JP2005330529A - Spherical silver powder and its production method - Google Patents

Spherical silver powder and its production method Download PDF

Info

Publication number
JP2005330529A
JP2005330529A JP2004149068A JP2004149068A JP2005330529A JP 2005330529 A JP2005330529 A JP 2005330529A JP 2004149068 A JP2004149068 A JP 2004149068A JP 2004149068 A JP2004149068 A JP 2004149068A JP 2005330529 A JP2005330529 A JP 2005330529A
Authority
JP
Japan
Prior art keywords
silver powder
silver
spherical silver
spherical
powder according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149068A
Other languages
Japanese (ja)
Other versions
JP2005330529A5 (en
Inventor
Kozo Ogi
孝造 尾木
Takeaki Fujino
剛聡 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004149068A priority Critical patent/JP2005330529A/en
Priority to US11/132,980 priority patent/US20050257643A1/en
Priority to TW094116087A priority patent/TW200603922A/en
Priority to CN200510074647XA priority patent/CN1700360B/en
Priority to KR1020050041948A priority patent/KR20060046103A/en
Publication of JP2005330529A publication Critical patent/JP2005330529A/en
Publication of JP2005330529A5 publication Critical patent/JP2005330529A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

<P>PROBLEM TO BE SOLVED: To provide spherical silver powder having satisfactory dispersibility and further capable of obtaining satisfactory sinterability even in the case of forming a conductor by being used for paste and fired at a low temperature of ≤600°C, and to provide its production method. <P>SOLUTION: A reducing agent-containing aqueous solution is added to a silver ion-containing water-base reaction system to reductively precipitate silver particles, thus the spherical silver powder in which the ratio (Dx/BET) of the crystallite diameter Dx(nm) to the BET (Brunauer-Emett-Teller) specific surface area (m<SP>2</SP>/g) is 5 to 200, the crystallite diameter is ≤40 nm, the average particle diameter is ≤5 μm, the tap density is ≥2g/cm<SP>3</SP>, and the BET specific surface area is ≤5 m<SP>2</SP>/g is produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、球状銀粉およびその製造方法に関し、特に、電子部品の端子電極や回路基板パターンなどを形成するために用いられる球状銀粉およびその製造方法に関する。   The present invention relates to a spherical silver powder and a method for producing the same, and more particularly to a spherical silver powder used for forming a terminal electrode or a circuit board pattern of an electronic component and a method for producing the same.

従来、電子部品などの電極や回路を形成するために、銀粉を有機成分中に分散させた導電性ペーストが使用されている。一般に、導電性ペーストは、熱処理温度により焼成型ペーストと樹脂型ペーストに分類され、それぞれ用途や構成要素などが異なっている。   Conventionally, a conductive paste in which silver powder is dispersed in an organic component has been used to form electrodes and circuits such as electronic components. In general, the conductive paste is classified into a fired paste and a resin paste depending on the heat treatment temperature, and uses and components are different from each other.

焼成型ペーストは、構成要素として、銀粉、エチルセルロースやアクリル樹脂を有機溶剤に溶解したビヒクル、ガラスフリット、無機酸化物、有機溶剤、分散剤などを含み、ディッピングや印刷などにより所定のパターンに形成された後、焼成されて導体を形成する。このような焼成型ペーストは、ハイブリッドIC、積層セラミックコンデンサ、チップ抵抗器などの電極に使用されている。   The fired paste contains, as constituent elements, silver powder, a vehicle in which ethyl cellulose or acrylic resin is dissolved in an organic solvent, glass frit, an inorganic oxide, an organic solvent, a dispersant, etc., and is formed into a predetermined pattern by dipping or printing. And then fired to form a conductor. Such fired paste is used for electrodes of hybrid ICs, multilayer ceramic capacitors, chip resistors and the like.

焼成型ペーストの焼成温度は用途によって異なるが、ハイブリッドICに用いられるアルミナ基板やガラスセラミック基板のような耐熱性のセラミック基板上において焼成型ペーストを高温で焼成することにより導体を形成する場合と、耐熱性が低い基板上において焼成型ペーストを低温で焼成することにより導体を形成する場合がある。   The firing temperature of the firing paste varies depending on the application, and when a conductor is formed by firing the firing paste at a high temperature on a heat-resistant ceramic substrate such as an alumina substrate or a glass ceramic substrate used in a hybrid IC, In some cases, a conductor is formed by baking a baking paste at a low temperature on a substrate having low heat resistance.

銀の融点は950℃であり、その融点以下の可能な限り高温で焼成すれば、銀の焼結体の抵抗値が下がるが、焼成温度に適した銀粉を使用しなければ、様々な不具合が生じる。例えば、セラミック基板上において高温で焼成する場合には、銀の焼結体とセラミック基板との収縮差によってクラックやデラミネーション(積層剥離)などの不具合が生じることがあり、このような不具合を解決するために、高結晶の銀粉が提案されている(例えば、特許文献1、特許文献2参照)。   The melting point of silver is 950 ° C., and if it is fired at the highest possible temperature below that melting point, the resistance of the silver sintered body will decrease, but if silver powder suitable for the firing temperature is not used, various problems will occur. Arise. For example, when firing at a high temperature on a ceramic substrate, defects such as cracks and delamination (lamination delamination) may occur due to the difference in shrinkage between the sintered silver body and the ceramic substrate. In order to do so, highly crystalline silver powder has been proposed (see, for example, Patent Document 1 and Patent Document 2).

一方、樹脂型ペーストは、スルーホールやメンブレンなどの配線材や導電性接着剤などに使用されている。このような樹脂型ペーストは、構成要素として、銀粉、エポキシ樹脂やウレタン樹脂などの熱硬化性樹脂、硬化剤、有機溶剤、分散剤などを含み、ディスペンスや印刷などにより所定の導体パターンに形成され、室温から250℃程度の温度で硬化し、残存する樹脂の硬化収縮による銀粒子同士の接触により導電性が得られる。したがって、銀粒子同士の接触面積を増大するために、通常、銀粉を機械的に鱗辺状に加工したフレーク銀粉が使用されている。なお、300℃以上の温度では、樹脂が劣化して導体の抵抗や接着強度が悪化する。   On the other hand, resin paste is used for wiring materials such as through holes and membranes, and conductive adhesives. Such resin-type paste contains silver powder, thermosetting resin such as epoxy resin and urethane resin, curing agent, organic solvent, dispersant, etc. as a component, and is formed into a predetermined conductor pattern by dispensing or printing. The resin is cured at a temperature from room temperature to about 250 ° C., and conductivity is obtained by contact between silver particles due to curing shrinkage of the remaining resin. Therefore, in order to increase the contact area between the silver particles, flaky silver powder obtained by mechanically processing silver powder into a scale shape is usually used. Note that, at a temperature of 300 ° C. or higher, the resin deteriorates and the resistance and adhesive strength of the conductor deteriorate.

特開2000−1076号公報(段落番号0008−0009)JP 2000-1076 A (paragraph numbers 0008-0009) 特開2000−1077号公報(段落番号0012−0013)JP 2000-1077 A (paragraph number 0012-0013)

しかし、例えば、プラズマディスプレイパネル(PDP)基板の場合には、基板の材料であるガラスの耐熱性が低いため、セラミック基板の場合と異なり、750〜900℃程度の高温で焼成することができない。したがって、より低い温度で焼成することが必要になり、基板の耐熱性との関係で600℃以下の温度、実際には500〜600℃の低温で焼成することにより導体を形成する必要があるが、導体の抵抗値を低くするのが困難になる。   However, for example, in the case of a plasma display panel (PDP) substrate, since the heat resistance of glass as a substrate material is low, unlike a ceramic substrate, it cannot be fired at a high temperature of about 750 to 900 ° C. Therefore, it is necessary to fire at a lower temperature, and it is necessary to form a conductor by firing at a temperature of 600 ° C. or lower, in fact, at a low temperature of 500 to 600 ° C. in relation to the heat resistance of the substrate. It becomes difficult to reduce the resistance value of the conductor.

低温で焼成する場合、焼成温度より低い軟化点のガラスフリットを添加して焼結を促進させることにより導体の抵抗値を下げることができる。しかし、繰り返し焼成を行うPDP基板の場合には、必要以上に低い軟化点のガラスフリットを使用することは、導体の抵抗値の変動の原因になるので好ましくない。   When firing at a low temperature, the resistance value of the conductor can be lowered by adding glass frit having a softening point lower than the firing temperature to promote sintering. However, in the case of a PDP substrate that is repeatedly fired, it is not preferable to use a glass frit having a softening point that is lower than necessary because it causes fluctuations in the resistance value of the conductor.

また、銀粉を感光性ペーストに使用する場合には、銀粉の形状が不定形やフレーク状であると、紫外線の散乱や反射が起こり、パターニング不良の原因になる。   Moreover, when using silver powder for the photosensitive paste, when the shape of the silver powder is indefinite or flaky, scattering or reflection of ultraviolet rays occurs, resulting in patterning failure.

さらに、その他の方法、例えば、印刷法や転写法により導体パターンを形成する場合にも、スクリーン版の抜け性や転写性の観点から、銀粉の形状が不定形やフレーク状であると、良好な導体パターンを形成することができない。   Furthermore, when a conductor pattern is formed by other methods, for example, a printing method or a transfer method, it is preferable that the shape of the silver powder is indefinite or flaky from the viewpoint of the detachability and transferability of the screen plate. A conductor pattern cannot be formed.

したがって、本発明は、このような従来の問題点に鑑み、ペーストに使用して600℃以下の低温で焼成することにより導体を形成する場合にも良好な焼結性を得ることができる、球状銀粉およびその製造方法を提供することを目的とする。また、本発明は、良好な分散性を有する球状銀粉およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention can obtain a good sinterability even when a conductor is formed by firing at a low temperature of 600 ° C. or lower using a paste. It aims at providing silver powder and its manufacturing method. Moreover, an object of this invention is to provide the spherical silver powder which has favorable dispersibility, and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)が5〜200の球状の銀粉、好ましくは結晶子径が40nm以下で平均粒径が5μm以下の球状の銀粉をペーストに使用して焼成することにより導体を形成すれば、焼成温度が600℃以下の低温でも良好な焼結性を得ることができ、また、タップ密度が2g/cm以上、BET比表面積5m/g以下の分散性が良好な球状銀粉を使用したペーストから、感光性ペースト法、印刷法または転写法により良好な導体パターンを得ることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have obtained a spherical silver powder having a ratio (Dx / BET) of crystallite diameter Dx (nm) to BET specific surface area (m 2 / g) of 5 to 200. Preferably, if a conductor is formed by using spherical silver powder having a crystallite diameter of 40 nm or less and an average particle diameter of 5 μm or less as a paste to form a conductor, good sinterability even at a low temperature of 600 ° C. or less From a paste using spherical silver powder having good dispersibility with a tap density of 2 g / cm 3 or more and a BET specific surface area of 5 m 2 / g or less, by a photosensitive paste method, a printing method or a transfer method. The present inventors have found that a good conductor pattern can be obtained and have completed the present invention.

すなわち、本発明による球状銀粉は、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)が5〜200であることを特徴とする。この球状銀粉は、結晶子径が40nm以下、平均粒径が5μm以下、タップ密度が2g/cm以上、BET比表面積が5m/g以下であるのが好ましい。 That is, the spherical silver powder according to the present invention is characterized in that the ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) is 5 to 200 . The spherical silver powder preferably has a crystallite size of 40 nm or less, an average particle size of 5 μm or less, a tap density of 2 g / cm 3 or more, and a BET specific surface area of 5 m 2 / g or less.

また、本発明による球状銀粉の製造方法は、銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させることにより、上記の球状銀粉を製造することを特徴とする。この球状銀粉の製造方法において、銀粒子の還元析出前または還元析出後のスラリー状の反応系に分散剤を添加するのが好ましい。この分散剤は、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート形成剤および保護コロイドからなる群から選ばれる1種以上の分散剤であるのが好ましい。還元剤含有水溶液に含まれる還元剤は、アスコルビン酸、アルカノールアミン、ヒドロキノン、ヒドラジンおよびホルマリンからなる群から選ばれる1種以上の還元剤であるのが好ましい。還元剤含有水溶液は、銀イオンを含有する水性反応系中の銀の含有量に対して1当量/分以上の速度で添加するのが好ましい。また、得られた球状銀粉に、粒子同士を機械的に衝突させる表面平滑化処理を施すのが好ましく、表面平滑化処理を施した後に、分級により銀の凝集体を除去するのが好ましい。   The method for producing spherical silver powder according to the present invention is characterized in that the above spherical silver powder is produced by adding a reducing agent-containing aqueous solution to an aqueous reaction system containing silver ions to reduce and precipitate silver particles. . In this method for producing spherical silver powder, it is preferable to add a dispersant to the slurry-like reaction system before or after the reduction precipitation of silver particles. This dispersant is preferably one or more dispersants selected from the group consisting of fatty acids, fatty acid salts, surfactants, organometallics, chelating agents, and protective colloids. The reducing agent contained in the reducing agent-containing aqueous solution is preferably one or more reducing agents selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin. The reducing agent-containing aqueous solution is preferably added at a rate of 1 equivalent / minute or more with respect to the silver content in the aqueous reaction system containing silver ions. The obtained spherical silver powder is preferably subjected to a surface smoothing treatment that causes particles to mechanically collide with each other. After the surface smoothing treatment, it is preferable to remove silver aggregates by classification.

本発明によれば、良好な分散性を有するとともに、ペーストに使用して600℃以下の低温で焼成することにより導体を形成する場合にも良好な焼結性を得ることができる、球状銀粉を製造することができる。   According to the present invention, there is provided a spherical silver powder that has good dispersibility and can obtain good sinterability even when a conductor is formed by firing at a low temperature of 600 ° C. or lower when used in a paste. Can be manufactured.

本発明による球状銀粉の実施の形態では、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)が5〜200であり、好ましくは、結晶子径が40nm以下、平均粒径が5μm以下である。このような銀粉は、ペーストに使用して600℃以下の低温で焼成しても良好な焼結性を得ることができるため、形成された導体の抵抗値を低くすることができる。 In the embodiment of the spherical silver powder according to the present invention, the ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) is 5 to 200 , preferably the crystallite diameter is 40 nm. Hereinafter, the average particle size is 5 μm or less. Since such silver powder can be used in a paste and can obtain good sinterability even when fired at a low temperature of 600 ° C. or lower, the resistance value of the formed conductor can be lowered.

また、銀粉の形状を球状にすることにより、感光性ペースト法に使用するのに適した銀粉になる。銀粉の形状が不定形やフレーク状の場合には、紫外線の乱反射や散乱が起こるために感光特性が劣り、不具合が生じるが、銀粉の形状が球状であれば、印刷法や転写法に使用するのにも適している。   Moreover, it becomes silver powder suitable for using for the photosensitive paste method by making the shape of silver powder spherical. When the shape of the silver powder is irregular or flakes, the ultraviolet light diffuses or scatters, resulting in inferior photosensitivity and problems. However, if the silver powder has a spherical shape, it is used for printing and transfer methods. Also suitable for.

また、本発明による球状銀粉の実施の形態では、タップ密度が2g/cm以上、BET比表面積5m/g以下であるのが好ましい。タップ密度が2g/cmより小さいと、銀粒子同士の凝集が激しく、上記のいずれの方法に使用した場合も、ファインライン化への対応が難しく、また、BET比表面積が5m/gより大きいと、ペーストの粘度が高過ぎて作業性に劣るからである。 In the embodiment of the spherical silver powder according to the present invention, it is preferable that the tap density is 2 g / cm 3 or more and the BET specific surface area is 5 m 2 / g or less. When the tap density is less than 2 g / cm 3 , the silver particles agglomerate strongly, and when used in any of the above methods, it is difficult to cope with fine lines, and the BET specific surface area is less than 5 m 2 / g. This is because if it is large, the viscosity of the paste is too high and the workability is poor.

本発明による球状銀粉の製造方法の実施の形態では、銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させる。この銀粒子の還元析出前または還元析出後のスラリー状の反応系に分散剤を添加するのが好ましい。   In the embodiment of the method for producing spherical silver powder according to the present invention, a reducing agent-containing aqueous solution is added to an aqueous reaction system containing silver ions to reduce and precipitate silver particles. It is preferable to add a dispersant to the slurry-like reaction system before or after the reduction precipitation of the silver particles.

銀イオンを含有する水性反応系としては、硝酸銀、銀塩錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。銀塩錯体は、アンモニア水、アンモニア塩、キレート化合物などの添加により生成することができる。また、銀中間体は、水酸化ナトリウム、塩化ナトリウム、炭酸ナトリウムなどの添加により生成することができる。これらの中で、銀粉が適当な粒径と球状の形状を有するようにするためには、硝酸銀水溶液にアンモニア水を添加して得られるアンミン錯体を使用するのが好ましい。アンミン錯体の配位数は2であるため、銀1モル当たりアンモニアを2モル以上添加する。   As an aqueous reaction system containing silver ions, an aqueous solution or slurry containing silver nitrate, a silver salt complex or a silver intermediate can be used. A silver salt complex can be produced by adding ammonia water, an ammonia salt, a chelate compound, or the like. The silver intermediate can be produced by adding sodium hydroxide, sodium chloride, sodium carbonate or the like. Among these, it is preferable to use an ammine complex obtained by adding aqueous ammonia to an aqueous silver nitrate solution so that the silver powder has an appropriate particle size and spherical shape. Since the coordination number of the ammine complex is 2, 2 moles or more of ammonia is added per mole of silver.

還元剤としては、アスコルビン酸、亜硫酸塩、アルカノールアミン、過酸化水素水、ギ酸、ギ酸アンモニウム、ギ酸ナトリウム、グリオキサール、酒石酸、次亜りん酸ナトリウム、水素化ほう素ナトリウム、ヒドラジン、ヒドラジン化合物、ヒドロキノン、ピロガロール、ぶどう糖、没食子酸、ホルマリン、無水亜硫酸ナトリウム、ロンガリットなどを使用することができる。これらの中で、アスコルビン酸、アルカノールアミン、ヒドロキノン、ヒドラジンおよびホルマリンからなる群から選ばれる1種以上を使用するのが好ましい。これらの還元剤を使用すれば、適当な結晶性と適当な粒径の銀粒子を得ることができる。   As the reducing agent, ascorbic acid, sulfite, alkanolamine, hydrogen peroxide solution, formic acid, ammonium formate, sodium formate, glyoxal, tartaric acid, sodium hypophosphite, sodium borohydride, hydrazine, hydrazine compound, hydroquinone, Pyrogallol, glucose, gallic acid, formalin, anhydrous sodium sulfite, Rongalite and the like can be used. Among these, it is preferable to use one or more selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin. If these reducing agents are used, silver particles having an appropriate crystallinity and an appropriate particle size can be obtained.

また、還元剤の添加方法については、銀粉の凝集を防ぐために、1当量/分以上の速さで添加するのが好ましい。この理由は明確ではないが、還元剤を短時間で投入することで、銀粒子の還元析出が一挙に生じて、短時間で還元反応が終了し、発生した核同士の凝集が生じ難いため、分散性が向上すると考えられる。また、還元の際には、より短時間で反応が終了するように反応液を攪拌するのが好ましい。   Moreover, about the addition method of a reducing agent, in order to prevent aggregation of silver powder, it is preferable to add at a speed | rate of 1 equivalent / min or more. The reason for this is not clear, but by introducing the reducing agent in a short time, reduction precipitation of silver particles occurs at once, the reduction reaction is completed in a short time, and aggregation of the generated nuclei is difficult to occur, It is thought that dispersibility is improved. In the reduction, the reaction solution is preferably stirred so that the reaction is completed in a shorter time.

分散剤としては、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート形成剤および保護コロイドからなる群から選ばれる1種以上を使用するのが好ましい。脂肪酸の例として、プロピオン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸などを挙げることができる。脂肪酸塩の例として、リチウム、ナトリウム、カリウム、バリウム、マグネシウム、カルシウム、アルミニウム、鉄、コバルト、マンガン、鉛、亜鉛、スズ、ストロンチウム、ジルコニウム、銀、銅などの金属と脂肪酸が塩を形成したものを挙げることができる。界面活性剤の例として、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩のような陰イオン界面活性剤、脂肪族4級アンモニウム塩のような陽イオン界面活性剤、イミダゾリニウムベタインのような両性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステルのような非イオン界面活性剤などを挙げることができる。有機金属の例として、アセチルアセトントリブトキシジルコニウム、クエン酸マグネシウム、ジエチル亜鉛、ジブチルスズオキサイド、ジメチル亜鉛、テトラ−n−ブトキシジルコニウム、トリエチルインジウム、トリエチルガリウム、トリメチルインジイウム、トリメチルガリウム、モノブチルスズオキサイド、テトライソシアネートシラン、テトラメチルシラン、テトラメトキシシラン、ポリメトキシシロキサン、モノメチルトリイソシアネートシラン、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などを挙げることができる。キレート形成剤の例として、イミダゾール、オキサゾール、チアゾール、セレナゾール、ピラゾール、イソオキサゾール、イソチアゾール、1H−1,2,3−トリアゾール、2H−1,2,3−トリアゾール、1H−1,2,4−トリアゾール、4H−1,2,4−トリアゾール、1,2,3−オキサジアゾール、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,3−チアジアゾール、1,2,4−チアジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、1H−1,2,3,4−テトラゾール、1,2,3,4−オキサトリアゾール、1,2,3,4−チアトリアゾール、2H−1,2,3,4−テトラゾール、1,2,3,5−オキサトリアゾール、1,2,3,5−チアトリアゾール、インダゾール、ベンゾイミダゾールおよびベンゾトリアゾールとこれらの塩、あるいは、シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、グリコール酸、乳酸、オキシ酪酸、グリセリン酸、酒石酸、リンゴ酸、タルトロン酸、ヒドロアクリル酸、マンデル酸、クエン酸、アスコルビン酸などを挙げることができる。保護コロイドの例として、ゼラチン、アルブミン、アラビアゴム、プロタルビン酸、リサルビン酸などを挙げることができる。   As the dispersant, it is preferable to use one or more selected from the group consisting of fatty acids, fatty acid salts, surfactants, organic metals, chelating agents, and protective colloids. Examples of fatty acids include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, arachidonic acid and the like. Examples of fatty acid salts are salts of fatty acids and metals such as lithium, sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, lead, zinc, tin, strontium, zirconium, silver, and copper Can be mentioned. Examples of surfactants include anionic surfactants such as alkyl benzene sulfonates and polyoxyethylene alkyl ether phosphates, cationic surfactants such as aliphatic quaternary ammonium salts, and imidazolinium betaines. Nonionic surfactants such as amphoteric surfactants, polyoxyethylene alkyl ethers, and polyoxyethylene fatty acid esters. Examples of organometals include acetylacetone tributoxyzirconium, magnesium citrate, diethylzinc, dibutyltin oxide, dimethylzinc, tetra-n-butoxyzirconium, triethylindium, triethylgallium, trimethylindiium, trimethylgallium, monobutyltin oxide, tetra Examples include isocyanate silane, tetramethylsilane, tetramethoxysilane, polymethoxysiloxane, monomethyltriisocyanate silane, silane coupling agent, titanate coupling agent, aluminum coupling agent and the like. Examples of chelating agents include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, 1H-1,2,3-triazole, 2H-1,2,3-triazole, 1H-1,2,4. -Triazole, 4H-1,2,4-triazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxa Diazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1H-1,2,3,4-tetrazole, 1,2 , 3,4-oxatriazole, 1,2,3,4-thiatriazole, 2H-1,2,3,4-tetrazole, 1,2,3,5-oxatriazole, 1 2,3,5-thiatriazole, indazole, benzimidazole and benzotriazole and their salts, or oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Dodecanedioic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, glycolic acid, lactic acid, oxybutyric acid, glyceric acid, tartaric acid, malic acid, tartronic acid, hydroacrylic acid, mandelic acid, citric acid, ascorbic acid And so on. Examples of protective colloids include gelatin, albumin, gum arabic, protalbic acid, lysalbic acid and the like.

このようにして得られた球状銀粉に、粒子同士を機械的に衝突させる表面平滑化処理を施した後に、分級により銀の凝集体を除去して感光性ペーストに使用すると、感度が良好になり、得られるパターンの直線性も極めて良好になり、ファインパターン化への対応が可能になる。また、このようにして得られた銀粉は、印刷法に用いた場合に版抜け性に優れ、転写法に用いた場合に転写性に優れ、各種の方法への使用に適している。   The spherical silver powder thus obtained is subjected to a surface smoothing treatment that mechanically collides particles, and then the silver aggregates are removed by classification and used in a photosensitive paste, so that the sensitivity is improved. Also, the linearity of the obtained pattern becomes very good, and it becomes possible to cope with fine patterning. Further, the silver powder obtained in this way is excellent in plate slippage when used in a printing method and excellent in transferability when used in a transfer method, and is suitable for use in various methods.

以下、本発明による球状銀粉およびその製造方法の実施例について詳細に説明する。   Examples of the spherical silver powder and its production method according to the present invention will be described in detail below.

[実施例1]
銀イオンとして12g/Lの硝酸銀溶液3600mLに、工業用のアンモニア300mLを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液に水酸化ナトリウム60gを加えてpHを調整した後、還元剤として工業用のホルマリン90mLを10秒で加えた。その直後に、ステアリン酸エマルジョン0.5gを加えて銀のスラリーを得た。この銀のスラリーをろ過、水洗した後、乾燥して銀粉を得た。この銀粉に高速攪拌機で表面平滑化処理を施した後、分級により8μmより大きい銀の凝集体を除去した。
[Example 1]
300 mL of industrial ammonia was added to 3600 mL of a 12 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. After adjusting the pH by adding 60 g of sodium hydroxide to the silver ammine complex solution, 90 mL of industrial formalin was added as a reducing agent in 10 seconds. Immediately thereafter, 0.5 g of stearic acid emulsion was added to obtain a silver slurry. The silver slurry was filtered, washed with water, and dried to obtain silver powder. The silver powder was subjected to a surface smoothing treatment with a high-speed stirrer, and then silver aggregates larger than 8 μm were removed by classification.

このようにして得られた銀粉について、結晶子径を算出し、BET比表面積、タップ密度および平均粒径D50を測定し、導電性を評価した。なお、本実施例および以下の実施例、比較例において得られた銀粉が球状銀粉であることを走査型電子顕微鏡(SEM)により確認した。 The silver powder thus obtained, to calculate the crystallite size, BET specific surface area, tap density and mean particle diameter D 50 was measured to evaluate the conductivity. In addition, it confirmed with the scanning electron microscope (SEM) that the silver powder obtained in the present Example and the following Examples and Comparative Examples was spherical silver powder.

また、銀粉の結晶子径は、以下のScherrerの式によって求めた。
Dhkl=Kλ/βcosθ
ここで、Dhklは結晶子径の大きさ(hklに垂直な方向の結晶子の大きさ)(オングストローム)、λは測定X線の波長(オングストローム)(Cuターゲット使用時1.5405オングストローム)、βは結晶子の大きさによる回折線の広がり(rad)(半価幅を用いて表す)、θは回折角のブラッグ角(rad)(入射角と反射角が等しいときの角度であり、ピークトップの角度を使用する)、KはScherrer定数(Dやβの定義により異なり、βに半価幅を用いる場合にはK=0.94)である。なお、測定には粉末X線回折装置を使用し、計算には(200)面のピークデータを使用した。
The crystallite diameter of the silver powder was determined by the following Scherrer equation.
Dhkl = Kλ / βcosθ
Here, Dhkl is the size of the crystallite (the size of the crystallite in the direction perpendicular to hkl) (angstrom), λ is the wavelength of the measured X-ray (angstrom) (1.5405 angstrom when using the Cu target), β Is the broadening of the diffraction line depending on the size of the crystallite (rad) (expressed using the half width), and θ is the Bragg angle (rad) of the diffraction angle (the angle when the incident angle and the reflection angle are equal, and the peak top) K is a Scherrer constant (depending on the definition of D or β, and K = 0.94 when using a half-value width for β). Note that a powder X-ray diffractometer was used for the measurement, and peak data on the (200) plane was used for the calculation.

また、導電性の評価については、65重量部の銀粉と、14重量部のアクリル樹脂(三菱レイヨン(株)製のBR−105)と、21重量部の有機溶剤(ジエチレングリコールモノエチルエーテルアセテート(試薬))と、1重量部のガラスフリット(日本電気硝子(株)製のGA−8)とを計量し、3本ロールで混錬してペーストを作製した後、このペーストを市販のソーダガラス基板上に印刷し、550℃で10分間焼成し、得られた焼結体の導電性を評価した。この抵抗値が3×10−6Ω以下で安定している場合を良好とし、3×10−6Ω以上または安定しない場合を良好でないとして評価した。 In addition, regarding the evaluation of conductivity, 65 parts by weight of silver powder, 14 parts by weight of acrylic resin (BR-105 manufactured by Mitsubishi Rayon Co., Ltd.), and 21 parts by weight of an organic solvent (diethylene glycol monoethyl ether acetate (reagent) )) And 1 part by weight of glass frit (GA-8 manufactured by Nippon Electric Glass Co., Ltd.), and kneaded with three rolls to prepare a paste. It was printed on and fired at 550 ° C. for 10 minutes, and the conductivity of the obtained sintered body was evaluated. The case where the resistance value was stable at 3 × 10 −6 Ω or less was evaluated as good, and the case where the resistance value was 3 × 10 −6 Ω or higher or not stable was evaluated as not good.

その結果、結晶子径は32.4nm、BET比表面積は0.75m/g、タップ密度は5.0g/cm、平均粒径D50は1.4μmであり、導電性は良好であった。また、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)は43であった。 As a result, the crystallite diameter was 32.4 nm, the BET specific surface area was 0.75 m 2 / g, the tap density was 5.0 g / cm 3 , the average particle diameter D 50 was 1.4 μm, and the conductivity was good. It was. Further, the ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) was 43.

[実施例2]
銀イオンとして12g/Lの硝酸銀溶液3600mLに、工業用のアンモニア180mLを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液に水酸化ナトリウム7gを加えてpHを調整した後、還元剤として工業用のホルマリン192mLを10秒で加えた。その直後に、オレイン酸0.1gを加えて銀のスラリーを得た。この銀のスラリーをろ過、水洗した後、乾燥して銀粉を得た。この銀粉をフードミキサーで解砕した。
[Example 2]
180 mL of industrial ammonia was added to 3600 mL of a 12 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. After adding sodium hydroxide 7g to this silver ammine complex solution and adjusting pH, 192 mL of industrial formalin was added in 10 seconds as a reducing agent. Immediately thereafter, 0.1 g of oleic acid was added to obtain a silver slurry. The silver slurry was filtered, washed with water, and dried to obtain silver powder. This silver powder was crushed with a food mixer.

このようにして得られた銀粉について、実施例1と同様の方法により、結晶子径を算出し、BET比表面積、タップ密度および平均粒径D50を測定し、導電性を評価した。その結果、結晶子径は29.6nm、BET比表面積は0.46m/g、タップ密度は4.7g/cm、平均粒径D50は2.1μmであり、導電性は良好であった。また、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)は64であった。 The silver powder thus obtained, in the same manner as in Example 1, to calculate the crystallite size, BET specific surface area, tap density and mean particle diameter D 50 was measured to evaluate the conductivity. As a result, the crystallite diameter was 29.6 nm, the BET specific surface area was 0.46 m 2 / g, the tap density was 4.7 g / cm 3 , the average particle diameter D 50 was 2.1 μm, and the conductivity was good. It was. Moreover, the ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) was 64.

[実施例3]
銀イオンとして12g/Lの硝酸銀溶液3600mLに、工業用のアンモニア180mLを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液に水酸化ナトリウム1gを加えてpH調整した後、還元剤として工業用のホルマリン192mLを15秒で加えた。その直後に、ステアリン酸0.1gを加えて銀のスラリーを得た。この銀のスラリーをろ過、水洗した後、乾燥して銀粉を得た。この銀粉に高速攪拌機で表面平滑化処理を施した後、分級により11μmより大きい銀の凝集体を除去した。
[Example 3]
180 mL of industrial ammonia was added to 3600 mL of a 12 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. After adjusting the pH by adding 1 g of sodium hydroxide to the silver ammine complex solution, 192 mL of industrial formalin was added as a reducing agent in 15 seconds. Immediately thereafter, 0.1 g of stearic acid was added to obtain a silver slurry. The silver slurry was filtered, washed with water, and dried to obtain silver powder. The silver powder was subjected to a surface smoothing treatment with a high-speed stirrer, and then silver aggregates larger than 11 μm were removed by classification.

このようにして得られた銀粉について、実施例1と同様の方法により、結晶子径を算出し、BET比表面積、タップ密度および平均粒径D50を測定し、導電性を評価した。その結果、結晶子径は33.3nm、BET比表面積は0.28m/g、タップ密度は5.4g/cm、平均粒径D50は3.1μmであり、導電性は良好であった。また、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)は119であった。 The silver powder thus obtained, in the same manner as in Example 1, to calculate the crystallite size, BET specific surface area, tap density and mean particle diameter D 50 was measured to evaluate the conductivity. As a result, the crystallite diameter was 33.3 nm, the BET specific surface area was 0.28 m 2 / g, the tap density was 5.4 g / cm 3 , the average particle diameter D 50 was 3.1 μm, and the conductivity was good. It was. The ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) was 119.

[実施例4]
銀イオンとして12g/Lの硝酸銀溶液3600mLに、工業用のアンモニア150mLを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液に還元剤として工業用のヒドラジン13mLを2秒で加えた。その直後に、オレイン酸0.2gを加えて銀のスラリーを得た。この銀のスラリーをろ過、水洗した後、乾燥して銀粉を得た。この銀粉に高速攪拌機で表面平滑化処理を施した。
[Example 4]
150 mL of industrial ammonia was added to 3600 mL of a 12 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. To this silver ammine complex solution, 13 mL of industrial hydrazine was added in 2 seconds as a reducing agent. Immediately thereafter, 0.2 g of oleic acid was added to obtain a silver slurry. The silver slurry was filtered, washed with water, and dried to obtain silver powder. The silver powder was subjected to a surface smoothing treatment with a high-speed stirrer.

このようにして得られた銀粉について、実施例1と同様の方法により、結晶子径を算出し、BET比表面積、タップ密度および平均粒径D50を測定し、導電性を評価した。その結果、結晶子径は34.0nm、BET比表面積は0.86m/g、タップ密度は4.0g/cm、平均粒径D50は1.7μmであり、導電性は良好であった。また、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)は39であった。 The silver powder thus obtained, in the same manner as in Example 1, to calculate the crystallite size, BET specific surface area, tap density and mean particle diameter D 50 was measured to evaluate the conductivity. As a result, the crystallite diameter was 34.0 nm, the BET specific surface area was 0.86 m 2 / g, the tap density was 4.0 g / cm 3 , the average particle diameter D 50 was 1.7 μm, and the conductivity was good. It was. Moreover, the ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) was 39.

[比較例1]
銀イオンとして6g/Lの硝酸銀溶液3600mLに、工業用のアンモニア50mLを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液に還元剤として工業用の過酸化水素水60mLを15秒で加えた。その直後に、ステアリン酸ソーダ0.1gを加えて銀のスラリーを得た。この銀のスラリーをろ過、水洗した後、乾燥して銀粉を得た。
[Comparative Example 1]
To 3600 mL of a 6 g / L silver nitrate solution as silver ions, 50 mL of industrial ammonia was added to produce a silver ammine complex solution. To this silver ammine complex solution, 60 mL of industrial hydrogen peroxide solution was added as a reducing agent in 15 seconds. Immediately thereafter, 0.1 g of sodium stearate was added to obtain a silver slurry. The silver slurry was filtered, washed with water, and dried to obtain silver powder.

このようにして得られた銀粉について、実施例1と同様の方法により、結晶子径を算出し、BET比表面積、タップ密度および平均粒径D50を測定し、導電性を評価した。その結果、結晶子径は47.8nm、BET比表面積は0.15m/g、タップ密度は5.0g/cm、平均粒径D50は6.5μmであり、導電性は良好ではなかった。また、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)は318であった。 The silver powder thus obtained, in the same manner as in Example 1, to calculate the crystallite size, BET specific surface area, tap density and mean particle diameter D 50 was measured to evaluate the conductivity. As a result, the crystallite diameter was 47.8 nm, the BET specific surface area was 0.15 m 2 / g, the tap density was 5.0 g / cm 3 , the average particle diameter D 50 was 6.5 μm, and the conductivity was not good. It was. The ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) was 318.

[比較例2]
市販のアトマイズ銀粉(5μm)について、実施例1と同様の方法により、結晶子径を算出し、BET比表面積、タップ密度および平均粒径D50を測定し、導電性を評価した。その結果、結晶子径は42.6nm、BET比表面積は0.21m/g、タップ密度は5.2g/cm、平均粒径D50は5.3μmであり、導電性は良好ではなかった。また、BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)は203であった。
[Comparative Example 2]
With respect to commercially available atomized silver powder (5 μm), the crystallite diameter was calculated by the same method as in Example 1, the BET specific surface area, the tap density, and the average particle diameter D 50 were measured, and the conductivity was evaluated. As a result, the crystallite diameter was 42.6 nm, the BET specific surface area was 0.21 m 2 / g, the tap density was 5.2 g / cm 3 , the average particle diameter D 50 was 5.3 μm, and the conductivity was not good. It was. The ratio (Dx / BET) of the crystallite diameter Dx (nm) to the BET specific surface area (m 2 / g) was 203.

これらの結果を表1に示す。なお、表1では、導電性の評価が良好な場合を○、良好でない場合を×で示している。   These results are shown in Table 1. In Table 1, the case where the conductivity evaluation is good is indicated by ◯, and the case where the conductivity is not good is indicated by ×.

Figure 2005330529
Figure 2005330529

Claims (10)

BET比表面積(m/g)に対する結晶子径Dx(nm)の比(Dx/BET)が5〜200であることを特徴とする、球状銀粉。 A spherical silver powder having a ratio (Dx / BET) of crystallite diameter Dx (nm) to BET specific surface area (m 2 / g) of 5 to 200 . 前記結晶子径が40nm以下であり、平均粒径が5μm以下であることを特徴とする、請求項1に記載の球状銀粉。 The spherical silver powder according to claim 1, wherein the crystallite diameter is 40 nm or less and the average particle diameter is 5 μm or less. タップ密度が2g/cm以上であり、BET比表面積が5m/g以下であることを特徴とする、請求項1または2に記載の球状銀粉。 The spherical silver powder according to claim 1 or 2, wherein a tap density is 2 g / cm 3 or more and a BET specific surface area is 5 m 2 / g or less. 銀イオンを含有する水性反応系に還元剤含有水溶液を添加して銀粒子を還元析出させることにより、請求項1乃至3のいずれかに記載の球状銀粉を製造することを特徴とする、球状銀粉の製造方法。 The spherical silver powder according to any one of claims 1 to 3, wherein the spherical silver powder according to any one of claims 1 to 3 is produced by adding a reducing agent-containing aqueous solution to an aqueous reaction system containing silver ions to reduce and precipitate silver particles. Manufacturing method. 前記銀粒子の還元析出前または還元析出後のスラリー状の反応系に分散剤を添加することを特徴とする、請求項4に記載の球状銀粉の製造方法。 The method for producing a spherical silver powder according to claim 4, wherein a dispersing agent is added to the slurry-like reaction system before or after the reduction precipitation of the silver particles. 前記分散剤が、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート形成剤および保護コロイドからなる群から選ばれる1種以上の分散剤であることを特徴とする、請求項5に記載の球状銀粉の製造方法。 6. The spherical shape according to claim 5, wherein the dispersant is one or more dispersants selected from the group consisting of fatty acids, fatty acid salts, surfactants, organometallics, chelating agents, and protective colloids. A method for producing silver powder. 前記還元剤含有水溶液に含まれる還元剤が、アスコルビン酸、アルカノールアミン、ヒドロキノン、ヒドラジンおよびホルマリンからなる群から選ばれる1種以上の還元剤であることを特徴とする、請求項4乃至6のいずれかに記載の球状銀粉の製造方法。 The reducing agent contained in the reducing agent-containing aqueous solution is one or more reducing agents selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine, and formalin. A method for producing the spherical silver powder according to claim 1. 前記還元剤含有水溶液を、前記銀イオンを含有する水性反応系中の銀の含有量に対して1当量/分以上の速度で添加することを特徴とする、請求項4乃至7のいずれかに記載の球状銀粉の製造方法。 The reducing agent-containing aqueous solution is added at a rate of 1 equivalent / min or more with respect to the silver content in the aqueous reaction system containing the silver ions. The manufacturing method of spherical silver powder of description. 前記球状銀粉に、粒子同士を機械的に衝突させる表面平滑化処理を施すことを特徴とする、請求項4乃至8のいずれかに記載の球状銀粉の製造方法。 The method for producing a spherical silver powder according to any one of claims 4 to 8, wherein the spherical silver powder is subjected to a surface smoothing treatment in which particles are mechanically collided with each other. 前記表面平滑化処理を施した後、分級により銀の凝集体を除去することを特徴とする、請求項9に記載の球状銀粉の製造方法。

The method for producing spherical silver powder according to claim 9, wherein after the surface smoothing treatment, silver aggregates are removed by classification.

JP2004149068A 2004-05-19 2004-05-19 Spherical silver powder and its production method Pending JP2005330529A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004149068A JP2005330529A (en) 2004-05-19 2004-05-19 Spherical silver powder and its production method
US11/132,980 US20050257643A1 (en) 2004-05-19 2005-05-18 Spherical silver powder and method for producing same
TW094116087A TW200603922A (en) 2004-05-19 2005-05-18 Spherical silver powder and method for producing same
CN200510074647XA CN1700360B (en) 2004-05-19 2005-05-19 Spherical silver powder and method for producing same
KR1020050041948A KR20060046103A (en) 2004-05-19 2005-05-19 Spherical silver powder and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149068A JP2005330529A (en) 2004-05-19 2004-05-19 Spherical silver powder and its production method

Publications (2)

Publication Number Publication Date
JP2005330529A true JP2005330529A (en) 2005-12-02
JP2005330529A5 JP2005330529A5 (en) 2007-04-26

Family

ID=35373926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149068A Pending JP2005330529A (en) 2004-05-19 2004-05-19 Spherical silver powder and its production method

Country Status (5)

Country Link
US (1) US20050257643A1 (en)
JP (1) JP2005330529A (en)
KR (1) KR20060046103A (en)
CN (1) CN1700360B (en)
TW (1) TW200603922A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004649A1 (en) * 2005-07-05 2007-01-11 Mitsui Mining & Smelting Co., Ltd. Highly crystalline silver powder and process for production of the same
JP2007235082A (en) * 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co Paste for solar battery electrode
CN100366368C (en) * 2006-03-23 2008-02-06 福州大学 Non aqueous solution homogeneous phase reduction preparation method of nano-metallic silver
JP2008088453A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Silver powder and its manufacturing method
JP2012193454A (en) * 2012-05-25 2012-10-11 Dowa Holdings Co Ltd Silver powder, and method of producing the same
KR101366292B1 (en) 2009-01-07 2014-02-20 엘지전자 주식회사 Method for managing power in a wireless network
JP2015071814A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method of producing silver powder
CN104646683A (en) * 2015-02-28 2015-05-27 湖南汇通科技有限责任公司 Spherical silver powder with controllable granularity and preparation method thereof
JP2021501267A (en) * 2017-10-31 2021-01-14 エルエスニッコカッパー インコーポレイテッドLs−Nikko Copper Inc. Method of manufacturing silver powder and conductive paste containing silver powder

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046197B1 (en) * 2005-09-21 2011-07-04 니혼한다가부시끼가이샤 Paste-type silver particle composition, the manufacturing method of solid silver, the solid shape is a joining method, and the manufacturing method of a printed wiring board
TWI408702B (en) * 2005-12-22 2013-09-11 Namics Corp Thermosetting type conductive paste and laminated ceramic electronic component having an external electrode formed by using such thermosetting type counductive paste
CN100420528C (en) * 2005-12-28 2008-09-24 中国科学院理化技术研究所 Method for preparing redispersible Ag nanoparticle by using silver halide precrystallization reduction process
US7648557B2 (en) 2006-06-02 2010-01-19 E. I. Du Pont De Nemours And Company Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP5252843B2 (en) * 2007-01-09 2013-07-31 Dowaエレクトロニクス株式会社 Silver ink and its manufacturing method
KR101334052B1 (en) * 2007-01-09 2013-11-29 도와 일렉트로닉스 가부시키가이샤 Silver particle dispersion and process for producing the same
KR20100055492A (en) * 2007-08-20 2010-05-26 디에매트, 인크. Adhesives with thermal conductivity enhanced by mixed silver fillers
CN101752162B (en) * 2008-11-27 2012-07-04 太阳控股株式会社 Photosensitive conductive paste, and electrode and plasma display panel formed using the same
TWI423930B (en) * 2008-12-31 2014-01-21 Ind Tech Res Inst Nano metal solution, nanometal complex grains and manufacturing method of metal film
CN102365690B (en) * 2009-03-31 2013-08-21 太阳控股株式会社 Photosensitive electrically conductive paste and electrode pattern
TW201100185A (en) * 2009-05-01 2011-01-01 Du Pont Silver particles and a process for making them
US8372178B2 (en) * 2009-05-01 2013-02-12 E I Du Pont De Nemours And Company Silver particles and processes for making them
TW201108249A (en) * 2009-08-25 2011-03-01 Du Pont Silver thick film paste compositions and their use in conductors for photovoltaic cells
JP5163687B2 (en) * 2010-04-30 2013-03-13 株式会社村田製作所 Photosensitive conductive paste, method for manufacturing multilayer electronic component using the same, and multilayer electronic component
CN101872652B (en) * 2010-05-26 2012-07-04 广东风华高新科技股份有限公司 Lead-free soldering-resistant full-silver conductive paste
US8366799B2 (en) 2010-08-30 2013-02-05 E I Du Pont De Nemours And Company Silver particles and a process for making them
US8574338B2 (en) 2010-11-17 2013-11-05 E I Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
JP5916633B2 (en) * 2011-01-26 2016-05-11 ナミックス株式会社 Conductive paste and method for producing conductive film
US8715387B2 (en) * 2011-03-08 2014-05-06 E I Du Pont De Nemours And Company Process for making silver powder particles with small size crystallites
TW201505034A (en) * 2011-03-31 2015-02-01 Taiyo Holdings Co Ltd Conductive paste
CN103702786B (en) * 2011-07-29 2015-07-29 户田工业株式会社 Silver microparticle and the conductive paste containing this silver-colored microparticle, conductive film and electronic device
JP5872440B2 (en) * 2012-02-13 2016-03-01 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
JP2015515714A (en) * 2012-02-27 2015-05-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Silver paste and its use in the manufacture of solar cells
US20130319496A1 (en) * 2012-06-01 2013-12-05 Heraeus Precious Metals North America Conshohocken Llc Low-metal content electroconductive paste composition
CN102842353B (en) * 2012-08-14 2015-05-13 廖晓峰 Electrocondution slurry for chip component termination electrode
JP2014098186A (en) * 2012-11-14 2014-05-29 Mitsui Mining & Smelting Co Ltd Silver powder
JP5510531B1 (en) * 2012-11-29 2014-06-04 住友金属鉱山株式会社 Silver powder and silver paste
CN103737011B (en) * 2013-04-22 2016-02-24 昆山西微美晶电子新材料科技有限公司 The preparation method of high compaction spherical silver powder
CN104985190B (en) * 2013-10-30 2017-06-13 江苏理工学院 A kind of synthetic method of flower-shaped silver-colored micron particles
CN104148665B (en) * 2014-07-22 2017-04-12 西北大学 Preparation method of crystalized sliver powder
JP6282616B2 (en) * 2014-07-30 2018-02-21 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
JP6029719B2 (en) * 2014-07-31 2016-11-24 Dowaエレクトロニクス株式会社 Silver powder, method for producing the same, and conductive paste
CN104096850B (en) * 2014-08-12 2017-10-10 天津市职业大学 The method that silver ammonia complex prepares superfine spherical silver powder is reduced with para-aminophenol
KR20180047528A (en) * 2016-10-31 2018-05-10 엘에스니꼬동제련 주식회사 silver powder and manufacturing method of the same
KR101927476B1 (en) * 2016-10-31 2018-12-10 엘에스니꼬동제련 주식회사 Silver powder and manufacturing method of the same
CN106623978A (en) * 2016-12-29 2017-05-10 广东羚光新材料股份有限公司 Large-grain-size spherical silver powder and preparation method thereof
CN107068241A (en) * 2017-02-20 2017-08-18 江苏瑞德新能源科技有限公司 A kind of positive silver paste and preparation method thereof
CN107812958A (en) * 2017-11-01 2018-03-20 昆明理工大学 A kind of preparation method of polymolecularity super fine silver powder
KR102178009B1 (en) * 2018-11-30 2020-11-12 엘에스니꼬동제련 주식회사 Manufacturing method of silver powder capable of controlling shrinkage rate
KR102308468B1 (en) * 2018-12-28 2021-10-06 대주전자재료 주식회사 Spherical silver powder and preparation method thereof
KR102263618B1 (en) * 2019-03-29 2021-06-10 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same
US11270872B2 (en) * 2019-09-25 2022-03-08 Western Digital Technologies, Inc. Base conducting layer beneath graphite layer of ceramic cathode for use with cathodic arc deposition
CN110947953A (en) * 2019-12-19 2020-04-03 苏州银瑞光电材料科技有限公司 Preparation method of spherical silver powder with high sintering activity for solar front silver paste
CN114367674B (en) * 2022-03-22 2022-06-24 南通领跑者新材料科技有限公司 Silver powder preparation method
CN115846678A (en) * 2023-02-27 2023-03-28 东方电气集团科学技术研究院有限公司 Preparation method of super-hydrophobic high-dispersibility silver powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389122A (en) * 1993-07-13 1995-02-14 E. I. Du Pont De Nemours And Company Process for making finely divided, dense packing, spherical shaped silver particles
CN1227148A (en) * 1999-01-19 1999-09-01 沈阳黎明发动机制造公司 High purity high dispersiveness spherical super fine silver powder and its producing method
CN1164388C (en) * 2001-05-26 2004-09-01 宁夏东方特种材料科技开发有限责任公司 Prepn of superfine spherical silver powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004649A1 (en) * 2005-07-05 2007-01-11 Mitsui Mining & Smelting Co., Ltd. Highly crystalline silver powder and process for production of the same
JP2007235082A (en) * 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co Paste for solar battery electrode
EP1979950A1 (en) 2006-02-02 2008-10-15 E.I. Du Pont De Nemours And Company Paste for solar cell electrode and solar cell
CN100366368C (en) * 2006-03-23 2008-02-06 福州大学 Non aqueous solution homogeneous phase reduction preparation method of nano-metallic silver
JP2008088453A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Silver powder and its manufacturing method
KR101366292B1 (en) 2009-01-07 2014-02-20 엘지전자 주식회사 Method for managing power in a wireless network
JP2012193454A (en) * 2012-05-25 2012-10-11 Dowa Holdings Co Ltd Silver powder, and method of producing the same
JP2015071814A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method of producing silver powder
CN104646683A (en) * 2015-02-28 2015-05-27 湖南汇通科技有限责任公司 Spherical silver powder with controllable granularity and preparation method thereof
JP2021501267A (en) * 2017-10-31 2021-01-14 エルエスニッコカッパー インコーポレイテッドLs−Nikko Copper Inc. Method of manufacturing silver powder and conductive paste containing silver powder
JP7069311B2 (en) 2017-10-31 2022-05-17 エルエスニッコカッパー インコーポレイテッド How to make silver powder and conductive paste containing silver powder

Also Published As

Publication number Publication date
KR20060046103A (en) 2006-05-17
US20050257643A1 (en) 2005-11-24
CN1700360A (en) 2005-11-23
TW200603922A (en) 2006-02-01
CN1700360B (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP2005330529A (en) Spherical silver powder and its production method
JP2006002228A (en) Spherical silver powder and its production method
US8992701B2 (en) Silver powder and method for producing same
JP5355007B2 (en) Method for producing spherical silver powder
JP4320447B2 (en) Silver powder and method for producing the same
JP2007270334A (en) Silver powder and its manufacturing method
JP5098098B2 (en) Silver powder and method for producing the same
EP2796231B1 (en) Spherical silver powder and method for producing same
JP2006193795A (en) Spherical silver powder and its production method
JP5633045B2 (en) Silver powder and method for producing the same
JP6246472B2 (en) Conductive silver-coated glass powder, method for producing the same, and conductive paste and conductive film
JP2015232180A (en) Spherical silver powder and method for producing the same
JP2009231059A (en) Conductive ink for offset printing, and circuit pattern forming method using the same
JP5352768B2 (en) Method for producing silver powder for photosensitive conductive paste
JP2006097086A (en) Spherical silver powder and its producing method
JP6791652B2 (en) Silver powder and its manufacturing method
JP5925556B2 (en) Silver-coated flaky glass powder and method for producing the same
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP6110464B2 (en) Silver-coated flaky glass powder and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117