JPH10317022A - Production of metallic particulate powder - Google Patents

Production of metallic particulate powder

Info

Publication number
JPH10317022A
JPH10317022A JP15011397A JP15011397A JPH10317022A JP H10317022 A JPH10317022 A JP H10317022A JP 15011397 A JP15011397 A JP 15011397A JP 15011397 A JP15011397 A JP 15011397A JP H10317022 A JPH10317022 A JP H10317022A
Authority
JP
Japan
Prior art keywords
metal
particles
solution
reducing agent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15011397A
Other languages
Japanese (ja)
Inventor
Riyuusuke Kamiyama
竜祐 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Original Assignee
Daiken Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK filed Critical Daiken Kagaku Kogyo KK
Priority to JP15011397A priority Critical patent/JPH10317022A/en
Publication of JPH10317022A publication Critical patent/JPH10317022A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain metallic particulate powder which is controlled in particle shape, grain size, etc., and has excellent monodispersibility by forming the nuclei existing in an independent monodisperse state consisting of material superfine particles by adding a reducing agent to a soln. of a metal salt and reducing and depositing the metal from this soln. in the presence of the metallic superfine particles and the reducing agent. SOLUTION: The metallic salt is not particularly limited and substantially all metal salts are used; for example, silver nitrate, etc., are used when Ag nucleus particles are going to be obtd. The concn. of the soln. of the metal salt is preferably set at 0.001 to 5 g/l. The reducing agent is not particularly limited and includes, for example, hydrazines, ferrous sulfate, cuprous chloride, etc. The amt. of the reducing agent to be used suffices if the amt. of the stoichiometric ratio necessary for the reduction and deposition of the metal from the soln. of the metal salt. A dispersant for accelerating monodispersion, for example, dextrin, etc., may be further added into the soln. of the metal salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な金属微粒子
粉末の製造方法に関する。
[0001] The present invention relates to a method for producing a novel fine metal particle powder.

【0002】[0002]

【従来技術】金属微粒子粉末は、さまざまな方法により
製造されており、これらは主としてセラミックス電子材
料或いは電子部品の厚膜回路等を形成するために使用さ
れている。また、有機合成化学の分野においても、金属
触媒として酸化−還元反応その他の有機材料の合成反応
に利用されている。その他にも抗菌剤、防ばい剤、農薬
添加剤等としても幅広く利用され、その需要は年々増加
する傾向にある。
2. Description of the Related Art Fine metal powders are produced by various methods, and they are mainly used for forming ceramic electronic materials or thick film circuits of electronic parts. Also, in the field of synthetic organic chemistry, they are used as metal catalysts in oxidation-reduction reactions and other synthetic reactions of organic materials. In addition, it is widely used as an antibacterial agent, a deterrent, an agricultural chemical additive, and the like, and its demand tends to increase year by year.

【0003】これらの金属微粒子粉末は、技術分野によ
って要求される特性は異なるが、いずれの場合において
も粒子形状、粒径、粒度分布等が一定の範囲内に制御さ
れていることが望ましく、特に二次凝集の少ない単分散
球状粒子であることが理想的である。
[0003] These metal fine particle powders have different characteristics required depending on the technical field, but in any case, it is desirable that the particle shape, particle size, particle size distribution and the like are controlled within a certain range. Ideally, the particles are monodisperse spherical particles with little secondary aggregation.

【0004】例えば、電子部品の回路導体を形成する場
合、ペースト化(塗料化)が容易であって印刷性が良好
であり、しかも導体層が均一で緻密な被膜を形成できる
ことが必要である。従って、この場合にも粒径が揃って
いて、かつ、球状にできるだけ近い微粒子粉末が必要と
される。このような導体層を形成するには、一般的に厚
膜ペーストを用いた厚膜印刷法が用いられる。この方法
では、金属、合金等の微粒子粉末を有機バインダー(微
粒子粉末相互を結合するために配合される、有機高分子
物質からなる結合剤であって、「有機ビヒクル」ともい
う。)に分散してペースト状(塗料状)とし、これを絶
縁基板に印刷又は塗布した後、高温で焼き付けを行うも
のである。
For example, when forming a circuit conductor of an electronic component, it is necessary that the paste can be easily formed (painted), the printability is good, and the conductor layer can form a uniform and dense film. Therefore, also in this case, fine particle powder having a uniform particle size and being as close to a spherical shape as possible is required. In order to form such a conductor layer, a thick film printing method using a thick film paste is generally used. In this method, fine particle powder of a metal, an alloy, or the like is dispersed in an organic binder (a binder made of an organic polymer substance, which is blended to bind the fine particle powder to each other, and is also referred to as an “organic vehicle”). In this method, a paste (paint) is printed or applied on an insulating substrate and then baked at a high temperature.

【0005】上記方法で用いられるペースト(塗料)
は、具体的には、金属微粒子粉末及び有機バインダーに
必要に応じてガラス物質等の無機材料及びその他添加剤
を加え、これらを均一に混合分散してペースト状にした
ものである。このペーストに配合される金属微粒子粉末
は、スクリーン印刷されたり、或いは塗布された場合に
おいて、緻密でかつ平滑でピンホール、突起等のない一
様な金属膜を形成できることが必要である。すなわち、
金属微粒子粉末は、ペーストに配合される他の諸成分に
対して優れた濡れ性及び分散性を発現し、しかも純度、
形状、粒径等が的確に制御された、二次凝集のないもの
であることが必要である。
[0005] Paste (paint) used in the above method
Specifically, an inorganic material such as a glass material and other additives are added to the metal fine particle powder and the organic binder, if necessary, and these are uniformly mixed and dispersed to form a paste. The metal fine-particle powder to be mixed with this paste must be capable of forming a dense and smooth metal film without pinholes, projections, etc. when screen-printed or applied. That is,
The metal fine-particle powder exhibits excellent wettability and dispersibility with respect to other components blended in the paste, and has a purity,
It is necessary that the shape, particle size, and the like be precisely controlled without secondary aggregation.

【0006】これに関し、かかる目的に用いられるよう
な金属微粒子粉末の製造方法としては、機械的粉砕法、
アトマイズ法、気相還元法、ガス蒸発法、電解析出法、
化学的還元法等がある。
[0006] In this connection, as a method for producing metal fine particle powder used for such purpose, there are a mechanical pulverization method,
Atomization method, gas phase reduction method, gas evaporation method, electrolytic deposition method,
There is a chemical reduction method and the like.

【0007】機械的粉砕法としては、石臼による摺りつ
ぶし方式で粉砕する方法、ジョウクラッシャー、ハンマ
ークラッシャー等による衝撃力を利用した直接粉砕方
法、振動回転ボールミルを用いて衝撃力と摩砕力を利用
した粉砕方法等が挙げられる。しかし、これらの方法で
は、金属は一般に展延性を有することから金属が変形す
るだけで粉砕がなかなか進まない。このため、得られる
粉末は、扁平状、棒状、多角形状等の形状が不均一なも
のとなり、場合によっては数珠つなぎ状となることもあ
る。従って、この方法では、粒状、球状等の金属微粒子
粉末を得ることは到底できない。
[0007] As the mechanical pulverization method, a pulverization method using a grinding method using a stone mill, a direct pulverization method using an impact force by a jaw crusher, a hammer crusher, or the like, and an impact force and a grinding force using a vibrating rotary ball mill are used. Pulverization method and the like. However, in these methods, since the metal generally has ductility, the pulverization does not easily proceed because only the metal is deformed. For this reason, the obtained powder has a non-uniform shape such as a flat shape, a bar shape, and a polygonal shape, and in some cases, may have a bead-like shape. Therefore, with this method, it is impossible to obtain granular or spherical metal fine particle powder.

【0008】一方、機械的粉砕法以外の上記方法によれ
ば、粒径が10μm以上の比較的大きな粗粉末から、1
0μm前後の中級の粉末、ひいては1〜10μmの微粉
末或いはサブミクロン級の超微粉も得ることができる。
しかし、これら方法によっても、各製造方法に特有の欠
点により十分に制御された所望の微粒子粉末が得られて
いないのが現状である。
On the other hand, according to the above-mentioned method other than the mechanical pulverization method, a relatively large coarse powder having a particle size of 10 μm or more is converted into 1
Intermediate-grade powder of about 0 μm, and fine powder of 1 to 10 μm or ultra-fine powder of submicron grade can also be obtained.
However, even with these methods, at present, it is not possible to obtain desired fine particle powders which are sufficiently controlled due to defects specific to each production method.

【0009】アトマイズ法は、金属を含有する溶液を霧
化し、この霧化溶液を個々の液滴とし、さらにこの液滴
を高温で熱分解して金属微粒子粉末を調製する方法であ
る(例えば、特開昭50−13785号、特公昭63−
31522号等)。しかし、この方法により得られる粉
末は、粒径のバラツキが大きく微粒子化が困難であるだ
けでなく、粒径制御も困難なために粒度分布の狭い微粒
子粉末を製造することは難しい。さらに、生成直後の微
粒子は、その表面活性が高いために粒子相互が結合し、
きわめて強い凝集粒子(二次粒子)を形成する。このた
め、単分散状の微粒子粉末を調製することはほとんど不
可能である。
The atomizing method is a method in which a solution containing a metal is atomized, the atomized solution is formed into individual droplets, and the droplets are thermally decomposed at a high temperature to prepare fine metal particle powder (for example, JP-A-50-13785, JP-B-63-
No. 31522). However, the powder obtained by this method has a large variation in the particle size, making it difficult to form fine particles, and also difficult to control the particle size, so that it is difficult to produce a fine particle powder having a narrow particle size distribution. Furthermore, the fine particles immediately after generation are bonded to each other due to their high surface activity,
Form very strong agglomerated particles (secondary particles). For this reason, it is almost impossible to prepare monodispersed fine particle powder.

【0010】気相還元法は、気相の金属塩化物を水素気
流中で還元して金属微粒子粉末を得るものである(例え
ば、Ramquist;Modern developments in powder metallu
rgy,4 75, (1971)参照)。しかし、この方法では、高価
な製造設備、製造技術の困難さ等に起因して金属微粒子
粉末が非常に高価になり、工業的規模での生産には適し
ていない。しかも、この方法により得られる金属微粒子
は、フィラメント状と言われる珠数状の粉末を形成しや
すいため、分散性の高い球状、粒状等の金属微粒子粉末
を得ることは容易ではない。
In the gas phase reduction method, metal chloride in a gas phase is reduced in a hydrogen stream to obtain fine metal particles (for example, Ramquist; Modern developments in powder metallu).
rgy, 475, (1971)). However, in this method, the metal fine-particle powder becomes extremely expensive due to difficulties in expensive manufacturing equipment and manufacturing technology, and is not suitable for production on an industrial scale. Moreover, since the metal fine particles obtained by this method easily form a bead-like powder called a filament shape, it is not easy to obtain a spherical or granular metal fine particle powder having high dispersibility.

【0011】ガス蒸発法としては、溶融金属を蒸発させ
て気相とした後、これを凝集させて微粒子として析出さ
せる方法、或いは高周波誘導加熱により金属を加熱して
溶湯とし、これを蒸発させて金属微粒子粉末を製造する
方法も提案されている(S.Kashu 他;Proc,6th Intern.
Vacuum Cong.49〜(1974)参照)。しかし、これらの方法
では、いずれも実験レベルのものであり、これらを工業
的規模で実施するためには生産効率のみならず製造する
微粒子の粒径制御等についても問題があり、技術的生産
工学的な面で解決しなければならない問題がきわめて多
い。
The gas evaporation method is a method of evaporating a molten metal into a gaseous phase and then aggregating it into fine particles, or heating the metal by high frequency induction heating to form a molten metal, and evaporating the molten metal. A method for producing metal fine-particle powder has also been proposed (S. Kashu et al .; Proc, 6th Intern.
Vacuum Cong. 49- (1974)). However, all of these methods are of an experimental level, and in order to carry them out on an industrial scale, there is a problem not only in the production efficiency but also in the control of the particle size of the fine particles to be produced. There are a lot of problems that need to be solved in terms of affairs.

【0012】CVD法(Chemical Vapor Deposition)
或いはPVD法(Physical VaporDeposition)によって
金属微粒子粉末を製造することも知られている。これら
は、沸点の低い金属化合物を気化し、熱分解反応又は還
元反応により気相から金属微粒子粉末を析出させるもの
である。この方法では、カルボニル化合物、ハロゲン化
合物等が主として用いられている(H.Ramprey,et al;J.
ElectorochemicalSoc,109 713(1962). Y.Saeki,et al;
Denki Kagaku,46 643(1978). P.Duglenx,et al;Powder
Tech,27 45(1980). 吉沢他;粉体工学会誌,21,759(198
4). 大塚他;日本化学会誌,1984 869(1984)等参照)。こ
の方法では、原料化合物はノズルを通して噴出される
が、その反応は通常ノズル近傍で起こるので、分解生成
物はノズル近傍で生ずる。つまり、微粒子の形成機構と
しては、まずノズル付近で熱化学反応により原子又は分
子状で金属超微粒子が生成し、それらが衝突、合体して
微粒子に成長するものと考えられている。従って、最終
的には超微粒子どうしが衝突、合体して超微粒子粉末か
ら粗大粒子粉末まで幅広い領域の粉末を構成することと
なる。また、これらの粒子の大きさは、前記の原子、分
子或いは超微粒子や微粒子が衝突、合体し得る温度、雰
囲気条件の領域にどのくらいの時間滞留するかによって
決まる。従って、粒径を制御するためには、反応ガス濃
度、反応温度、臨界核(金属超微粒子)の形成過程にお
ける生成核の濃度、ガス流速、冷却速度等を厳密に管理
することが不可欠である。ところが、それらをすべて管
理することは容易ではない。このため、得られる粒子
は、実際上は独立した個々の粒子というよりもむしろフ
ィラメント或いはスモーク状の粒子形状になり易い。従
って、この方法でも、粒度分布が制御され、分散性に優
れた単分散性微粒子粉末を得ることはきわめて困難であ
る。
CVD method (Chemical Vapor Deposition)
Alternatively, it is also known to produce fine metal particle powder by a PVD method (Physical Vapor Deposition). These are to vaporize a metal compound having a low boiling point, and to precipitate fine metal particles from a gas phase by a thermal decomposition reaction or a reduction reaction. In this method, carbonyl compounds, halogen compounds and the like are mainly used (H. Ramprey, et al;
ElectorochemicalSoc, 109 713 (1962) .Y.Saeki, et al;
Denki Kagaku, 46 643 (1978) .P. Duglenx, et al; Powder
Tech, 27 45 (1980). Yoshizawa et al .; Journal of Japan Society of Powder Technology, 21, 759 (198
4). Otsuka et al .; see Chemical Society of Japan, 1984 869 (1984), etc.). In this method, the starting compound is ejected through a nozzle, but the reaction usually occurs near the nozzle, so that decomposition products are generated near the nozzle. In other words, it is considered that as a mechanism for forming the fine particles, first, ultrafine metal particles are generated in the form of atoms or molecules by a thermochemical reaction near the nozzle, and they collide and coalesce to grow into fine particles. Therefore, the ultrafine particles eventually collide and coalesce to form a wide range of powder from ultrafine powder to coarse powder. In addition, the size of these particles is determined by how long the atoms, molecules, or ultrafine particles or fine particles stay in a region of a temperature and an atmospheric condition at which collision and coalescence can occur. Therefore, in order to control the particle diameter, it is essential to strictly control the reaction gas concentration, the reaction temperature, the concentration of product nuclei in the process of forming critical nuclei (metal ultrafine particles), the gas flow rate, the cooling rate, and the like. . However, managing them all is not easy. For this reason, the resulting particles are likely to be filament or smoke-like particle shapes rather than individual individual particles in practice. Therefore, even with this method, it is extremely difficult to obtain a monodisperse fine particle powder having a controlled particle size distribution and excellent dispersibility.

【0013】電解析出法は、金属塩の水溶液から電解析
出により金属微粒子粉末を析出する方法である(例え
ば、特開平2−138492号、特開平4−88104
号等)。この方法では、金属がディスチャージすること
により金属微粒子として析出するものである。従って、
ディスチャージは電位差が大きいところで顕著になるた
め、例えば電極表面の凹凸、突起等の表面状態により生
成粒子の形状、大きさ等が変化する。このため、形状、
粒径の揃った所望の微粒子粉末は製造しにくい。
The electrolytic deposition method is a method of depositing fine metal particles by electrolytic deposition from an aqueous solution of a metal salt (for example, JP-A-2-138492, JP-A-4-88104).
No.). In this method, the metal is deposited as metal fine particles by discharging. Therefore,
Since the discharge becomes remarkable at a large potential difference, the shape, size, and the like of the generated particles change depending on, for example, surface conditions such as unevenness and protrusions on the electrode surface. For this reason, the shape,
It is difficult to produce a desired fine particle powder having a uniform particle size.

【0014】これらに対し、工業的に金属微粒子粉末を
生産する方法として、金属化合物の水溶液に還元剤を作
用させて金属微粒子粉末を直接製造する方法、或いは金
属化合物の水溶液にアルカリを加え、いったん水酸化微
粒子又は酸化物微粒子とし、続いてこれらのスラリーを
還元して金属微粒子として回収する方法が提案されてい
る。
On the other hand, as a method of industrially producing fine metal powder, a method of directly producing fine metal powder by causing a reducing agent to act on an aqueous solution of a metal compound, or adding an alkali to an aqueous solution of a metal compound once There has been proposed a method in which hydroxide fine particles or oxide fine particles are formed, and then these slurries are reduced to recover as metal fine particles.

【0015】しかしながら、これらの方法でも、所望の
粒子形状、粒径等をもった二次凝集の少ない金属微粒子
粉末を得ることは困難である。これらの方法で得られる
金属微粒子は、表面の化学的特性・物理的特性が粒子内
部に比べて非常に高いため、強固な二次凝集が依然とし
て起こりやすい。また、金属微粒子の生成があまりにも
急激かつ高速であり、生成初期の金属微粒子どうしの相
互衝突が活発であるため、人為的に粒子形状、粒径等を
制御することが不可能に近い。さらに、液相からの固相
の析出に良く見られる晶癖、すなわち粒子の析出性のた
め、成長方向を等方性に制御することも非常に難しい。
しかも、水溶液中で化学的に還元することから、析出し
た金属粒子の表面が本質的に酸化物又は水酸化物に変質
しているため、一般にペーストの製造に用いられるバイ
ンダー、溶剤等に濡れにくい。従って、ペースト製造に
おいて、一次粒子として独立した単分散状態での混合は
難しく、不均一な混合状態のペーストになりやすい。こ
のように、一様な形状をもち、粒径の揃った分散性の高
い金属微粒子粉末を上記湿式還元法でも製造することは
非常に難しい。
[0015] However, even with these methods, it is difficult to obtain a fine metal particle powder having a desired particle shape, particle size, etc., with little secondary aggregation. Since the metal fine particles obtained by these methods have very high surface chemical and physical characteristics as compared with the inside of the particles, strong secondary aggregation still tends to occur. In addition, since the generation of the metal fine particles is too rapid and fast, and the mutual collision of the metal fine particles in the initial stage of the generation is active, it is almost impossible to artificially control the particle shape, particle size, and the like. Furthermore, it is very difficult to control the growth direction isotropically due to the crystal habit often seen in the precipitation of the solid phase from the liquid phase, that is, the precipitation property of the particles.
Moreover, since the surface of the precipitated metal particles is essentially transformed into an oxide or a hydroxide because it is chemically reduced in an aqueous solution, it is hardly wet with binders, solvents, and the like generally used in the production of pastes. . Therefore, in the production of the paste, it is difficult to mix the primary particles independently in a monodispersed state, and the paste tends to be a non-uniform mixed state. As described above, it is very difficult to produce highly dispersible metal fine particle powder having a uniform shape and a uniform particle size by the above-mentioned wet reduction method.

【0016】このため、これらの問題を解決するための
製造方法も多数提案されているが、決して満足のいくも
のではない。例えば、硝酸銀水溶液を苛性アルカリで5
0℃以上で中和して酸化銀とした後に40℃以下で還元
剤を添加して銀粉を製造する方法がある(特開昭60−
77907号)。しかし、この方法で得られる銀粉は、
凝集が激しいために、実際的には単分散銀粉を得ること
はできない。
For this reason, a number of manufacturing methods have been proposed to solve these problems, but they have not been satisfactory. For example, a silver nitrate aqueous solution is
There is a method in which silver powder is produced by neutralizing at 0 ° C. or higher to form silver oxide and then adding a reducing agent at 40 ° C. or lower (Japanese Patent Application Laid-Open No. 60-1985).
No. 77907). However, the silver powder obtained by this method is
Practically, monodispersed silver powder cannot be obtained due to severe aggregation.

【0017】また、銀と還元剤の配合比率を一定範囲内
に制御した上で保護コロイドの存在下で硝酸銀のアンモ
ニウム錯体から銀粉末を得る方法がある(特開昭61−
276907号)。この方法によれば、粒度分布が狭く
単分散性に優れた微粉末が得られるという。しかし、こ
の方法により得られた粉末は、凝集粒子が依然として多
く、金属ペースト用として工業的に実用化することはで
きない。
Further, there is a method in which a silver powder is obtained from an ammonium complex of silver nitrate in the presence of a protective colloid while controlling the blending ratio of silver and a reducing agent within a certain range (Japanese Patent Application Laid-Open No. 61-1986).
276907). According to this method, a fine powder having a narrow particle size distribution and excellent monodispersity is obtained. However, the powder obtained by this method still has many agglomerated particles and cannot be industrially used for metal paste.

【0018】還元剤にアスコルビン酸又はアスコルビン
酸塩を用い、100℃以下で銀粉末を製造する方法があ
り、この方法では粒径制御が容易で分散性にも優れた銀
粉末が得られる(特開昭63−307206号)。しか
し、この方法においても、凝集粒子が多く、しかも凝集
粒子どうしの結合が強いため、十分な単分散性を得るこ
とはできない。
There is a method in which ascorbic acid or ascorbate is used as a reducing agent to produce silver powder at a temperature of 100 ° C. or lower. In this method, a silver powder having an easy particle size control and excellent dispersibility can be obtained. No. 63-307206). However, even in this method, sufficient monodispersion cannot be obtained due to the large number of aggregated particles and the strong bonding between the aggregated particles.

【0019】アミン存在下でヒドラジンによる銀の還元
法(特公昭56−15681号)、ポリオールを還元剤
として使用する銀粉末の製造方法(特公平4−2440
2号)等もあるが、いずれの方法でも粒径制御すること
は困難であり、粒子の凝集が強いため分散性にはなお不
満がある。
A method for reducing silver with hydrazine in the presence of an amine (Japanese Patent Publication No. 56-15681), a method for producing a silver powder using a polyol as a reducing agent (Japanese Patent Publication No. 4-2440)
No. 2) and the like, but it is difficult to control the particle size by any of the methods, and the dispersibility is still unsatisfactory because of the strong aggregation of the particles.

【0020】酸化銅を多価アルコールの存在下でヒドラ
ジンにより還元して銅粉末を製造する方法がある(特開
平1−290706号)。しかし、この方法では、ある
程度の粒径制御はできても、金属ペースト用として使用
するには、なお凝集粒子が多いため、適当ではない。
There is a method of producing copper powder by reducing copper oxide with hydrazine in the presence of a polyhydric alcohol (JP-A-1-290706). However, this method is unsuitable for use as a metal paste, even though the particle size can be controlled to some extent, because there are still many agglomerated particles.

【0021】還元反応により銅塩から銅粉末を製造する
際において、いったん亜酸化銅を製造し、これを還元し
て銅粉末を得る方法もある。しかし、この方法では、球
状銅粉を効率良く製造できるものの、凝集粒子が多数存
在するため、やはり金属ペースト用には向いていない。
In producing copper powder from a copper salt by a reduction reaction, there is a method in which copper suboxide is first produced and then reduced to obtain copper powder. However, although this method can produce spherical copper powder efficiently, it is not suitable for a metal paste because a large number of agglomerated particles are present.

【0022】酸化銅の表面をシランカップリング剤で処
理してからヒドラジンで還元することにより、粒径の揃
った銅粉末を製造する方法も提案されている(特開平2
−34708号)。ところが、この方法で製造した粉末
には粗大な凝集粉は少ないが、凝集粒子の結合力が強い
ため、満足のいく分散性は得られず、この点においてさ
らなる改良が必要である。
A method of producing copper powder having a uniform particle size by treating the surface of copper oxide with a silane coupling agent and then reducing the surface with hydrazine has also been proposed (Japanese Patent Laid-Open No. Hei 2 (1994)).
-34708). However, although the powder produced by this method has few coarse agglomerated powders, satisfactory cohesiveness cannot be obtained due to the strong bonding force of the agglomerated particles, and further improvement is required in this regard.

【0023】保護コロイドを添加した酸化銅のスラリー
を用い、ヒドラジンで還元する方法もある(特開昭59
−116303号)。しかし、この方法では嵩密度はあ
る程度高くなるものの、これまでの方法と同様に凝集粒
子が多く、また凝集粒子の結合力も大きく、分散性にお
いては満足できるものではない。
There is also a method in which a slurry of copper oxide to which a protective colloid has been added is used and reduced with hydrazine (Japanese Patent Application Laid-Open No. S59-5959).
-116303). However, in this method, although the bulk density is increased to some extent, as in the conventional methods, there are many agglomerated particles, and the cohesive strength of the agglomerated particles is large, and the dispersibility is not satisfactory.

【0024】硫酸銅等の水溶性銅塩を還元することによ
り銅粉末を製造する方法もある(特開昭60−8620
3号)。しかし、この方法も粒径制御が困難で、また凝
集粒子の解粒分散性に対する不満も大きく、なお改善す
べき点が多い。
There is also a method of producing copper powder by reducing a water-soluble copper salt such as copper sulfate (JP-A-60-8620).
No. 3). However, also in this method, it is difficult to control the particle size, and the dissatisfaction with the dispersibility of the aggregated particles is large, and there are still many points to be improved.

【0025】[0025]

【発明が解決しようとする課題】このように、いずれの
従来技術においても、粒子形状、粒径等の制御が困難で
あり、また二次凝集も強いため、特に金属ペースト用に
適した金属微粒子粉末を得ることは困難である。
As described above, in any of the prior arts, it is difficult to control the particle shape, particle size, etc., and secondary aggregation is strong. Therefore, metal fine particles particularly suitable for a metal paste are used. It is difficult to obtain a powder.

【0026】従って、本発明は、粒子形状、粒径等が制
御され、しかも単分散性に優れた金属微粒子粉末を提供
することを主な目的とする。さらに、本発明は、かかる
金属微粒子粉末を工業的規模で効率的に生産する方法を
提供することも目的とする。
Accordingly, an object of the present invention is to provide a metal fine particle powder having a controlled particle shape, particle size, etc., and excellent in monodispersity. Still another object of the present invention is to provide a method for efficiently producing such metal fine particle powder on an industrial scale.

【0027】[0027]

【課題を解決するための手段】本発明者らは、従来技術
の問題点に鑑み、鋭意研究を重ねたところ、金属微粒子
を製造する際に、予めメゾスコピックレベル(nmレベ
ル)の金属超微粒子からなる独立単分散状態にある核を
生成させた後、この核をもとに還元金属を析出沈着させ
ることにより所望の大きさに粒子を成長させるという核
生成反応と核成長反応の二段階還元析出成長方法を採用
する場合には、予想外にも粒径等が確実に制御でき、し
かも得られる粒子は二次凝集がきわめて少ないことを見
出し、ついに本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the problems of the prior art. As a result, when producing metal fine particles, metal ultrafine particles of a mesoscopic level (nm level) were prepared in advance. After generating nuclei in an independent monodispersed state, two-step reductive precipitation of a nucleation reaction and a nucleation growth reaction in which particles are grown to a desired size by depositing and depositing a reduced metal based on the nuclei. In the case of employing the growth method, it was unexpectedly found that the particle size and the like could be surely controlled, and that the obtained particles had very little secondary agglomeration. Finally, the present invention was completed.

【0028】すなわち、本発明は、還元剤を添加して金
属化合物の溶液から金属を還元析出させることによって
金属微粒子を製造する方法において、(i)金属塩の溶液
に還元剤を添加することにより金属超微粒子からなる独
立単分散状態にある核を生成させる第一工程、及び(ii)
上記金属超微粒子及び還元剤の存在下、金属塩の溶液か
ら金属を還元析出させる第二工程を含むことを特徴とす
る金属微粒子粉末の製造方法に係るものである。
That is, the present invention relates to a method for producing fine metal particles by adding a reducing agent to reduce and precipitate a metal from a solution of a metal compound, wherein (i) adding a reducing agent to a solution of a metal salt. A first step of generating nuclei in an independent monodisperse state composed of ultrafine metal particles, and (ii)
A method for producing fine metal particle powder, comprising a second step of reducing and precipitating a metal from a solution of a metal salt in the presence of the ultrafine metal particles and a reducing agent.

【0029】[0029]

【発明の実施の形態】以下、本発明をその実施の形態と
ともに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described together with its embodiments.

【0030】本発明の金属微粒子粉末の製造方法は、前
記のように、特に(i)金属塩の溶液に還元剤を添加する
ことにより金属超微粒子からなる独立単分散状態にある
核を生成させる第一工程、及び(ii)上記金属超微粒子及
び還元剤の存在下、金属塩の溶液から金属を還元析出さ
せる第二工程を含むことを特徴とする。
As described above, the method for producing metal fine particle powder of the present invention produces, as described above, a nucleus composed of ultrafine metal particles in an independent monodisperse state, particularly by adding a reducing agent to a solution of a metal salt. A first step, and (ii) a second step of reducing and depositing a metal from a solution of a metal salt in the presence of the ultrafine metal particles and a reducing agent.

【0031】第一工程において使用する金属塩として
は、適当な溶媒に溶解できる限り特に制限されず、実質
的にあらゆる金属塩(硝酸塩、硫酸塩、炭酸塩、リン酸
塩、ケイ酸塩、塩化物等)を用いることができ、その種
類は所望の金属超微粒子(本発明では「核粒子」ともい
う。)或いは金属微粒子の種類に応じて適宜選択すれば
良い。例えば、Ag核粒子を得ようとする場合は金属塩
として硝酸銀等を用いれば良い。溶媒としては、特に制
限されないが、通常は水、アルコール類のほか、石油系
炭化水素、植物系炭化水素、芳香族炭化水素等の炭化水
素類、ハロゲン化炭化水素類、ニトロ炭化水素化合物、
ケトン類、エーテル類、エステル類、アセタール類、フ
ラン類、硫黄誘導体等を用いることができる。これら溶
媒は単独で又は2種以上併用しても良い。金属塩の溶液
の濃度は、反応温度、用いる金属塩の種類等に応じて適
宜定めれば良いが、通常は0.001〜10g/リット
ル程度、好ましくは0.001〜5g/リットル、より
好ましくは0.001〜1g/リットルとする。
The metal salt used in the first step is not particularly limited as long as it can be dissolved in an appropriate solvent, and substantially any metal salt (nitrate, sulfate, carbonate, phosphate, silicate, chloride, etc.) And the like may be appropriately selected according to the type of the desired ultrafine metal particles (also referred to as “nuclear particles” in the present invention) or the type of metal fine particles. For example, when obtaining Ag core particles, silver nitrate or the like may be used as a metal salt. The solvent is not particularly limited, but is generally water, alcohols, petroleum hydrocarbons, plant hydrocarbons, hydrocarbons such as aromatic hydrocarbons, halogenated hydrocarbons, nitro hydrocarbon compounds,
Ketones, ethers, esters, acetals, furans, sulfur derivatives and the like can be used. These solvents may be used alone or in combination of two or more. The concentration of the solution of the metal salt may be appropriately determined depending on the reaction temperature, the type of the metal salt used, and the like, but is usually about 0.001 to 10 g / L, preferably 0.001 to 5 g / L, and more preferably. Is 0.001 to 1 g / liter.

【0032】上記金属塩の溶液に還元剤を添加すること
により金属超微粒子からなる独立単分散状態にある核を
生成させる。この場合、攪拌しながら還元剤を添加する
ことが好ましい。また、攪拌は、第一工程中において金
属塩の溶液の調製時から継続的又は断続的に行っても良
い。溶液の攪拌条件は、特に制限されず、公知の攪拌装
置を用いれば良い。反応温度は、特に制限されないが、
通常は−5〜250℃程度の範囲において製造する微粒
子の種類等に応じて適宜調整すれば良い。
By adding a reducing agent to the solution of the metal salt, a nucleus composed of ultrafine metal particles in a monodispersed state is generated. In this case, it is preferable to add the reducing agent while stirring. Further, the stirring may be performed continuously or intermittently from the time of preparing the solution of the metal salt in the first step. The conditions for stirring the solution are not particularly limited, and a known stirring device may be used. The reaction temperature is not particularly limited,
Usually, the temperature may be appropriately adjusted in the range of about −5 to 250 ° C. according to the type of fine particles to be produced.

【0033】還元剤としては、上記金属塩の溶液から金
属を還元析出し、金属超微粒子を調製できる限り特に制
限されず、公知の還元剤も用いることができる。例え
ば、ヒドラジン二水和物等のヒドラジン類、硫酸第一
鉄、塩化第一銅、塩化第一鉄、塩化第一スズ等の金属塩
類、ギ酸、シュウ酸等のカルボン酸類、ホルマリン等の
アルデヒド類、グリセリン等の多価アルコール類、その
他過酸化水素、ヨウ化カリウム、水素化ホウ素ナトリウ
ム等が挙げられ、これらは単独で又は2種以上併せて用
いることができる。
The reducing agent is not particularly limited as long as a metal can be reduced and precipitated from the solution of the metal salt to prepare ultrafine metal particles, and a known reducing agent can also be used. For example, hydrazines such as hydrazine dihydrate, metal salts such as ferrous sulfate, cuprous chloride, ferrous chloride, stannous chloride, carboxylic acids such as formic acid and oxalic acid, and aldehydes such as formalin And polyhydric alcohols such as glycerin, hydrogen peroxide, potassium iodide, sodium borohydride and the like, and these can be used alone or in combination of two or more.

【0034】還元剤の使用量は、金属塩の種類及びその
濃度等によって異なるが、通常は当該金属塩の溶液から
金属が還元析出するのに必要な化学量論比の量を使用す
れば良く、その上限は特に制限されない。従って、例え
ば過剰量の還元剤を使用しても良い。
The amount of the reducing agent used varies depending on the type of the metal salt and its concentration, but it is usually sufficient to use the amount of the stoichiometric ratio necessary for the metal to be reduced and precipitated from the solution of the metal salt. The upper limit is not particularly limited. Thus, for example, an excess of reducing agent may be used.

【0035】金属塩の溶液中には、これらの成分のほか
に、必要に応じて分散剤等の成分を配合しても良い。分
散剤としては、単分散化等を促進できるものであれば特
に制限されず、例えばデキストリン、アラビアゴム、ゼ
ラチン、その他各種界面活性剤等を用いることができ
る。
In the metal salt solution, in addition to these components, if necessary, components such as a dispersant may be blended. The dispersant is not particularly limited as long as it can promote monodispersion and the like. For example, dextrin, gum arabic, gelatin, and various other surfactants can be used.

【0036】生成した金属超微粒子は、必要に応じて公
知の回収方法に従って回収し、第二工程における核粒子
として用いる。例えば、攪拌している場合はそのまま第
二工程の金属超微粒子として用いても良く、或いは攪拌
終了後、自然放置等により金属超微粒子を沈降させ、そ
の後に再び攪拌してスラリー状とし、そのスラリーをそ
のまま第二工程で用いても良い。また、沈降した金属超
微粒子を必要に応じて水洗し、次いで公知の固液分離方
法に従って回収しても良い。なお、回収後に必要に応じ
てさらに水洗しても良い。
The produced ultrafine metal particles are collected, if necessary, according to a known collection method, and used as core particles in the second step. For example, in the case of stirring, the metal ultrafine particles may be used as they are in the second step as they are, or after the stirring is completed, the metal ultrafine particles are allowed to settle by natural standing or the like, and then stirred again to form a slurry. May be used as it is in the second step. Alternatively, the precipitated ultrafine metal particles may be washed with water if necessary, and then recovered according to a known solid-liquid separation method. In addition, you may wash further with water after collection | recovery as needed.

【0037】第二工程では、上記金属超微粒子及び還元
剤の存在下、(好ましくは攪拌しながら)金属塩の溶液
から金属を還元析出させる。この場合、本発明の効果を
妨げない限りにおいては、予め核粒子を生成させて、こ
れを分離回収し、あらためて別容器に移して第二工程を
行っても良く、また第一工程終了後に引き続いて同一容
器内で第二工程を行っても良い。特に、本発明では、第
一工程と第二工程とは個別に分離して操作することが好
ましく、さらに好ましくは第一工程と第二工程は個別に
操作し、かつ、第一工程が終了した後に第二工程を引き
続き連続して実施する。
In the second step, a metal is reduced and precipitated from the solution of the metal salt (preferably with stirring) in the presence of the ultrafine metal particles and the reducing agent. In this case, as long as the effects of the present invention are not hindered, nuclear particles may be generated in advance, separated and collected, transferred to another container again and subjected to the second step, and may be continued after the first step is completed. And the second step may be performed in the same container. In particular, in the present invention, it is preferable that the first step and the second step are separately operated, and more preferably the first step and the second step are individually operated, and the first step is completed. The second step is subsequently carried out continuously.

【0038】第二工程で使用する金属超微粒子は、原則
としてはメゾピックレベルの金属核であって、独立した
単分散性に優れたものであればいずれも採用することが
できる。この限りにおいては、従来の化学的、物理的、
電気的、機械的、熱的方法等による方法(例えば、化学
的還元法、CVD法、PVD法、アトマイズ法等)によ
り製造されたものであっても、特に凝集、複数個の粒子
の結合、連鎖結合等が起こらない限りは使用することが
できる。本発明では、特に、本発明の上記第一工程で調
製された金属超微粒子を用いることが最も好ましい。
The metal ultrafine particles used in the second step are, in principle, metal nuclei at the mesopic level, and any metal nuclei having excellent independent monodispersity can be employed. In this respect, conventional chemical, physical,
Even when manufactured by a method such as an electrical, mechanical, or thermal method (for example, a chemical reduction method, a CVD method, a PVD method, an atomizing method, etc.), particularly, aggregation, bonding of a plurality of particles, As long as a chain bond does not occur, it can be used. In the present invention, it is most preferable to use the ultrafine metal particles prepared in the first step of the present invention.

【0039】第二工程で使用する金属超微粒子の種類
は、特に制限されない。例えば、Ru、Os、Rh、I
r、Pd、Ag、Pt、Au等の貴金属、Cr、V、T
i、Fe、Co、Ni、Cu、Zn、Al、Zr、N
b、Mo、In、Sn、Sb、W、Hf、Pb、Bi等
の卑金属、La、Ce等のランタノイド元素のほか、こ
れらの混合物、合金等が挙げられる。これらの中でも、
第二工程で用いる金属塩における金属(元素)とイオン
化傾向が同じ又はそれよりも小さいものであることが好
ましい。イオン化傾向が同じものの中には、上記金属塩
における金属と同じ金属も含まれる。例えば、第二工程
の金属塩として硝酸銀を用いる場合は、金属超微粒子と
して銀の超微粒子(Ag核粒子)を用いることができ
る。
The type of ultrafine metal particles used in the second step is not particularly limited. For example, Ru, Os, Rh, I
Noble metals such as r, Pd, Ag, Pt, Au, etc., Cr, V, T
i, Fe, Co, Ni, Cu, Zn, Al, Zr, N
Base metals such as b, Mo, In, Sn, Sb, W, Hf, Pb, and Bi; lanthanoid elements such as La and Ce; and mixtures and alloys thereof. Among these,
It is preferable that the metal salt used in the second step has the same or smaller ionization tendency as the metal (element). Metals having the same ionization tendency include the same metals as those in the above metal salts. For example, when silver nitrate is used as the metal salt in the second step, ultrafine silver particles (Ag core particles) can be used as the ultrafine metal particles.

【0040】用いる金属超微粒子の粒径は、所望の金属
微粒子粉末の大きさに応じて適宜設定することができる
が、通常は3〜1000nm程度、好ましくは5〜50
0nm、より好ましくは5〜100nmとする。粒径が
大きすぎると懸濁状態が維持できず、沈降が生じ、最終
的に得られる微粒子の粒径が不揃いになるおそれがあ
る。一方、粒径が小さすぎると核成長が不均一になりや
すく、やはり得られる微粒子の粒径が不均一になるおそ
れがある。第二工程における金属塩の溶液中に存在させ
る金属超微粒子量は、金属塩の種類、溶液の濃度等に応
じて変更できるが、通常は0.001〜40g/リット
ル程度、好ましくは0.001〜20g/リットル、よ
り好ましくは0.001〜10g/リットルとする。
The particle size of the ultrafine metal particles to be used can be appropriately set according to the desired size of the fine metal particles, but is usually about 3 to 1000 nm, preferably 5 to 50 nm.
0 nm, more preferably 5 to 100 nm. If the particle size is too large, a suspended state cannot be maintained, sedimentation occurs, and the particle size of the finally obtained fine particles may be uneven. On the other hand, if the particle size is too small, nucleus growth tends to be nonuniform, and the particle size of the obtained fine particles may also be nonuniform. The amount of ultrafine metal particles present in the solution of the metal salt in the second step can be changed according to the type of the metal salt, the concentration of the solution, etc., but is usually about 0.001 to 40 g / liter, preferably 0.001 g / l. To 20 g / liter, more preferably 0.001 to 10 g / liter.

【0041】第二工程で使用できる還元剤としては、第
一工程と同様のものを使用することができる。また、還
元剤の使用量は、金属塩の種類及びその濃度、添加する
金属超微粒子の種類等によって異なるが、通常は当該金
属塩から金属が還元析出するのに必要な化学量論量とす
れば良く、経済性が損なわれない限り上限は特に制限さ
れない。
As the reducing agent that can be used in the second step, those similar to those in the first step can be used. The amount of the reducing agent used varies depending on the type and concentration of the metal salt, the type of the ultrafine metal particles to be added, and the like, but is usually equal to the stoichiometric amount required for the metal to be reduced and precipitated from the metal salt. The upper limit is not particularly limited as long as economic efficiency is not impaired.

【0042】また、第二工程においても、必要に応じて
分散剤等の成分を添加することができる。分散剤として
は、第一工程と同様のものを用いることができるが、分
散剤の添加量は最終的に金属微粒子粉末の回収作業に支
障を来さない限り特に制限されない。なお、分散剤の添
加時期は特に制限されず、例えば還元剤を加える前に予
め添加しても良く、また還元剤と同時に添加しても良
い。
In the second step, a component such as a dispersant can be added as required. As the dispersant, the same dispersant as in the first step can be used, but the amount of the dispersant added is not particularly limited as long as the operation of finally collecting the fine metal particles is not hindered. The addition time of the dispersant is not particularly limited, and may be added before adding the reducing agent, for example, or may be added simultaneously with the reducing agent.

【0043】第二工程では、還元剤等を好ましくは攪拌
しながら徐々に添加する。これにより、金属超微粒子を
核として、この核に還元した金属が逐次沈着し、最終的
に金属微粒子粉末が得られる。攪拌は、上記沈着が完了
するまで又は完了後もしばらく続けても良い。また、攪
拌は、公知の攪拌装置を用いて実施すれば良い。反応温
度は−5〜250℃程度の範囲で還元する金属の種類に
応じて適宜設定すれば良い。攪拌後、必要に応じて、生
成した金属微粒子が十分沈降するまで放置する。溶液中
に沈降した金属微粒子は、必要に応じて水洗した後、公
知の固液分離方法に従って回収すれば最終的に金属微粒
子粉末として得ることができる。
In the second step, a reducing agent or the like is gradually added, preferably with stirring. As a result, the reduced metal is sequentially deposited on the nucleus with the metal ultrafine particle as a nucleus, and finally a metal fine particle powder is obtained. Stirring may be continued for a while until or after the deposition is completed. Moreover, what is necessary is just to implement stirring using a well-known stirring apparatus. The reaction temperature may be appropriately set in the range of about -5 to 250 ° C depending on the type of the metal to be reduced. After the stirring, if necessary, the mixture is allowed to stand until the generated metal fine particles sufficiently settle. The metal fine particles settled in the solution can be finally obtained as metal fine particle powder by washing with water if necessary and then collecting according to a known solid-liquid separation method.

【0044】本発明の金属微粒子粉末は、一般には、平
均粒径は0.02〜10μm程度、タップ密度が高く、
粒度分布はほぼ正規分布範囲内を示し、二次凝集しにく
い単分散状の微粒子粉末である。
The metal fine particle powder of the present invention generally has an average particle size of about 0.02 to 10 μm, a high tap density,
The particle size distribution is almost within the normal distribution range, and is a monodispersed fine particle powder that is less likely to undergo secondary aggregation.

【0045】[0045]

【発明の効果】本発明の製造方法では、金属微粒子を製
造する際に、予めメゾスコピックレベル(nmレベル)
の金属超微粒子を存在させ、これを金属核粒子(核)と
して還元金属を析出沈着させて所望の大きさまで成長さ
せるので、特異な性質をもつ金属微粒子粉末を比較的容
易に得ることができる。すなわち、粒子形状が揃ってい
て(特に球状)、粒径も均一(粒度分布が狭い)であ
り、二次凝集しにくい単分散状の金属微粒子粉末を工業
的規模で製造することができる。
According to the production method of the present invention, when producing metal fine particles, a mesoscopic level (nm level) is required in advance.
Metal ultrafine particles are used as metal core particles (nuclei), and reduced metal is deposited and grown to a desired size, so that metal fine particle powder having specific properties can be obtained relatively easily. That is, it is possible to produce monodispersed metal fine-particle powder having a uniform particle shape (particularly, spherical shape), a uniform particle size (narrow particle size distribution), and less secondary aggregation, on an industrial scale.

【0046】このような特徴をもつ上記金属微粒子粉末
は、各種分野に幅広く利用することができる。例えば、
電子部品(コンデンサー、ハイブリッドIC、半導体パ
ッケージ、誘電体フィルター等)、抗菌剤・抗かび剤、
触媒材料、医薬品・化粧品、塗料、プラスチックス、農
薬等の各種分野の材料に応用することができる。特に、
ペースト状に加工するに際して粒子の変形、再凝集等が
起こらず、印刷性、塗膜性等に優れることから、厚膜ハ
イブリッドIC、半導体パッケージ等の金属ペースト
(厚膜ペースト)用として最適である。
The above-mentioned metal fine particle powder having such characteristics can be widely used in various fields. For example,
Electronic components (capacitors, hybrid ICs, semiconductor packages, dielectric filters, etc.), antibacterial and antifungal agents,
It can be applied to materials in various fields such as catalyst materials, pharmaceuticals / cosmetics, paints, plastics, and agricultural chemicals. Especially,
It is suitable for metal paste (thick film paste) such as thick film hybrid ICs and semiconductor packages because it does not deform or re-aggregate particles when processed into a paste and has excellent printability and coating properties. .

【0047】[0047]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころを一層明確にする。なお、実施例中のタップ密度は
JIS K5101に従って測定した。
The following examples are provided to further clarify the features of the present invention. The tap density in the examples was measured according to JIS K5101.

【0048】実施例1 湿式還元反応によるAg核粒子の調製 純水10リットルに硝酸銀0.2gを入れ、攪拌して十
分溶解した。次いで、デキストリン10gを温湯0.1
リットルで溶解したものを投入して均一に攪拌し、硝酸
銀溶液を調製した。
Example 1 Preparation of Ag Core Particles by Wet Reduction Reaction 0.2 g of silver nitrate was added to 10 liters of pure water and dissolved sufficiently by stirring. Next, 10 g of dextrin was added to 0.1 parts of hot water.
A solution dissolved in 1 liter was added thereto and uniformly stirred to prepare a silver nitrate solution.

【0049】次に、上記溶液に過剰のヒドラジン0.1
リットルを攪拌しながら添加し、常温で還元反応させ
た。その後、3日間自然放置して還元析出するAg核粒
子を沈降させた。得られたAg核粒子を走査型電子顕微
鏡(SEM)で観察した。その結果を図1に示す。図1
に示す写真からその粒径を算出したところ、このAg核
粒子の大きさは100〜150nmであった。また、こ
れらの粒子は、単分散した独立球状粒子であった。
Next, an excess of hydrazine 0.1 was added to the above solution.
One liter was added with stirring, and a reduction reaction was performed at room temperature. Thereafter, the mixture was left standing for 3 days to allow the Ag nucleus particles precipitated by reduction to settle. The obtained Ag core particles were observed with a scanning electron microscope (SEM). The result is shown in FIG. FIG.
As a result of calculating the particle size from the photograph shown in Fig. 7, the size of the Ag core particles was 100 to 150 nm. These particles were monodispersed independent spherical particles.

【0050】実施例2 湿式還元反応によるAg核粒子の調製 純水10リットルに硝酸銀0.2gを入れ、攪拌して十
分溶解した。次いで、デキストリン10gを温湯0.1
リットルで溶解したものを投入して均一に攪拌し、硝酸
銀溶液を調製した。
Example 2 Preparation of Ag Core Particles by Wet Reduction Reaction 0.2 g of silver nitrate was added to 10 liters of pure water and dissolved sufficiently by stirring. Next, 10 g of dextrin was added to 0.1 parts of hot water.
A solution dissolved in 1 liter was added thereto and uniformly stirred to prepare a silver nitrate solution.

【0051】次に、上記溶液に過剰の硫酸第一鉄溶液
0.1リットルを攪拌しながら添加し、常温で還元反応
させた。その後、自然放置して還元析出するAg核粒子
を沈降させた。得られたAg核粒子を実施例1と同様に
して走査型電子顕微鏡で観察したところ、粒径約200
nmの単分散状の独立球状粒子であることがわかった。
Next, 0.1 L of an excess ferrous sulfate solution was added to the above solution while stirring, and a reduction reaction was performed at room temperature. Thereafter, the Ag nucleus particles which were left to stand by natural precipitation were allowed to settle. When the obtained Ag core particles were observed with a scanning electron microscope in the same manner as in Example 1, the particle diameter was about 200.
It was found to be monodisperse independent spherical particles having a diameter of nm.

【0052】実施例3 湿式還元反応によるPd核粒子の調製 塩化パラジウム濃度が24重量%である塩化パラジウム
の塩酸酸性溶液100gを純水20リットルで希釈し、
pHが8になるまで過剰の炭酸アンモニウム水溶液を添
加して、塩化パラジウムのアンモニウム錯体の水溶液
(Pd濃度0.6〜0.65%)を得た。
Example 3 Preparation of Pd Core Particles by Wet Reduction Reaction 100 g of palladium chloride acidic solution having a palladium chloride concentration of 24% by weight was diluted with 20 liters of pure water.
An excess aqueous ammonium carbonate solution was added until the pH reached 8, to obtain an aqueous solution of an ammonium complex of palladium chloride (Pd concentration: 0.6 to 0.65%).

【0053】次いで、アラビアゴム200gを温湯0.
5リットルで溶解したものを上記水溶液に投入した。そ
の後、Pd濃度が0.015g/リットルになるまで純
水で希釈した。続いて、還元剤としてヒドラジンを攪拌
しながら添加し、30分間攪拌した後、室温で3日間静
置して、還元析出するパラジウム核粒子を沈降させた。
得られたPd核粒子を実施例1と同様にして走査型電子
顕微鏡で観察した。その結果を図2に示す。図2に示す
写真からその粒径を算出したところ、このPd核粒子の
大きさは100〜200nmであることがわかった。ま
た、これらの粒子は、単分散した独立球状粒子であっ
た。
Then, 200 g of gum arabic was added to hot water 0.
The solution dissolved in 5 liter was added to the above aqueous solution. Thereafter, the mixture was diluted with pure water until the Pd concentration reached 0.015 g / liter. Subsequently, hydrazine as a reducing agent was added with stirring, and after stirring for 30 minutes, the mixture was allowed to stand at room temperature for 3 days to precipitate the palladium nucleus particles that were precipitated by reduction.
The obtained Pd core particles were observed with a scanning electron microscope in the same manner as in Example 1. The result is shown in FIG. When the particle diameter was calculated from the photograph shown in FIG. 2, it was found that the size of the Pd core particle was 100 to 200 nm. These particles were monodispersed independent spherical particles.

【0054】実施例4 湿式還元反応によるCu核粒子の調製 炭酸銅2.5gを含む溶液10リットルを過剰のヒドラ
ジンにより湿式還元してCu核粒子を析出沈降させた。
得られたCu銅核粒子を実施例1と同様にして走査型電
子顕微鏡で観察したところ、約100nmの単分散状の
独立球状粒子であることがわかった。
Example 4 Preparation of Cu Core Particles by Wet Reduction Reaction A 10 liter solution containing 2.5 g of copper carbonate was wet-reduced with excess hydrazine to precipitate and precipitate Cu core particles.
Observation of the obtained Cu copper core particles with a scanning electron microscope in the same manner as in Example 1 revealed that the Cu copper core particles were monodisperse independent spherical particles of about 100 nm.

【0055】実施例5 Ag微粒子粉末の合成 硝酸銀200gを純水1.2リットルに溶解した。次い
で、デキストリン200gを温湯に溶解したものを加
え、硝酸銀溶液を調製した。次に、実施例1及び2で調
製したAg核粒子を水洗して採取してからそのまま硝酸
銀溶液に投入した。その後、激しく攪拌しながら硝酸銀
の還元に必要なモル数の1.5倍のヒドラジンを少しず
つ添加して硝酸銀を還元し、Ag微粒子粉末を得た。続
いて、デカンテーションにより十分に水と分離した後、
さらに水洗した。得られたAg微粒子粉末は、平均粒径
約1.0μmであり、粒度分布も0.7〜1.2μmの
正規分布に近いものであった。また、二次凝集が極めて
少ない、ほぼ単分散に近い球状粒子であった。タップ密
度は4.0であった。
Example 5 Synthesis of Ag Fine Particle Powder 200 g of silver nitrate was dissolved in 1.2 liter of pure water. Next, a solution of 200 g of dextrin dissolved in hot water was added to prepare a silver nitrate solution. Next, the Ag nucleus particles prepared in Examples 1 and 2 were washed with water, collected, and then directly charged into a silver nitrate solution. Thereafter, while stirring vigorously, hydrazine 1.5 times the number of moles required for the reduction of silver nitrate was added little by little to reduce silver nitrate and obtain fine Ag particle powder. Then, after sufficient separation from water by decantation,
Further, it was washed with water. The obtained Ag fine particle powder had an average particle size of about 1.0 μm, and the particle size distribution was close to a normal distribution of 0.7 to 1.2 μm. In addition, the spherical particles were almost monodisperse and had very little secondary aggregation. The tap density was 4.0.

【0056】実施例6 Pd微粒子粉末の合成 塩化パラジウム濃度が24重量%の塩化パラジウムの塩
酸溶液500gに対し、攪拌しながらpHが8になるま
で過剰の炭酸アンモニウム水溶液を添加して塩化パラジ
ウムのアンモニウム錯体溶液を調製した。その後、上記
溶液に実施例3で調製したPd核粒子を水洗してから上
記塩化パラジウム溶液にそのまま投入し、十分に攪拌し
て均一に分散させた。次いで、アラビアゴム20gを温
湯で溶かしたものを混合し、攪拌した。温度60℃に保
ち、激しく攪拌しながら過剰のヒドラジンを少しずつ添
加した。その後、熟成するため30分間放置して還元反
応を十分に進め、Pd微粒子粉末を得た。得られたPd
微粒子粉末は、平均粒径約0.8μmであり、粒度分布
も0.5〜1.0μmの正規分布を示した。また、二次
凝集が極めて少ない、ほぼ単分散に近い球状粒子であっ
た。タップ密度は5.0であった。
Example 6 Synthesis of Pd Fine Particle Powder To 500 g of a palladium chloride hydrochloric acid solution having a palladium chloride concentration of 24% by weight, an excess aqueous ammonium carbonate aqueous solution was added with stirring until the pH reached 8, and ammonium palladium chloride was added. A complex solution was prepared. Thereafter, the Pd core particles prepared in Example 3 were washed with water in the above solution, and then poured into the above palladium chloride solution as it was, sufficiently stirred, and uniformly dispersed. Next, a solution prepared by dissolving 20 g of gum arabic in hot water was mixed and stirred. The temperature was kept at 60 ° C., and excess hydrazine was added little by little with vigorous stirring. Thereafter, the mixture was left for 30 minutes for aging, and the reduction reaction was sufficiently advanced to obtain Pd fine particle powder. Pd obtained
The fine particle powder had an average particle size of about 0.8 μm, and the particle size distribution also showed a normal distribution of 0.5 to 1.0 μm. In addition, the spherical particles were almost monodisperse and had very little secondary aggregation. The tap density was 5.0.

【0057】実施例7 Cu微粒子粉末の合成 炭酸銅(CuCO3)250gを純水3リットルに溶か
して炭酸銅溶液を調製した。これに、アラビアゴム10
0gを温湯に溶解したものを投入した。次いで、上記溶
液を攪拌しながら実施例4で調製したCu核粒子を水洗
してからそのまま上記溶液に添加した。次いで、この混
合溶液を70℃に加熱保持した状態で激しく攪拌しなが
らヒドラジンを少しずつ投入し、さらに1時間保持して
還元反応を十分進めてから室温まで冷却し、析出したC
u微粒子粉末を濾別した。その後、洗浄液で十分に洗浄
し、さらにアセトンで洗浄してからCu微粒子粉末を得
た。得られたCu微粒子粉末は、平均粒径約0.6μm
であり、粒度分布も0.4〜0.8μmの正規分布を示
した。また、二次凝集が極めて少ない単分散に近い球状
粒子であった。
Example 7 Synthesis of Cu Fine Particle Powder A copper carbonate solution was prepared by dissolving 250 g of copper carbonate (CuCO 3 ) in 3 liters of pure water. In addition, gum arabic 10
A solution prepared by dissolving 0 g in hot water was added. Next, the Cu core particles prepared in Example 4 were washed with water while stirring the solution, and then added to the solution as it was. Then, while the mixed solution was heated and maintained at 70 ° C., hydrazine was added little by little with vigorous stirring, and the mixture was further maintained for 1 hour to allow the reduction reaction to proceed sufficiently, and then cooled to room temperature.
The u fine particle powder was separated by filtration. Thereafter, the particles were sufficiently washed with a washing liquid and further washed with acetone, and then Cu fine particle powder was obtained. The obtained Cu fine particle powder has an average particle size of about 0.6 μm.
And the particle size distribution also showed a normal distribution of 0.4 to 0.8 μm. In addition, the particles were nearly monodisperse spherical particles with very little secondary aggregation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたAg核粒子の粒子構造を示
す図である。図1(a)は5000倍、図1(b)は1
0000倍である。
FIG. 1 is a view showing the particle structure of Ag core particles obtained in Example 1. 1 (a) is 5000 times, and FIG.
0000 times.

【図2】実施例3で得られたPd核粒子の粒子構造を示
す図である。
FIG. 2 is a view showing the particle structure of Pd core particles obtained in Example 3.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】還元剤を添加して金属化合物の溶液から金
属を還元析出させることによって金属微粒子を製造する
方法において、 (i)金属塩の溶液に還元剤を添加することにより金属超
微粒子からなる独立単分散状態にある核を生成させる第
一工程、及び(ii)上記金属超微粒子及び還元剤の存在
下、金属塩の溶液から金属を還元析出させる第二工程を
含むことを特徴とする金属微粒子粉末の製造方法。
1. A method for producing fine metal particles by adding a reducing agent to reduce and precipitate a metal from a solution of a metal compound, comprising: (i) adding a reducing agent to a solution of a metal salt to produce ultrafine metal particles; And (ii) in the presence of the metal ultrafine particles and a reducing agent, a second step of reducing and precipitating a metal from a solution of a metal salt. A method for producing metal fine particle powder.
【請求項2】第二工程で用いる金属超微粒子が、第二工
程の金属塩における当該金属とイオン化傾向が同じ又は
それよりも小さいものである請求項1記載の製造方法。
2. The production method according to claim 1, wherein the ultrafine metal particles used in the second step have the same or smaller ionization tendency as the metal in the metal salt in the second step.
【請求項3】第一工程における金属塩の溶液及び第二工
程における金属塩の溶液の少なくとも1つの溶液に対
し、分散剤をさらに添加する請求項1記載の製造方法。
3. The production method according to claim 1, wherein a dispersant is further added to at least one of the metal salt solution in the first step and the metal salt solution in the second step.
【請求項4】第一工程における金属塩の溶液の濃度が
0.001〜10g/リットルである請求項1記載の製
造方法。
4. The method according to claim 1, wherein the concentration of the metal salt solution in the first step is 0.001 to 10 g / liter.
JP15011397A 1997-05-22 1997-05-22 Production of metallic particulate powder Pending JPH10317022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15011397A JPH10317022A (en) 1997-05-22 1997-05-22 Production of metallic particulate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15011397A JPH10317022A (en) 1997-05-22 1997-05-22 Production of metallic particulate powder

Publications (1)

Publication Number Publication Date
JPH10317022A true JPH10317022A (en) 1998-12-02

Family

ID=15489781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15011397A Pending JPH10317022A (en) 1997-05-22 1997-05-22 Production of metallic particulate powder

Country Status (1)

Country Link
JP (1) JPH10317022A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049309A (en) * 1999-08-13 2001-02-20 Dowa Mining Co Ltd Silver powder, its production and production of flaky silver powder
WO2003091302A1 (en) * 2002-04-24 2003-11-06 Japan Science And Technology Agency Crosslinked polymer, fine polymer particle, and process for producing these
JP2006028637A (en) * 2004-06-14 2006-02-02 Sumitomo Metal Mining Co Ltd Silver particulate colloid-dispersed solution, coating solution for silver film formation and production method therefor and silver film
WO2006057242A1 (en) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. Method for reducing transition metal, and method for treating surface of silicon-containing polymer, method for preparing fine transition metal particles and method for producing article and wiring board, using the reducing method
WO2006068061A1 (en) * 2004-12-22 2006-06-29 Mitsui Mining & Smelting Co., Ltd. Superfine copper powder slurry and process for producing the same
JP2006210196A (en) * 2005-01-28 2006-08-10 Sumitomo Electric Ind Ltd Metal particle composite structure and its manufacturing method, and anisotropic conductive membrane using it
JP2006265585A (en) * 2005-03-22 2006-10-05 Dowa Mining Co Ltd Method for producing copper powder and copper powder
JP2006307341A (en) * 2005-03-31 2006-11-09 National Institute Of Advanced Industrial & Technology Method for producing metallic nanoparticle, and metallic nanoparticle
JP2007321232A (en) * 2006-06-05 2007-12-13 Tanaka Kikinzoku Kogyo Kk Method for producing gold colloid, and gold colloid
JP2008505252A (en) * 2004-06-30 2008-02-21 ノースウエスタン ユニバーシティ Method for producing metal nanoprism having a predetermined thickness
JP2008138266A (en) * 2006-12-04 2008-06-19 Mitsubishi Materials Corp Solder powder, and solder paste using the same
JP2008248267A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle obtained by the same method
JP2008248298A (en) * 2007-03-30 2008-10-16 Tokai Rubber Ind Ltd Method for producing metal nanoparticle, silver/copper nanoparticle, and electrically conductive paste
JP2009035769A (en) * 2007-08-01 2009-02-19 Univ Waseda METHOD FOR PRODUCING FePt NANOPARTICLE, AND METHOD FOR PRODUCING MAGNETIC RECORDING MEDIUM HAVING FePt MAGNETIC NANOPARTICLE ARRAY
JP2009235474A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Method for producing silver powder
JP2010018880A (en) * 2008-04-01 2010-01-28 Dowa Electronics Materials Co Ltd Copper powder for conductive paste, and method for producing the same
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
JP2010174348A (en) * 2009-01-30 2010-08-12 Dowa Electronics Materials Co Ltd Copper powder and method for producing the same
JP2010537057A (en) * 2007-08-31 2010-12-02 メタラー テクノロジーズ インターナショナル ソスィエテ アノニム Method for producing silver nanoparticles
JP2012115861A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for manufacturing solder powder and solder powder obtained by the same
JP2012115860A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for manufacturing solder powder and solder powder obtained by the same
JP2012132082A (en) * 2010-12-24 2012-07-12 Mitsubishi Paper Mills Ltd Method for producing silver nanowire and transparent conductive film using the same
KR20120098513A (en) * 2011-02-28 2012-09-05 미쓰비시 마테리알 가부시키가이샤 Solder paste for pre-coat
CN102756121A (en) * 2011-04-28 2012-10-31 三井金属矿业株式会社 Low-carbon copper particle
JP2013094836A (en) * 2011-11-02 2013-05-20 Mitsubishi Materials Corp Solder paste for precoat and method of manufacturing the same
WO2013133103A1 (en) * 2012-03-07 2013-09-12 住友金属鉱山株式会社 Silver powder and method for producing same
JP2013199706A (en) * 2007-02-27 2013-10-03 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
CN104028776A (en) * 2014-06-20 2014-09-10 清华大学深圳研究生院 Metal particles with three-dimensional dendritic crystal structures and preparation method for metal particles
JP2014531515A (en) * 2012-04-23 2014-11-27 エルジー・ケム・リミテッド Method for producing core-shell particles and core-shell particles produced thereby
JP2016033255A (en) * 2014-03-26 2016-03-10 国立大学法人高知大学 Nickel powder production process
US9580811B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
CN106715010A (en) * 2014-09-30 2017-05-24 新日铁住金化学株式会社 Method for producing nickel particles
JP2017115187A (en) * 2015-12-22 2017-06-29 石福金属興業株式会社 Manufacturing method of platinum powder

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049309A (en) * 1999-08-13 2001-02-20 Dowa Mining Co Ltd Silver powder, its production and production of flaky silver powder
WO2003091302A1 (en) * 2002-04-24 2003-11-06 Japan Science And Technology Agency Crosslinked polymer, fine polymer particle, and process for producing these
US7129293B2 (en) 2002-04-24 2006-10-31 Japan Science And Technology Agency Crosslinked polymers, fine polymer particle, and process for producing these
JP2006028637A (en) * 2004-06-14 2006-02-02 Sumitomo Metal Mining Co Ltd Silver particulate colloid-dispersed solution, coating solution for silver film formation and production method therefor and silver film
JP2008505252A (en) * 2004-06-30 2008-02-21 ノースウエスタン ユニバーシティ Method for producing metal nanoprism having a predetermined thickness
WO2006057242A1 (en) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. Method for reducing transition metal, and method for treating surface of silicon-containing polymer, method for preparing fine transition metal particles and method for producing article and wiring board, using the reducing method
WO2006068061A1 (en) * 2004-12-22 2006-06-29 Mitsui Mining & Smelting Co., Ltd. Superfine copper powder slurry and process for producing the same
JP2006210196A (en) * 2005-01-28 2006-08-10 Sumitomo Electric Ind Ltd Metal particle composite structure and its manufacturing method, and anisotropic conductive membrane using it
JP2006265585A (en) * 2005-03-22 2006-10-05 Dowa Mining Co Ltd Method for producing copper powder and copper powder
KR101236253B1 (en) * 2005-03-22 2013-02-22 도와 홀딩스 가부시키가이샤 Method of producing copper powder and copper powder
JP2006307341A (en) * 2005-03-31 2006-11-09 National Institute Of Advanced Industrial & Technology Method for producing metallic nanoparticle, and metallic nanoparticle
JP4635262B2 (en) * 2005-03-31 2011-02-23 独立行政法人産業技術総合研究所 Method for producing metal nanoparticles and metal nanoparticles
WO2007142082A1 (en) * 2006-06-05 2007-12-13 Tanaka Kikinzoku Kogyo K.K. Process for production of colloidal gold and colloidal gold
JP2007321232A (en) * 2006-06-05 2007-12-13 Tanaka Kikinzoku Kogyo Kk Method for producing gold colloid, and gold colloid
US8048193B2 (en) 2006-06-05 2011-11-01 Tanaka Kikinzoku Kogyo K.K. Method for producing gold colloid and gold colloid
JP2008138266A (en) * 2006-12-04 2008-06-19 Mitsubishi Materials Corp Solder powder, and solder paste using the same
US9580810B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
US9580811B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP2013199706A (en) * 2007-02-27 2013-10-03 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2008248267A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle obtained by the same method
JP2008248298A (en) * 2007-03-30 2008-10-16 Tokai Rubber Ind Ltd Method for producing metal nanoparticle, silver/copper nanoparticle, and electrically conductive paste
JP2009035769A (en) * 2007-08-01 2009-02-19 Univ Waseda METHOD FOR PRODUCING FePt NANOPARTICLE, AND METHOD FOR PRODUCING MAGNETIC RECORDING MEDIUM HAVING FePt MAGNETIC NANOPARTICLE ARRAY
JP2010537057A (en) * 2007-08-31 2010-12-02 メタラー テクノロジーズ インターナショナル ソスィエテ アノニム Method for producing silver nanoparticles
JP2009235474A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Method for producing silver powder
JP2010018880A (en) * 2008-04-01 2010-01-28 Dowa Electronics Materials Co Ltd Copper powder for conductive paste, and method for producing the same
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
JP2010174348A (en) * 2009-01-30 2010-08-12 Dowa Electronics Materials Co Ltd Copper powder and method for producing the same
JP2012115861A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for manufacturing solder powder and solder powder obtained by the same
JP2012115860A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for manufacturing solder powder and solder powder obtained by the same
JP2012132082A (en) * 2010-12-24 2012-07-12 Mitsubishi Paper Mills Ltd Method for producing silver nanowire and transparent conductive film using the same
KR20120098513A (en) * 2011-02-28 2012-09-05 미쓰비시 마테리알 가부시키가이샤 Solder paste for pre-coat
CN102756121A (en) * 2011-04-28 2012-10-31 三井金属矿业株式会社 Low-carbon copper particle
JP2012233222A (en) * 2011-04-28 2012-11-29 Mitsui Mining & Smelting Co Ltd Low-carbon copper particle
JP2013094836A (en) * 2011-11-02 2013-05-20 Mitsubishi Materials Corp Solder paste for precoat and method of manufacturing the same
CN104185523A (en) * 2012-03-07 2014-12-03 住友金属矿山株式会社 Silver powder and method for producing same
TWI584892B (en) * 2012-03-07 2017-06-01 Sumitomo Metal Mining Co Silver powder and its manufacturing method
US9744593B2 (en) 2012-03-07 2017-08-29 Sumitomo Metal Mining Co., Ltd. Silver powder and method for producing same
CN104185523B (en) * 2012-03-07 2017-07-21 住友金属矿山株式会社 Silver powder and its manufacture method
JP2014098212A (en) * 2012-03-07 2014-05-29 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
WO2013133103A1 (en) * 2012-03-07 2013-09-12 住友金属鉱山株式会社 Silver powder and method for producing same
JP2014531515A (en) * 2012-04-23 2014-11-27 エルジー・ケム・リミテッド Method for producing core-shell particles and core-shell particles produced thereby
US9620786B2 (en) 2012-04-23 2017-04-11 Lg Chem, Ltd. Method for fabricating core-shell particles and core-shell particles fabricated by the method
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
KR20150088994A (en) 2012-11-26 2015-08-04 미쓰이금속광업주식회사 Copper powder and method for producing same
US10518323B2 (en) 2012-11-26 2019-12-31 Mitsui Mining & Smelting Co., Ltd. Copper power and method for producing same
JP2016033255A (en) * 2014-03-26 2016-03-10 国立大学法人高知大学 Nickel powder production process
CN106457405A (en) * 2014-03-26 2017-02-22 国立大学法人高知大学 Method for producing nickel powder
US10434577B2 (en) 2014-03-26 2019-10-08 Kochi University, National University Corporation Method for producing nickel powder
CN104028776A (en) * 2014-06-20 2014-09-10 清华大学深圳研究生院 Metal particles with three-dimensional dendritic crystal structures and preparation method for metal particles
CN104028776B (en) * 2014-06-20 2016-03-09 清华大学深圳研究生院 A kind of preparation method and metallic particles with the metallic particles of three-dimensional pine-tree structure
CN106715010A (en) * 2014-09-30 2017-05-24 新日铁住金化学株式会社 Method for producing nickel particles
KR20170061659A (en) 2014-09-30 2017-06-05 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method for producing nickel particles
JPWO2016052067A1 (en) * 2014-09-30 2017-07-20 新日鉄住金化学株式会社 Method for producing nickel particles
TWI648409B (en) * 2014-09-30 2019-01-21 日商新日鐵住金化學股份有限公司 Method for producing nickel particles
CN106715010B (en) * 2014-09-30 2019-03-15 日铁化学材料株式会社 The manufacturing method of nickel particles
JP2017115187A (en) * 2015-12-22 2017-06-29 石福金属興業株式会社 Manufacturing method of platinum powder

Similar Documents

Publication Publication Date Title
JPH10317022A (en) Production of metallic particulate powder
EP3042727B1 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
Fievet et al. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP5820202B2 (en) Copper powder for conductive paste and method for producing the same
CN109175396B (en) Preparation method of nano-coated composite powder
JP5827341B2 (en) Reactor for silver powder production and continuous production method
US20230364677A1 (en) Alloy powder, preparation method therefor, and use therefor
WO2005088652A1 (en) Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
JP2009197323A (en) Dispersion solution of metal nanoparticle, and method for production thereof
JPH10102108A (en) Manufacture of metallic powder
Huang et al. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape
WO2004110925A1 (en) Metal hydride fine particle, method for producing same, liquid dispersion containing metal hydride fine particle, and metallic material
JPH0578716A (en) Production of fine powder
JP4978237B2 (en) Method for producing nickel powder
Benavente et al. Fabrication of copper nanoparticles: advances in synthesis, morphology control, and chemical stability
JPH11140511A (en) Production of monodispersed metal fine particle powder
KR101334052B1 (en) Silver particle dispersion and process for producing the same
JP2006322051A (en) Metal powder, and method for producing the same
JP3645504B2 (en) Metal powder and method for producing the same
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
JPS6357703A (en) Production of fine metallic powder
JP2002363618A (en) Copper ultrafine grain and production method therefor
Figlarz et al. Powder Production and spray forming
Benavente et al. Control, and Chemical Stability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041201

A02 Decision of refusal

Effective date: 20050330

Free format text: JAPANESE INTERMEDIATE CODE: A02