of the silver powder according to Example 3 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例3に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.53μm、D50=0.72μm、D90=1.00μmであり、(D90−D10)/D50は0.65であった。これより、実施例3に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.64μmであったことから、D50/DSEM=1.12であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.7g/cm、比表面積が0.54m/gであり、X線結晶子径は26nmであった。
<Evaluation of silver powder>
The silver powder according to Example 3 was evaluated in the same manner as in Example 1. The particle size distribution of the obtained silver powder by laser diffraction method is D 10 = 0.53 μm, D 50 = 0.72 μm, D 90 = 1.00 μm, and (D 90 -D 10 ) / D 50 is 0.65. there were. From this, it was confirmed that the silver powder according to Example 3 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.64 μm, D 50 / D SEM = 1.12 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.7 g / cm 3 , the specific surface area was 0.54 m 2 / g, and the X-ray crystallite diameter was 26 nm.

(実施例4)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
次に、銀アンミン錯体水溶液(A液)として、銀を27.0g含む硝酸銀水溶液4990gに、28質量%のアンモニア水を60.7g添加し、0.05mol/Lの銀濃度の銀アンミン錯体水溶液を得た。
一方、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液4.70g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)56.6g、および種粒子を含有する水溶液202.9gを、純水4740gで希釈してヒドラジン水溶液を得た。
続いて、当該A液、B液それぞれの液温を60℃とした以外は、実施例1と同様の条件、操作にて反応を行い実施例4に係る銀粉を得た。
当該実施例4に係る銀粉の10000倍のSEM写真を図7に示す。
Example 4
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Next, as a silver ammine complex aqueous solution (A solution), 60.7 g of 28 mass% ammonia water was added to 4990 g of silver nitrate aqueous solution containing 27.0 g of silver, and a silver ammine complex aqueous solution having a silver concentration of 0.05 mol / L. Got.
On the other hand, as an aqueous hydrazine solution (liquid B), 4.70 g of an 80% by mass hydrazine monohydrate aqueous solution, 56.6 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000), and an aqueous solution 202 containing seed particles. .9 g was diluted with 4740 g of pure water to obtain a hydrazine aqueous solution.
Subsequently, the reaction was carried out under the same conditions and operations as in Example 1 except that the liquid temperatures of the liquid A and liquid B were set to 60 ° C., to obtain silver powder according to Example 4.
FIG. 7 shows a 10,000 times SEM photograph of the silver powder according to Example 4.

実施例4に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced by the production of the silver powder according to Example 4 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例4に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.38μm、D50=0.55μm、D90=0.83μmであり、(D90−D10)/D50は0.81であった。これより、実施例4に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画
像解析により得られる一次粒子の平均粒径DSEMは0.51μmであったことから、D50/DSEM=1.08であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.5g/cm、比表面積が0.80m/gであり、X線結晶子径は26nmであった。
<Evaluation of silver powder>
The silver powder according to Example 4 was evaluated in the same manner as in Example 1. The particle size distribution by laser diffraction method of the obtained silver powder D 10 = 0.38μm, D 50 = 0.55μm, a D 90 = 0.83μm, (D 90 -D 10) / D 50 in 0.81 there were. From this, it was confirmed that the silver powder according to Example 4 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.51 μm, D 50 / D SEM = 1.08 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.5 g / cm 3 , the specific surface area was 0.80 m 2 / g, and the X-ray crystallite diameter was 26 nm.

(実施例5)
〈銀粉の製造〉
まず、種になる粒子として銀ナノ粒子を準備した。具体的には、銀を86mg含む硝酸銀水溶液677gを25℃とし、そこに0.0086質量%のクエン酸三ナトリウム水溶液100g、および、0.10質量%のヒドラジン一水加物水溶液33.4g、2.0質量%のポリエチレンイミン水溶液(平均分子量10,000)43.2gを加えることにより生成した銀ナノ粒子を含有する水溶液である。ここで、生成した種粒子をTEMにより観察し、100個の粒子の平均粒径を求めたところ20nmであった。
(Example 5)
<Manufacture of silver powder>
First, silver nanoparticles were prepared as seed particles. Specifically, 677 g of an aqueous silver nitrate solution containing 86 mg of silver is set to 25 ° C., and 100 g of 0.0086 mass% trisodium citrate aqueous solution and 33.4 g of 0.10 mass% hydrazine monohydrate aqueous solution, This is an aqueous solution containing silver nanoparticles produced by adding 43.2 g of a 2.0% by mass polyethyleneimine aqueous solution (average molecular weight 10,000). Here, the produced seed particles were observed with a TEM, and the average particle diameter of 100 particles was determined to be 20 nm.

次に、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)28.3g、および種になる粒子(銀ナノ粒子)を含有する水溶液10.0gを、純水4960gで希釈したものを用いた以外は、実施例1と同様の条件、操作にて反応を行い実施例5に係る銀粉を得た。
当該実施例5に係る銀粉の10000倍のSEM写真を図8に示す。
Next, as an aqueous hydrazine solution (liquid B), 2.35 g of an 80% by mass hydrazine monohydrate aqueous solution, 28.3 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000), and seed particles (silver) A silver powder according to Example 5 was obtained by reacting under the same conditions and operations as in Example 1 except that 10.0 g of an aqueous solution containing nanoparticles) was diluted with 4960 g of pure water.
FIG. 8 shows a 10,000 times SEM photograph of the silver powder according to Example 5.

実施例5に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced by the production of the silver powder according to Example 5 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例5に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.43μm、D50=0.57μm、D90=0.79μmであり、(D90−D10)/D50は0.63であった。これより、実施例3に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.55μmであったことから、D50/DSEM=1.04であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.6g/cm、比表面積が0.80m/gであり、X線結晶子径は32nmであった。
<Evaluation of silver powder>
The silver powder according to Example 5 was evaluated in the same manner as in Example 1. The particle size distribution of the obtained silver powder by laser diffraction method is D 10 = 0.43 μm, D 50 = 0.57 μm, D 90 = 0.79 μm, and (D 90 -D 10 ) / D 50 is 0.63. there were. From this, it was confirmed that the silver powder according to Example 3 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.55 μm, D 50 / D SEM = 1.04 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.6 g / cm 3 , the specific surface area was 0.80 m 2 / g, and the X-ray crystallite diameter was 32 nm.

(実施例6)
〈銀粉の製造〉
種になる粒子として実施例5と同様の銀ナノ粒子を準備した。
次に、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)0.7g、および種になる粒子(銀ナノ粒子)を含有する水溶液61.3gを、純水4940gで希釈したものを用いた以外は、実施例1と同様の条件、操作にて反応を行い実施例6に係る銀粉を得た。
当該実施例6に係る銀粉の10000倍のSEM写真を図9に示す。
(Example 6)
<Manufacture of silver powder>
The same silver nanoparticles as in Example 5 were prepared as seed particles.
Next, as an aqueous hydrazine solution (liquid B), 2.35 g of an 80% by mass hydrazine monohydrate aqueous solution, 0.7 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000), and seed particles (silver) A silver powder according to Example 6 was obtained by reacting under the same conditions and operation as in Example 1 except that 61.3 g of an aqueous solution containing nanoparticles) was diluted with 4940 g of pure water.
FIG. 9 shows a 10,000 times SEM photograph of the silver powder according to Example 6.

実施例6に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water generated by the production of the silver powder according to Example 6 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例6に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.26μm、D50=0.33μm、D90=0.47μmであり、(D90−D10)/D50は0.64であった。これより、実施例6に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.29μmであったことから、D50/DSEM=1.14であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.1g/cm、比表面積が1.11m/gであり、X線結晶子径は30nmであった。
<Evaluation of silver powder>
Evaluation of the silver powder according to Example 6 was performed in the same manner as in Example 1. The particle size distribution of the obtained silver powder by laser diffraction method is D 10 = 0.26 μm, D 50 = 0.33 μm, D 90 = 0.47 μm, and (D 90 -D 10 ) / D 50 is 0.64. there were. From this, it was confirmed that the silver powder according to Example 6 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.29 μm, D 50 / D SEM = 1.14 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.1 g / cm 3 , the specific surface area was 1.11 m 2 / g, and the X-ray crystallite diameter was 30 nm.

(実施例7)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
そして、図1に示す内径6mmのY字型管路を、図2に示す内径6mmのT字型管路に代替した以外は、実施例1と同様の条件、操作にて反応を行い実施例7に係る銀粉を得た。
当該実施例7に係る銀粉の10000倍のSEM写真を図10に示す。
(Example 7)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Then, the reaction was carried out under the same conditions and operation as in Example 1 except that the Y-shaped pipe having an inner diameter of 6 mm shown in FIG. 1 was replaced with a T-shaped pipe having an inner diameter of 6 mm shown in FIG. A silver powder according to 7 was obtained.
A SEM photograph of 10,000 times the silver powder according to Example 7 is shown in FIG.

実施例7に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water generated by the production of the silver powder according to Example 7 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例7に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.37μm、D50=0.51μm、D90=0.73μmであり、(D90−D10)/D50は0.70であった。これより、実施例7に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.48μmであったことから、D50/DSEM=1.06であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.5g/cm、比表面積が0.78m/gであり、X線結晶子径は24nmであった。
<Evaluation of silver powder>
The silver powder according to Example 7 was evaluated in the same manner as in Example 1. The particle size distribution of the obtained silver powder by the laser diffraction method is D 10 = 0.37 μm, D 50 = 0.51 μm, D 90 = 0.73 μm, and (D 90 -D 10 ) / D 50 is 0.70. there were. From this, it was confirmed that the silver powder according to Example 7 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.48 μm, D 50 / D SEM = 1.06 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.5 g / cm 3 , the specific surface area was 0.78 m 2 / g, and the X-ray crystallite diameter was 24 nm.

(実施例8)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
次に、銀アンミン錯体水溶液(A液)として、銀を13.5g含む硝酸銀水溶液7940gに、28質量%のアンモニア水を30.4g添加し、0.0156mol/Lの銀濃度の銀アンミン錯体水溶液を得た。
一方、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)28.3g、および種粒子を含有する水溶液101.4gを、純水1870gで希釈し、ポリエチレンイミンおよび種になる粒子を含んだ0.0188mol/Lのヒドラジン水溶液を得た。
続いて、当該A液、B液それぞれの水溶液を、図1(Y字管)に示す内径6mmのa管、b管から、それぞれ2.18L/min(128cm/sec)、0.54L/min(32cm/sec)で流した以外は、実施例1と同様の条件、操作にて反応を行い実施例8に係る銀粉を得た。
当該実施例8に係る銀粉の10000倍のSEM写真を図11に示す。
(Example 8)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Next, as a silver ammine complex aqueous solution (A liquid), 30.4 g of 28 mass% ammonia water was added to 7940 g of silver nitrate aqueous solution containing 13.5 g of silver, and a silver ammine complex aqueous solution having a silver concentration of 0.0156 mol / L. Got.
On the other hand, as an aqueous hydrazine solution (Liquid B), 2.35 g of an 80% by mass hydrazine monohydrate aqueous solution, 28.3 g of a 0.20% by mass polyethyleneimine aqueous solution (average molecular weight 10,000), and an aqueous solution 101 containing seed particles .4 g was diluted with 1870 g of pure water to obtain a 0.0188 mol / L hydrazine aqueous solution containing polyethyleneimine and seed particles.
Subsequently, the aqueous solutions of the liquid A and liquid B were respectively 2.18 L / min (128 cm / sec) and 0.54 L / min from the a tube and the b tube having an inner diameter of 6 mm shown in FIG. 1 (Y-shaped tube). The silver powder which concerns on Example 8 was obtained by reacting on the conditions and operation similar to Example 1 except having flowed at (32 cm / sec).
A SEM photograph of 10000 times the silver powder according to Example 8 is shown in FIG.

実施例8に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを
確認した。
The waste water produced by the production of the silver powder according to Example 8 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例8に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.41μm、D50=0.54μm、D90=0.75μmであり、(D90−D10)/D50は0.63であった。これより、実施例8に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.51μmであったことから、D50/DSEM=1.06であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.6g/cm、比表面積が0.77m/gであり、X線結晶子径は24nmであった。
<Evaluation of silver powder>
The silver powder according to Example 8 was evaluated in the same manner as in Example 1. The particle size distribution of the obtained silver powder by the laser diffraction method is D 10 = 0.41 μm, D 50 = 0.54 μm, D 90 = 0.75 μm, and (D 90 -D 10 ) / D 50 is 0.63. there were. This confirmed that the silver powder according to Example 8 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.51 μm, D 50 / D SEM = 1.06 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.6 g / cm 3 , the specific surface area was 0.77 m 2 / g, and the X-ray crystallite diameter was 24 nm.

(実施例9)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
次に、銀アンミン錯体水溶液(A液)として、銀を13.5g含む硝酸銀水溶液1970gに、28質量%のアンモニア水を30.4g添加し、0.0625mol/Lの銀濃度の銀アンミン錯体水溶液を得た。
一方、ヒドラジン水溶液(B液)として、80質量%のヒドラジン一水加物水溶液2.35g、0.20質量%のポリエチレンイミン水溶液(平均分子量10000)28.3g、および種になる粒子を含有する水溶液101.4gを、純水7870gで希釈し、ポリエチレンイミンおよび種粒子を含んだ0.00469mol/Lのヒドラジン水溶液を得た。
続いて、当該A液、B液それぞれの水溶液を、図1(Y字管)に示す内径6mmのa管、b管からそれぞれ、0.54L/min(32cm/sec)、2.18L/min(128cm/sec)で流した以外は、実施例1と同様の条件、操作にて反応を行い実施例9に係る銀粉を得た。
当該実施例9に係る銀粉の10000倍のSEM写真を図12に示す。
Example 9
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Next, as a silver ammine complex aqueous solution (A solution), 30.4 g of 28 mass% ammonia water was added to 1970 g of silver nitrate aqueous solution containing 13.5 g of silver, and a silver ammine complex aqueous solution having a silver concentration of 0.0625 mol / L. Got.
On the other hand, the aqueous solution of hydrazine (Liquid B) contains 2.35 g of an aqueous solution of 80% by mass of hydrazine monohydrate, 28.3 g of an aqueous solution of 0.20% by mass of polyethyleneimine (average molecular weight 10,000), and seed particles. 101.4 g of the aqueous solution was diluted with 7870 g of pure water to obtain a 0.00469 mol / L hydrazine aqueous solution containing polyethyleneimine and seed particles.
Subsequently, the aqueous solutions of the A liquid and the B liquid are respectively 0.54 L / min (32 cm / sec) and 2.18 L / min from the a tube and the b tube having an inner diameter of 6 mm shown in FIG. 1 (Y-shaped tube). The silver powder which concerns on Example 9 was obtained by reacting on the conditions and operation similar to Example 1 except having flowed at (128 cm / sec).
A SEM photograph of 10,000 times the silver powder according to Example 9 is shown in FIG.

実施例9に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced by the production of the silver powder according to Example 9 was colorless and transparent like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
実施例9に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.39μm、D50=0.52μm、D90=0.73μmであり、(D90−D10)/D50は0.65であった。これより、実施例9に係る銀粉は粒度分布がシャープであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.48μmであったことから、D50/DSEM=1.08であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は3.8g/cm、比表面積が0.96m/gであり、X線結晶子径は28nmであった。
<Evaluation of silver powder>
The silver powder according to Example 9 was evaluated in the same manner as in Example 1. The particle size distribution by laser diffraction method of the obtained silver powder D 10 = 0.39μm, D 50 = 0.52μm, a D 90 = 0.73μm, (D 90 -D 10) / D 50 in 0.65 there were. From this, it was confirmed that the silver powder according to Example 9 had a sharp particle size distribution. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.48 μm, D 50 / D SEM = 1.08 and high dispersibility Was confirmed.
The tap density of the obtained silver powder was 3.8 g / cm 3 , the specific surface area was 0.96 m 2 / g, and the X-ray crystallite diameter was 28 nm.

(比較例1)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
次に、銀アンミン錯体水溶液(A液)として、銀として5.4gを含む硝酸銀水溶液3730gに、28重量%のアンモニア水12.2g(銀に対して2当量)を添加し、銀アンミン錯体水溶液を得た後、液温を40℃とした。
種になる粒子を含有する水溶液40.0gと、含有される銀に対して0.5重量%のポ
リエチレンイミン(平均分子量10,000)を含有する0.3重量%のヒドラジン一水
加物水溶液250gを加えて、銀粒子を析出させた。その後、1質量%のステアリン酸ナトリウム水溶液5.4gを加えて、銀粒子に表面処理を行った。このスラリーを加圧濾過し、電気伝導度が0.2mS/m以下になるまで純水洗浄したのち、真空乾燥機で真空雰囲気75℃にて乾燥し、比較例1に係る銀粉を得た。
当該比較例1に係る銀粉の10000倍のSEM写真を図13に示す。
(Comparative Example 1)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Next, as a silver ammine complex aqueous solution (liquid A), 12.2 g of 28 wt% ammonia water (2 equivalents with respect to silver) is added to 3730 g of silver nitrate aqueous solution containing 5.4 g as silver, and a silver ammine complex aqueous solution. After that, the liquid temperature was set to 40 ° C.
40.0 g of an aqueous solution containing seed particles and 0.3 wt% hydrazine monohydrate aqueous solution containing 0.5 wt% polyethyleneimine (average molecular weight 10,000) with respect to silver contained 250 g was added to precipitate silver particles. Thereafter, 5.4 g of a 1% by mass sodium stearate aqueous solution was added, and the silver particles were subjected to a surface treatment. This slurry was filtered under pressure, washed with pure water until the electric conductivity reached 0.2 mS / m or less, and then dried in a vacuum atmosphere at 75 ° C. with a vacuum dryer, to obtain a silver powder according to Comparative Example 1.
A SEM photograph of 10,000 times the silver powder according to Comparative Example 1 is shown in FIG.

比較例1に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced | generated by manufacture of the silver powder which concerns on the comparative example 1 was colorless and transparent similarly to the waste water which concerns on Example 1. FIG. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
比較例1に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.36μm、D50=0.59μm、D90=0.90μmであり、(D90−D10)/D50は0.92であった。これより、比較例1に係る銀粉は実施例に比べ粒度分布がブロードであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.40μmであったことから、D50/DSEM=1.48であり、実施例に係る銀紛に比べ凝集していることが確認できた。
得られた銀粉のタップ密度は3.3g/cm、比表面積が0.85m/gであり、X線結晶子径は27nmであった。
<Evaluation of silver powder>
The silver powder according to Comparative Example 1 was evaluated in the same manner as in Example 1. The particle size distribution by laser diffraction method of the obtained silver powder D 10 = 0.36μm, D 50 = 0.59μm, a D 90 = 0.90μm, (D 90 -D 10) / D 50 in 0.92 there were. From this, it was confirmed that the silver powder according to Comparative Example 1 had a broad particle size distribution as compared with the Examples. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.40 μm, D 50 / D SEM = 1.48. It was confirmed that they were agglomerated compared to.
The tap density of the obtained silver powder was 3.3 g / cm 3 , the specific surface area was 0.85 m 2 / g, and the X-ray crystallite diameter was 27 nm.

(比較例2)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
そして、種になる粒子を含有する水溶液量を213gにした以外は、比較例1と同様の条件、操作にて反応を行い比較例2に係る銀粉を得た。
当該比較例2に係る銀粉の10000倍のSEM写真を図14に示す。
(Comparative Example 2)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
And the silver powder which concerns on the comparative example 2 was obtained by reacting on the conditions and operation similar to the comparative example 1 except having changed the amount of the aqueous solution containing the particle | grains used as a seed into 213g.
A SEM photograph of 10,000 times the silver powder according to Comparative Example 2 is shown in FIG.

比較例2に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water generated by the production of the silver powder according to Comparative Example 2 was colorless and transparent, like the waste water according to Example 1. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
比較例2に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.26μm、D50=0.44μm、D90=0.85μmであり、(D90−D10)/D50は1.33であった。これより、比較例2に係る銀粉は、実施例に係る銀紛に比べ粒度分布がブロードであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.30μmであったことから、D50/DSEM=1.47であり、実施例に比べ凝集していることが確認できた。
得られた銀粉のタップ密度は2.6g/cm、比表面積が1.59m/gであり、X線結晶子径は26nmであった。
<Evaluation of silver powder>
The silver powder according to Comparative Example 2 was evaluated in the same manner as in Example 1. The particle size distribution of the obtained silver powder by the laser diffraction method is D 10 = 0.26 μm, D 50 = 0.44 μm, D 90 = 0.85 μm, and (D 90 -D 10 ) / D 50 is 1.33. there were. From this, it was confirmed that the silver powder according to Comparative Example 2 had a broader particle size distribution than the silver powder according to the example. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.30 μm, D 50 / D SEM = 1.47, which is agglomerated compared to the examples. It was confirmed that
The tap density of the obtained silver powder was 2.6 g / cm 3 , the specific surface area was 1.59 m 2 / g, and the X-ray crystallite diameter was 26 nm.

(比較例3)
〈銀粉の製造〉
種になる粒子として実施例1と同様のパラジウムナノ粒子を準備した。
そして、実施例1と同様の条件、操作にて製造した、銀アンミン錯体溶液(A液)と、ヒドラジン水溶液(B液)とを、図1(Y字管)に示す内径6mmのa管、b管からそれぞれ0.34L/min(20cm/sec)で流した以外は実施例1と同様の条件、操
作にて反応を行い比較例3に係る銀粉を得た。
当該比較例3に係る銀粉の10000倍のSEM写真を図15に示す。
(Comparative Example 3)
<Manufacture of silver powder>
The same palladium nanoparticles as in Example 1 were prepared as seed particles.
Then, a silver ammine complex solution (liquid A) and a hydrazine aqueous solution (liquid B) produced under the same conditions and operations as in Example 1 were combined with an a tube having an inner diameter of 6 mm shown in FIG. A silver powder according to Comparative Example 3 was obtained by performing the reaction under the same conditions and operation as in Example 1 except that the flow was 0.34 L / min (20 cm / sec) from the b tube.
A SEM photograph of 10,000 times the silver powder according to Comparative Example 3 is shown in FIG.

比較例3に係る銀粉の製造により生成する排水は、実施例1に係る排水と同様に無色透明であった。当該排水も実施例1に係るバブリング操作でヒドラジンを分解できることを確認した。   The waste water produced | generated by manufacture of the silver powder which concerns on the comparative example 3 was colorless and transparent similarly to the waste water which concerns on Example 1. FIG. It was confirmed that hydrazine can be decomposed by the bubbling operation according to Example 1 as well.

〈銀粉の評価〉
比較例3に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.39μm、D50=0.57μm、D90=0.94μmであり、(D90−D10)/D50は0.96であった。これより、比較例4に係る銀粉は、実施例に係る銀紛に比べ粒度分布がブロードであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.52μmであったことから、D50/DSEM=1.10であり、高分散性であることが確認できた。
得られた銀粉のタップ密度は4.0g/cm、比表面積が0.77m/gであり、X線結晶子径は26nmであった。
<Evaluation of silver powder>
The silver powder according to Comparative Example 3 was evaluated in the same manner as in Example 1. The particle size distribution by laser diffraction method of the obtained silver powder D 10 = 0.39μm, D 50 = 0.57μm, a D 90 = 0.94μm, (D 90 -D 10) / D 50 in 0.96 there were. From this, it was confirmed that the silver powder according to Comparative Example 4 had a broader particle size distribution than the silver powder according to the example. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.52 μm, D 50 / D SEM = 1.10 and high dispersibility. Was confirmed.
The tap density of the obtained silver powder was 4.0 g / cm 3 , the specific surface area was 0.77 m 2 / g, and the X-ray crystallite diameter was 26 nm.

(比較例4)
〈銀粉の製造〉
銀イオンとして2.7g/Lを含む硝酸銀溶液3870mlに、28重量%のアンモニア24.3gを加えて、銀のアンミン錯体溶液を製造した。この銀のアンミン錯体溶液に還元剤として0.05重量%のヒドロキノン水溶液を115.6g加え、銀のスラリーを得た。このスラリーを加圧ろ過し、電気伝導度が0.2mS/m以下になるまで純水洗浄したのち、真空乾燥機で真空雰囲気75℃にて乾燥し、比較例4に係る銀粉を得た。
当該比較例4に係る銀粉の10000倍のSEM写真を図16に示す。
(Comparative Example 4)
<Manufacture of silver powder>
A silver ammine complex solution was prepared by adding 24.3 g of 28 wt% ammonia to 3870 ml of silver nitrate solution containing 2.7 g / L of silver ions. 115.6 g of 0.05 wt% hydroquinone aqueous solution as a reducing agent was added to the silver ammine complex solution to obtain a silver slurry. The slurry was filtered under pressure and washed with pure water until the electric conductivity reached 0.2 mS / m or less, and then dried in a vacuum atmosphere at 75 ° C. with a vacuum dryer, to obtain a silver powder according to Comparative Example 4.
A SEM photograph of 10,000 times the silver powder according to Comparative Example 4 is shown in FIG.

比較例4に係る銀粉の製造により生成する排水は、エアーのバブリングや、酸化剤等の薬品を使用しても分解することができなかった。そこで、蒸発濃縮を試みたが、燃料コストが高価なだけでなく、濃縮分がタール状となり処理困難となることがわかった。次に、微生物処理を試みたが、ヒドロキノン自身の有害性が高いため、かなりの低濃度にしないかぎり微生物が死滅し、処理することができなかった。さらに、焼却処理を試みたところ排水処理可能であったが処理コストが高価であり、銀粉製造コストの増加をもたらすと考えられた。   The wastewater produced by the production of the silver powder according to Comparative Example 4 could not be decomposed even when air bubbling or chemicals such as an oxidizing agent was used. Therefore, evaporative concentration was attempted, but it was found that not only the fuel cost is expensive, but also the concentrated component becomes tar-like and difficult to process. Next, an attempt was made to treat the microorganism. However, because of the high toxicity of hydroquinone itself, the microorganism was killed and could not be treated unless the concentration was considerably reduced. Furthermore, when an incineration process was attempted, wastewater treatment was possible, but the treatment cost was expensive, and it was considered that the production cost of silver powder was increased.

〈銀粉の評価〉
比較例4に係る銀粉の評価を、実施例1と同様に行った。得られた銀粉のレーザー回折法による粒度分布はD10=0.30μm、D50=0.60μm、D90=1.11μmであり、(D90−D10)/D50は1.35であった。これより、比較例4に係る銀粉は、実施例に係る銀紛に比べ粒度分布がブロードであることが確認できた。走査型電子顕微鏡像(SEM)の画像解析により得られる一次粒子の平均粒径DSEMは0.39μmであったことから、D50/DSEM=1.54であり、実施例に係る銀紛に比べ凝集していることが確認できた。
得られた銀粉のタップ密度は3.0g/cm、比表面積が1.88m/gであり、X線結晶子径は32nmであった。
<Evaluation of silver powder>
The silver powder according to Comparative Example 4 was evaluated in the same manner as in Example 1. The particle size distribution by laser diffraction method of the obtained silver powder D 10 = 0.30μm, D 50 = 0.60μm, a D 90 = 1.11μm, (D 90 -D 10) / D 50 in 1.35 there were. From this, it was confirmed that the silver powder according to Comparative Example 4 had a broader particle size distribution than the silver powder according to the example. Since the average particle diameter D SEM of the primary particles obtained by image analysis of a scanning electron microscope image (SEM) was 0.39 μm, D50 / D SEM = 1.54. It was confirmed that they were aggregated.
The tap density of the obtained silver powder was 3.0 g / cm 3 , the specific surface area was 1.88 m 2 / g, and the X-ray crystallite diameter was 32 nm.

本発明に係るY字型管路の斜視図である。It is a perspective view of the Y type pipe line concerning the present invention. 本発明に係るT字型管路の斜視図である。It is a perspective view of the T-shaped pipe line concerning the present invention. 本発明に係る同軸二重型管路の斜視図である。It is a perspective view of a coaxial double type pipe line concerning the present invention. 実施例1に係る銀粉の10000倍のSEM写真である。2 is an SEM photograph of 10000 times the silver powder according to Example 1. 実施例2に係る銀粉の10000倍のSEM写真である。3 is an SEM photograph of 10,000 times the silver powder according to Example 2. 実施例3に係る銀粉の10000倍のSEM写真である。4 is a SEM photograph of 10000 times the silver powder according to Example 3. 実施例4に係る銀粉の10000倍のSEM写真である。4 is a SEM photograph of 10000 times the silver powder according to Example 4. 実施例5に係る銀粉の10000倍のSEM写真である。10 is a SEM photograph of 10,000 times the silver powder according to Example 5. 実施例6に係る銀粉の10000倍のSEM写真である。10 is a SEM photograph of 10,000 times the silver powder according to Example 6. 実施例7に係る銀粉の10000倍のSEM写真である。10 is a SEM photograph of 10000 times the silver powder according to Example 7. 実施例8に係る銀粉の10000倍のSEM写真である。10 is a SEM photograph of 10,000 times the silver powder according to Example 8. 実施例9に係る銀粉の10000倍のSEM写真である。10 is a SEM photograph of 10,000 times the silver powder according to Example 9. 比較例1に係る銀粉の10000倍のSEM写真である。3 is an SEM photograph of 10,000 times the silver powder according to Comparative Example 1. 比較例2に係る銀粉の10000倍のSEM写真である。4 is an SEM photograph of 10,000 times the silver powder according to Comparative Example 2. 比較例3に係る銀粉の10000倍のSEM写真である。10 is an SEM photograph of 10,000 times the silver powder according to Comparative Example 3. 比較例4に係る銀粉の10000倍のSEM写真である。10 is an SEM photograph of 10,000 times the silver powder according to Comparative Example 4.

Claims (10)

レーザー回折法により測定した累積10質量%粒径をD 10 、累積50質量%粒径をD 50 、累積90質量%粒径をD 90 と表記し、走査型電子顕微鏡像の画像解析から得られる一次粒子の平均粒径をD SEM と表記したとき、
50 が0.1μm以上、1μm未満、且つ、D 50 /D SEM の値が1.2以下、且つ、(D 90 −D 10 )/D 50 の値が0.8以下である球状銀粉の製造方法であって、
硝酸銀水溶液とアンモニア水とを混合して反応させて銀アンミン錯体水溶液を得、種になる粒子およびイミン化合物の存在下において、当該銀アンミン錯体水溶液と還元剤水溶液としてのヒドラジン水溶液とを混合して、銀粒子を還元析出させることを特徴とした球状銀粉の製造方法。
The cumulative 10 mass% particle size measured by the laser diffraction method is expressed as D 10 , the cumulative 50 mass% particle size is expressed as D 50 , and the cumulative 90 mass% particle size is expressed as D 90, which is obtained from image analysis of a scanning electron microscope image. When the average particle size of primary particles is expressed as DSEM ,
A spherical silver powder having a D 50 of 0.1 μm or more and less than 1 μm, a D 50 / D SEM value of 1.2 or less, and a (D 90 -D 10 ) / D 50 value of 0.8 or less. A manufacturing method comprising:
A silver ammine complex aqueous solution is obtained by mixing and reacting an aqueous silver nitrate solution and aqueous ammonia, and in the presence of seed particles and an imine compound, the aqueous silver ammine complex solution and an aqueous hydrazine solution as a reducing agent aqueous solution are mixed. A method for producing spherical silver powder, characterized in that silver particles are reduced and precipitated.
前記銀アンミン錯体水溶液と前記還元剤水溶液とを、合流点で合流する別々の流路に流し、
当該合流点において、前記銀アンミン錯体水溶液と前記還元剤水溶液とを、接触混合させることを特徴とする請求項に記載の球状銀粉の製造方法。
The silver ammine complex aqueous solution and the reducing agent aqueous solution are caused to flow in separate flow paths that merge at a confluence,
In the meeting point, method for producing a spherical silver powder as set forth in claim 1, wherein the said aqueous solution of the reducing agent and the silver ammine complex solution, contacting mixture.
前記合流点で合流する別々の流路とは、Y字型管路、T字型管路、同軸二重管路のいずれかであることを特徴とする請求項に記載の球状銀粉の製造方法。 3. The spherical silver powder according to claim 2 , wherein the separate flow paths that merge at the merge point are any one of a Y-shaped pipe, a T-shaped pipe, and a coaxial double pipe. Method. 前記イミン化合物が、ポリエチレンイミンであることを特徴とする請求項1〜3のいずれかに記載の球状銀粉の製造方法。 The method for producing spherical silver powder according to any one of claims 1 to 3 , wherein the imine compound is polyethyleneimine. 前記種になる粒子が、金、銀、銅、白金族元素、鉄族元素から選択される1種以上の金属、または金属化合物の粒子であることを特徴とする請求項1〜4のいずれかに記載の球状銀粉の製造方法。 Particles comprising the species, gold, silver, copper, platinum group elements, any one of the preceding claims, characterized in that particles of at least one metal selected from iron group elements or metal compounds, The manufacturing method of spherical silver powder as described in any one of. 前記種になる粒子が、コロイダルシリカおよび/または酸化物ガラスの粒子であることを特徴とする請求項1〜4のいずれかに記載の球状銀粉の製造方法。 The method for producing spherical silver powder according to any one of claims 1 to 4 , wherein the seed particles are colloidal silica and / or oxide glass particles. 前記銀粒子の還元析出前に、標準電極電位が銀より大きいイオン性物質を、前記銀アンミン錯体水溶液へ添加し、種粒子を生成させることを特徴とする請求項1〜4のいずれかに記載の球状銀粉の製造方法。 Before reductive deposition of the silver particles, the larger ionic substance standard electrode potential of silver, was added to the silver ammine complex solution, according to any one of claims 1 to 4, characterized in that to produce the seed particles Of producing spherical silver powder. 前記銀粒子の還元析出前に、前記銀アンミン錯体水溶液および/または前記還元剤水溶液に分散剤を存在させておくことを特徴とする請求項1〜7のいずれかに記載の球状銀粉の製造方法。 The method for producing spherical silver powder according to any one of claims 1 to 7 , wherein a dispersing agent is present in the silver ammine complex aqueous solution and / or the reducing agent aqueous solution before the reduction precipitation of the silver particles. . 前記銀アンミン錯体水溶液と前記還元剤水溶液とを混合して銀粒子を還元析出させた後に、当該混合液へ分散剤を添加することを特徴とする請求項1〜7のいずれかに記載の球状銀粉の製造方法。 The spherical shape according to any one of claims 1 to 7 , wherein the silver ammine complex aqueous solution and the reducing agent aqueous solution are mixed to reduce and precipitate silver particles, and then a dispersant is added to the mixed solution. A method for producing silver powder. 前記銀アンミン錯体水溶液と前記還元剤水溶液とを混合した混合溶液中の銀濃度が0.01〜0.15mol/L、且つ、還元剤量は、当該銀に対し1〜4当量である状態に維持して、銀粒子を還元析出させることを特徴とする請求項1〜9のいずれかに記載の球状銀粉の製造方法。 The silver concentration in the mixed solution obtained by mixing the silver ammine complex aqueous solution and the reducing agent aqueous solution is 0.01 to 0.15 mol / L, and the amount of the reducing agent is 1 to 4 equivalents with respect to the silver. The method for producing spherical silver powder according to any one of claims 1 to 9 , wherein the silver particles are reduced and deposited while being maintained.
JP2008238373A 2008-09-17 2008-09-17 Method for producing spherical silver powder Active JP5355007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238373A JP5355007B2 (en) 2008-09-17 2008-09-17 Method for producing spherical silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238373A JP5355007B2 (en) 2008-09-17 2008-09-17 Method for producing spherical silver powder

Publications (2)

Publication Number Publication Date
JP2010070793A JP2010070793A (en) 2010-04-02
JP5355007B2 true JP5355007B2 (en) 2013-11-27

Family

ID=42202857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238373A Active JP5355007B2 (en) 2008-09-17 2008-09-17 Method for producing spherical silver powder

Country Status (1)

Country Link
JP (1) JP5355007B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052327A (en) * 2017-04-06 2017-08-18 广州市尤特新材料有限公司 A kind of silver-colored clay silver powder and the silver-colored clay comprising the silver powder
CN110434355A (en) * 2019-09-24 2019-11-12 广东先导稀材股份有限公司 A kind of preparation method of high-tap density high dispersiveness spherical silver powder
TWI725796B (en) * 2019-03-29 2021-04-21 南韓商大洲電子材料股份有限公司 Mixed silver powder and conductive paste comprising same
EP3702073B1 (en) * 2017-12-15 2024-03-06 Dowa Electronics Materials Co., Ltd. Spherical silver powder and method for producing same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372178B2 (en) 2009-05-01 2013-02-12 E I Du Pont De Nemours And Company Silver particles and processes for making them
TW201100185A (en) 2009-05-01 2011-01-01 Du Pont Silver particles and a process for making them
JP5659495B2 (en) * 2010-01-26 2015-01-28 三菱マテリアル株式会社 Method for forming electrode or wiring pattern
KR101133007B1 (en) 2010-04-12 2012-04-03 (주) 더몰론코리아 A preparing method for Mono-dispersed Spherical Mesoporous Silica impregnated Nano Silver Particles
CN101834004B (en) * 2010-05-28 2013-01-09 中国乐凯胶片集团公司 Silver powder for conductive silver paste of solar battery electrode and preparation method thereof
US8366799B2 (en) 2010-08-30 2013-02-05 E I Du Pont De Nemours And Company Silver particles and a process for making them
US8574338B2 (en) 2010-11-17 2013-11-05 E I Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
JP4955830B1 (en) 2010-12-13 2012-06-20 日本碍子株式会社 Solid oxide fuel cell
CN103648634B (en) * 2011-07-13 2016-05-18 M技术株式会社 Control the manufacture method of the particulate of crystallite particle diameter
JP5846602B2 (en) * 2011-11-18 2016-01-20 株式会社ノリタケカンパニーリミテド Method for producing metal nanoparticles
JP5922388B2 (en) * 2011-12-07 2016-05-24 三井金属鉱業株式会社 Silver powder for sintered conductive paste
KR20140135718A (en) 2012-03-07 2014-11-26 스미토모 긴조쿠 고잔 가부시키가이샤 Silver powder and method for producing same
JP5985216B2 (en) * 2012-03-12 2016-09-06 三井金属鉱業株式会社 Silver powder
CN102672200B (en) * 2012-06-06 2013-10-16 南京医科大学第二附属医院 Water phase preparation method of spherical silver nanoparticle with adjustable size
CN103350235B (en) * 2013-07-16 2015-07-22 宁波晶鑫电子材料有限公司 Method for preparing high-brightness silver powder for contact adhesion
JP6135405B2 (en) * 2013-08-28 2017-05-31 住友金属鉱山株式会社 Silver powder and method for producing the same
JP6104760B2 (en) * 2013-08-30 2017-03-29 富士フイルム株式会社 Method for producing metal nanoparticles
JP6003880B2 (en) * 2013-10-28 2016-10-05 住友金属鉱山株式会社 Silver powder manufacturing method
KR101733165B1 (en) * 2015-08-12 2017-05-08 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder for high temperature sintering conductive paste
JP6086145B2 (en) * 2015-12-22 2017-03-01 住友金属鉱山株式会社 Silver powder manufacturing method
KR101853420B1 (en) * 2016-10-13 2018-04-30 엘에스니꼬동제련 주식회사 Silver powder sintered at high temperature and method of manufacturing the same
CN107931629A (en) * 2017-12-28 2018-04-20 有研亿金新材料有限公司 A kind of preparation method of the positive galactic pole ball shape silver powder of photovoltaic
JP6985219B2 (en) 2018-07-17 2021-12-22 Dowaエレクトロニクス株式会社 Manufacturing method of spherical silver powder
KR20200038742A (en) * 2018-10-04 2020-04-14 대주전자재료 주식회사 Silver powder manufacturing method
JP2020183567A (en) * 2019-05-08 2020-11-12 トヨタ自動車株式会社 Method for producing silver nanoparticle
JP7334076B2 (en) * 2019-06-27 2023-08-28 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method
WO2021106171A1 (en) 2019-11-28 2021-06-03 エム・テクニック株式会社 Method for producing fine particles of silver
CN114160805A (en) * 2021-11-24 2022-03-11 厦门大学 Preparation method and application of electropositive silver nanoparticles
CN114743716A (en) * 2022-04-15 2022-07-12 北京大学深圳研究生院 Silver powder capable of being sintered at low temperature and preparation method and application thereof
CN116372179B (en) * 2023-02-06 2024-03-22 西陇科学股份有限公司 Microreactor capable of continuously producing uniform nano silver and preparation method thereof
CN116984622B (en) * 2023-09-26 2024-02-09 东方电气集团科学技术研究院有限公司 Preparation method of nano seed crystal for inducing growth of crystallization type micron-sized silver powder

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213606A (en) * 1987-03-02 1988-09-06 Daido Steel Co Ltd Production of fine silver powder
JPS63274706A (en) * 1987-05-02 1988-11-11 Nippon Chem Ind Co Ltd:The Production of metallic fine powder
JPH08134513A (en) * 1994-11-07 1996-05-28 Sumitomo Metal Mining Co Ltd Production of fine silver powder
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP3594803B2 (en) * 1997-07-17 2004-12-02 日本ペイント株式会社 Noble metal or copper colloid solution, method for producing the same, coating composition and resin molded product
JP4109520B2 (en) * 2002-09-12 2008-07-02 三井金属鉱業株式会社 Low cohesive silver powder, method for producing the low cohesive silver powder, and conductive paste using the low cohesive silver powder
JP4254313B2 (en) * 2003-04-09 2009-04-15 住友電気工業株式会社 Conductive ink and method for producing the same
JP4489388B2 (en) * 2003-07-29 2010-06-23 三井金属鉱業株式会社 Method for producing fine silver powder
JP4148078B2 (en) * 2003-09-12 2008-09-10 住友電気工業株式会社 Method for producing metal powder
JP4606012B2 (en) * 2003-11-14 2011-01-05 三井金属鉱業株式会社 Silver paste
JP5032005B2 (en) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 High crystal silver powder and method for producing the high crystal silver powder
JP2007095527A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste and method of manufacturing same
JP5065607B2 (en) * 2006-03-10 2012-11-07 三井金属鉱業株式会社 Fine silver particle production method and fine silver particle obtained by the production method
JP5224022B2 (en) * 2006-07-28 2013-07-03 三菱マテリアル株式会社 Method and apparatus for producing silver fine particles
JP5098098B2 (en) * 2006-09-29 2012-12-12 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
JP4746534B2 (en) * 2006-12-25 2011-08-10 三井金属鉱業株式会社 Method for producing silver nanoparticles
JP5415708B2 (en) * 2008-03-26 2014-02-12 Dowaエレクトロニクス株式会社 Silver powder manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052327A (en) * 2017-04-06 2017-08-18 广州市尤特新材料有限公司 A kind of silver-colored clay silver powder and the silver-colored clay comprising the silver powder
CN107052327B (en) * 2017-04-06 2019-07-05 广州市尤特新材料有限公司 A kind of silver clay silver powder and the silver-colored clay comprising the silver powder
EP3702073B1 (en) * 2017-12-15 2024-03-06 Dowa Electronics Materials Co., Ltd. Spherical silver powder and method for producing same
TWI725796B (en) * 2019-03-29 2021-04-21 南韓商大洲電子材料股份有限公司 Mixed silver powder and conductive paste comprising same
CN110434355A (en) * 2019-09-24 2019-11-12 广东先导稀材股份有限公司 A kind of preparation method of high-tap density high dispersiveness spherical silver powder
CN110434355B (en) * 2019-09-24 2022-06-17 广东先导稀材股份有限公司 Preparation method of high-tap-density and high-dispersibility spherical silver powder

Also Published As

Publication number Publication date
JP2010070793A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5355007B2 (en) Method for producing spherical silver powder
JP5393451B2 (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
US8486310B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP5725699B2 (en) Silver powder and method for producing silver powder
JP2005330529A (en) Spherical silver powder and its production method
TWI273936B (en) Slurry of ultrafine copper powder and method for producing the slurry
JP6168837B2 (en) Copper fine particles and method for producing the same
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
JP2006002228A (en) Spherical silver powder and its production method
JP2005146408A (en) Superfine silver particulate-stuck silver powder, and method for producing the superfine silver particulate-stuck silver powder
JP6666723B2 (en) Silver-coated tellurium powder, method for producing the same, and conductive paste
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
JP2006193795A (en) Spherical silver powder and its production method
JP2012251222A (en) Method for producing silver nanoparticle, and ink
JP5925350B2 (en) Spherical silver powder
TWI794371B (en) Spherical silver powder and method for producing same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP2012115861A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP5985216B2 (en) Silver powder
JP2010275578A (en) Silver powder and production method therefor
JP2008255377A (en) Method for producing silver particulate
JP2007224422A (en) Silver powder and paste using the same
JP2017115187A (en) Manufacturing method of platinum powder
WO2023210663A1 (en) Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste
JP2011184766A (en) Method for producing solder powder, and solder powder obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250