JP2008255377A - Method for producing silver particulate - Google Patents

Method for producing silver particulate Download PDF

Info

Publication number
JP2008255377A
JP2008255377A JP2007095658A JP2007095658A JP2008255377A JP 2008255377 A JP2008255377 A JP 2008255377A JP 2007095658 A JP2007095658 A JP 2007095658A JP 2007095658 A JP2007095658 A JP 2007095658A JP 2008255377 A JP2008255377 A JP 2008255377A
Authority
JP
Japan
Prior art keywords
silver
fine particles
solution
nanoparticles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007095658A
Other languages
Japanese (ja)
Inventor
Akihiro Higami
晃裕 樋上
Takahiro Uno
貴博 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007095658A priority Critical patent/JP2008255377A/en
Priority to KR1020097016576A priority patent/KR20090128380A/en
Priority to CN2008800069565A priority patent/CN101626856B/en
Priority to PCT/JP2008/056319 priority patent/WO2008123494A1/en
Priority to TW97111682A priority patent/TWI468240B/en
Publication of JP2008255377A publication Critical patent/JP2008255377A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of stably and efficiently producing fine silver particles with high dispersibility suitable as paste components to form into a wiring material and an electrode material of an electronic device. <P>SOLUTION: The method for producing silver particulates is characterized in that, in a method where a reducing agent is added to a silver ion solution, so as to reductively precipitate silver particulates, the fine silver particulates are precipitated by adding silver nanoparticles and reducing silver ions, and by controlling the amount of the silver nanoparticles to be added to a silver concentration, the particle diameter of the silver particulates to be precipitated is controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高濃度の銀イオン溶液を用いて微細な銀粒子を安定に効率よく製造する方法に関する。より詳しくは、本発明は電子デバイスの配線材料や電極材料となるペースト成分として好適な微細な高分散性の銀粒子を安定に効率よく製造する方法に関する。   The present invention relates to a method for stably and efficiently producing fine silver particles using a high concentration silver ion solution. More specifically, the present invention relates to a method for stably and efficiently producing fine, highly dispersible silver particles suitable as a paste component to be used as a wiring material or an electrode material of an electronic device.

近年、電子機器の高機能化を図るために、電子デバイスの小型化と高密度化が要請されており、配線および電極のファイン化を達成するために、これらを形成するペースト材料に用いられる銀微粒子についても、より微細で高分散性の微粒子が求められている。   In recent years, there has been a demand for miniaturization and high density of electronic devices in order to improve the functionality of electronic equipment. In order to achieve finer wiring and electrodes, silver used as a paste material for forming them As for the fine particles, finer and highly dispersible fine particles are required.

従来、電子機器材料に用いられる銀微粒子の製造方法として、銀塩のアンミン錯体を還元して銀微粒子を沈澱させ、これを洗浄乾燥して平均粒径が数μm程度の銀微粒子を得る方法が知られている(特許文献1、2)。しかし、この製造方法では平均粒径1μm以下の微粒子を安定に得るのが難しく、また粒度分布が広く、しかも粒子が凝集し易いため、粒径が均一で1μm以下の微細な銀微粒子を製造するのが難しいと云う問題があった。   Conventionally, as a method for producing silver fine particles used in electronic device materials, there is a method of obtaining silver fine particles having an average particle diameter of about several μm by reducing silver salt ammine complexes to precipitate silver fine particles, and washing and drying them. Known (Patent Documents 1 and 2). However, in this production method, it is difficult to stably obtain fine particles having an average particle size of 1 μm or less, and since the particle size distribution is wide and the particles are likely to aggregate, fine silver particles having a uniform particle size of 1 μm or less are produced. There was a problem that it was difficult.

また、銀アンミン錯体水溶液が流れる流路の途中に有機還元剤溶液を合流させることによって、管路内で銀を還元して結晶子径の小さい銀微粒子を製造する方法が知られている(特許文献3、4)。ところが、この製造方法は、管路内で銀アンミン錯体の還元を行うので銀の析出によって流路が狭くなり、しかも管壁に析出した銀片が剥離して粗大な粒子が混入するなどの問題がある。また、微細な銀粒子を得るには銀濃度が非常に薄い銀アンミン錯体水溶液を用いるので製造効率が低いのみならず、液量が大量に発生することから回収時のロスも多くなり収率も低いものとなる。
特開平8−134513号公報 特開平8−176620号公報 特開2005−48236号公報 特開2005−48237号公報
In addition, a method is known in which silver fine particles having a small crystallite diameter are produced by reducing the silver in the pipe by joining the organic reducing agent solution in the middle of the flow path through which the silver ammine complex aqueous solution flows (patent) References 3, 4). However, in this production method, the silver ammine complex is reduced in the pipe, so that the flow path becomes narrow due to silver deposition, and the silver particles deposited on the pipe wall peel off and coarse particles are mixed. There is. In addition, in order to obtain fine silver particles, a silver ammine complex aqueous solution having a very low silver concentration is used, so that not only the production efficiency is low, but also a large amount of liquid is generated, resulting in a large loss during recovery and a high yield. It will be low.
JP-A-8-134513 JP-A-8-176620 JP-A-2005-48236 JP 2005-48237 A

本発明は、従来の製造方法における上記問題を解決した銀微粒子の製造方法を提供するものであり、高濃度の銀イオン溶液を用いて分散性に優れた微細な銀粒子を安定に効率よく製造する方法を提供する。   The present invention provides a method for producing silver fine particles that solves the above problems in conventional production methods, and stably and efficiently produces fine silver particles with excellent dispersibility using a high concentration silver ion solution. Provide a way to do it.

本発明によれば、以下の構成によって上記課題を解決した銀微粒子の製造方法が提供される。
(1)銀イオン溶液に還元剤を添加して銀微粒子を還元析出させる方法において、銀ナノ粒子を添加して銀イオンを還元することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法。
(2)銀濃度に対する銀ナノ粒子の添加量を調整することによって、析出する銀微粒子の粒径を制御する上記(1)の銀微粒子の製造方法。
(3)銀イオン溶液としてアンモニア水を加えた硝酸銀溶液を用い、還元液としてヒドロキノン液を用い、平均粒径50nm以下の銀ナノ粒子を添加する上記(1)または上記(2)に記載する銀微粒子の製造方法。
(4)(i)銀イオン溶解液に含まれる銀イオンの個数に対する銀ナノ粒子の個数の比を5.0×10-7〜3.0×10-6に調整して平均粒径1.5〜0.5μmの銀微粒子を析出させ、または、(ii)上記銀イオン銀ナノ粒子比を3.0×10-6〜2.5×10-5に調整して平均粒径0.5〜0.1μmの銀微粒子を析出させ、または、(iii)上記銀イオン銀ナノ粒子比を2.5×10-5〜1.5×10-4に調整して平均粒径0.1〜0.02μmの銀微粒子を析出させる上記(1)〜上記(3)の何れかに記載する銀微粒子の製造方法。
(5)銀ナノ粒子として、銀ナノ粒子として、クエン酸ソーダの存在下で硝酸銀溶液に硫酸第一鉄を添加して銀イオンを還元し、生成した平均粒径20nm以下の銀ナノ粒子を用いる上記(1)〜上記(4)の何れかに記載する銀微粒子の製造方法。
According to this invention, the manufacturing method of the silver fine particle which solved the said subject with the following structures is provided.
(1) In a method for reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution, silver is characterized in that fine silver fine particles are precipitated by reducing silver ions by adding silver nanoparticles. A method for producing fine particles.
(2) The method for producing silver fine particles according to the above (1), wherein the particle diameter of the silver fine particles to be precipitated is controlled by adjusting the amount of silver nanoparticles added to the silver concentration.
(3) The silver described in (1) or (2) above, wherein a silver nitrate solution added with aqueous ammonia is used as the silver ion solution, a hydroquinone solution is used as the reducing solution, and silver nanoparticles having an average particle size of 50 nm or less are added. A method for producing fine particles.
(4) (i) The ratio of the number of silver nanoparticles to the number of silver ions contained in the silver ion solution is adjusted to 5.0 × 10 −7 to 3.0 × 10 −6 to obtain an average particle size of 1. silver particles precipitated in 5~0.5Myuemu, or an average particle size of 0.5 was adjusted to (ii) the silver ions of silver nanoparticles ratio 3.0 × 10 -6 ~2.5 × 10 -5 Or (iii) adjusting the silver ion silver nanoparticle ratio to 2.5 × 10 −5 to 1.5 × 10 −4 to adjust the average particle size to 0.1 to 0.1 μm. The method for producing silver fine particles according to any one of (1) to (3) above, wherein 0.02 μm silver fine particles are precipitated.
(5) As silver nanoparticles, silver nanoparticles having an average particle diameter of 20 nm or less are used by reducing ferrous sulfate by adding ferrous sulfate to a silver nitrate solution in the presence of sodium citrate. The method for producing silver fine particles according to any one of (1) to (4) above.

本発明の方法は、銀イオンを還元して銀微粒子を製造する方法において、銀ナノ粒子を添加し、この銀ナノ粒子の存在下で銀イオンを還元する方法であり、微細な銀微粒子を安定に効率よく製造することができる。本発明の方法においては、銀イオンの還元時に液中に多数の微細な銀ナノ粒子が存在し、それを核に銀の結晶性一次粒子が形成され、この一次粒子どうしが凝集して銀微粒子が形成される。銀ナノ粒子が存在しない場合と比較して、既に初期核は形成されており、また、その初期核の数を任意に多くすることができ、一次粒子の凝集中心点数も多くすることができるので、微細な銀微粒子が安定に効率よく析出する。   The method of the present invention is a method in which silver nanoparticles are added in a method of producing silver fine particles by reducing silver ions, and silver ions are reduced in the presence of the silver nanoparticles, and the fine silver fine particles are stabilized. Can be manufactured efficiently. In the method of the present invention, a large number of fine silver nanoparticles are present in the solution during the reduction of silver ions, and silver crystalline primary particles are formed using the fine particles as nuclei, and the primary particles are aggregated to form silver fine particles. Is formed. Compared to the case where silver nanoparticles are not present, the initial nuclei are already formed, the number of the initial nuclei can be arbitrarily increased, and the number of primary particle aggregation centers can also be increased. Fine silver particles are stably and efficiently deposited.

また、本発明の製造方法によれば、添加する銀ナノ粒子の量を調整することによって析出する銀微粒子の粒径を制御することができ、例えば、平均粒径1.5〜0.5μmの銀微粒子、平均粒径0.5〜0.1μmの銀微粒子、または平均粒径0.1〜0.02μmの銀微粒子など用途に応じた粒径の銀微粒子を効率よく安定に得ることができる。   Moreover, according to the manufacturing method of this invention, the particle size of the silver fine particles which precipitate can be controlled by adjusting the quantity of the silver nanoparticle to add, for example, average particle diameter of 1.5-0.5 micrometer. Silver fine particles having a particle size according to the application such as silver fine particles, silver fine particles having an average particle diameter of 0.5 to 0.1 μm, or silver fine particles having an average particle diameter of 0.1 to 0.02 μm can be obtained efficiently and stably. .

さらに、本発明の方法によれば、高濃度の銀イオン溶液を用いて微細な銀微粒子を効率よく製造することができる。具体的には、例えば、銀濃度50g/L以上のアンモニア水を加えた硝酸銀溶液を用いて、平均粒径1.5μm以下の銀微粒子を99%以上の収率で得ることができる。   Furthermore, according to the method of the present invention, fine silver fine particles can be efficiently produced using a high concentration silver ion solution. Specifically, for example, silver fine particles having an average particle size of 1.5 μm or less can be obtained in a yield of 99% or more using a silver nitrate solution to which ammonia water having a silver concentration of 50 g / L or more is added.

また、本発明の方法は、銀ナノ粒子を添加すればよく、銀イオン溶液と還元液の添加方法は制限されないので、管路内に還元液を注入するような特殊な装置構成を必要とせず、容易に実施することができる。   In addition, the method of the present invention only needs to add silver nanoparticles, and the addition method of the silver ion solution and the reducing solution is not limited. Therefore, a special apparatus configuration for injecting the reducing solution into the pipeline is not required. Can be implemented easily.

以下、本発明を実施例と共に具体的に説明する。
本発明の方法は、銀イオン溶液に還元剤を添加して銀微粒子を還元析出させる方法において、銀ナノ粒子を添加して銀イオンを還元することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法であり、銀濃度に対する銀ナノ粒子の添加量を調整することによって、析出する銀微粒子の粒径を制御することができる銀微粒子の製造方法である。
Hereinafter, the present invention will be specifically described with examples.
The method of the present invention is characterized in that in the method of reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution, fine silver fine particles are precipitated by adding silver nanoparticles and reducing silver ions. The method for producing silver fine particles, wherein the particle size of the silver fine particles to be deposited can be controlled by adjusting the amount of silver nanoparticles added to the silver concentration.

銀イオン溶液としてはアンモニア水を加えた硝酸銀溶液などを用いることができる。この溶液では銀アンミン錯体が形成され、還元剤を添加することによって銀が還元されて析出する。還元液としてはヒドロキノン液、ピロガロール液、3,4-ジヒドロキシトルエン液のようにフェノール基を持つ有機還元剤の溶液を用いることができる。   As the silver ion solution, a silver nitrate solution to which ammonia water is added can be used. In this solution, a silver ammine complex is formed, and silver is reduced and precipitated by adding a reducing agent. As the reducing solution, a solution of an organic reducing agent having a phenol group such as a hydroquinone solution, a pyrogallol solution, and 3,4-dihydroxytoluene solution can be used.

銀ナノ粒子はナノサイズの銀粒子(銀コロイド粒子)であり、銀イオン溶液に添加すればよい。使用する銀ナノ粒子は平均粒径50nm以下のものが好ましく、平均粒径2.5nm〜20nmのものが適当である。   The silver nanoparticles are nano-sized silver particles (silver colloidal particles) and may be added to the silver ion solution. The silver nanoparticles used preferably have an average particle size of 50 nm or less, and those having an average particle size of 2.5 nm to 20 nm are suitable.

銀ナノ粒子は、クエン酸ソーダの存在下で硝酸銀溶液に硫酸第一鉄を添加して銀イオンを還元し、生成した平均粒径20nm以下の銀ナノ粒子を用いると良い。硫酸第一鉄とクエン酸ソーダをあらかじめ混合しておき、室温下、この混合溶液に硝酸銀溶液を投入し、硝酸銀を還元するとよい。硝酸銀溶液の銀濃度は1〜200g/Lが適当であり、硫酸第一鉄の量は硝酸銀を十分に還元できる量であれば良い。また、クエン酸ソーダの量は銀のモル数の2倍〜7倍が適当である。硝酸銀溶液と硫酸第一鉄溶液の混合は,供給ノズル一つにつき5〜20mL/min.で投入するのが好ましい。混合後、攪拌して均一に反応させる。この反応によって銀が還元され、粒径がナノメートルサイズの銀超微粒子(銀ナノ粒子)を含む銀コロイド液が得られる。この銀コロイド液を固液分離し、分離した固形分をクエン酸ソーダで洗浄し、銀ナノ粒子が分散した銀コロイド液を得ることができる。   Silver nanoparticles may be produced by adding ferrous sulfate to a silver nitrate solution in the presence of sodium citrate to reduce silver ions and using the resulting silver nanoparticles with an average particle size of 20 nm or less. Ferrous sulfate and sodium citrate are mixed in advance, and a silver nitrate solution is added to the mixed solution at room temperature to reduce the silver nitrate. The silver concentration of the silver nitrate solution is suitably 1 to 200 g / L, and the amount of ferrous sulfate may be an amount that can sufficiently reduce silver nitrate. The amount of sodium citrate is suitably 2 to 7 times the number of moles of silver. The mixing of the silver nitrate solution and the ferrous sulfate solution is preferably performed at a rate of 5 to 20 mL / min. Per supply nozzle. After mixing, the mixture is stirred and reacted uniformly. Silver is reduced by this reaction, and a silver colloid liquid containing silver ultrafine particles (silver nanoparticles) having a particle size of nanometer is obtained. This silver colloid liquid is subjected to solid-liquid separation, and the separated solid content is washed with sodium citrate to obtain a silver colloid liquid in which silver nanoparticles are dispersed.

銀イオン溶液に銀ナノ粒子を添加することによって、この銀ナノ粒子を核に銀の結晶性一次粒子が形成され、この一次粒子どうしが凝集して銀微粒子が形成される。銀ナノ粒子が存在しない場合と比較して、既に初期核が形成されており、また、その初期核の数を任意に多くすることができ、一次粒子の凝集中心点数も多くすることができるので、微細な銀微粒子となり、例えば、平均粒径1.5μm以下の微細な銀微粒子を安定に効率よく得ることができる。なお、銀ナノ粒子が存在しないと、銀イオンの還元による銀クラスターが初期核として形成されるが、核生成に大きなエネルギーを必要とし、容易に初期核を形成することができないため、初期核の数が少なくなり、一次粒子の凝集中心点数も少なくなるので、微細な銀微粒子を得るのが難しい。   By adding silver nanoparticles to the silver ion solution, silver crystalline primary particles are formed using the silver nanoparticles as nuclei, and the primary particles are aggregated to form silver fine particles. Compared to the case where silver nanoparticles are not present, the initial nuclei have already been formed, the number of initial nuclei can be arbitrarily increased, and the number of primary particle aggregation centers can also be increased. For example, fine silver fine particles having an average particle diameter of 1.5 μm or less can be obtained stably and efficiently. In the absence of silver nanoparticles, silver clusters formed by reduction of silver ions are formed as initial nuclei, but they require large energy for nucleation and cannot easily form initial nuclei. Since the number is reduced and the number of aggregation centers of primary particles is also reduced, it is difficult to obtain fine silver fine particles.

銀ナノ粒子の添加量は、例えば、アンモニア水を加えた硝酸銀溶液にヒドロキノン液を添加して銀イオンを還元する場合、銀ナノ粒子添加量は銀イオンの個数と銀ナノ粒子の個数の比で5.0×10-7〜1.5×10-4が好ましい。この添加量の範囲において、例えば銀濃度50g/L以上の硝酸銀溶液を用い、平均粒径1.5μm以下の銀微粒子を99%以上の収率で得ることができる。 The amount of silver nanoparticles added is, for example, when silver ions are reduced by adding a hydroquinone solution to a silver nitrate solution to which aqueous ammonia is added, and the amount of silver nanoparticles added is the ratio of the number of silver ions to the number of silver nanoparticles. It is preferably 5.0 × 10 −7 to 1.5 × 10 −4 . In the range of the addition amount, for example, a silver nitrate solution having a silver concentration of 50 g / L or more can be used to obtain silver fine particles having an average particle diameter of 1.5 μm or less with a yield of 99% or more.

また、本発明の製造方法では、銀濃度に対する銀ナノ粒子の添加量を調整することによって、析出する銀微粒子の粒径を制御することができる。例えば、アンモニア水を加えた硝酸銀溶液にヒドロキノン液を添加して銀イオンを還元析出させる際に、液中の銀イオンの個数と銀ナノ粒子の個数の比(以下、銀ナノ粒子比率と云う)を以下のように調整して平均粒径1.5〜0.02μmの銀微粒子を得ることができる。   Moreover, in the manufacturing method of this invention, the particle size of the silver fine particles to precipitate can be controlled by adjusting the addition amount of the silver nanoparticle with respect to silver concentration. For example, when a hydroquinone solution is added to a silver nitrate solution to which ammonia water is added to reduce and precipitate silver ions, the ratio of the number of silver ions to the number of silver nanoparticles in the solution (hereinafter referred to as the silver nanoparticle ratio). As described above, silver fine particles having an average particle diameter of 1.5 to 0.02 μm can be obtained.

(イ)銀ナノ粒子比率を5.0×10-7〜3.0×10-6に調整して平均粒径1.5〜0.5μmの銀微粒子が析出する。
(ロ)銀ナノ粒子比率を3.0×10-6〜2.5×10-5に調整して平均粒径0.5〜0.1μmの銀微粒子が析出する。
(ハ)銀ナノ粒子比率を2.5×10-5〜1.5×10-4に調整して平均粒径0.1〜0.02μmの銀微粒子が析出する。
(A) Silver fine particles having an average particle size of 1.5 to 0.5 μm are precipitated by adjusting the silver nanoparticle ratio to 5.0 × 10 −7 to 3.0 × 10 −6 .
(B) The silver nanoparticle ratio is adjusted to 3.0 × 10 −6 to 2.5 × 10 −5 and silver fine particles having an average particle size of 0.5 to 0.1 μm are precipitated.
(C) Silver fine particles having an average particle diameter of 0.1 to 0.02 μm are precipitated by adjusting the silver nanoparticle ratio to 2.5 × 10 −5 to 1.5 × 10 −4 .

以下、本発明を実施例によって具体的に示す。
〔実施例1〕
表1に示すアンモニア水を加えた硝酸銀溶液を用い、この溶液に銀ナノ粒子を予め加え、さらにヒドロキノン液を添加して銀を還元析出させた。銀ナノ粒子の粒子径および添加量を表2〜表3に示す条件に調整し、析出した銀微粒子の平均粒径をレーザー散乱法によって測定した。この結果を表2〜表3および図1〜図6に示した。なお、銀ナノ粒子を添加しないものを比較試料として示した。
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
Using a silver nitrate solution to which aqueous ammonia shown in Table 1 was added, silver nanoparticles were added in advance to this solution, and a hydroquinone solution was further added to reduce and precipitate silver. The particle diameter and addition amount of the silver nanoparticles were adjusted to the conditions shown in Tables 2 to 3, and the average particle diameter of the precipitated silver fine particles was measured by a laser scattering method. The results are shown in Tables 2 to 3 and FIGS. In addition, the thing which does not add a silver nanoparticle was shown as a comparative sample.

表2〜表3および図1〜図6に示すように、銀ナノ粒子を添加しない比較試料では平均粒径1.5μm以上の銀微粒子が析出するが、銀ナノ粒子を添加すると銀ナノ粒子の粒子径および添加量に応じて銀微粒子の平均粒径が変化する。具体的には、(イ)銀ナノ粒子比率が5.0×10-7〜3.0×10-6の範囲で平均粒径1.5〜0.5μmの銀微粒子が析出する。また、(ロ)銀ナノ粒子比率が3.0×10-6〜2.5×10-5の範囲で平均粒径0.5〜0.1μmの銀微粒子が析出する。また、(ハ)銀ナノ粒子比率が2.5×10-5〜1.5×10-4の範囲で平均粒径0.1〜0.02μmの銀微粒子が析出する。なお、実施例A〜Dはクエン酸法により内製した銀ナノ粒子を用い、実施例Dは製法不明(非開示)の50nmの銀ナノ粒子を用いた。 As shown in Tables 2 to 3 and FIGS. 1 to 6, silver particles having an average particle size of 1.5 μm or more are precipitated in the comparative sample in which the silver nanoparticles are not added. The average particle diameter of the silver fine particles varies depending on the particle diameter and the amount added. Specifically, the silver fine particles having an average particle diameter of 1.5~0.5μm is precipitated with (a) ranges silver nanoparticles ratio of 5.0 × 10 -7 ~3.0 × 10 -6 . In addition, (b) silver fine particles having an average particle diameter of 0.5 to 0.1 μm are deposited in a silver nanoparticle ratio of 3.0 × 10 −6 to 2.5 × 10 −5 . In addition, (c) silver fine particles having an average particle diameter of 0.1 to 0.02 μm are precipitated in a silver nanoparticle ratio range of 2.5 × 10 −5 to 1.5 × 10 −4 . In addition, Example AD used the silver nanoparticle manufactured internally by the citric acid method, and Example D used the 50 nm silver nanoparticle of a manufacturing method unknown (undisclosed).

〔比較例〕
表4(比較例5)および表5(比較例6)に示すアンモニア水を加えた硝酸銀溶液を用い、この溶液にヒドロキノン液を添加して、銀を還元析出させ、析出した銀微粒子の平均粒径を測定した。平均粒径の測定方法は実施例1と同様である。この結果を表6に示した。銀ナノ粒子を添加しない場合においても、銀濃度を薄くすることによって平均粒径が0.50μm以下の銀微粒子を得ることができるが、回収が困難であるため収率が99%を下回るものとなる。
[Comparative example]
Using silver nitrate solution to which ammonia water shown in Table 4 (Comparative Example 5) and Table 5 (Comparative Example 6) was added, hydroquinone solution was added to this solution, silver was reduced and precipitated, and the average grain size of the precipitated silver fine particles The diameter was measured. The method for measuring the average particle diameter is the same as in Example 1. The results are shown in Table 6. Even when silver nanoparticles are not added, silver fine particles having an average particle diameter of 0.50 μm or less can be obtained by reducing the silver concentration. However, since the recovery is difficult, the yield is less than 99%. Become.

Agナノ粒子数とAg粒径の関係を示すグラフGraph showing the relationship between the number of Ag nanoparticles and the Ag particle size Agナノ粒子数とAg粒径の関係を示すグラフGraph showing the relationship between the number of Ag nanoparticles and the Ag particle size 比較例1の粒子状態を示す電子顕微鏡写真(下端の白抜きの長さが1μm)Electron micrograph showing the particle state of Comparative Example 1 (the length of the white outline at the lower end is 1 μm) 実施例A1の粒子状態を示す電子顕微鏡写真(下端の白抜きの長さが1μm)Electron micrograph showing the particle state of Example A1 (white length at the bottom is 1 μm) 実施例A2の粒子状態を示す電子顕微鏡写真(下端の白抜きの長さが1μm)Electron micrograph showing the particle state of Example A2 (white bottom length is 1 μm) 実施例A3の粒子状態を示す電子顕微鏡写真(下端の白抜きの長さが1μm)Electron micrograph showing the particle state of Example A3 (the white outline at the bottom is 1 μm)

Claims (5)

銀イオン溶液に還元剤を添加して銀微粒子を還元析出させる方法において、銀ナノ粒子を添加して銀イオンを還元することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法。
In the method of reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution, the production of silver fine particles is characterized by precipitating fine silver fine particles by adding silver nanoparticles and reducing silver ions Method.
銀濃度に対する銀ナノ粒子の添加量を調整することによって、析出する銀微粒子の粒径を制御する請求項1の銀微粒子の製造方法。
The method for producing silver fine particles according to claim 1, wherein the particle size of the silver fine particles to be deposited is controlled by adjusting the amount of silver nanoparticles added to the silver concentration.
銀イオン溶液としてアンモニア水を加えた硝酸銀溶液を用い、還元液としてヒドロキノン液を用い、平均粒径50nm以下の銀ナノ粒子を添加する請求項1または請求項2に記載する銀微粒子の製造方法。
The method for producing silver fine particles according to claim 1 or 2, wherein a silver nitrate solution added with aqueous ammonia is used as a silver ion solution, a hydroquinone solution is used as a reducing solution, and silver nanoparticles having an average particle size of 50 nm or less are added.
(i)銀イオン溶解液に含まれる銀イオンの個数に対する銀ナノ粒子の個数の比を5.0×10-7〜3.0×10-6に調整して平均粒径1.5〜0.5μmの銀微粒子を析出させ、または、(ii)上記銀イオン銀ナノ粒子比を3.0×10-6〜2.5×10-5に調整して平均粒径0.5〜0.1μmの銀微粒子を析出させ、または、(iii)上記銀イオン銀ナノ粒子比を2.5×10-5〜1.5×10-4に調整して平均粒径0.1〜0.02μmの銀微粒子を析出させる請求項1〜請求項3の何れかに記載する銀微粒子の製造方法。
(i) The ratio of the number of silver nanoparticles to the number of silver ions contained in the silver ion solution is adjusted to 5.0 × 10 −7 to 3.0 × 10 −6 to obtain an average particle size of 1.5 to 0. to precipitate fine silver particles .5Myuemu, or an average particle adjusted to (ii) the silver ions of silver nano particles ratio 3.0 × 10 -6 ~2.5 × 10 -5 diameter from 0.5 to 0. 1 μm silver fine particles are deposited, or (iii) the silver ion silver nanoparticle ratio is adjusted to 2.5 × 10 −5 to 1.5 × 10 −4 to obtain an average particle size of 0.1 to 0.02 μm. The method for producing silver fine particles according to any one of claims 1 to 3, wherein the silver fine particles are precipitated.
銀ナノ粒子として、クエン酸ソーダの存在下で硝酸銀溶液に硫酸第一鉄を添加して銀イオンを還元し、生成した平均粒径20nm以下の銀ナノ粒子を用いる請求項1〜請求項4の何れかに記載する銀微粒子の製造方法。 The silver nanoparticles having an average particle diameter of 20 nm or less are used as silver nanoparticles by reducing ferrous sulfate by adding ferrous sulfate to a silver nitrate solution in the presence of sodium citrate. The manufacturing method of the silver fine particles described in any one.
JP2007095658A 2007-03-30 2007-03-30 Method for producing silver particulate Withdrawn JP2008255377A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007095658A JP2008255377A (en) 2007-03-30 2007-03-30 Method for producing silver particulate
KR1020097016576A KR20090128380A (en) 2007-03-30 2008-03-31 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
CN2008800069565A CN101626856B (en) 2007-03-30 2008-03-31 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
PCT/JP2008/056319 WO2008123494A1 (en) 2007-03-30 2008-03-31 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
TW97111682A TWI468240B (en) 2007-03-30 2008-03-31 Silver fine particles, method for manufacturing silver fine particles, and apparatus for manufacturing silver fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095658A JP2008255377A (en) 2007-03-30 2007-03-30 Method for producing silver particulate

Publications (1)

Publication Number Publication Date
JP2008255377A true JP2008255377A (en) 2008-10-23

Family

ID=39979254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095658A Withdrawn JP2008255377A (en) 2007-03-30 2007-03-30 Method for producing silver particulate

Country Status (1)

Country Link
JP (1) JP2008255377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042227A1 (en) 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing metal microparticles
JP2017031470A (en) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 Joint material and manufacturing method of joint material
KR20190041592A (en) * 2017-10-13 2019-04-23 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder with improved dispersibility
CN114054769A (en) * 2021-11-17 2022-02-18 广东羚光新材料股份有限公司 Silver micro powder and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042227A1 (en) 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing metal microparticles
KR20150054715A (en) 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 Method for manufacturing metal microparticles
US9827613B2 (en) 2012-09-12 2017-11-28 M. Technique Co., Ltd. Method for producing metal microparticles
JP2017031470A (en) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 Joint material and manufacturing method of joint material
KR20190041592A (en) * 2017-10-13 2019-04-23 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder with improved dispersibility
KR102007856B1 (en) 2017-10-13 2019-08-06 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder with improved dispersibility
CN114054769A (en) * 2021-11-17 2022-02-18 广东羚光新材料股份有限公司 Silver micro powder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4344001B2 (en) Composition containing fine silver particles, method for producing the same, method for producing fine silver particles, and paste having fine silver particles
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
JP5827341B2 (en) Reactor for silver powder production and continuous production method
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP6168837B2 (en) Copper fine particles and method for producing the same
JP5224022B2 (en) Method and apparatus for producing silver fine particles
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
CN113369491B (en) Spherical and flaky mixed silver powder and manufacturing method thereof
Liu Cu 2 O microcrystals: a versatile class of self-templates for the synthesis of porous Au nanocages with various morphologies
KR101537149B1 (en) Method of producing metal nano-particles
JP2006045655A (en) Silver nanoparticle and production method therefor
CN107265440A (en) Improve nano material of commercial graphites alkene film layer electric conductivity and preparation method thereof
JP2008255377A (en) Method for producing silver particulate
JP2006022394A (en) Method for producing metallic copper fine particle
JP2010144197A (en) Metal powder, and method for producing the same
JP5376109B2 (en) Method for producing silver fine particles
JP2007291513A (en) Silver particle
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
Zhai et al. A novel wet-chemical method for preparation of silver flakes
TWI468240B (en) Silver fine particles, method for manufacturing silver fine particles, and apparatus for manufacturing silver fine particles
JP5590289B2 (en) Method for producing silver paste
JP2008031526A (en) Method for producing silver particulate
JP2008007859A (en) Silver particle
JP2008274424A (en) Process for producing fine silver particle

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601