JP2007270312A - Method for manufacturing silver powder, and silver powder - Google Patents

Method for manufacturing silver powder, and silver powder Download PDF

Info

Publication number
JP2007270312A
JP2007270312A JP2006100229A JP2006100229A JP2007270312A JP 2007270312 A JP2007270312 A JP 2007270312A JP 2006100229 A JP2006100229 A JP 2006100229A JP 2006100229 A JP2006100229 A JP 2006100229A JP 2007270312 A JP2007270312 A JP 2007270312A
Authority
JP
Japan
Prior art keywords
silver
silver powder
containing solution
reducing agent
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006100229A
Other languages
Japanese (ja)
Inventor
Takuya Sasaki
卓也 佐々木
Taku Fujimoto
卓 藤本
Katsuhiko Yoshimaru
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006100229A priority Critical patent/JP2007270312A/en
Publication of JP2007270312A publication Critical patent/JP2007270312A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wet process manufacturing method for silver powder of a coarse grain size having excellent low temperature sintering characteristics and electric conductivity by using a wet process reduction method and particularly suppressing a manufacturing cost. <P>SOLUTION: The wet process reduction method to cause contact mixing of a silver ion-containing solution and a reducing agent-containing solution is used and the silver ion-containing solution includes an aqueous silver nitrate solution. The wet process manufacturing method for the silver powder including one or more selected from the group consisting of an ascorbic acid, isomer of the ascorbic acid, sulfate having reduction ability, and sulfite having reduction ability which are dissolved into water is employed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

湿式還元法を用いた銀粉の製造方法及び銀粉に関する。   The present invention relates to a method for producing silver powder using a wet reduction method and silver powder.

銀粉は、電子機器の配線回路、電極等に用いられるセラミック部品(基板)の電極・配線用材料、フラットディスプレイパネルの導体等の形成に導電性インクまたは導電性ペーストとして使用されている。そして、電子部品等の小型化、基板のファインライン化に伴い、微細且つ高密度な配線回路の形成に対応する為、一定の分散性を持ち、且つある程度微粒であることが要求されている。一方、フラットディスプレイパネルの電極等を形成する場合には、ガラス基板上に導電性インクで回路等を形成し、500℃前後で焼成して導体回路や電極が形成することが望まれる。このとき、ガラス基板の焼成温度に応じて、導電性インクまたは導電性ペースト用の銀粉には低温焼成可能な性能が望まれるのは当然である。そして、このような用途においては、焼結開始温度及び加工性能への要求を両立可能な銀粉が望まれ、その要求に近い銀粉として、アトマイズ粉の微粒レベルのものが使用されてきた。   Silver powder is used as a conductive ink or conductive paste for forming electrodes and wiring materials for ceramic parts (substrates) used for wiring circuits of electronic equipment, electrodes, etc., conductors of flat display panels, and the like. With the downsizing of electronic parts and the like and the fine lines of substrates, in order to cope with the formation of fine and high-density wiring circuits, it is required to have a certain dispersibility and to have a certain degree of fineness. On the other hand, when forming an electrode or the like of a flat display panel, it is desirable to form a circuit or the like with a conductive ink on a glass substrate and to fire at around 500 ° C. to form a conductor circuit or an electrode. At this time, it is natural that the silver powder for the conductive ink or conductive paste is desired to have the ability to be fired at a low temperature in accordance with the firing temperature of the glass substrate. And in such a use, the silver powder which can satisfy the request | requirement with respect to sintering start temperature and processing performance is desired, and the thing of the fine particle level of atomized powder has been used as a silver powder close | similar to the request | requirement.

銀粉の従来技術として、特許文献1では、アトマイズ法を用いて製造された銀粒子(金属微粒子)を、精密ふるいを用いた分級操作で粒子径分布が狭い微粒子とする技術が開示されている。特許文献2には、導体ペーストの原料となる銀粉末の製造方法に関するものであり、硝酸銀結晶を加熱溶融した溶融物を噴霧して液滴にし、この液滴を熱分解させることによって粒子径が2μm〜4μmの大きさの銀粉末を製造する技術が開示されている。また、特許文献3には、導電ペースト用途に適した高分散性球状銀粉末及びその製造方法に関する発明であり、アンミン錯体水溶液と還元剤水溶液とを用いて銀粒子を還元析出させることにより得られ、微細で高分散性を有する銀粉末及びその製造方法が開示されている。   As a conventional technique of silver powder, Patent Document 1 discloses a technique in which silver particles (metal fine particles) produced by using an atomizing method are converted into fine particles having a narrow particle size distribution by a classification operation using a precision sieve. Patent Document 2 relates to a method for producing a silver powder as a raw material for a conductive paste. A melt obtained by heating and melting silver nitrate crystals is sprayed to form droplets, and the particle size is reduced by thermally decomposing the droplets. A technique for producing silver powder having a size of 2 μm to 4 μm is disclosed. Patent Document 3 is an invention relating to a highly dispersible spherical silver powder suitable for conductive paste applications and a method for producing the same, and is obtained by reducing and precipitating silver particles using an ammine complex aqueous solution and a reducing agent aqueous solution. A silver powder having fine and high dispersibility and a method for producing the same are disclosed.

特開2003−225586号公報JP 2003-225586 A 特開2000−265202号公報JP 2000-265202 A 特開2001−107101号公報JP 2001-107101 A

フラットディスプレイパネルのパネル等の製造において、ガラス基板上に導体を形成する為の導電性インクまたは導電性ペーストの材料となる銀粉には、アトマイズ法により得られる平均粒径が5μm前後の高分散性アトマイズ粉が一般的に利用されている。アトマイズ法で製造した銀粉は、粒子径が10μm〜数十μmの粗粒域の量産性に優れているが、5μm程度の微粒域を直接製造することは困難であるため、分級により5μm前後の粒径の銀粉を得ている。従って、製造コストが高くなる点が難点である。また、アトマイズ粉は製造プロセスの特性上融点までの熱履歴を受けることによる粒子の結晶組織の特性故に良好な耐熱収縮性を有する反面、微粒化しても良好な低温焼結特性を得ることが出来ず、少なくとも800℃以上での加熱が要求される。   In the manufacture of flat display panel panels, etc., silver powder, which is a conductive ink or conductive paste material for forming conductors on glass substrates, has a high dispersibility with an average particle size of about 5 μm obtained by the atomization method. Atomized powder is generally used. The silver powder produced by the atomizing method is excellent in mass productivity in a coarse particle region having a particle diameter of 10 μm to several tens of μm, but it is difficult to directly produce a fine particle region of about 5 μm. Obtained silver powder of particle size. Therefore, the manufacturing cost is high. Atomized powder also has good heat shrinkage due to the characteristics of the crystal structure of the particles due to the thermal history up to the melting point due to the characteristics of the manufacturing process, but good low temperature sintering characteristics can be obtained even when atomized. However, heating at least at 800 ° C. or more is required.

一方、湿式法により得られる銀粉は低温焼結特性に優れ、更に微粒且つ分散性に優れている。しかし、湿式法により得られる銀粉は、3μmを超える粒径の製品を安定的に生産することが出来なかったため、粒径3μm以下の製品が一般的に製造されている。ここで、ガラス基板上で回路形成する場合等の用途においては、500℃前後での焼結が要求される。このような要求を想定すると、従来の湿式銀粉では焼結開始温度が低すぎるため、500℃付近で焼成した導体は形状安定性に欠け、ファインピッチ回路の形成には不適であった。   On the other hand, silver powder obtained by a wet method is excellent in low-temperature sintering characteristics, and further excellent in fine particles and dispersibility. However, since silver powder obtained by a wet method could not stably produce a product having a particle size exceeding 3 μm, a product having a particle size of 3 μm or less is generally produced. Here, in applications such as when a circuit is formed on a glass substrate, sintering at around 500 ° C. is required. Assuming such a requirement, the conventional wet silver powder has a sintering start temperature that is too low, so that the conductor fired at around 500 ° C. lacks shape stability and is unsuitable for forming a fine pitch circuit.

このようなことから、特に500℃程度の低温焼結性及び導電性を確保し、焼成後の導体形状の安定性に優れた銀粉及び銀粉の製造方法が望まれてきた。   For these reasons, there has been a demand for a silver powder and a method for producing silver powder that ensure low temperature sinterability and electrical conductivity of about 500 ° C. and have excellent conductor shape stability after firing.

そこで、本発明者等は、鋭意研究を行った結果、湿式還元法を用いた以下の銀粉の製造方法を採用することで上記課題を達成するに到った。   Thus, as a result of intensive studies, the present inventors have achieved the above-mentioned problem by adopting the following silver powder production method using a wet reduction method.

本件発明に係る銀粉の製造方法: 即ち、本件発明に係る銀粉の湿式製造方法は、銀イオン含有溶液と還元剤含有溶液とを接触混合させる湿式還元法を用いた銀粉の製造方法であって、前記銀イオン含有溶液は硝酸銀を含み、前記還元剤含有溶液はアスコルビン酸、アスコルビン酸の異性体、還元能を備えた硫酸塩、還元能を備えた亜硫酸塩の群から選ばれたいずれか一種以上を水に溶解させたものを含むことを特徴とする。 Silver powder production method according to the present invention: That is, the silver powder wet production method according to the present invention is a silver powder production method using a wet reduction method in which a silver ion-containing solution and a reducing agent-containing solution are contact-mixed, The silver ion-containing solution contains silver nitrate, and the reducing agent-containing solution is any one or more selected from the group of ascorbic acid, an isomer of ascorbic acid, a sulfate having a reducing ability, and a sulfite having a reducing ability. In which water is dissolved in water.

上記銀粉の湿式製造方法において、前記銀イオン含有溶液は、銀1mol当たりアンモニアが1〜5molとなる量比のアンモニア水と、銀1mol当たり1〜2molの硝酸とを含有していることが望ましい。   In the silver powder wet manufacturing method, the silver ion-containing solution preferably contains ammonia water in a quantitative ratio of 1 to 5 mol of ammonia per 1 mol of silver and 1 to 2 mol of nitric acid per 1 mol of silver.

そして、上記銀粉の湿式製造方法に用いる前記銀イオン含有溶液がゼラチンを含有していることが好ましい。   And it is preferable that the said silver ion containing solution used for the wet manufacturing method of the said silver powder contains gelatin.

上記銀粉の湿式製造方法において、前記還元能を備えた硫酸塩あるいは亜硫酸塩としては、硫酸第一鉄、亜硫酸カリウム、亜硫酸アンモニウム、亜硫酸ナトリウムのうちのいずれか一種以上を用いることが好ましい。   In the silver powder wet manufacturing method, it is preferable to use at least one of ferrous sulfate, potassium sulfite, ammonium sulfite, and sodium sulfite as the sulfate or sulfite having the reducing ability.

そして、上記銀粉の湿式製造方法に用いる前記還元剤含有溶液はヒドロキノンを含有していることが好ましい。   And it is preferable that the said reducing agent containing solution used for the wet manufacturing method of the said silver powder contains hydroquinone.

上記銀粉の湿式製造方法において、前記銀イオン含有溶液と還元剤含有溶液を、30℃以下の温度で一括で接触混合させることが好ましい。   In the silver powder wet manufacturing method, the silver ion-containing solution and the reducing agent-containing solution are preferably contact-mixed at a temperature of 30 ° C. or less.

更に、前記銀イオン含有溶液及び前記還元剤含有溶液のそれぞれの溶液を16℃以下に冷却して用いる事が好ましい。   Furthermore, it is preferable to use each of the silver ion-containing solution and the reducing agent-containing solution after cooling to 16 ° C. or lower.

本件発明に係る銀粉: 本件発明に係る銀粉は、湿式還元法を用いて製造された銀粉であって、走査型電子顕微鏡(SEM)像の画像解析により得られる一次粒子平均径(DIA)が4.0μm〜6.5μmであることを特徴とする。 Silver powder according to the present invention: The silver powder according to the present invention is a silver powder produced by a wet reduction method, and has an average primary particle diameter (D IA ) obtained by image analysis of a scanning electron microscope (SEM) image. It is characterized by being 4.0 μm to 6.5 μm.

そして、本件発明に係る銀粉は、焼結開始温度が450〜550℃である特性を有するものであることが好ましい。   And it is preferable that the silver powder which concerns on this invention has a characteristic whose sintering start temperature is 450-550 degreeC.

また、本件発明に係る銀粉は、望ましくは上述の銀粉はレーザー回折散乱式粒度分布測定法によるD50=4μm〜8μmである特性を併せ持つものである。 In addition, the silver powder according to the present invention desirably has the characteristics that the above-mentioned silver powder has a D 50 = 4 μm to 8 μm by a laser diffraction / scattering particle size distribution measurement method.

本件発明に係る銀粉の湿式製造方法は、従来、製造することが難しかった低温焼結性及び導電性に優れたDIAが5μm前後の銀粉を低コストで製造することができる。 Wet production method for silver powder according to the present invention, conventionally, can be D IA superior in low temperature sinterability and conductivity it is difficult to produce to produce a 5μm around silver powder at a low cost.

また、本件発明に係る銀粉は、湿式還元法を用いて製造され、5μm前後の平均粒子径を有し、焼結性及び導電性に優れるものである。このような銀粉は、500℃前後の温度での焼成が求められる用途においては有用なものである。   Moreover, the silver powder which concerns on this invention is manufactured using the wet reduction method, has an average particle diameter of around 5 micrometers, and is excellent in sinterability and electroconductivity. Such silver powder is useful in applications that require firing at temperatures around 500 ° C.

以下、本発明に係る銀粉の湿式製造方法及び銀粉の最良の実施の形態に関して説明する。   Hereinafter, the wet manufacturing method of silver powder and the best embodiment of the silver powder according to the present invention will be described.

<本件発明に係る銀粉の製造形態>
本発明は、湿式還元法を用いた銀粉の製造方法である。ここで、湿式還元法は、銀イオンを含有する銀イオン含有溶液と還元剤含有溶液とを接触混合させることによって水素還元反応を起こさせて析出させることにより得られた粒子を沈降させて上澄みを抜き、濾過、洗浄することによって銀粉を得る方法である。即ち、本発明に係る銀粉の湿式製造方法は、以下に述べる銀イオン含有溶液と還元剤含有溶液とを接触混合させて、還元析出によって粒子を生成させる銀粉の製造方法であり、一次粒子の平均粒径が5μm前後の銀粉の製造を行うものである。確かに、銀イオン含有溶液中の銀濃度を高くすると、どのような製造方法を採用しても粒径を2μm〜3μm程度まで大きくする事が可能である。しかしながら、通常の製造方法を以て、単に反応液中の銀濃度を上昇させても、析出粒子同士の凝集現象が顕著になるだけであり、良好な粒子分散性及び均一な粒子形状を備えたアトマイズ粉の微粒レベル(一次粒子径5μm前後)の銀粉を湿式法で得ることは出来ない。
<Production form of silver powder according to the present invention>
The present invention is a method for producing silver powder using a wet reduction method. Here, in the wet reduction method, a silver ion-containing solution containing silver ions and a reducing agent-containing solution are brought into contact with each other to cause a hydrogen reduction reaction to precipitate and precipitate particles obtained by precipitation. In this method, silver powder is obtained by removing, filtering, and washing. That is, the silver powder wet manufacturing method according to the present invention is a silver powder manufacturing method in which a silver ion-containing solution and a reducing agent-containing solution described below are contact-mixed to generate particles by reduction precipitation, and the average of primary particles Silver powder having a particle size of about 5 μm is produced. Certainly, if the silver concentration in the silver ion-containing solution is increased, it is possible to increase the particle size to about 2 μm to 3 μm regardless of any manufacturing method. However, even if the silver concentration in the reaction solution is simply increased by a normal production method, the agglomeration phenomenon between the precipitated particles only becomes remarkable, and the atomized powder having good particle dispersibility and uniform particle shape. Silver powder (primary particle diameter of about 5 μm) cannot be obtained by a wet method.

このような湿式製造プロセスを経て得られる銀粉は、アトマイズ法等の製造方法で得られる乾式銀粉が製造過程で熱履歴を受けるのに対し、それがない。即ち、乾式銀粉は、一旦、金属の溶湯を製造しこれを冷却凝固させるものである。これに対し、湿式還元法で得られる銀粉は、溶液中の銀粉を銀イオンの状態から還元析出させて得られるものであるため、その製造方法に起因して粒子内に内包する結晶歪みのレベルが異なる。一般的には、加熱により粒子の再結晶化が起こりやすいほど、粒子間の焼結を起こす相互拡散現象が容易となる。この観点から考えるに、乾式法で得られる銀粒子は、再結晶組織に近い状態にある。これに対し、湿式還元法で得られる銀粒子は、その粒子に内包する孔子欠陥が多く、加熱による格子移動が容易で、再結晶化に向けた動きがおこりやすく、焼結が容易になると言える。その結果、本件発明に係る銀粒子が、アトマイズ法等に代表される乾式法で得られた銀粉と同等の粒子径を有するとしても、乾式法で得られた銀粉を遙かに超える低温焼結性能を示し、よりバルクに近い良好な導電性を持つ焼成膜の形成を可能とするのである。以下、本件発明に係る銀粉の製造で用いる銀イオン含有溶液、還元剤含有溶液等に関して詳細に説明する。   The silver powder obtained through such a wet manufacturing process does not have a dry history while a dry silver powder obtained by a manufacturing method such as an atomizing method receives a thermal history during the manufacturing process. In other words, dry silver powder is one in which a molten metal is once produced and cooled and solidified. On the other hand, since the silver powder obtained by the wet reduction method is obtained by reducing and precipitating the silver powder in the solution from the state of silver ions, the level of crystal distortion included in the particles due to the production method Is different. In general, the more easily the particles are recrystallized by heating, the easier the interdiffusion phenomenon that causes sintering between the particles. From this point of view, the silver particles obtained by the dry method are in a state close to a recrystallized structure. On the other hand, silver particles obtained by the wet reduction method have many pore defects encapsulated in the particles, facilitate lattice movement by heating, easily move toward recrystallization, and can be said to be easy to sinter. . As a result, even if the silver particles according to the present invention have a particle size equivalent to that of the silver powder obtained by the dry method represented by the atomizing method, the low temperature sintering far exceeds the silver powder obtained by the dry method. It shows performance and enables the formation of a fired film having good conductivity close to the bulk. Hereinafter, the silver ion-containing solution, the reducing agent-containing solution and the like used in the production of the silver powder according to the present invention will be described in detail.

銀イオン含有溶液: 本件発明に係る銀粉の製造において、銀イオン含有溶液には、硝酸銀を含む水溶液を用いることが好ましい。まず、銀イオン含有溶液の銀濃度は、30g/l〜60g/lの範囲であることが好ましい。ここで、銀イオン含有溶液の銀濃度が30g/l未満の場合には、工業的に求められる生産性を維持できないばかりか、本件発明の目的とするアトマイズ粉の微粒レベル(一次粒子径5μm前後)の銀粉を得ることも出来なくなる。一方、銀イオン含有溶液の銀濃度が60g/lを超えると、還元析出する粒子同士の凝集が顕著となり、粒子分散性に優れた銀粉を得ることが出来なくなる。 Silver ion-containing solution: In the production of silver powder according to the present invention, an aqueous solution containing silver nitrate is preferably used as the silver ion-containing solution. First, the silver concentration of the silver ion-containing solution is preferably in the range of 30 g / l to 60 g / l. Here, when the silver concentration of the silver ion-containing solution is less than 30 g / l, not only the industrially required productivity can be maintained, but also the atomized powder fine particle level (primary particle diameter of around 5 μm) which is the object of the present invention. ) Silver powder cannot be obtained. On the other hand, when the silver concentration of the silver ion-containing solution exceeds 60 g / l, aggregation of particles that are reduced and precipitated becomes remarkable, and silver powder having excellent particle dispersibility cannot be obtained.

当該銀イオン含有溶液の成分構成としては、硝酸銀を銀の供給源として用いて、銀1mol当たりのアンモニア成分が1mol〜5mol、銀1mol当たりの硝酸成分が1mol〜2molの量比として用いることが好ましい。このように、アンモニア成分と硝酸成分とを併用するのは、アンモニア成分が銀イオンのキレート(錯体)として反応し、硝酸根によって酸化還元電位を下げ、析出核の形成段階では還元反応を起こしにくい雰囲気を形成し緩やかな還元反応を起こさせることで、析出核の形成数を適正量にして、余分な析出核の形成を抑制し、銀イオンを粒子の成長に振り向けさせることで、析出粒子の成長促進ができると考える。   As a component constitution of the silver ion-containing solution, it is preferable to use silver nitrate as a silver supply source, and use it as an amount ratio of 1 mol to 5 mol of ammonia component per mol of silver and 1 mol to 2 mol of nitric acid component per mol of silver. . As described above, the ammonia component and the nitric acid component are used together because the ammonia component reacts as a chelate (complex) of silver ions, the redox potential is lowered by the nitrate radical, and the reduction reaction is unlikely to occur at the formation stage of the precipitation nucleus. By forming an atmosphere and causing a gradual reduction reaction, the number of precipitation nuclei formed is set to an appropriate amount, the formation of excess precipitation nuclei is suppressed, and silver ions are directed to the growth of the particles, I think we can promote growth.

ここで、アンモニアはキレート剤として機能して、銀イオンと反応して銀アンミン錯体を形成する。このとき、アンモニアの濃度が1mol未満の場合には、溶液中に存在する銀イオンとの間でのキレート化が不十分となり、銀イオン含有溶液としての品質のバラツキが大きくなるため、結果として粒度分布のバラツキが大きな銀粉が得られやすくなる。一方、アンモニア濃度を5molを超えるものとしても、キレート化する銀イオンが無くなり資源の無駄遣いともなり、しかも、溶液pHの変動幅も大きくなるため、得られる銀粉の一次粒子径のバラツキも大きくなる。   Here, ammonia functions as a chelating agent and reacts with silver ions to form a silver ammine complex. At this time, when the concentration of ammonia is less than 1 mol, chelation with the silver ions present in the solution becomes insufficient, and the quality variation as the silver ion-containing solution becomes large. Silver powder with large variation in distribution is easily obtained. On the other hand, even if the ammonia concentration exceeds 5 mol, the chelating silver ions are eliminated, resources are wasted, and the fluctuation range of the solution pH is increased, so that the dispersion of the primary particle diameter of the obtained silver powder increases.

そして、硝酸成分の濃度が1mol未満の場合には、得られる粒子が小さくなり所望の大きさの粒子を得られない傾向が顕著となる。一方、硝酸成分の濃度が2molを超えると、アトマイズ粉の微粒レベル(一次粒子径5μm前後)を超える粒径の銀粒子が得られるが、粒径のバラツキが大きく、品質安定性に欠けるものとなる。   And when the density | concentration of a nitric acid component is less than 1 mol, the tendency for the particle | grains obtained to become small and to obtain the particle | grains of a desired magnitude | size becomes remarkable. On the other hand, if the concentration of the nitric acid component exceeds 2 mol, silver particles having a particle size exceeding the fine particle level of the atomized powder (primary particle size of around 5 μm) can be obtained, but the particle size variation is large and the quality stability is poor. Become.

更に、銀イオン含有溶液は、ゼラチンを含有する事が好ましい。その理由としては、銀イオン含有溶液と還元剤含有溶液との混合後に還元析出する粒子の立体障害として寄与し、粒子同士の凝集を防止して、析出粒子の分散状態を好適に保つことができるからである。更に、ゼラチンが保護剤として機能し、製造過程において粒子表面を損傷から保護する効果も奏する。このゼラチンは、還元析出する銀粒子量を考慮して、銀イオン含有溶液中で、1g/l〜5g/lの範囲で用いることが好ましい。このゼラチン含有量が1g/l未満の場合には、還元析出粒子の立体障害として寄与する事が出来ないため、凝集を防止する効果が得られない。一方、このゼラチン含有量が5g/lを超える場合には、銀の還元析出反応を阻害する要因となり、還元析出反応が遅くなると共に、得られる銀粉の粒度分布が劣化する。   Furthermore, the silver ion-containing solution preferably contains gelatin. The reason for this is that it contributes as steric hindrance of the particles that are reduced and precipitated after mixing the silver ion-containing solution and the reducing agent-containing solution, prevents the particles from aggregating and can keep the dispersed state of the precipitated particles suitably. Because. Furthermore, gelatin functions as a protective agent, and has an effect of protecting the particle surface from damage in the production process. This gelatin is preferably used in a silver ion-containing solution in the range of 1 g / l to 5 g / l in consideration of the amount of silver particles that are reduced and precipitated. If the gelatin content is less than 1 g / l, it cannot contribute to the steric hindrance of the reduced precipitated particles, so that the effect of preventing aggregation cannot be obtained. On the other hand, when this gelatin content exceeds 5 g / l, it becomes a factor inhibiting silver reductive precipitation reaction, the reductive precipitation reaction becomes slow, and the particle size distribution of the obtained silver powder deteriorates.

還元剤含有溶液: 本件発明に係る銀粉の製造においては、還元剤含有溶液として、アスコルビン酸、アスコルビン酸の異性体、還元能を備えた硫酸塩、還元能を備えた亜硫酸塩の群から選ばれたいずれか一種以上を水に溶解させたものを用いる。これらの還元剤と上記銀イオン含有溶液とを用いることにより、一次粒子の平均粒径が5μm前後の銀粉を湿式還元法で効率よく製造出来るのである。以上に列挙した還元剤は、還元剤含有溶液として用いる。このように溶媒としての水に溶解させた状態で用いることにより、銀イオン含有溶液と還元剤含有溶液とを混合する際の、反応系内における還元剤の偏在を無くし、均一な分散状態が得られる。ここに挙げた還元剤は、比較的還元力の弱いものを選択している。緩やかな還元反応を起こさせることで、析出核の成長を促進させるためである。 Reducing agent-containing solution: In the production of silver powder according to the present invention, the reducing agent-containing solution is selected from the group consisting of ascorbic acid, an isomer of ascorbic acid, a sulfate having a reducing ability, and a sulfite having a reducing ability. Any one or more of them dissolved in water is used. By using these reducing agents and the silver ion-containing solution, silver powder having an average primary particle size of about 5 μm can be efficiently produced by a wet reduction method. The reducing agents listed above are used as a reducing agent-containing solution. By using it in a state dissolved in water as a solvent in this way, when the silver ion-containing solution and the reducing agent-containing solution are mixed, there is no uneven distribution of the reducing agent in the reaction system, and a uniform dispersion state is obtained. It is done. The reducing agents listed here are selected with a relatively weak reducing power. This is to promote the growth of precipitation nuclei by causing a gradual reduction reaction.

上記還元能を備えた硫酸塩あるいは亜硫酸塩としては、硫酸第一鉄、亜硫酸カリウム、亜硫酸アンモニウム、亜硫酸ナトリウムのうちのいずれか一種以上を用いることが好ましい。これらの還元力の弱い亜硫酸塩を用いて還元析出する粒子数を抑制させることによって、その分、析出した粒子を成長させることができる。更に、この還元剤含有溶液にヒドロキノンを混合して溶解すると、上記亜硫酸塩のいずれかと異なる還元能を発揮し、還元析出反応速度が抑えられて、粒子の成長を促進させることができる。このようにして、従来の湿式還元法で得られる銀粒子より粗粒となる5μm前後の銀粒子を得ることができるのである。   As the sulfate or sulfite having the reducing ability, it is preferable to use at least one of ferrous sulfate, potassium sulfite, ammonium sulfite, and sodium sulfite. By suppressing the number of particles that are reduced and precipitated using these sulfites having a weak reducing power, it is possible to grow the precipitated particles accordingly. Furthermore, when hydroquinone is mixed and dissolved in this reducing agent-containing solution, the reducing ability different from any of the above sulfites is exhibited, the reduction precipitation reaction rate is suppressed, and the growth of particles can be promoted. In this way, silver particles of about 5 μm that are coarser than silver particles obtained by the conventional wet reduction method can be obtained.

そして、この還元剤含有溶液は、上記還元剤を、反応させる銀イオン含有溶液の1リットル当たりに含まれる銀の当量を基準として、その1倍当量/l〜3倍当量/lの範囲で含む水溶液として用いることが好ましい。必要とする還元剤の量は、還元対象となる銀イオンのトータル量によって異なる。しかしながら、上記銀イオン含有溶液に含まれる銀濃度を前提として考えると、還元剤含有溶液の還元剤濃度が1倍当量/l未満の場合には、還元析出速度が遅くなる以上に、還元剤含有溶液としての使用量が増加して、廃液処理の負荷が顕著となるために好ましくない。これに対し、還元剤含有溶液の還元剤濃度が3倍当量/lを超える場合には、銀イオン含有溶液と還元剤含有溶液とを接触混合する際に、還元剤濃度が濃いため、反応系内における還元剤の偏在を速やかに消失させることが困難となり、得られる銀粒子の均一な分散性を阻害する。   And this reducing agent containing solution contains the said reducing agent in the range of the 1 equivalent / l-3 times equivalent / l on the basis of the equivalent of the silver contained per liter of the silver ion containing solution made to react. It is preferable to use it as an aqueous solution. The amount of reducing agent required depends on the total amount of silver ions to be reduced. However, considering the silver concentration contained in the silver ion-containing solution, when the reducing agent concentration of the reducing agent-containing solution is less than 1 equivalent / l, the reducing agent is contained more than the reduction rate of reduction precipitation. This is not preferable because the amount used as a solution increases and the load of waste liquid treatment becomes significant. On the other hand, when the reducing agent concentration of the reducing agent-containing solution exceeds 3 times equivalent / l, when the silver ion-containing solution and the reducing agent-containing solution are contact-mixed, the reducing agent concentration is high. It becomes difficult to quickly eliminate the uneven distribution of the reducing agent in the inside, and the uniform dispersibility of the resulting silver particles is hindered.

銀イオン含有溶液と還元剤含有溶液との混合方法: 上述の銀イオン含有溶液と還元剤含有溶液とを接触混合し、撹拌することにより銀粒子を還元析出させる。本件発明に係る銀粉の製造方法においては、銀イオン含有溶液と還元剤含有溶液とを30℃以下の温度で一括で接触混合させる事が好ましい。 Method of mixing silver ion-containing solution and reducing agent-containing solution: The above-described silver ion-containing solution and reducing agent-containing solution are contact-mixed and stirred to reduce and precipitate silver particles. In the method for producing silver powder according to the present invention, the silver ion-containing solution and the reducing agent-containing solution are preferably contact-mixed at a temperature of 30 ° C. or less.

そして、接触混合を行う場合には、一括で混合すると記載している。この一括で混合するとは、銀イオン含有溶液に対し還元剤含有溶液を一定の時間(例えば、30分等)をかけて徐々に添加する概念の反対を意味するものである。即ち、銀イオン含有溶液の入った容器に対し還元剤含有溶液を一気に全量注入添加する場合、一つの容器に対し銀イオン含有溶液と還元剤含有溶液とを同時に注入添加する場合、還元剤含有溶液の入った容器に対し銀イオン含有溶液を一気に全量注入添加する場合、のそれぞれの概念を意味する。   And when performing contact mixing, it describes that it mixes collectively. This batch mixing means the opposite of the concept of gradually adding a reducing agent-containing solution over a certain time (for example, 30 minutes) to a silver ion-containing solution. That is, when a reducing agent-containing solution is injected and added all at once to a container containing a silver ion-containing solution, when a silver ion-containing solution and a reducing agent-containing solution are simultaneously injected and added to one container, the reducing agent-containing solution When the whole amount of the silver ion-containing solution is injected and added to the container containing, the respective concepts are meant.

最初に混合時の液温に関して説明する。本件発明者の研究の結果、混合時の溶液の温度が高温となる程、析出粒子が微粒化する傾向があり、粒径を大きくするためには反応時の温度を適正な温度以下にする必要があることが判明した。この混合時の銀イオン含有溶液及び還元剤含有溶液の温度を30℃を超えるものとすると、還元速度が早くなり、初期析出する粒子核の量が増加し、得られる銀粒子が小さくなり、適正な粒径の銀粒子が得られない。   First, the liquid temperature during mixing will be described. As a result of the inventor's research, the higher the temperature of the solution at the time of mixing, the more the precipitated particles tend to be atomized. In order to increase the particle size, the temperature at the time of reaction needs to be lower than the appropriate temperature. Turned out to be. If the temperature of the silver ion-containing solution and the reducing agent-containing solution at the time of mixing exceeds 30 ° C., the reduction rate increases, the amount of particle nuclei that initially precipitate increases, the resulting silver particles become smaller, Silver particles with a small particle size cannot be obtained.

そして、より好ましくは、この硝酸銀水溶液及び還元剤含有溶液をそれぞれ16℃以下に冷却して用いることによって、飛躍的に製造安定性を向上させ、析出する粒子の粒径をアトマイズ粉の微粒レベル(一次粒子径5μm前後)とすることが、更に容易となる。   More preferably, the silver nitrate aqueous solution and the reducing agent-containing solution are each cooled to 16 ° C. or less to dramatically improve production stability, and the particle size of the precipitated particles is reduced to a fine particle level of atomized powder ( It becomes even easier to have a primary particle diameter of around 5 μm.

以上のようにして、銀イオン含有溶液と還元剤含有溶液とを混合した以降は、速やかに混合溶液を攪拌して、混合溶液内における銀イオンと還元剤との偏在を解消するのである。そして、還元反応の起こっている混合液の撹拌は、そのまま継続して行うことが好ましい。このような操作により当該混合溶液において還元析出反応が進み、析出した粒子同士の接触を防止して、凝集を起こさず、粒子分散性の高い状態を保つことができる。   As described above, after the silver ion-containing solution and the reducing agent-containing solution are mixed, the mixed solution is rapidly stirred to eliminate the uneven distribution of silver ions and the reducing agent in the mixed solution. And it is preferable to continue stirring of the liquid mixture which has undergone the reduction reaction as it is. By such an operation, the reduction precipitation reaction proceeds in the mixed solution, the contact between the precipitated particles is prevented, aggregation is not caused, and the state of high particle dispersibility can be maintained.

上記方法で銀イオン含有溶液(硝酸銀水溶液)と還元剤含有溶液とを一括して接触混合して撹拌した後は、従来の湿式還元法と同様に粒子を沈降させ、上澄みを抜き、濾過、洗浄工程を経て銀粉を得る。   After the silver ion-containing solution (silver nitrate aqueous solution) and the reducing agent-containing solution are brought into contact and mixed together and stirred by the above method, the particles are settled, the supernatant is removed, filtered, and washed in the same manner as in the conventional wet reduction method. Silver powder is obtained through the process.

<本件発明に係る銀粉の形態>
本件発明に係る湿式還元法を用いて製造された銀粉は、走査型電子顕微鏡像の画像解析により得られる一次粒子平均径がDIA=4.0μm〜6.5μmである。加えて、この銀粉はレーザー回折散乱式粒度分布測定法によるD50=4μm〜8μmという粉体特性を備えるものとなる。従来、湿式還元法で製造することが難しかった粒径が5μm前後の銀粉を得ることができる。
<Form of silver powder according to the present invention>
The silver powder produced using the wet reduction method according to the present invention has a primary particle average diameter obtained by image analysis of a scanning electron microscope image of D IA = 4.0 μm to 6.5 μm. In addition, this silver powder has a powder characteristic of D 50 = 4 μm to 8 μm by a laser diffraction / scattering particle size distribution measurement method. Conventionally, it is possible to obtain silver powder having a particle size of around 5 μm, which has been difficult to manufacture by a wet reduction method.

このように5μm前後の一次粒子平均径を有する湿式銀粉は、湿式還元法による銀粉の特徴である高分散、高充填密度に加えて、粒径を5μm前後とすることによって焼結開始温度が450℃〜550℃となる粉体特性を備えるものである。   As described above, the wet silver powder having an average primary particle diameter of about 5 μm has a sintering start temperature of 450 by setting the particle diameter to about 5 μm in addition to the high dispersion and high packing density characteristic of the silver powder by the wet reduction method. It has a powder characteristic of 550 ° C to 550 ° C.

このような銀粉は粒径の均一性に優れ且つ粒子分散性に優れた銀粉であるので、この銀粉を用いて導電性インク等に加工し、導体膜形成を行い焼成すると、粒径のバラツキ及び粒子の凝集に起因した導体膜表面の粗れを抑制でき、表面状態が均質な焼結体(導電膜)を形成することができる。しかも、低温焼結性に優れ、500℃前後の加熱により粒子同士が連結する焼成が可能であるため、当該温度域における導電性に優れた低抵抗の導体膜の形成に好適である。   Since such silver powder is a silver powder having excellent particle size uniformity and particle dispersibility, when this silver powder is processed into a conductive ink or the like, a conductor film is formed and fired, the particle size variation and Roughness of the conductor film surface due to the aggregation of particles can be suppressed, and a sintered body (conductive film) having a uniform surface state can be formed. And since it is excellent in low-temperature sinterability and baking which particle | grains connect by the heating around 500 degreeC is possible, it is suitable for formation of the low resistance conductor film excellent in the electroconductivity in the said temperature range.

以下、実施例及び比較例を示して本件発明を具体的に説明する。なお、本件発明は以下の実施例に制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

実施例1では、銀イオン含有溶液として、硝酸銀5kgを純水50Lに溶解させた硝酸銀水溶液を用いた。還元剤含有溶液は、アスコルビン酸2.6kgを純水50Lに溶解させたものを用いた。この銀イオン含有溶液(硝酸銀水溶液)と、還元剤含有溶液とを、30℃の温度で一括して接触混合して反応させる。この時、混合溶液の均一化のために5分間撹拌した。その後、粒子を沈降させた上澄みを抜き、濾過、洗浄することによって銀粉を得た。   In Example 1, a silver nitrate aqueous solution in which 5 kg of silver nitrate was dissolved in 50 L of pure water was used as the silver ion-containing solution. As the reducing agent-containing solution, a solution obtained by dissolving 2.6 kg of ascorbic acid in 50 L of pure water was used. This silver ion-containing solution (silver nitrate aqueous solution) and the reducing agent-containing solution are brought into contact and mixed at a temperature of 30 ° C. for reaction. At this time, the mixture was stirred for 5 minutes to make the mixed solution uniform. Thereafter, the supernatant on which the particles were settled was removed, filtered and washed to obtain silver powder.

なお、上記銀イオン含有溶液の銀濃度は31.8g/lとなり、この銀濃度に対して、アスコルビン酸の使用量は、1.0倍当量となる。   In addition, the silver concentration of the said silver ion containing solution will be 31.8 g / l, and the usage-amount of ascorbic acid will be 1.0 time equivalent with respect to this silver concentration.

こうして得られた銀粉について、以下の方法にて諸特性を評価した。即ち、倍率2000倍における走査型電子顕微鏡像を画像解析して任意に100個の一次粒子径を測定し、一次粒子平均径を算出した。また、粒度分布を評価するため、レーザー回折散乱式粒度分布測定装置であるMicro Trac HRA9320−X100型(Leeds+Northrup社製)を用いて、D10、D50、D90、Dmaxを測定し、D90/D10を算出した(銀粉0.1gをSNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた試料を使用)。そして、タップ密度(T.D)をホソカワミクロン製パウダーテスターPT−E型にて測定し、比表面積(SSA)を島津−マイクロメリッテクス製2200型BET計にて測定した。更に、セイコーインスツルメンツ社製の熱機械分析装置(TMA装置)であるTMA/SS6000を用いて焼結開始温度と、600℃における収縮率を調べた。 Various properties of the silver powder thus obtained were evaluated by the following methods. That is, an image of a scanning electron microscope image at a magnification of 2000 was subjected to image analysis, and 100 primary particle diameters were arbitrarily measured to calculate an average primary particle diameter. In order to evaluate the particle size distribution, D 10 , D 50 , D 90 , and D max were measured using a Micro Trac HRA9320-X100 type (Leeds + Northrup), which is a laser diffraction / scattering type particle size distribution measuring device. 90 / D 10 was calculated (0.1 g of silver powder was mixed with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco) and dispersed with an ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Seisakusho) for 5 minutes. Use sample). Then, the tap density (TD) was measured with a powder tester PT-E type manufactured by Hosokawa Micron, and the specific surface area (SSA) was measured with a 2200 type BET meter manufactured by Shimadzu-Micromeritics. Furthermore, the sintering start temperature and the shrinkage rate at 600 ° C. were examined using TMA / SS6000 which is a thermomechanical analyzer (TMA apparatus) manufactured by Seiko Instruments Inc.

実施例1で得られた銀粉の走査型電子顕微鏡像を図1に示す。図1を見ると、複数の繊維が巻き付いた様に表面が形成された粒子が見られ、大きさは粒径が5μm程度で比較的揃っていることが分かる。なお、諸特性の評価結果については表1に示す。   A scanning electron microscope image of the silver powder obtained in Example 1 is shown in FIG. Referring to FIG. 1, it can be seen that particles having a surface formed like a plurality of fibers are wound, and the sizes are relatively uniform with a particle size of about 5 μm. The evaluation results of various characteristics are shown in Table 1.

実施例2は銀イオン含有溶液に硝酸銀16.5kgを純水30Lに溶解させた硝酸銀水溶液を用い、還元剤含有溶液は、硫酸第一鉄(7水和物)49.5kgを純水150Lに溶解させたものを用いた。なお、上記銀イオン含有溶液の銀濃度は58.2g/lとなり、この銀濃度に対して、硫酸第一鉄の使用量は1.26倍当量となる。この銀イオン含有溶液と還元剤含有溶液とを30℃の温度で一括して接触混合し、この混合した溶液の均一化のために5分間撹拌した。その後、粒子を沈降させた上澄みを抜き、洗浄、濾過することによって粗粒銀粉を得た。   Example 2 uses a silver nitrate aqueous solution in which 16.5 kg of silver nitrate is dissolved in 30 L of pure water in a silver ion-containing solution, and the reducing agent-containing solution is 49.5 kg of ferrous sulfate (7 hydrate) in 150 L of pure water. What was dissolved was used. In addition, the silver concentration of the said silver ion containing solution will be 58.2 g / l, and the usage-amount of ferrous sulfate will be 1.26 times equivalent with respect to this silver concentration. The silver ion-containing solution and the reducing agent-containing solution were collectively contact-mixed at a temperature of 30 ° C., and stirred for 5 minutes to homogenize the mixed solution. Thereafter, the supernatant on which the particles were settled was removed, washed and filtered to obtain coarse silver powder.

実施例2で得られた銀粉の走査型電子顕微鏡像を図2に示す。図2を見ると、表面が小さなフレーク状のもので形成された粒子が粒径5μm程度に大きさが揃っていることが分かる。なお、その他の諸特性については表1に示す。   A scanning electron microscope image of the silver powder obtained in Example 2 is shown in FIG. Referring to FIG. 2, it can be seen that the particles formed of flakes having a small surface have a size of about 5 μm. Other characteristics are shown in Table 1.

実施例3は、銀イオン含有溶液として、硝酸銀3.06kgを純水3.6Lに溶かした硝酸銀水溶液に、別途、濃度25wt%のアンモニア水5360mlと硝酸2583gを溶かした溶液を加え16℃まで冷却したものを用いた。還元剤含有溶液は、ヒドロキノン701gと亜硫酸カリウム2453gを純水54.4Lに溶解させたものを用いた。別途、ゼラチン175gを純水3Lに溶かした溶液を作製し、還元剤含有溶液に添加して16℃まで冷却する。冷却した銀イオン含有溶液と、還元剤含有溶液とを一括で接触混合して5分間撹拌した後、粒子を沈降させて上澄みを抜き、濾過、洗浄することによって粗粒銀粉を得た。   In Example 3, as a silver ion-containing solution, a solution obtained by dissolving 5360 ml of 25 wt% ammonia water and 2583 g of nitric acid was added to a silver nitrate aqueous solution in which 3.06 kg of silver nitrate was dissolved in 3.6 L of pure water and cooled to 16 ° C. What was done was used. As the reducing agent-containing solution, a solution obtained by dissolving 701 g of hydroquinone and 2453 g of potassium sulfite in 54.4 L of pure water was used. Separately, a solution in which 175 g of gelatin is dissolved in 3 L of pure water is prepared, added to the reducing agent-containing solution, and cooled to 16 ° C. The cooled silver ion-containing solution and the reducing agent-containing solution were contacted and mixed together and stirred for 5 minutes, and then the particles were settled, the supernatant was removed, filtered, and washed to obtain coarse silver powder.

なお、上記銀イオン含有溶液の銀濃度は31.9g/lとなり、還元剤としてのヒドロキノンと亜硫酸カリウムの使用量は、銀濃度に対して、1.6倍当量である。また、アンモニア成分の使用量は、銀濃度に対して、3.1倍当量であり、硝酸の使用量は1.3倍当量である。   In addition, the silver concentration of the said silver ion containing solution will be 31.9 g / l, and the usage-amount of hydroquinone and potassium sulfite as a reducing agent is 1.6 times equivalent with respect to silver concentration. Moreover, the usage-amount of an ammonia component is 3.1 times equivalent with respect to silver concentration, and the usage-amount of nitric acid is 1.3 times equivalent.

実施例3で得られた銀粉の走査型電子顕微鏡像を図3に示す。図3を見ると、粒径が比較的揃っているのが確認でき、また、表面に凹凸が少なく滑らかで大きい粒径の粒子が混在していることが分かる。その他の諸特性については表1に示す。   A scanning electron microscope image of the silver powder obtained in Example 3 is shown in FIG. When FIG. 3 is seen, it can confirm that the particle size is comparatively uniform, and it turns out that there are few unevenness | corrugations on the surface, and the particle | grains of smooth and large particle size are mixed. Other characteristics are shown in Table 1.

実施例4は、実施例3で得られた銀粉に表面平滑化処理を施した例であり、製造条件は実施例3と同じなので説明を割愛する。表面平滑化処理にはハイブリタイザー(奈良機械製作所製)を用いて回転数5000rpmの条件で表面平滑化処理を施した。得られた銀粉の走査型電子顕微鏡像を図4に示す。その他の諸特性については表1に示す。   Example 4 is an example in which the surface of the silver powder obtained in Example 3 was subjected to a surface smoothing process, and the manufacturing conditions are the same as those in Example 3. The surface smoothing treatment was performed using a hybridizer (manufactured by Nara Machinery Co., Ltd.) under the condition of a rotational speed of 5000 rpm. A scanning electron microscope image of the obtained silver powder is shown in FIG. Other characteristics are shown in Table 1.

比較例Comparative example

[比較例1]
比較例1では、従来の湿式還元法を用いて銀粉を製造した。即ち、銀イオン含有溶液として、硝酸銀5kgを純水25Lに溶かした溶液にアンモニア水10L溶かし16℃まで冷却したものを用い、還元剤含有溶液はヒドロキノン1.6kg純水170Lに溶解させ、16℃まで冷却したものを用いた。この銀イオン含有溶液と還元剤含有溶液とを一括して接触混合して5分間撹拌した後、粒子を沈降させ上澄みを抜き、濾過、洗浄することによって銀粉を得た。比較例1で得られた銀粉の粉体特性を表1に示す。
[Comparative Example 1]
In Comparative Example 1, silver powder was produced using a conventional wet reduction method. That is, as the silver ion-containing solution, a solution obtained by dissolving 10 L of ammonia water in a solution of 5 kg of silver nitrate in 25 L of pure water and cooling to 16 ° C. was used, and the reducing agent-containing solution was dissolved in 170 L of hydroquinone 1.6 kg of pure water. What was cooled to was used. The silver ion-containing solution and the reducing agent-containing solution were collectively contact-mixed and stirred for 5 minutes, and then the particles were settled, the supernatant was removed, and the powder was filtered and washed to obtain silver powder. Table 1 shows the powder characteristics of the silver powder obtained in Comparative Example 1.

[比較例2]
比較例2では、アトマイズ法を用いて銀粉を製造した。即ち、硝酸銀110gをるつぼに入れ、電気加熱で315℃にした後、二流体ノズル(SUS製)にキャリアガスとしてアルゴンガスを用い、キャリアガス圧力5kg/cm2、流速10L/minの条件で硝酸銀を噴霧し、1100℃に加熱された石英管に導入した。熱分解後の銀粉末はサイクロンにより捕集した。
[Comparative Example 2]
In Comparative Example 2, silver powder was manufactured using an atomizing method. That is, 110 g of silver nitrate was put in a crucible and heated to 315 ° C. by electric heating. Then, argon gas was used as a carrier gas for a two-fluid nozzle (manufactured by SUS), and silver nitrate was added under the conditions of carrier gas pressure 5 kg / cm 2 and flow rate 10 L / min. Sprayed and introduced into a quartz tube heated to 1100 ° C. The silver powder after pyrolysis was collected by a cyclone.

比較例2で得られた銀粉の走査型電子顕微鏡像を図6に示す。そして、比較例2の銀粉の粉体特性を表1に示す。なお、図6を見ても分かるように、比較例2の銀粉は凝集した粒子が多く見られ粒径が不揃いである。従って、走査型電子顕微鏡像の画像解析の結果を用いても、上記実施例1〜実施例3との比較に有効性は認められないので測定は省略した。また、収縮率については、上記実施例1〜実施例4および比較例1ではガラス基板との焼結特性の整合性を検討する上で、600℃の収縮率を測定していたが、本比較例2の場合、600℃の段階では未焼結なので記載は省略した。   A scanning electron microscope image of the silver powder obtained in Comparative Example 2 is shown in FIG. Table 1 shows the powder characteristics of the silver powder of Comparative Example 2. As can be seen from FIG. 6, the silver powder of Comparative Example 2 has many agglomerated particles and irregular particle sizes. Therefore, even if the result of the image analysis of the scanning electron microscope image was used, the effectiveness was not recognized in the comparison with Examples 1 to 3, and thus the measurement was omitted. As for the shrinkage rate, in Examples 1 to 4 and Comparative Example 1 described above, the shrinkage rate at 600 ° C. was measured for examining the consistency of the sintering characteristics with the glass substrate. In the case of Example 2, since it was unsintered at the stage of 600 ° C., the description was omitted.

表1から明らかなように、実施例1〜実施例4に示す銀粉は、いずれも5μm前後の粗粒域であり、且つ、粒径が揃い、分散性に優れ、充填密度も高い、高性能な銀粉であると言える。また、従来の湿式銀粉より熱収縮率を低減出来たので、焼結前後の寸法安定性が向上し、より高品質な導体を形成できる。即ち、湿式還元法の利点であった、高分散性、高導電性を活かしながら、焼結開始温度を高くすることができる銀粉を低コストで製造することができる。特に、高分散性、高充填密度による高導電性を有するので、導体形成の焼成温度が500℃前後とする基板に印刷、塗布する導電性インクまたは導電性ペーストの材料として好適な銀粉を低コストで製造することができる。   As is clear from Table 1, the silver powders shown in Examples 1 to 4 are all coarse-grained regions of around 5 μm, have a uniform particle size, excellent dispersibility, and high packing density. It can be said that it is a silver powder. Moreover, since the thermal shrinkage rate can be reduced as compared with the conventional wet silver powder, the dimensional stability before and after sintering is improved, and a higher quality conductor can be formed. That is, it is possible to produce silver powder that can increase the sintering start temperature at low cost while taking advantage of the high dispersibility and high conductivity that are advantages of the wet reduction method. In particular, since it has high conductivity due to high dispersibility and high packing density, silver powder suitable as a material for conductive ink or conductive paste to be printed and applied on a substrate having a firing temperature of about 500 ° C. is low cost. Can be manufactured.

次に、実施例3と実施例4について比較する。ここで、表面平滑化処理は、高速回転している気流中に粒子を投入することにより粒子どうしが衝突する衝撃によって粒子表面を平滑化させる処理であるが、粒子どうしの衝突によって凝集した粒子が解砕される効果もある。従って、一般的に、表面平滑化処理後の粉体は、表面平滑化処理前のものと比べると、平均粒径D50や粒度分布が変化する傾向がある。しかし、実施例3と実施例4とでは、タップ密度(T.D)が高くなった他は、粒径、粒度分布、焼結開始温度について大きな差が生じなかった。この結果から、表面平滑化処理を行う前から凝集した粒子が少なく、粒子分散性に優れた粉体であったと言える。しかしながら、表面平滑化処理を行うことにより、焼結開始温度を維持したままに、高密度でより導電性の高い銀粉を製造することができる。なお、実施例3の銀粉より実施例4の銀粉の比表面積(SSA)が低くなっているのは、粒子衝突によって表面が滑らかになっているものと考えられる。 Next, Example 3 and Example 4 will be compared. Here, the surface smoothing process is a process of smoothing the particle surface by the impact of particles colliding with each other by putting the particles into an air stream rotating at high speed. There is also an effect of being crushed. Therefore, in general, powder after surface smoothing treatment, as compared to the previous surface smoothing treatment, tends to average particle size D 50 and particle size distribution changes. However, in Example 3 and Example 4, there was no significant difference in particle size, particle size distribution, and sintering start temperature except that the tap density (TD) was increased. From this result, it can be said that the powder was excellent in particle dispersibility with few aggregated particles before the surface smoothing treatment. However, by performing the surface smoothing treatment, it is possible to produce silver powder having a higher density and higher conductivity while maintaining the sintering start temperature. The specific surface area (SSA) of the silver powder of Example 4 is lower than that of the silver powder of Example 3 because the surface is smooth due to particle collision.

そして、実施例1〜実施例3と比較例1とを比べると、D90/D10の値は大きく変わらないことから、従来の湿式銀粉と同様に粒子分散性に優れていながら、平均粒径D50が大きい銀粉を製造できたと言える。一方、比較例1で得られた銀粉は、実施例1〜実施例4に比べて平均粒径が小さい銀粉である為に、焼結開始温度は220℃と低温となると考えられる。従って、銀粉の粗粒化の実現によって焼結開始温度が顕著に変化し、焼成温度が500℃前後で導体形成する場合に対応できたと言える。 And when Examples 1 to 3 and Comparative Example 1 are compared, since the value of D 90 / D 10 does not change greatly, the average particle size is excellent while being excellent in particle dispersibility like conventional wet silver powder. It can be said that silver powder having a large D 50 could be produced. On the other hand, since the silver powder obtained in Comparative Example 1 is a silver powder having an average particle size smaller than those in Examples 1 to 4, the sintering start temperature is considered to be as low as 220 ° C. Therefore, it can be said that the sintering start temperature has changed remarkably by realizing the coarsening of the silver powder, and the case where the conductor is formed at a firing temperature of around 500 ° C. can be said.

また、実施例1〜実施例4で得られた銀粉の比表面積は、比較例1に比べて小さい値となっているが、比表面積の値が小さいほど滑らかで平滑な表面を持つ銀粉と言え、比表面積が滑らかであるほど、ペーストに加工した時のペースト粘度を低くすることができる。   Moreover, although the specific surface area of the silver powder obtained in Examples 1 to 4 has a smaller value than that of Comparative Example 1, it can be said that the smaller the specific surface area, the smoother and smoother the surface of the silver powder. As the specific surface area is smoother, the paste viscosity when processed into a paste can be lowered.

そして、実施例1〜実施例4と比較例2とを比べると、D90/D10の値は実施例1〜実施例4が低い値となっており、比較例2と比べて粒度分布がシャープな銀粉が作製できていると言える。また、図1〜図4と図6とを比較しても、実施例1〜実施例4の方が、比較例2よりも凝集が少なく粒径が揃っていることは瞭然である。 When compared with Comparative Example 2 and Example 1 to Example 4, the value of D 90 / D 10 is a low value first to fourth embodiments, the particle size distribution in comparison with Comparative Example 2 It can be said that sharp silver powder has been produced. Further, even when FIGS. 1 to 4 are compared with FIG. 6, it is obvious that Examples 1 to 4 are less aggregated and have a uniform particle size than Comparative Example 2.

従って、導電性インクまたは導電性ペースト等によりフラットディスプレイパネルのガラス基板上に導体形成する場合等を想定すると、焼成温度は500℃前後であるが、比較例1で得られた銀粉を導電性インクまたは導電性ペーストに用いた場合、焼成の際に銀粉が焼けすぎとなるだけでなく、600℃での収縮率が高いので寸法安定性が劣り、ガラス基板上の金属導体材料としては適さないと言える。一方、比較例2で得られた銀粉の焼結開始温度は、ガラス基板の焼結開始温度より非常に高く、ガラス基板の焼成後もこの銀粉は未焼結となるのでガラス基板上に形成する金属導体として使用出来ないと言える。   Accordingly, assuming a case where a conductor is formed on a glass substrate of a flat display panel using a conductive ink or a conductive paste, the firing temperature is around 500 ° C., but the silver powder obtained in Comparative Example 1 is used as the conductive ink. Or when used as a conductive paste, not only does the silver powder burn too much during firing, but the shrinkage at 600 ° C. is high, resulting in poor dimensional stability, and is not suitable as a metal conductor material on a glass substrate. I can say that. On the other hand, the sintering start temperature of the silver powder obtained in Comparative Example 2 is much higher than the sintering start temperature of the glass substrate, and the silver powder becomes unsintered even after the glass substrate is fired, so it is formed on the glass substrate. It can be said that it cannot be used as a metal conductor.

従来、湿式還元法を用いた銀粉の製造では得られなかった5μm前後の粒径の銀粉を製造可能としたことにより、分散性に優れ、焼結特性を改善した優れた銀粉を製造することができる。更に、従来より熱収縮率を低減出来るので、焼結前後の寸法安定性が向上し、より高品質な導体を形成できる。また、アトマイズ法による銀粉で必要となる分級を行う必要がないので、アトマイズ法と比べて製造コストを抑えることができる。即ち、湿式還元法の利点であった、高分散性、高導電性を活かしながら、焼結開始温度を高くすることができるので、基板と銀粉との焼結挙動の整合可能範囲を広げることができ、導体材料として求められる高分散性、高充填密度である高品質な銀粉を低コストで製造することができる。従って、本件発明に係る銀粉を用いた導電性インクまたは導電性ペースト等をフラットディスプレイパネルのガラス基板形成に用いると、ガラス基板上に導体形成する際の焼結温度との整合性を有し、寸法安定性に優れ、導電性が高く、高性能なフラットディスプレイパネルの製造コスト低減に貢献することができる。   By making it possible to produce silver powder having a particle size of around 5 μm, which has not been obtained by the production of silver powder using a wet reduction method, it is possible to produce excellent silver powder with excellent dispersibility and improved sintering characteristics. it can. Furthermore, since the thermal shrinkage rate can be reduced as compared with the prior art, the dimensional stability before and after sintering is improved, and a higher quality conductor can be formed. Moreover, since it is not necessary to perform the classification required for the silver powder by the atomizing method, the manufacturing cost can be suppressed as compared with the atomizing method. In other words, it is possible to increase the sintering start temperature while taking advantage of the high dispersibility and high conductivity, which were the advantages of the wet reduction method, so that the matching range of the sintering behavior of the substrate and the silver powder can be expanded. In addition, high-quality silver powder having high dispersibility and high packing density required as a conductor material can be produced at low cost. Therefore, when using conductive ink or conductive paste using silver powder according to the present invention for glass substrate formation of a flat display panel, it has consistency with the sintering temperature when a conductor is formed on the glass substrate, It is excellent in dimensional stability, has high conductivity, and can contribute to a reduction in manufacturing cost of a high performance flat display panel.

実施例1の銀粉の走査型電子顕微鏡像である。2 is a scanning electron microscope image of silver powder of Example 1. FIG. 実施例2の銀粉の走査型電子顕微鏡像である。3 is a scanning electron microscope image of silver powder of Example 2. FIG. 実施例3の銀粉の走査型電子顕微鏡像である。3 is a scanning electron microscope image of silver powder of Example 3. FIG. 実施例4の銀粉の走査型電子顕微鏡像である。It is a scanning electron microscope image of the silver powder of Example 4. 比較例1の銀粉の走査型電子顕微鏡像である。2 is a scanning electron microscope image of silver powder of Comparative Example 1. 比較例2の銀粉の走査型電子顕微鏡像である。It is a scanning electron microscope image of the silver powder of the comparative example 2.

Claims (10)

銀イオン含有溶液と還元剤含有溶液とを接触混合させる湿式還元法を用いた銀粉の製造方法であって、
前記銀イオン含有溶液は硝酸銀を含み、
前記還元剤含有溶液はアスコルビン酸、アスコルビン酸の異性体、還元能を備えた硫酸塩、還元能を備えた亜硫酸塩の群から選ばれたいずれか一種以上を水に溶解させたものを含むことを特徴とする銀粉の湿式製造方法。
A method for producing silver powder using a wet reduction method in which a silver ion-containing solution and a reducing agent-containing solution are contact-mixed,
The silver ion-containing solution contains silver nitrate,
The reducing agent-containing solution contains ascorbic acid, an isomer of ascorbic acid, a sulfate having a reducing ability, or a solution in which at least one selected from the group of sulfites having a reducing ability is dissolved in water. A method for wet production of silver powder.
前記銀イオン含有溶液は、銀1mol当たりアンモニアが1mol〜5molとなる量比のアンモニア水と、銀1mol当たり1mol〜2molの硝酸とを含有していることを特徴とする請求項1に記載の銀粉の湿式製造方法。 2. The silver powder according to claim 1, wherein the silver ion-containing solution contains ammonia water in an amount ratio of 1 mol to 5 mol of ammonia per 1 mol of silver and 1 mol to 2 mol of nitric acid per 1 mol of silver. Wet manufacturing method. 前記銀イオン含有溶液は、ゼラチンを含有していることを特徴とする請求項1又は請求項2に記載の銀粉の湿式製造方法。 The said silver ion containing solution contains gelatin, The wet manufacturing method of the silver powder of Claim 1 or Claim 2 characterized by the above-mentioned. 前記還元能を備えた硫酸塩あるいは亜硫酸塩として、硫酸第一鉄、亜硫酸カリウム、亜硫酸アンモニウム、亜硫酸ナトリウムのうちのいずれか一種以上を用いることを特徴とする請求項1〜請求項3のいずれかに記載の銀粉の湿式製造方法。 Either one or more of ferrous sulfate, potassium sulfite, ammonium sulfite, and sodium sulfite is used as the sulfate or sulfite having the reducing ability. The wet manufacturing method of the silver powder as described in 2. 前記還元剤含有溶液がヒドロキノンを含有していることを特徴とする請求項1〜請求項4のいずれかに記載の銀粉の湿式製造方法。 The method for wet production of silver powder according to any one of claims 1 to 4, wherein the reducing agent-containing solution contains hydroquinone. 前記銀イオン含有溶液と還元剤含有溶液を、30℃以下の温度で一括で接触混合させることを特徴とする請求項1〜請求項5のいずれかに記載の銀粉の湿式製造方法。 The method for wet production of silver powder according to any one of claims 1 to 5, wherein the silver ion-containing solution and the reducing agent-containing solution are collectively contact-mixed at a temperature of 30 ° C or lower. 前記銀イオン含有溶液及び前記還元剤含有溶液のそれぞれの溶液を16℃以下に冷却して用いることを特徴とするとする請求項6に記載の銀粉の湿式製造方法。 The method for wet production of silver powder according to claim 6, wherein each of the silver ion-containing solution and the reducing agent-containing solution is used after being cooled to 16 ° C. or less. 湿式還元法を用いて製造された銀粉であって、
走査型電子顕微鏡像の画像解析により得られる一次粒子平均径(DIA)が4.0μm〜6.5μmであることを特徴とする銀粉。
Silver powder produced using a wet reduction method,
A silver powder having an average primary particle diameter (D IA ) obtained by image analysis of a scanning electron microscope image of 4.0 μm to 6.5 μm.
焼結開始温度が450℃〜550℃であることを特徴とする請求項8に記載の銀粉。 The silver powder according to claim 8, wherein a sintering start temperature is 450 ° C. to 550 ° C. レーザー回折散乱式粒度分布測定法によるD50=4μm〜8μmであることを特徴とする請求項8又は請求項9に記載の銀粉。 Silver powder according to claim 8 or claim 9, characterized in that by a laser diffraction scattering particle size distribution measuring method is a D 50 = 4μm~8μm.
JP2006100229A 2006-03-31 2006-03-31 Method for manufacturing silver powder, and silver powder Pending JP2007270312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100229A JP2007270312A (en) 2006-03-31 2006-03-31 Method for manufacturing silver powder, and silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100229A JP2007270312A (en) 2006-03-31 2006-03-31 Method for manufacturing silver powder, and silver powder

Publications (1)

Publication Number Publication Date
JP2007270312A true JP2007270312A (en) 2007-10-18

Family

ID=38673409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100229A Pending JP2007270312A (en) 2006-03-31 2006-03-31 Method for manufacturing silver powder, and silver powder

Country Status (1)

Country Link
JP (1) JP2007270312A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579746B (en) * 2008-05-13 2011-01-12 中国科学院理化技术研究所 Method for preparing micron-grade superfine silver powder with shape of pinecone, flower or tree
WO2011028305A1 (en) * 2009-08-25 2011-03-10 E. I. Du Pont De Nemours And Company Silver thick film paste compositions and their use in conductors for photovoltaic cells
US20120118105A1 (en) * 2010-11-17 2012-05-17 E. I. Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
US8231704B2 (en) 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
US8366799B2 (en) 2010-08-30 2013-02-05 E I Du Pont De Nemours And Company Silver particles and a process for making them
US8372178B2 (en) 2009-05-01 2013-02-12 E I Du Pont De Nemours And Company Silver particles and processes for making them
JP2013108120A (en) * 2011-11-18 2013-06-06 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
WO2013133103A1 (en) * 2012-03-07 2013-09-12 住友金属鉱山株式会社 Silver powder and method for producing same
JP2013185251A (en) * 2012-03-12 2013-09-19 Mitsui Mining & Smelting Co Ltd Silver powder
CN103506630A (en) * 2012-06-29 2014-01-15 中国科学院理化技术研究所 Method for preparing flaky silver powder with ultralow apparent density
WO2017026722A1 (en) * 2015-08-12 2017-02-16 엘에스니꼬동제련 주식회사 Production method for silver powder for high-temperature sintering type of electrically-conductive paste
CN106424752A (en) * 2016-09-29 2017-02-22 清华大学深圳研究生院 Silver powder with flower-shaped microstructure and preparation method thereof and electric conducting ink
WO2018070817A1 (en) * 2016-10-13 2018-04-19 엘에스니꼬동제련 주식회사 Silver powder for high temperature sintering, and preparation method therefor
WO2019074336A1 (en) * 2017-10-13 2019-04-18 엘에스니꼬동제련 주식회사 Method for preparing silver powder having improved dispersibility
WO2019088507A1 (en) * 2017-10-30 2019-05-09 엘에스니꼬동제련 주식회사 Silver powder and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307206A (en) * 1987-06-08 1988-12-14 Tanaka Kikinzoku Kogyo Kk Production of fine silver particles
JPH0892611A (en) * 1994-09-28 1996-04-09 Sumitomo Metal Mining Co Ltd Production of silver powder
JP2001107101A (en) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd High dispersibility spherical silver powder and its producing method
JP2005226094A (en) * 2004-02-10 2005-08-25 Mitsui Mining & Smelting Co Ltd High crystallinity silver powder and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307206A (en) * 1987-06-08 1988-12-14 Tanaka Kikinzoku Kogyo Kk Production of fine silver particles
JPH0892611A (en) * 1994-09-28 1996-04-09 Sumitomo Metal Mining Co Ltd Production of silver powder
JP2001107101A (en) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd High dispersibility spherical silver powder and its producing method
JP2005226094A (en) * 2004-02-10 2005-08-25 Mitsui Mining & Smelting Co Ltd High crystallinity silver powder and its production method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579746B (en) * 2008-05-13 2011-01-12 中国科学院理化技术研究所 Method for preparing micron-grade superfine silver powder with shape of pinecone, flower or tree
US8372178B2 (en) 2009-05-01 2013-02-12 E I Du Pont De Nemours And Company Silver particles and processes for making them
US8231704B2 (en) 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
WO2011028305A1 (en) * 2009-08-25 2011-03-10 E. I. Du Pont De Nemours And Company Silver thick film paste compositions and their use in conductors for photovoltaic cells
US8366799B2 (en) 2010-08-30 2013-02-05 E I Du Pont De Nemours And Company Silver particles and a process for making them
US8574338B2 (en) 2010-11-17 2013-11-05 E I Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
US20120118105A1 (en) * 2010-11-17 2012-05-17 E. I. Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
JP2013108120A (en) * 2011-11-18 2013-06-06 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
WO2013133103A1 (en) * 2012-03-07 2013-09-12 住友金属鉱山株式会社 Silver powder and method for producing same
US9744593B2 (en) 2012-03-07 2017-08-29 Sumitomo Metal Mining Co., Ltd. Silver powder and method for producing same
JP2014098212A (en) * 2012-03-07 2014-05-29 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
JP2013185251A (en) * 2012-03-12 2013-09-19 Mitsui Mining & Smelting Co Ltd Silver powder
CN103506630A (en) * 2012-06-29 2014-01-15 中国科学院理化技术研究所 Method for preparing flaky silver powder with ultralow apparent density
WO2017026722A1 (en) * 2015-08-12 2017-02-16 엘에스니꼬동제련 주식회사 Production method for silver powder for high-temperature sintering type of electrically-conductive paste
KR101733165B1 (en) * 2015-08-12 2017-05-08 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder for high temperature sintering conductive paste
CN107921543A (en) * 2015-08-12 2018-04-17 LS-Nikko铜制炼株式会社 The manufacture method of high temperature sintering type conductive paste silver powder
JP2018523758A (en) * 2015-08-12 2018-08-23 エルエスニッコカッパー インコーポレイテッドLs−Nikko Copper Inc. Method for producing silver powder for high-temperature sintered conductive paste
CN106424752A (en) * 2016-09-29 2017-02-22 清华大学深圳研究生院 Silver powder with flower-shaped microstructure and preparation method thereof and electric conducting ink
WO2018070817A1 (en) * 2016-10-13 2018-04-19 엘에스니꼬동제련 주식회사 Silver powder for high temperature sintering, and preparation method therefor
KR101853420B1 (en) * 2016-10-13 2018-04-30 엘에스니꼬동제련 주식회사 Silver powder sintered at high temperature and method of manufacturing the same
CN110114175A (en) * 2016-10-13 2019-08-09 LS-Nikko铜制炼株式会社 High temperature sintering type silver powder and its manufacturing method
CN110114175B (en) * 2016-10-13 2022-06-14 LS-Nikko铜制炼株式会社 High-temperature sintered silver powder and method for producing same
WO2019074336A1 (en) * 2017-10-13 2019-04-18 엘에스니꼬동제련 주식회사 Method for preparing silver powder having improved dispersibility
WO2019088507A1 (en) * 2017-10-30 2019-05-09 엘에스니꼬동제련 주식회사 Silver powder and method for producing same

Similar Documents

Publication Publication Date Title
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
TWI402118B (en) Composition including fine ag particle, method of manufacturing the same, method of manufacturing fine ag particle, and paste having fine ag particle
US20070079665A1 (en) Fine particulate silver powder and production method thereof
JP5847516B2 (en) Flaky silver powder and conductive paste
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
CA2534107A1 (en) Fine-grain silver powder and process for producing the same
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
JP2016028176A (en) Method for manufacturing copper powder
JP6168837B2 (en) Copper fine particles and method for producing the same
JP6130209B2 (en) Conductive film
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JPWO2018190246A1 (en) Copper particle mixture and method for producing the same, copper particle mixture dispersion, copper particle mixture-containing ink, method for storing copper particle mixture, and method for sintering copper particle mixture
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JP2010144197A (en) Metal powder, and method for producing the same
JP2007291513A (en) Silver particle
JP4433743B2 (en) Method for producing copper fine particles
JP2007197836A (en) Nickel powder
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2012115861A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP2008007859A (en) Silver particle
JP5500237B1 (en) Silver powder
JP5985216B2 (en) Silver powder
JP4150638B2 (en) Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110901