JP4254313B2 - Conductive ink and method for producing the same - Google Patents

Conductive ink and method for producing the same Download PDF

Info

Publication number
JP4254313B2
JP4254313B2 JP2003104736A JP2003104736A JP4254313B2 JP 4254313 B2 JP4254313 B2 JP 4254313B2 JP 2003104736 A JP2003104736 A JP 2003104736A JP 2003104736 A JP2003104736 A JP 2003104736A JP 4254313 B2 JP4254313 B2 JP 4254313B2
Authority
JP
Japan
Prior art keywords
conductive ink
metal powder
dispersant
producing
ink according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104736A
Other languages
Japanese (ja)
Other versions
JP2004311265A (en
Inventor
一誠 岡田
浩平 下田
正利 真嶋
恵司 小山
鉄也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003104736A priority Critical patent/JP4254313B2/en
Publication of JP2004311265A publication Critical patent/JP2004311265A/en
Application granted granted Critical
Publication of JP4254313B2 publication Critical patent/JP4254313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等に組み込まれるプリント基板、ICチップ、ガラス基板、セラミック基板などの高密度配線や平面ディスプレーの電極材料などに用いられる導電性インク及びその製造方法に関する。
【0002】
【従来の技術】
従来のプリント基板、ICチップ、ガラス基板、セラミック基板などの高密度配線には、基板に銅箔を張り合わせ、パターンを印刷後、エッチング技術により、不要部分を除去して作成する方法がある。また、さらに近年では、基板に貼る銅箔の代替として金属粉を含む導電性塗料を印刷し、直接回路形成をする手段もある。しかし、電子機器の軽量化、コンパクト化に伴い、さらなる高密度配線が要望され、また、低コスト化も併せて要望され、最近ではインクジェット方法による回路形成も検討実施の体制にある。
【0003】
その方法の例は、通常のプリンターやコピー機に用いられるインクの顔料、塗料に代えて微小の金属粉末を用いる方法である。微小の金属粉末は、ガス雰囲気中、かつ炭素数5以上のアルコール類のような高沸点溶剤の蒸気の存在下で、金属を蒸発させることにより、粒径100nm以下、好ましくは10nm以下の金属粉末を得る方法による。この金属粉末に分散剤としてアルキルアミン、カルボン酸アミド、アミノカルボン酸塩等を0.1〜10重量%加え、これにアセトン等の溶剤を加え、分散剤にくるまれた金属粉末を沈降させ、上澄み液を除去した後、炭化水素、水、アルコール類を加えて所要の粘度表面張力を有するインクとする方法がある(特許文献1参照)。
【0004】
また、微小の金属粉末を得る方法としては、貴金属又は銅のイオンを含む水溶液と、水と非混和の溶剤を用い、水溶液中でイオンを還元すると析出した金属が溶剤に相間移動し、オルガノゾルを形成することにより、数nm〜数十nmの金属粉末コロイドを得る(特許文献2参照)。ここで用いる還元剤は、アルカリ金属水素化ホウ素塩などを用いているが、アミンを用いることも出来るとしている。又、前記溶剤中には、保護コロイドとして天然高分子、合成高分子他を加えるのが良いとされる。
【0005】
【特許文献1】
特開2002−121437号公報(0009−0015,0026−0028)
【特許文献2】
特開平11−319538号公報(0013−0015,0021−0022,0031)
【0006】
【発明が解決しようとする課題】
以上のように、通常使用される導電性インクには、微小な金属粉末の製造方法に起因するコロイドもしくは多めの分散剤が用いられる。また、分散媒としては、有機溶剤が主流である。一部分散媒を水に置換する記載もあるが、金属を生成させる反応が有機溶剤等を用いているため、十分とは言い難い。本発明は、環境上有機溶剤の使用を極力減少させ、かつ回路形成後には必要でない分散剤の量を極力減少させた導電性インクを開発することにある。
【0007】
【課題を解決するための手段】
本発明は、平均粒子径が10〜100nmの錯化剤存在下での三価のチタンの還元力で得られる金属の粉末と、水を主成分とする分散媒と、分散剤とからなる導電性インクである。生成する金属粉末が、水溶液中から得られる特徴がある。前記金属粉末がAu、Ag、Pt、Pd、Cu、Ni、Co及びFeから選ばれる金属の1種以上であると好ましい。
また、前記分散剤が、分子量1000以下の有機物であるものを用いるとよい。特に分散剤が、チオ尿素、ジエタノールアミン及びキノリンから選ばれる1種以上を用いると、回路形成後に分散剤の除去作業が不要となる。また、その配合量は、前記金属の粉末に対し、500ppm以下であるのが好ましい。
【0008】
上記の発明を具体化するためには、対象とする金属のイオンと、三価のチタンイオンを含むチタンイオンと、錯化剤と、分散剤とを含む水溶液を撹拌して反応させ、生成した金属粉末を回収したのち、これに水と調整用分散媒を加えることにより達成できる。前記錯化剤が、クエン酸ナトリウム、酒石酸ナトリウム、アンモニア及びEDTAのいずれかであるのが好ましい。また、特に前記調整用分散媒が、水溶性有機溶剤か低分子界面活性剤か又はその両方であるのが好ましい。
【0009】
【発明の実施の形態】
本発明になる導電性インクは、溶媒が水を主成分とするため、塗布後の溶剤を回収したり、燃焼処理する等の必要がない。また、金属粉末が平均径10〜100nmであるため、非常に細かい高密度配線にも使用できる。特に十μm〜数十μm幅の回路にも対応可能である。金属粉末の平均径が10nm未満であると、塗布した際に厚膜化が難しいため、重ね塗りか、インクを高濃度化しなければならない。又、100nmを越えるとインクが沈殿を生じるため長期使用に耐えない。また、インクジェット吐出の場合は詰まりの原因となる。
本発明の対象となる金属は、イオン化傾向がチタンより貴なる元素に限定される。これは、後述する製造方法で述べるが、金属粉末の生成が三価のチタンイオンを還元剤に使用するためである。
【0010】
その中でも、導電性インクとして使用するため、Au、Ag、Pt、Pd、Cu、Ni、Co及びFeから選ばれる金属の1種以上とするのが好ましい。より好ましくは、Au、Ag、Pt、Cu、Niから選択するのがよい。
【0011】
本発明に用いる分散剤は、高分子量のものでも使用できるが、金属粉末を作成する溶媒が水であるため、水溶性であることが必要である。好ましくは、分子量が1000以下の有機物を用いるのがよい。分子量が1000を越えると分散媒の投入量が増加し、インクとして使用した後に加熱して除去する等の処置を考慮する可能性がでてくる。特に、チオ尿素、ジエタノールアミン及びキノリンから選択するのが好ましい。これらの分散媒を用いれば、回路形成後乾燥するだけで導電性を有する。分散剤の使用量は、多く使用すると金属粉末が分散する効果は十分であるが、インクとして使用後、余分な分散剤が導電性の障害となる可能性があるため、至って少量で良く、金属粉末に対して500ppm以下で用いるのが好ましい。
【0012】
本発明の製法の特徴は、微小な金属粉末を水溶媒中で作成するものであり、インクを作成する際にも、そのまま水溶媒にすることが出来るものである。
本発明における金属イオンの湿式還元において、使用する還元剤が三価のチタンイオンであり、従ってチタンより貴なる金属元素が金属粉末の対象となる。
ここで使用するチタンイオンは、四価のチタンイオンと錯化剤を含む水溶液を、陰極電解法により還元し、三価のチタンイオンと四価のチタンイオンとが共存する状態で使用するのが好ましい。これに分散剤を加え、さらにpHを0.5〜3の範囲に調整する。このように調整した水溶液に、金属粉末の対象となる金属イオンを含む水溶液を加え70℃以下の温度で反応させる。数十分の反応で、金属粉末は所要の大きさになる。
【0013】
得られた金属粉末は、分散剤に囲まれた状態で存在するが、反応溶液にはチタンイオンが含まれているため、濾過洗浄等により不要イオンを除去し、分散剤が被覆された状態で金属粉末を回収する。
生成した分散剤が被覆された金属粉末に水を加え導電性インクが出来る。ここで、インクとしての粘度、表面張力、沸点等を調整するには、少量の水溶性有機溶剤、低分子界面活性剤を用いればよい。前者はエチレングリコール、ジエチレングリコール、グリセリン等を利用できる。後者はアニオン系、カチオン系、ノニオン系何れの界面活性剤でも適用できる。具体的には、コグニス社(オランダ)のハイドロパラートシリーズ、日本油脂社のノニオンOT−221、パーソフトなどがあげられる。また、使用状態における金属粉末濃度の濃縮は、限外濾過を用いれば簡単である。
【0014】
【実施例】
(実験例1;実施例1)メタンスルホン酸チタン水溶液0.15molに錯化剤としてクエン酸ナトリウム水溶液0.15molを加え、これを陰極電気分解法によりメタンスルホン酸チタンの4価チタンイオンの一部を3価チタンイオンに還元し、3価チタンイオンが0.08mol含まれる水溶液とした。
これに分散剤としてチオ尿素を100ppm加え、水酸化ナトリウムでpHを1.5に調整した。
さらにメタンスルホン酸銀溶液を0.075mol添加し、50℃で30分撹拌した。この水溶液を0.2μmのメンブレンフィルタを用い、不要なイオンを除去したのち、水と少量の調整用分散媒を加えて銀の導電性インクを作成した。
できた導電性インクの一部をとり、レーザードップラー式粒度分布計(大塚電子(株)製 FPAR1000)を用いて粒度の測定をした結果、平均粒径が20nmであった。
【0015】
(実験例1;実施例2〜6、比較例1)実施例1と同様に表1に示す条件で各種導電性インクを作成した。出来上がった導電性インクのうち、比較例1は金属粉末の粒度が100nmを越えたため、放置しておくとインクの底に一部沈殿物が見られた。また、実施例6は分散剤に分子量25000のポリビニルピロリドン(PVP)を用いている。また実施例5では、分散剤にチオ尿素を用いたが、その量を500ppmとした。
【0016】
【表1】

Figure 0004254313
【0017】
出来た導電性インクの物性を表2に示す。これらの導電性インクを用い、塗膜を作成した。塗膜の作成方法は、スピンコート法を用い、塗布量は2cm角に約7μl程度とした。
出来た塗膜を100℃で10分乾燥後、300℃で30分焼成した。
出来上がった導電性皮膜の性能を、表2に併せて記載する。ここで、抵抗値については、三菱化学(株)製の4探針方式の抵抗測定装置を用いて測定した。
なお、出来た導電性塗料を塗布した状態の一例を電子顕微鏡で観察したものを図1に示す。写真では、分散剤が少量のため、金属粉末の状況そのままに見える。
また、皮膜の一例を電子顕微鏡で観察した結果を図2に示す。熱処理により図1の粉末状態に比べ、粒度が成長して見える。図1、図2共に分散剤が少量のため、金属粉末の集積体のように観察される。
【0018】
【表2】
Figure 0004254313
【0019】
以上の実験例1に示すように、本発明になる導電性インクは、含まれる金属粉の粒度により、作製後の皮膜の出来具合が影響を受ける。実施例1〜4に示す例では好適に使用できる。実施例5では分散剤の量を多く使用したため、やや抵抗値が大きくなっている。また、実施例6では、分散剤に高分子量のPVPを用いたため、熱処理をしても十分に分散剤が除去できないことに起因して、やや抵抗値が大きめになる。比較例1は金属粉の粒度が大きいため、インクの状態で沈殿を起こしたが、被膜の状態においても、抵抗値が大きめとなる。実験例1では、インクの塗装にスピンコートを用いたが、インクジェット方法にした場合、粒子が大きいとノズルのつまり等を起こす要因となるので好ましくない。
【0020】
(実験例2;実施例7)メタンスルホン酸チタン水溶液0.15molに錯化剤としてクエン酸ナトリウム水溶液0.3molを加え、これを陰極電気分解法によりメタンスルホン酸チタンの4価チタンイオンの一部を3価チタンイオンに還元し、3価チタンイオンが0.08mol含まれる水溶液とした。
これに分散剤としてチオ尿素を100ppm加え、水酸化ナトリウムでpHを1.5に調整した。
さらに塩化白金酸溶液を0.3mol添加し、25℃で30分撹拌した。この水溶液を0.2μmのメンブレンフィルタを用い、不要なイオンを除去したのち、水と少量の調整用分散媒を加えて白金の導電性インクを作成した。
できた導電性インクの一部をとり、レーザードップラー式粒度分布計(大塚電子(株)製 FPAR1000)を用いて粒度の測定をした結果、平均粒径が30nmであった。結果を表3に示す。
【0021】
(実験例2;実施例8)実施例7と同様に表3に示す材料と条件でAuの金属粉末を作成した。なお、金塩化水素酸は1価相当であるため、0.075molとしている。錯化剤、分散剤もそれぞれ表3に記す材料、量を用いている。
得られた金属粉に表4で示す水を加え、導電性インクを作製した。その性状を表4に示す。表4に示すように、実施例7,8は抵抗値も問題なく、コーティングも良好であった。
【0022】
【表3】
Figure 0004254313
【0023】
【表4】
Figure 0004254313
【0024】
(実験例3;実施例10)メタンスルホン酸チタン水溶液0.15molに錯化剤として酒石酸ナトリウム水溶液0.15molを加え、これを陰極電気分解法によりメタンスルホン酸チタンの4価チタンイオンの一部を3価チタンイオンに還元し、3価チタンイオンが0.08mol含まれる水溶液とした。
これに分散剤としてジエタノールアミンを100ppm加え、水酸化ナトリウムでpHを1.0に調整した。
さらに硫酸銅溶液を0.15mol添加し、10℃で5分撹拌した。この水溶液を0.2μmのメンブレンフィルタを用い、不要なイオンを除去したのち、水と少量の調整用分散媒を加えて銅の導電性インクを作成した。
できた導電性インクの一部をとり、レーザードップラー式粒度分布計(大塚電子(株)製 FPAR1000)を用いて粒度の測定をした結果、平均粒径が60nmであった。
【0025】
(実験例3;比較例2)実施例10と同様に金属粉を作製した。使用する材料と量、条件を変えて表5に示す。出来たCu粉末の平均粒径は200nmであった。また、分散剤の量は10ppmとしている。
【0026】
【表5】
Figure 0004254313
【0027】
これらの金属粉を用いて導電性インクを作製した。その性状を表6に示す。比較例2の導電性インクは、静置しておくと沈殿を生じた。また、これらの導電性インクをスピンコート法により製膜し、乾燥と熱処理した結果を併せて表6に示す。表6のデータのように、粒径の大きい比較例2は、実施例10に比べ抵抗値がやや大きくなる。
【0028】
【表6】
Figure 0004254313
【0029】
(実験例4;実施例11)メタンスルホン酸チタン水溶液0.15molに錯化剤としてEDTA水溶液0.15molを加え、これを陰極電気分解法によりメタンスルホン酸チタンの4価チタンイオンの一部を3価チタンイオンに還元し、3価チタンイオンが0.08mol含まれる水溶液とした。
これに分散剤としてキノリンを100ppm加え、水酸化ナトリウムでpHを2.0に調整した。
さらに塩化ニッケル溶液を0.15mol添加し、25℃で30分撹拌した。この水溶液を0.2μmのメンブレンフィルタを用い、不要なイオンを除去したのち、水と少量の調整用分散媒を加えてニッケルの導電性インクを作成した。
できた導電性インクの一部をとり、レーザードップラー式粒度分布計(大塚電子(株)製 FPAR1000)を用いて粒度の測定をした結果、平均粒径が40nmであった。
【0030】
(実験例4;比較例3)実施例11と同様に、表7に示す材料、量及び条件を用いてニッケル粉を作製した。この比較例3ではpHを5としたため、生成した金属粉は平均粒径が5nmとなった。表8に示す水と少量の調整用分散媒を加えて導電性インクとした。
【0031】
【表7】
Figure 0004254313
【0032】
出来た導電性インクの性状を表8に示す。また、これらの導電性インクを製膜した結果を併せて表8に示す。実施例11での膜は表面に酸化膜が発生したため、三菱化学(株)製の4探針方式の抵抗測定装置による抵抗値のデータは大きくなった。また、比較例3においても同様の傾向がある。両者の比較では、比較例3の方が金属粉濃度を大きくしたにもかかわらず、膜厚が薄くなり、その結果、抵抗値が大きくなった。これは導電性インク中の金属粉の平均径が10nm未満であるため、膜厚が薄くなった結果である。
【0033】
【表8】
Figure 0004254313
【0034】
以上の実験例から解るように、導電性インクに使用する金属粉末には適当な平均粒径があり、10〜100nmの範囲のものが好ましい結果を得る。また、分散剤には、低分子量のものが好ましく使用でき、その使用量も500ppm以下程度で十分な結果を得る。好ましくは50ppm以上を用いると良く、少なすぎると分散剤の効果が明確でない。又、導電性インクに用いる溶媒は、本発明のように水を用いることが可能である。一部粘度、表面張力調整用の溶剤等が使用されるが、インクの塗装方法の改善により、溶媒の大部分を水とすることが可能となる。
【0035】
【発明の効果】
本発明によれば、より高密度となる配線回路の作成において、環境にやさしく、かつ配線後の熱処理等の操作も省略できる可能性がある導電性インクを提供できる。
【図面の簡単な説明】
【図1】 本発明における、分散剤処理後の金属粉末の電子顕微鏡写真である。
【図2】 本発明における、導電性インクを皮膜にして熱処理後の電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive ink used for a high density wiring such as a printed board, an IC chip, a glass substrate, and a ceramic substrate incorporated in an electronic component or the like, or an electrode material for a flat display, and a manufacturing method thereof.
[0002]
[Prior art]
Conventional high-density wiring such as a printed circuit board, an IC chip, a glass substrate, and a ceramic substrate includes a method in which a copper foil is bonded to a substrate, a pattern is printed, and unnecessary portions are removed by an etching technique after etching. Further, in recent years, there is also a means for directly forming a circuit by printing a conductive paint containing metal powder as an alternative to a copper foil to be attached to a substrate. However, as electronic devices become lighter and more compact, higher density wiring is required, and cost reduction is also demanded. Recently, circuit formation by an ink jet method is also under investigation.
[0003]
An example of the method is a method using a minute metal powder instead of an ink pigment or paint used in a normal printer or copier. The fine metal powder is a metal powder having a particle size of 100 nm or less, preferably 10 nm or less, by evaporating the metal in a gas atmosphere and in the presence of a high boiling solvent vapor such as an alcohol having 5 or more carbon atoms. Depending on how you get it. Add 0.1 to 10% by weight of alkylamine, carboxylic acid amide, aminocarboxylate, etc. as a dispersant to this metal powder, add a solvent such as acetone to this, precipitate the metal powder wrapped in the dispersant, There is a method in which after removing the supernatant liquid, hydrocarbons, water, and alcohols are added to obtain an ink having a required viscosity and surface tension (see Patent Document 1).
[0004]
In addition, as a method of obtaining a fine metal powder, an aqueous solution containing noble metal or copper ions and a solvent immiscible with water are used. When ions are reduced in the aqueous solution, the deposited metal moves between the phases, and the organosol is removed. By forming, a metal powder colloid of several nm to several tens nm is obtained (see Patent Document 2). As the reducing agent used here, an alkali metal borohydride is used, but an amine can also be used. In addition, natural polymers, synthetic polymers and the like are preferably added as protective colloids to the solvent.
[0005]
[Patent Document 1]
JP 2002-121437 A (0009-0015, 0026-0028)
[Patent Document 2]
JP 11-319538 A (0013-0015, 0021-0022, 0031)
[0006]
[Problems to be solved by the invention]
As described above, colloids or a large amount of dispersant resulting from a method for producing fine metal powder is used for the conductive ink that is normally used. As the dispersion medium, organic solvents are the mainstream. Although there is a description that a part of the dispersion medium is replaced with water, it is difficult to say that the reaction for generating a metal uses an organic solvent or the like. An object of the present invention is to develop a conductive ink in which the use of an organic solvent is reduced as much as possible and the amount of a dispersant that is not necessary after circuit formation is reduced as much as possible.
[0007]
[Means for Solving the Problems]
The present invention provides a conductive powder comprising a metal powder obtained by reducing power of trivalent titanium in the presence of a complexing agent having an average particle size of 10 to 100 nm, a dispersion medium mainly composed of water, and a dispersant. Ink. The resulting metal powder is characterized by being obtained from an aqueous solution. The metal powder is preferably one or more metals selected from Au, Ag, Pt, Pd, Cu, Ni, Co, and Fe.
In addition, the dispersant may be an organic substance having a molecular weight of 1000 or less. In particular, when the dispersant is at least one selected from thiourea, diethanolamine, and quinoline, the operation of removing the dispersant is not necessary after the circuit is formed. Moreover, it is preferable that the compounding quantity is 500 ppm or less with respect to the said metal powder.
[0008]
In order to embody the above invention, an aqueous solution containing a target metal ion, a titanium ion containing a trivalent titanium ion, a complexing agent, and a dispersing agent was stirred and reacted to form. This can be achieved by recovering the metal powder and then adding water and a dispersion medium for adjustment thereto. The complexing agent is preferably sodium citrate, sodium tartrate, ammonia or EDTA. In particular, it is preferable that the adjusting dispersion medium is a water-soluble organic solvent, a low molecular surfactant, or both.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the conductive ink according to the present invention, since the solvent contains water as a main component, it is not necessary to recover the solvent after application or to perform a combustion treatment. Further, since the metal powder has an average diameter of 10 to 100 nm, it can be used for very fine high-density wiring. In particular, it can be applied to a circuit having a width of 10 μm to several tens of μm. If the average diameter of the metal powder is less than 10 nm, it is difficult to increase the film thickness when it is applied. On the other hand, if the thickness exceeds 100 nm, the ink precipitates and cannot be used for a long time. Moreover, in the case of inkjet discharge, it becomes a cause of clogging.
The metal that is the subject of the present invention is limited to elements that have a higher ionization tendency than titanium. This is because the production of the metal powder uses trivalent titanium ions as a reducing agent, as will be described later in the production method.
[0010]
Among these, since it is used as a conductive ink, it is preferable to use at least one metal selected from Au, Ag, Pt, Pd, Cu, Ni, Co, and Fe. More preferably, it is preferable to select from Au, Ag, Pt, Cu, and Ni.
[0011]
Although the dispersing agent used in the present invention may have a high molecular weight, it must be water-soluble because the solvent for forming the metal powder is water. Preferably, an organic substance having a molecular weight of 1000 or less is used. When the molecular weight exceeds 1000, the amount of the dispersion medium added increases, and there is a possibility of taking measures such as heating and removing after use as ink. In particular, it is preferable to select from thiourea, diethanolamine and quinoline. If these dispersion media are used, they are conductive only by drying after circuit formation. The amount of the dispersant used is sufficient to disperse the metal powder when used in large amounts, but after use as an ink, excess dispersant may become an obstacle to electrical conductivity. It is preferably used at 500 ppm or less based on the powder.
[0012]
A feature of the production method of the present invention is that a fine metal powder is prepared in an aqueous solvent, and when an ink is prepared, it can be used as it is as an aqueous solvent.
In the wet reduction of metal ions in the present invention, the reducing agent used is a trivalent titanium ion, and thus a metal element nobler than titanium is the object of the metal powder.
The titanium ion used here is an aqueous solution containing tetravalent titanium ions and a complexing agent reduced by a cathodic electrolysis method and used in a state where trivalent titanium ions and tetravalent titanium ions coexist. preferable. A dispersing agent is added to this, and also pH is adjusted to the range of 0.5-3. The aqueous solution containing the metal ion which becomes the object of the metal powder is added to the aqueous solution prepared in this manner and reacted at a temperature of 70 ° C. or lower. After several tens of reactions, the metal powder has the required size.
[0013]
The obtained metal powder exists in a state surrounded by a dispersant, but since the reaction solution contains titanium ions, unnecessary ions are removed by filtration washing or the like, and the dispersant is coated. Collect the metal powder.
Water can be added to the metal powder coated with the produced dispersant to form a conductive ink. Here, in order to adjust the viscosity, surface tension, boiling point and the like of the ink, a small amount of a water-soluble organic solvent and a low molecular surfactant may be used. The former can use ethylene glycol, diethylene glycol, glycerin and the like. The latter can be applied to any anionic, cationic or nonionic surfactant. Specific examples include the Hydropalate series from Cognis (Netherlands), Nonion OT-221 from Nippon Oil and Fats, and Persoft. In addition, the concentration of the metal powder concentration in use can be easily achieved by using ultrafiltration.
[0014]
【Example】
(Experimental Example 1; Example 1) 0.15 mol of sodium citrate aqueous solution as a complexing agent was added to 0.15 mol of titanium methanesulfonate aqueous solution, and this was added to one of tetravalent titanium ions of titanium methanesulfonate by a cathodic electrolysis method. The portion was reduced to trivalent titanium ions to obtain an aqueous solution containing 0.08 mol of trivalent titanium ions.
To this was added 100 ppm of thiourea as a dispersant, and the pH was adjusted to 1.5 with sodium hydroxide.
Further, 0.075 mol of a silver methanesulfonate solution was added and stirred at 50 ° C. for 30 minutes. After removing unnecessary ions from this aqueous solution using a 0.2 μm membrane filter, water and a small amount of a dispersion medium for adjustment were added to prepare a silver conductive ink.
A part of the resulting conductive ink was taken and measured for particle size using a laser Doppler particle size distribution analyzer (FPAR1000, manufactured by Otsuka Electronics Co., Ltd.). As a result, the average particle size was 20 nm.
[0015]
(Experimental Example 1; Examples 2-6, Comparative Example 1) As in Example 1, various conductive inks were prepared under the conditions shown in Table 1. Among the completed conductive inks, in Comparative Example 1, the particle size of the metal powder exceeded 100 nm. Therefore, when the ink was left to stand, a part of the precipitate was observed at the bottom of the ink. In Example 6, polyvinyl pyrrolidone (PVP) having a molecular weight of 25000 is used as a dispersant. In Example 5, thiourea was used as the dispersant, but the amount was 500 ppm.
[0016]
[Table 1]
Figure 0004254313
[0017]
Table 2 shows the physical properties of the resulting conductive ink. A coating film was prepared using these conductive inks. As a method for preparing the coating film, a spin coating method was used, and the coating amount was about 7 μl per 2 cm square.
The resulting coating film was dried at 100 ° C. for 10 minutes and then baked at 300 ° C. for 30 minutes.
The performance of the completed conductive film is also shown in Table 2. Here, the resistance value was measured using a 4-probe resistance measuring device manufactured by Mitsubishi Chemical Corporation.
In addition, what observed with an electron microscope of an example of the state which apply | coated the produced conductive coating is shown in FIG. In the photo, the state of the metal powder looks as it is because of the small amount of dispersant.
Moreover, the result of having observed an example of the film | membrane with the electron microscope is shown in FIG. Compared to the powder state of FIG. 1, the particle size appears to grow due to the heat treatment. In both FIG. 1 and FIG. 2, the amount of the dispersant is small, so that it is observed as an aggregate of metal powder.
[0018]
[Table 2]
Figure 0004254313
[0019]
As shown in Experimental Example 1 above, the conductive ink according to the present invention is affected by the quality of the film after production due to the particle size of the metal powder contained therein. In the example shown in Examples 1-4, it can use suitably. In Example 5, since a large amount of the dispersant was used, the resistance value was slightly increased. Moreover, in Example 6, since high molecular weight PVP was used as the dispersant, the resistance value is slightly increased because the dispersant cannot be removed sufficiently even after heat treatment. In Comparative Example 1, since the particle size of the metal powder was large, precipitation occurred in the ink state, but the resistance value was large even in the state of the film. In Experimental Example 1, spin coating was used for ink coating. However, when the ink jet method is used, large particles are not preferable because they cause nozzle clogging and the like.
[0020]
(Experimental example 2; Example 7) 0.3 mol of sodium citrate aqueous solution was added as a complexing agent to 0.15 mol of titanium methanesulfonate aqueous solution, and this was added to one of tetravalent titanium ions of titanium methanesulfonate by a cathodic electrolysis method. The portion was reduced to trivalent titanium ions to obtain an aqueous solution containing 0.08 mol of trivalent titanium ions.
To this was added 100 ppm of thiourea as a dispersant, and the pH was adjusted to 1.5 with sodium hydroxide.
Further, 0.3 mol of chloroplatinic acid solution was added and stirred at 25 ° C. for 30 minutes. After removing unnecessary ions from the aqueous solution using a 0.2 μm membrane filter, water and a small amount of a dispersion medium for adjustment were added to form a platinum conductive ink.
A part of the resulting conductive ink was taken and the particle size was measured using a laser Doppler particle size distribution analyzer (FPAR1000, manufactured by Otsuka Electronics Co., Ltd.). As a result, the average particle size was 30 nm. The results are shown in Table 3.
[0021]
(Experimental Example 2; Example 8) Au metal powder was prepared in the same manner as in Example 7 using the materials and conditions shown in Table 3. In addition, since gold hydrochloric acid is equivalent to monovalent, it is 0.075 mol. The complexing agent and the dispersing agent also use the materials and amounts shown in Table 3, respectively.
Water shown in Table 4 was added to the obtained metal powder to produce a conductive ink. The properties are shown in Table 4. As shown in Table 4, the resistance values of Examples 7 and 8 were satisfactory and the coating was good.
[0022]
[Table 3]
Figure 0004254313
[0023]
[Table 4]
Figure 0004254313
[0024]
(Experimental Example 3; Example 10) 0.15 mol of sodium tartrate aqueous solution was added as a complexing agent to 0.15 mol of titanium methanesulfonate aqueous solution, and this was added to a part of tetravalent titanium ions of titanium methanesulfonate by cathodic electrolysis. Was reduced to trivalent titanium ions to obtain an aqueous solution containing 0.08 mol of trivalent titanium ions.
To this was added 100 ppm of diethanolamine as a dispersant, and the pH was adjusted to 1.0 with sodium hydroxide.
Further, 0.15 mol of a copper sulfate solution was added and stirred at 10 ° C. for 5 minutes. After removing unnecessary ions from this aqueous solution using a 0.2 μm membrane filter, water and a small amount of a dispersion medium for adjustment were added to prepare a copper conductive ink.
A part of the resulting conductive ink was taken and measured for particle size using a laser Doppler particle size distribution analyzer (FPAR1000, manufactured by Otsuka Electronics Co., Ltd.). As a result, the average particle size was 60 nm.
[0025]
(Experimental Example 3; Comparative Example 2) A metal powder was prepared in the same manner as in Example 10. Table 5 shows the materials, amounts and conditions used. The average particle size of the resulting Cu powder was 200 nm. The amount of the dispersant is 10 ppm.
[0026]
[Table 5]
Figure 0004254313
[0027]
Conductive inks were prepared using these metal powders. The properties are shown in Table 6. The conductive ink of Comparative Example 2 caused precipitation when left standing. In addition, Table 6 shows the results of film formation of these conductive inks by spin coating, drying and heat treatment. As in the data of Table 6, the resistance value of Comparative Example 2 having a large particle size is slightly larger than that of Example 10.
[0028]
[Table 6]
Figure 0004254313
[0029]
(Experimental Example 4; Example 11) 0.15 mol of an EDTA aqueous solution was added as a complexing agent to 0.15 mol of a titanium methanesulfonate aqueous solution, and a part of tetravalent titanium ions of titanium methanesulfonate was added thereto by cathodic electrolysis. Reduction to trivalent titanium ions gave an aqueous solution containing 0.08 mol of trivalent titanium ions.
To this was added 100 ppm of quinoline as a dispersant, and the pH was adjusted to 2.0 with sodium hydroxide.
Further, 0.15 mol of nickel chloride solution was added and stirred at 25 ° C. for 30 minutes. After removing unnecessary ions from this aqueous solution using a 0.2 μm membrane filter, water and a small amount of a dispersion medium for adjustment were added to prepare a nickel conductive ink.
A part of the resulting conductive ink was taken, and the particle size was measured using a laser Doppler particle size distribution analyzer (FPAR1000, manufactured by Otsuka Electronics Co., Ltd.). As a result, the average particle size was 40 nm.
[0030]
(Experimental Example 4; Comparative Example 3) Similarly to Example 11, nickel powder was prepared using the materials, amounts and conditions shown in Table 7. In Comparative Example 3, since the pH was set to 5, the generated metal powder had an average particle size of 5 nm. Water shown in Table 8 and a small amount of a dispersion medium for adjustment were added to obtain a conductive ink.
[0031]
[Table 7]
Figure 0004254313
[0032]
Table 8 shows the properties of the resulting conductive ink. Table 8 also shows the results of forming these conductive inks. Since the oxide film was generated on the surface of the film in Example 11, the resistance value data obtained by the 4-probe type resistance measuring device manufactured by Mitsubishi Chemical Corporation became large. In Comparative Example 3, there is a similar tendency. In the comparison between the two, the thickness of the comparative example 3 was reduced, although the metal powder concentration was increased, and as a result, the resistance value was increased. This is a result of the thin film thickness because the average diameter of the metal powder in the conductive ink is less than 10 nm.
[0033]
[Table 8]
Figure 0004254313
[0034]
As can be seen from the above experimental examples, the metal powder used in the conductive ink has an appropriate average particle diameter, and those in the range of 10 to 100 nm provide preferable results. Moreover, a low molecular weight thing can be preferably used for a dispersing agent, The sufficient amount is obtained even if the usage-amount is about 500 ppm or less. Preferably, 50 ppm or more is used, and if it is too small, the effect of the dispersant is not clear. The solvent used for the conductive ink can be water as in the present invention. A solvent for adjusting viscosity and surface tension is used in part, but by improving the ink coating method, most of the solvent can be made water.
[0035]
【The invention's effect】
According to the present invention, it is possible to provide a conductive ink that is environmentally friendly and can eliminate operations such as heat treatment after wiring in the production of a wiring circuit having a higher density.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of metal powder after treatment with a dispersant in the present invention.
FIG. 2 is an electron micrograph after heat treatment using a conductive ink as a film in the present invention.

Claims (7)

粉末化を対象とする金属のイオンと、三価のチタンイオンを含むチタンイオンと、錯化剤と、分散剤とを含む水溶液を攪拌して反応させ、生成した金属粉末を回収した後、これに水と、調整用分散媒として、水溶性有機溶剤か低分子界面活性剤か又はその両方を加える、導電性インクの製造方法。After stirring and reacting an aqueous solution containing metal ions intended for pulverization, titanium ions containing trivalent titanium ions, a complexing agent, and a dispersant, the produced metal powder is recovered, A method for producing a conductive ink, comprising adding water and a water- soluble organic solvent, a low-molecular surfactant or both as a dispersion medium for adjustment . 前記錯化剤が、クエン酸ナトリウム、酒石酸ナトリウム、アンモニア及びEDTAのいずれかである請求項1に記載の導電性インクの製造方法。  The method for producing a conductive ink according to claim 1, wherein the complexing agent is any one of sodium citrate, sodium tartrate, ammonia, and EDTA. 前記金属粉末の平均粒子径が10〜100nmである、請求項1又は2に記載の導電性インクの製造方法。The average particle diameter of the metal powder is 10 to 100 nm, method for producing a conductive ink according to claim 1 or 2. 前記金属粉末がAu、Ag、Pt、Pd、Cu、Ni、Co及びFeから選ばれる金属の1種以上からなる、請求項1乃至のいずれか1項に記載の導電性インクの製造方法。Wherein the metal powder is Au, Ag, Pt, Pd, Cu, Ni, consisting of one or more metals selected from Co and Fe, method for producing a conductive ink according to any one of claims 1 to 3. 前記分散剤が、分子量1000以下の有機物である、請求項1乃至のいずれか1項に記載の導電性インクの製造方法。The dispersing agent is a molecular weight of 1,000 or less organic matter, a method of manufacturing a conductive ink according to any one of claims 1 to 4. 前記分散剤が、チオ尿素、ジエタノールアミン及びキノリンから選ばれる1種以上からなる、請求項1乃至のいずれか1項に記載の導電性インクの製造方法。The method for producing a conductive ink according to any one of claims 1 to 5 , wherein the dispersant is composed of one or more selected from thiourea, diethanolamine, and quinoline. 前記分散剤の配合量が、前記金属粉末に対し、500ppm以下である、請求項1乃至のいずれか1項に記載の導電性インクの製造方法。Amount of the dispersant is, the metal powder to, is 500ppm or less, the production method of the conductive ink according to any one of claims 1 to 6.
JP2003104736A 2003-04-09 2003-04-09 Conductive ink and method for producing the same Expired - Fee Related JP4254313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104736A JP4254313B2 (en) 2003-04-09 2003-04-09 Conductive ink and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104736A JP4254313B2 (en) 2003-04-09 2003-04-09 Conductive ink and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004311265A JP2004311265A (en) 2004-11-04
JP4254313B2 true JP4254313B2 (en) 2009-04-15

Family

ID=33467446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104736A Expired - Fee Related JP4254313B2 (en) 2003-04-09 2003-04-09 Conductive ink and method for producing the same

Country Status (1)

Country Link
JP (1) JP4254313B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756628B2 (en) * 2004-12-01 2011-08-24 三井金属鉱業株式会社 Water-based ITO ink
CN101128550B (en) * 2005-01-10 2013-01-02 耶路撒冷希伯来大学伊萨姆研发公司 Aqueous-based dispersions of metal nanoparticles
EP1871162B1 (en) * 2005-04-13 2014-03-12 Nanosys, Inc. Nanowire dispersion compositions and uses thereof
KR100716201B1 (en) * 2005-09-14 2007-05-10 삼성전기주식회사 Metal nanoparticles and method for manufacturing thereof
US8277693B2 (en) 2006-07-28 2012-10-02 Furukawa Electric Co., Ltd. Method for producing fine particle dispersion and fine particle dispersion
WO2008013199A1 (en) * 2006-07-28 2008-01-31 The Furukawa Electric Co., Ltd. Fine particle dispersion and method for producing fine particle dispersion
KR100815082B1 (en) * 2006-12-13 2008-03-20 삼성전기주식회사 Metal ink composition for ink-jet
JP5355007B2 (en) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 Method for producing spherical silver powder
CN104070177B (en) * 2014-06-28 2017-02-22 内蒙古工业大学 Preparation method for silver and gold nano-particles
CN104479463B (en) * 2015-01-09 2017-07-21 东北大学 A kind of electrically conducting transparent containing silver oxalate is without particle silver-based inks and preparation method thereof
CN104551009B (en) * 2015-01-16 2016-06-08 吉林大学 A kind of two-dimensional fractal Nano silver grain preparation method in alcohol-water system
CN107206489B (en) * 2015-01-30 2019-06-18 住友电气工业株式会社 The manufacturing method of metal powder, ink, sintered body, printed wiring board substrate and metal powder
US10610928B2 (en) * 2015-09-30 2020-04-07 Sumitomo Electric Industries, Ltd. Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
CN112719286B (en) * 2020-12-22 2023-05-30 任沁锋 Preparation method of copper nano-particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3018655B2 (en) * 1991-09-20 2000-03-13 株式会社村田製作所 Manufacturing method of fine powder
JP3597098B2 (en) * 2000-01-21 2004-12-02 住友電気工業株式会社 Alloy fine powder, method for producing the same, molding material using the same, slurry, and electromagnetic wave shielding material
JP5008216B2 (en) * 2000-10-13 2012-08-22 株式会社アルバック Inkjet ink manufacturing method
JP2002246256A (en) * 2001-02-13 2002-08-30 Sumitomo Electric Ind Ltd Conductive paste and multiplayer capacitor using it
JP3900248B2 (en) * 2001-03-30 2007-04-04 ハリマ化成株式会社 Multilayer wiring board and method for forming the same
JP3508766B2 (en) * 2002-06-14 2004-03-22 住友電気工業株式会社 Method for producing metal fine powder

Also Published As

Publication number Publication date
JP2004311265A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4254313B2 (en) Conductive ink and method for producing the same
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP4844805B2 (en) Method for forming metal coating
JP5820202B2 (en) Copper powder for conductive paste and method for producing the same
JP5003895B2 (en) Silver fine particles and method for producing the same, and method for producing a conductive film
KR20060043182A (en) Metallic colloidal solution and inkjet-use metallic ink
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP3933138B2 (en) Inkjet metal ink
JP4853152B2 (en) Nickel-coated copper fine particles and manufacturing method thereof, dispersion using the same, manufacturing method thereof, and paste using the same
WO2009031849A2 (en) Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays
JP6329703B1 (en) Conductive paste and conductive pattern forming method
KR100911439B1 (en) Aqueous conductive ink composition for inkjet printer using nano-silver colloidal solution and method forming electrode pattern by inkjet printing
JP2005235533A (en) Metal particle dispersion liquid and circuit forming method using the same
JP4931063B2 (en) Method for producing metal nanoparticle paste
JP5705150B2 (en) Metal fine particle dispersion and method for producing the same
TWI757412B (en) Manufacturing method of silver nanoparticles
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
CN113728401B (en) Method for manufacturing conductive member
JP2003034801A (en) Metal powder and manufacturing method therefor
JP2008294160A (en) Ink for conductive pattern, conductive pattern forming method, and substrate having conductive pattern
KR100897313B1 (en) Method for manufacturing metal nano ink
KR100429851B1 (en) A conductive ink containing an ultrafine particle metal and method for preparing the same
JP5445659B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees