JP5198150B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP5198150B2
JP5198150B2 JP2008141304A JP2008141304A JP5198150B2 JP 5198150 B2 JP5198150 B2 JP 5198150B2 JP 2008141304 A JP2008141304 A JP 2008141304A JP 2008141304 A JP2008141304 A JP 2008141304A JP 5198150 B2 JP5198150 B2 JP 5198150B2
Authority
JP
Japan
Prior art keywords
wiring
wiring layer
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008141304A
Other languages
English (en)
Other versions
JP2009290000A (ja
Inventor
美恵 松尾
祥代 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008141304A priority Critical patent/JP5198150B2/ja
Priority to US12/404,675 priority patent/US8098312B2/en
Publication of JP2009290000A publication Critical patent/JP2009290000A/ja
Application granted granted Critical
Publication of JP5198150B2 publication Critical patent/JP5198150B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、裏面照射型の固体撮像装置に関するものである。
近年、ビデオカメラや電子カメラが普及しており、これらのカメラには、CCD(Charge Coupled Device)型の固体撮像素子や増幅型の固体撮像素子(CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ)が使用されている。特に、携帯電話やPDA(Personal Digital Assistance)、ノート型パーソナルコンピュータなどのカメラモジュールを備えた持ち運び可能なサイズの電子機器の普及に伴って、カメラモジュールに対する小型化、軽量化、薄型化、および低コスト化への要求が強くなっている。
一般的に、固体撮像装置は、シリコン基板上の第1の主面(受光面)側に光電変換素子や増幅回路、多層配線層を形成し、この多層配線上にさらにマイクロレンズやカラーフィルタを形成したチップの第1の主面上に、接着剤などのスペーサでカバーガラスを貼り合わせ、チップの第2の主面側に端子を形成した構造を有する。また、カメラモジュールは、この固体撮像装置のカバーガラス上部にレンズやフィルタなどを組み合わせて樹脂で固めてパッケージ化した構造を有し、実装基板上に実装される構造を有する。
従来では、固体撮像装置は、基板上に光電変換素子が形成され、その上部に多層配線層が形成されていたが、このような構造では、基板の表面側より入射する光が多層配線層などで遮られてしまい、十分な集光特性を得ることができなくなってきている。そこで、近年では、基板の裏面側から光を入射させ、基板内部で光電変換を行う裏面入射型の固体撮像装置が作製されている(たとえば、特許文献1参照)。この裏面入射型の固体撮像装置は、素子分離領域によって分離されたシリコン基板の表面(受光面とは反対側の面)の領域に、シリコン基板の裏面(受光面)から入射した光を受光し、光電変換を行う光電変換素子と、光電変換素子に蓄積された信号電荷を増幅したり、転送したり、信号電荷を読み出したりする各種の電界効果型トランジスタと、が形成され、これらの光電変換素子と電界効果型トランジスタが形成されたシリコン基板の表面上に多層配線層が形成される構造を有している。そして、この特許文献1に記載の固体撮像装置では、受光面側から入射した光がシリコン基板を透過して多層配線層で反射して、光電変換素子に入射してしまうことを防ぐために、シリコン基板と多層配線層との界面に、シリコン基板の受光面側から入射してシリコン基板を透過した光が配線層まで到達することを防ぐ透過防止膜を設けた構造としている。
上述したように近年の電子デバイスの小型化、軽量化、薄型化の要求によって、たとえば、携帯電話などの電子機器の場合には、フレキシブル基板などのそれ自体が薄い基板に上記の固体撮像装置やカメラモジュールを搭載する構造となる場合が存在する。ところで、携帯電話などの電子機器内には、液晶のバックライトやボタンの照明用ライトなどの電子機器の機体内での光発生源が多く使用されている。そのため、フレキシブル基板などの薄い基板に取り付けられた固体撮像装置やカメラモジュールの側面や裏面からの光が光電変換素子に入射してしまう場合が発生し、その結果、表面側(受光面とは反対側)の配線が、撮像素子に写りこんでしまうという問題点があった。特に、裏面照射型の固体撮像装置においては、裏面側から光を入射させるためにシリコン基板を5〜10μm前後に薄くしているとともに、表面側(受光面とは反対側)では金属配線以外は光を透過する絶縁材料からなるので、表面側や側面側から入射してきた光が、表面側の多層配線層を通過してシリコン基板に到達し、さらにシリコン基板でも減衰されないので、被写体からの光以外の光による映りこみが大きな問題となっていた。
上記特許文献1には、裏面(受光面側)からの乱反射などを抑制するための構造として、シリコン基板と多層配線層との界面にシリコン基板の受光面側から入射する光が多層配線層側に透過してしまうことを防ぐための透過防止膜を備えてはいるが、裏面とは反対側(表面側、つまり多層配線層側)の面からの光の入射を抑制するための構造については着目されていなかった。そのため、光電変換素子やトランジスタのソース/ドレイン領域、ゲート電極の上面にしか透過防止膜が形成されていない特許文献1に記載の固体撮像装置の構造では、それ以外の透過防止膜が形成されていない領域、たとえば素子分離領域などに、斜めから入射する光の光電変換素子への入射を遮断することはできないという問題点があった。
特開2006−120805号公報
本発明は、裏面照射型の固体撮像装置において、受光面とは反対側の面である表面側からの光の光電変換素子への入射を抑制することができる固体撮像装置を提供することを目的とする。
本発明の一態様によれば、半導体基板に、光電変換素子と電界効果型トランジスタを含む画素を複数配列した撮像画素部と、前記撮像画素部の周辺回路部と、を設け、前記撮像画素部の電界効果型トランジスタを駆動する配線層を複数積層した多層配線層が前記半導体基板の第1面側に形成され、前記光電変換素子の受光面が前記半導体基板の第2面側に配置された固体撮像装置であって、前記第1面側から見て、前記半導体基板の少なくとも前記撮像画素部における配線の被覆率が100%となるように、前記多層配線層を構成する各配線層内の配線が配置され、前記撮像画素部に形成される前記多層配線層の周縁部に、紫外線以上の波長の光を反射する材料によって塀状のビアリングを備えることを特徴とする固体撮像装置が提供される。
また、本発明の一態様によれば、半導体基板に、光電変換素子と電界効果型トランジスタを含む画素を複数配列した撮像画素部と、前記撮像画素部の周辺回路部と、を設け、前記撮像画素部の電界効果型トランジスタを駆動する配線層を複数積層した多層配線層が前記半導体基板の第1面側に形成され、前記光電変換素子の受光面が前記半導体基板の第2面側に配置された固体撮像装置であって、前記第1面側から見て、前記半導体基板の少なくとも前記撮像画素部での配線で被覆されていない領域を挟む前記多層配線層を構成する隣接する配線間の距離が、紫外線の最短波長以下となるように、前記多層配線層を構成する各配線層内の配線が配置され、前記撮像画素部に形成される前記多層配線層の周縁部に、紫外線以上の波長の光を反射する材料によって塀状のビアリングを備えることを特徴とする固体撮像装置が提供される。
本発明によれば、裏面照射型の固体撮像装置において、受光面とは反対側の面である表面側からの光の光電変換素子への入射を抑制することができるという効果を有する。
以下に添付図面を参照して、本発明の実施の形態にかかる固体撮像装置を詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。また、以下の実施の形態で用いられる固体撮像装置やカメラモジュールの断面図は模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる。さらに、以下で示す膜厚は一例であり、これに限定されるものではない。
(第1の実施の形態)
図1は、本発明の実施の形態の固体撮像装置を適用したカメラモジュールの一例を模式的に示す断面図であり、図2は、固体撮像装置の回路構成の一例を模式的に示す図である。このカメラモジュール10は、レンズホルダ112に保持されたレンズ111を有するレンズユニット11の下に、カバーガラス12と、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサチップからなる裏面照射型の固体撮像装置14と、これらのレンズユニット11、カバーガラス12および固体撮像装置14を固定保持する筺体16と、を備える。固体撮像装置14の受光面とは反対側の下面には、外部接続端子としての半田ボール15が形成されている。また、カバーガラス12は、接着剤13によって固体撮像装置14の受光面側に固定され、固体撮像装置14の受光面側を保護している。
図2に示されるように、固体撮像装置14中には、撮像画素部41と、この撮像画素部41の周辺回路部が設けられている。撮像画素部41には、画素42−11,42−12,…,42−mn(m,nは自然数)がm行およびn列の2次元アレイ状に配列されている。ここでは撮像画素部41における4個の画素を抽出してその回路構成を詳細に示している。撮像画素部41における各画素列にはそれぞれ、垂直信号線VLIN1,VLIN2,VLIN3,…が接続されている。
それぞれの画素42−11,42−12,…,42−mnは、4つの電界効果型トランジスタ(行選択トランジスタTa、増幅トランジスタTb、リセットトランジスタTcおよび読出トランジスタTd)と、光電変換素子であるフォトダイオードPDと、から構成されている。画素42−11を例に取ると、トランジスタTa,Tbの電流通路は、電源VDDと垂直信号線VLIN1間に直列接続される。トランジスタTaのゲートにはアドレスパルスADRES1が供給される。トランジスタTcの電流通路は、電源VDDとトランジスタTbのゲート(電荷検出部FD)との間に接続され、そのゲートにリセットパルスRESET1が供給される。また、トランジスタTdの電流通路の一端は電荷検出部FDに接続され、そのゲートに読み出しパルスREAD1が供給される。そして、トランジスタTdの電流通路の他端にフォトダイオードPDのカソードが接続され、このフォトダイオードPDのアノードは接地されている。
フォトダイオードPDによって生成された信号電荷は、読み出しパルスREAD1に応答して、読出トランジスタTdを介して電荷検出部FDに供給される。電荷検出部FDの信号電荷は、増幅トランジスタTbによって電気信号に変換されて増幅される。そして、アドレスパルスADRES1により行選択トランジスタTaが選択されると、電源VDDから垂直信号線VLIN1に信号電荷量に対応する電流が供給される。読み出しが終了すると、電荷検出部FDの信号電荷はリセットパルスRESET1に応答してリセットトランジスタTcでリセットされる。
周辺回路部として、撮像画素部41を選択および駆動する駆動回路、撮像画素部41から出力される画素信号の信号処理を行う信号処理回路、およびこの信号処理回路から得られたデータを保持するデータ保持回路などが設けられている。
垂直選択回路43は、撮像画素部41の各画素行にアドレスパルスADRES1,ADRES2,…、リセットパルスRESET1,RESET2,…、および読み出しパルスREAD1,READ2,…などの画素駆動パルス信号を供給し、画素行を選択して駆動する駆動回路として働く。
垂直信号線VLIN1,VLIN2,VLIN3,…の一端と接地点間には、負荷回路44が設けられている。この負荷回路44には、バイアス回路45からバイアス電圧VTLが印加され、このバイアス電圧VTLによって垂直信号線VLIN1,VLINE2,VLINE3,…を流れる電流量が設定される。
垂直信号線VLIN1,VLIN2,VLIN3,…の他端には、信号処理回路46とデータ保持回路47が設けられている。信号処理回路46は、相関二重サンプリング(CDS)回路48とアナログ/デジタル変換器(ADC)49で構成される。アナログ/デジタル変換器49は、撮像画素部41の各画素から垂直信号線VLIN1,VLIN2,VLIN3,…に読み出したデータのアナログ/デジタル変換を行い、相関二重サンプリング回路48は、この読み出したデータのアナログ/デジタル変換時に低ノイズ化処理動作を行う。
データ保持回路47は、ラッチ回路50、ラインメモリ51および水平シフトレジスタ回路52などを備え、信号処理回路46による信号処理で得たデジタルデータを保持する。ラッチ回路50は、アナログ/デジタル変換器49でA/D変換して得たデジタルデータをラッチする。水平シフトレジスタ回路52はラッチ回路50にラッチしたデジタルデータを順次転送し、ラインメモリ51は、ラッチしたデジタルデータを記憶し、固体撮像装置14の外部に出力信号OUTとして出力する。
垂直選択回路43による撮像画素部41の選択および駆動動作、信号処理回路46の動作、およびデータ保持回路47の動作などは、タイミングジェネレータ53から出力されるタイミング信号によって制御される。
上記のような構成において、撮像画素部41の各画素における電界効果型トランジスタTa,Tb,Tc,Tdを駆動する配線層は、図1の固体撮像装置14(半導体基板)の半導体基板表面側(第1面側)に形成され、フォトダイオードPDの受光面は固体撮像装置14の半導体基板裏面側(第2面側)に配置される。そして、レンズユニット11に入射された光は、カバーガラス12を介して固体撮像装置14中に形成されたフォトダイオードPDの受光面に照射されるようになっている。また、この固体撮像装置14の裏面側には、受光面の非受光領域(周辺回路が配置される領域)に対応して遮光膜(図示せず)が形成されている。
図3は、図1のカメラモジュール内の固体撮像装置の一部を拡大して示す断面図である。ここでは、光を受光して画像形成に寄与する信号を生成する撮像画素部41と、撮像画素部41から得られる信号を処理する周辺回路部55と、を含む領域が示されている。
この固体撮像装置14は、撮像画素部41でマトリクス状に光電変換素子21と読出トランジスタTdなどの電界効果型トランジスタが形成され、周辺回路部55で電界効果型トランジスタ23などの素子が形成された厚さ10μm以下の、より望ましくは5〜10μmのシリコン基板20の裏面側にカラーフィルタ25やマイクロレンズ28が形成され、表面側に多層配線層29が形成された構成を有する。なお、ここでは、シリコン基板20を用いて固体撮像装置14を形成する場合を示すが、基板は半導体基板であればよい。
シリコン基板20の裏面側の撮像画素部41に対応する領域上には、光電変換素子21の形成位置に対応して赤色カラーパターン24R、青色カラーパターン24B、緑色カラーパターン24Gが水平方向に所定の順番で配置されたカラーフィルタ25が設けられ、周辺回路部55に対応する領域上には、裏面側から周辺回路部55への光の入射を防止するアルミニウム膜などからなる遮光膜26が設けられている。また、撮像画素部41のカラーフィルタ25と周辺回路部55の遮光膜26上の全面に、窒化シリコン膜などのパッシベーション膜27が設けられ、さらに撮像画素部41のカラーフィルタ25上の各位置に対応してマイクロレンズ28が設けられている。ここでは、1つの光電変換素子21は1画素に対応し、カラーパターン24R,24B,24Gを有する3つの画素をまとめた光電変換素子21が画像を形成する最小単位である1絵素に対応しているものとする。
なお、図1に示されるように、固体撮像装置14のマイクロレンズ28側には、カバーガラス12が設けられる。このカバーガラス12と固体撮像装置14とは、接着剤13によって固定される。この接着剤13は、マイクロレンズ28よりも屈折率の小さい材料からなることが望ましいが、マイクロレンズ28の屈折率よりも大きい材料を用いる場合には、マイクロレンズ28が形成されている領域のみパターニングによって抜き取り、キャビティとしてもよい。
ここで、シリコン基板20は、たとえばP型のシリコン基板で構成されているものとする。撮像画素部41においては、P型シリコン基板20の画素形成位置に対応して、N型の光電変換素子21がシリコン基板20を貫通するように形成されている。光電変換素子21の表面側付近には、光電変換素子21で変換された電荷を検出する電荷検出部FDが設けられている。また、シリコン基板20の表面上には、光電変換素子21から電荷検出部FDへと電荷信号を転送するための読出トランジスタTdが設けられている。なお、画素を構成するその他の電界効果型トランジスタの図示は省略している。また、周辺回路部55においては、シリコン基板20の表面側にはウェル22が形成されており、このウェル22上に電界効果型トランジスタ23などの素子が設けられている。
一方、撮像画素部41の読出トランジスタTdなどの電界効果型トランジスタや周辺回路部55の電界効果型トランジスタ23が設けられたシリコン基板20の表面上には、シリコン基板20上に形成された素子間を接続したり、外部の素子との間を接続したりするための多層配線層29が形成されている。この図3の例では、シリコン基板20の表面上に、第1の層間絶縁膜30−1、第1の配線層31−1、第2の層間絶縁膜30−2、第2の配線層31−2、第3の層間絶縁膜30−3、第3の配線層31−3、第4の層間絶縁膜30−4および第4の配線層31−4が順に積層されて形成されている。第4の配線層31−4には、半田ボールなどの外部接続端子を形成するためのパッド32が設けられており、このパッド32以外の領域は、半田が付着しないようにするために耐熱性コーティング材(ソルダーレジスト)33で被覆されている。
この第1の実施の形態では、この多層配線層29において、シリコン基板20の表面を多層配線層29の形成面側(表面側)から見た場合に、多層配線層29を形成する各配線層31−1〜31−4の配線のシリコン基板20に対する被覆率が、少なくともシリコン基板20の撮像画素部41の表面で100%となるように各配線層31−1〜31−4の配線を配置するようにしている。
裏面照射型の固体撮像装置14においては、これらの各配線層31−1〜31−4における配線のレイアウトに制限はなく、電気的に問題がなければ自由に配置することが可能である。ただし、固体撮像装置14の動作に必要な配線のみを施したのでは、シリコン基板20の表面には配線で被覆されていない領域が存在する。そのため、上記したように携帯電話などの電子機器に、このような固体撮像装置を有するカメラモジュールを実装した場合には、電子機器内の光発生源からの光によって、カメラモジュール(固体撮像装置14)の側面や表面からの光が光電変換素子21に入射してしまう。そこで、この第1の実施の形態では、固体撮像装置14の動作に必要な配線のみを施した状態で、シリコン基板20の表面を多層配線層29の形成面側(表面側)から見た場合に、配線層31−1〜31−4によって覆われていない部分に、ダミー配線パターンを配置するようにしている。このダミー配線パターンの配置は、多層配線層29が複数の配線層31−1〜31−4からなるので、シリコン基板20の表面のダミー配線を含む配線層による配線被覆率が100%となるように適宜選択することが可能である。
これらの配線層31−1〜31−4には、紫外線の最短波長以上の光を吸収または反射することができる配線材料が用いられ、通常のLSI(Large-Scale Integration)の配線材料として使用されるAl,Cu,Ti,TiN,Ta,TaN,Wなどの金属材料やこれらの金属材料の積層膜を用いることができる。これらの金属材料であれば、材料特性から、100nm程度の厚さを有していれば、単層でも紫外線の波長(300nm)以上の光を遮断することが可能であるので、通常使用されている配線の膜厚で光を遮断することが可能である。したがって、シリコン基板20の表面側や側面側からの光を遮光するために、多層配線層29を構成する各配線層31−1〜31−4の厚さを変える必要がなく、ダミー配線パターンを配置するだけでよい。
なお、1層の配線層で、完全にシリコン基板20の表面側や側面側からの光を遮光することは、電気的な制約から不可能であるが、2層以上の配線層で構成される多層配線層29であれば、第1の配線層31−1の配線間スペースを、他の配線層の配線で補間することが可能である。
図4は、第1の実施の形態にかかる固体撮像装置の平面構造の一例を示す図であり、図5は、図4のA−A断面図である。図4に示されるように、固体撮像装置14では、シリコン基板20の中央付近に、画素が配置される撮像画素部41が設けられており、この周辺に垂直選択回路43や負荷回路44などの周辺回路部55が形成されている。なお、図4において、ハッチングを付してある領域は、ダミー配線を含む配線層による配線被覆率が100%となっている領域であることを示している。
この第1の実施の形態では、撮像画素部41の多層配線層29の周縁部に沿って、ビアリング70が形成されている。図5に示されるように、ビアリング70は、各配線層31−1〜31−4に形成される配線71−1〜71−4とプラグ72−1〜72−4の積層構造で構成される塀であり、撮像画素部41の周縁部に配置したものである。なお、図5において、ビアリング70を構成する配線71−1〜71−4とプラグ72−1〜72−4は、ともに紙面に垂直な方向に連続して形成されている。また、撮像画素部41と周辺回路部55との間の配線が形成される部位では、その配線が形成される付近に塀状構造は形成されておらず、ビアリング70は、撮像画素部41内の配線とは非導通となっている。このようなビアリング70を設けることで、撮像画素部41の表面側や側面側から入射する光をさらに効果的に遮断することが可能となる。ただし、この第1の実施の形態においては、撮像画素部41におけるシリコン基板20の表面のダミー配線を含む配線層による配線被覆率が100%となるように配線とダミー配線パターンとを配置することで、すでに撮像画素部41の表面側や側面側から入射する光を遮断することができる構造となっている。ここで、撮像画素部41の周縁部にビアリング70を設けることで、より確実に撮像画素部41の特に側面側から入射する光を遮断することが可能となるが、ダミー配線を含む配線層による光の遮断が十分である場合には、このビアリング70の形成を省略してもよい。
つぎに、このような構成の固体撮像装置14の製造方法について説明する。図6−1〜図6−4は、第1の実施の形態による固体撮像装置の製造方法の手順の一例を模式的に示す平面図であり、図7(a)は、図6−4におけるB−B断面図であり、図7(b)は、図6−4におけるC−C断面図である。なお、以下では、撮像画素部41での多層配線層29の形成方法の部分についてのみ図示し、他の部分の図示は省略している。また、図6−1〜図6−4において、紙面内の左右方向をX軸方向とし、紙面内のX軸方向に垂直な方向をY軸方向とする。さらに、図6−1〜図6−4において、層間絶縁膜は図示していない。
まず、撮像画素部41を形成する領域に光電変換素子21が形成されたシリコン基板20の表面上に、電荷検出部FDを含む読出トランジスタTdや他の電界効果型トランジスタを形成し、さらにこれらの電界効果型トランジスタを形成したシリコン基板20の表面上に第1の層間絶縁膜30−1を形成する。
ついで、第1の層間絶縁膜30−1上にAl,Cu,Ti,TiN,Ta,TaN,Wなどの金属材料やこれらの金属材料の積層膜を形成し、フォトリソグラフィ技術とエッチング技術を用いて、Y軸方向に延在した所定の形状にパターニングを行って第1の配線層31−1を形成する(図6−1(a))。なお、ここでは、第1の配線層31−1中の配線311Aに電気的に導通をとるように上層の配線と接続を行い、他はダミー配線311Bであるものとする。また、ここでは、図示されていないが、この配線311Aは下層の電界効果型トランジスタとの間で図示しないコンタクトを介して電気的に接続されているものとする。
図8は、ダミー配線の形状の一例を示す平面図である。ダミー配線の形状としては、種々のものを使用することができる。たとえば、(a)に示されるような略正方形のドット形状のダミー配線、(b)に示されるような一方向に延在した矩形状の配線が所定の間隔で配置されたラインアンドスペース(L/S)形状のダミー配線、(c)に示されるような網目状のダミー配線などを使用することができる。(a)や(b)の形状のダミー配線は、色々な箇所で使用することができる。また、(c)の形状のダミー配線は、配線が全く形成されていない領域が所定の面積になる場合に、その領域を被覆する場合などに有効である。なお、図6−1以下に示す例では、ダミー配線として、図8(a)のドット形状のダミー配線と図8(b)のラインアンドスペース形状のダミー配線が用いられている。
図6−1に戻って、第1の配線層31−1を形成した後、第1の配線層31−1上に図示しない第2の層間絶縁膜を形成し、フォトリソグラフィ技術とエッチング技術を用いて、配線311Aの形成位置上の所定の位置にビアホール35−1を形成する(図6−1(b))。このビアホール35−1の底面で、第1の配線層31−1の配線311Aが露出する。
その後、第2の層間絶縁膜上に、Al,Cu,Ti,TiN,Ta,TaN,Wなどの金属材料やこれらの金属材料の積層膜を形成し、フォトリソグラフィ技術とエッチング技術を用いて、X軸方向に延在した所定の形状にパターニングを行って第2の配線層31−2を形成する(図6−2(a))。このとき、図6−1(b)の工程で形成したビアホール35−1内が金属材料で埋め込まれた状態となり、配線311Aと第2の配線層31−2の配線312Aとを結ぶビア351が形成される。また、第2の配線層31−2中のビア351に接続される配線312A以外は、ダミー配線312Bとする。この第2の配線層31−2では、第1の配線層31−1におけるY軸方向の配線間の切れ目341を覆うように、X軸方向に延在した形状のダミー配線312Bが配置される。また、第2の配線層31−2を構成する配線312Aとダミー配線312BのX軸方向の配線間の切れ目342は、ほとんどが第1の配線層31−1の配線311Aまたはダミー配線311Bの上に位置するように設計されている。
第2の配線層31−2上に図示しない第3の層間絶縁膜を形成した後、フォトリソグラフィ技術とエッチング技術を用いて、配線312Aの形成位置上の所定の位置にビアホール35−2を形成する(図6−2(b))。このビアホール35−2の底面で、第2の配線層31−2の配線312Aが露出する。
その後、第3の層間絶縁膜上に、Al,Cu,Ti,TiN,Ta,TaN,Wなどの金属材料やこれらの金属材料の積層膜を形成し、フォトリソグラフィ技術とエッチング技術を用いて、Y軸方向に延在した所定の形状にパターニングを行って第3の配線層31−3を形成する(図6−3(a))。このとき、図6−2(b)の工程で形成したビアホール35−2内が金属材料で埋め込まれた状態となり、配線312Aと第3の配線層31−3の配線313Aとを結ぶビア352が形成される。また、第3の配線層31−3中のビア352に接続される配線313A以外は、ダミー配線313B,313Cとする。この第3の配線層31−3では、第1の配線層31−1の配線311Aやダミー配線311BとX軸方向の位置をずらしてY軸方向に延在した形状で配線313Aやダミー配線313B,313Cが形成される。ダミー配線313Bのように、第1の配線層31−1のX軸方向の切れ目(配線間隔)をすべて覆うように形成される配線もあれば、ダミー配線313Cのように、第1の配線層31−1のX軸方向の切れ目(配線間隔)をすべて覆わずにシリコン基板表面の一部が配線で覆われない領域343が残ってしまうように形成される配線もある。
第3の配線層31−3上に図示しない第4の層間絶縁膜を形成した後、フォトリソグラフィ技術とエッチング技術を用いて、配線313Aの形成位置上の所定の位置にビアホール35−3を形成する(図6−3(b))。このビアホール35−3の底面で、第3の配線層31−3の配線313Aが露出する。
ついで、第4の層間絶縁膜上に、Al,Cu,Ti,TiN,Ta,TaN,Wなどの金属材料やこれらの金属材料の積層膜を形成し、フォトリソグラフィ技術とエッチング技術を用いて、X軸方向に延在した所定の形状にパターニングを行って第4の配線層31−4を形成する(図6−4)。このとき、図6−3(b)の工程で形成したビアホール35−3内が金属材料で埋め込まれた状態となり、配線313Aと第4の配線層31−4の配線314Aとを結ぶビア353が形成される。また、第4の配線層31−4中のビア353に接続される配線314A以外は、ダミー配線314Bとする。この第4の配線層31−4では、第2の配線層31−2の配線312Aやダミー配線312BとY軸方向の位置をずらしてX軸方向に延在した形状で配線314Aやダミー配線314Bが配置される。また、この第4の配線層31−4は多層配線層29における最上層の配線層であるため、第3の配線層31−3までに配線によって被覆されなかったシリコン基板20の表面の領域がなくなるように形成される。ここでは、たとえば、図6−3(a)におけるシリコン基板20表面が配線で覆われない領域343をすべて覆うように、配線314Aやダミー配線314Bが形成される位置と配線の太さ(Y軸方向の長さ)が決定される。以上によって、多層配線層29が形成される。
ここで、図7(a)に示されるように、図6−4のB−B断面においては、第4の配線層31−4が形成されていないが、第1〜第3の配線層31−1〜31−3によって配線被覆率が100%となっている。そのため、この位置から入射した光は、シリコン基板に到達することがない。
同様に、図7(b)に示されるように、図6−4のC−C断面においては、第2の配線層31−2が形成されていないが、第1、第3および第4の配線層31−1,31−3,31−4によって配線被覆率が100%となっている。そのため、この位置から入射した光も、シリコン基板に到達することがない。
これらのように、場所によっては、多層配線層29を構成するすべての配線層31−1〜31−4を用いて撮像画素部41の表面の配線被覆率を100%とする必要はなく、多層配線層29を構成する少なくとも2つの配線層でその領域における配線被覆率が100%となる領域を含んでいてもよい。
以上のようにして多層配線層29を形成した後、第4の配線層31−4上のパッド(半田ボール)形成位置以外の領域を、ソルダレジストなどの耐熱性コーティング材33で覆った後、シリコン基板20の裏面を10μm以下の所定の厚さとなるように研磨する。ついで、薄く研磨したシリコン基板20の撮像画素部41を除く領域(周辺回路部)の裏面上に遮光膜26を形成し、撮像画素部41上の各画素の位置に対応してカラーフィルタ25を形成した後、カラーフィルタ25と遮光膜26上にパッシベーション膜27を形成する。
さらに、撮像画素部41上の各画素の位置に対応してマイクロレンズ28を形成することで、図3に示されるような固体撮像装置14が得られる。このようにして得られた固体撮像装置14に対し、マイクロレンズ28を形成した側に接着剤13を塗布して、カバーガラス12を貼り付けた上で、固体撮像装置14の多層配線層29が形成された側にはパッド32上に半田ボール15を搭載する。以上の工程は、1つのシリコン基板20(ウェハ)上に形成された複数の領域で行われており、シリコン基板20上に半田ボール15が搭載された後に、これらの各領域をダイシングによって個片化(チップ化)する。その後、切断されたそれぞれのチップについて、カバーガラス12上にレンズユニット11を配置し、樹脂でパッケージ化することによって、図1に示されるようなカメラモジュール10が得られる。
この第1の実施の形態によれば、裏面照射型の固体撮像装置において、表面側に形成される多層配線層29を構成する各配線層31−1〜31−4を、通常の配線に加えてダミー配線を用いて、表面側から見たシリコン基板の配線被覆率が100%となるように配置したので、受光面とは反対側からの不要な光の光電変換素子21への入射を遮ることができ、表面側の配線が、光電変換素子21に写りこんでしまうことを防止できるという効果を有する。
(第2の実施の形態)
第1の実施の形態では、少なくとも撮像画素部での配線被覆率が100%となるようにダミー配線を配置した場合を示したが、ダミー配線を用いた遮光方法としては、表面側から入射する光の入射波長のうち、遮光したい範囲の光の最短波長、具体的には紫外線の最短波長(たとえば、300nm)以下となる配線(金属)間距離で配線を配置してもよい。つまり、多層配線層を構成する配線で被覆されていない領域を挟む隣接する配線間の距離が、紫外線の最短波長以下となるように、多層配線層を構成する各配線層の配線を配置するようにしてもよい。これは、光は波長よりも短い隙間を透過することができないからである。このような規則にしたがって、シリコン基板の表面に光が到達しないように多層配線層を形成することで、配線被覆率を100%としなくても、シリコン基板の受光面とは反対側や側面側から入射する光のうち、配線間距離以上の波長を有する光を遮光することが可能となる。この場合、より微細な設計ルールで形成されている下層配線(シリコン基板に近い側の配線層〜中ほどに位置する配線層)を用いてダミー配線パターンを形成し、遮光することが望ましい。
このような方法で配線を行う場合として、同一方向に延在する複数の配線(たとえば、ADRES線とRESET線、READ線など)を同一配線層内に形成しなければならない場合などを例示することができる。また、設計時には、第1の実施の形態のように、被覆率が100%となるように各配線層中の配線が形成された多層配線層が、実際に製造されたときには設計時の位置からずれてしまうことがある。このような場合に、その位置ずれの範囲が上記の紫外線の波長以下であれば、表面側や側面側から入射する光を遮光することが可能となる。
この第2の実施の形態によっても、第1の実施の形態と同様の効果を得ることができる。
(第3の実施の形態)
第1の実施の形態では、少なくとも撮像画素部での配線被覆率が100%となるようにダミー配線を配置するとともに、撮像画素部の周縁部にビアリングを形成する場合を説明した。この第3の実施の形態では、撮像画素部の周縁部にビアリングを形成しない場合について説明する。
図9は、第3の実施の形態による固体撮像装置の配線被覆率の関係を模式的に示す平面図である。この図9に示されるように、撮像画素部41での配線被覆率を100%となるように配置し、周辺回路部55でも配線被覆率が100%となるように、または配線が形成されないシリコン基板20上の領域において、隣接する配線間の距離が紫外線の波長以下となるような条件で、配線またはダミー配線を形成する。なお、この図9におけるハッチングは、ダミー配線を含む配線層による配線被覆率が100%となっている領域、または隣接する配線間の距離が紫外線の波長以下となるような条件で、配線またはダミー配線を形成した領域であることを示している。
このように、撮像画素部41だけでなく、周辺回路部55も固体撮像装置14の表面側や側面側から入射する光を遮光する構造とすることによって、撮像画素部41の周縁部にビアリングを形成しない場合でも、撮像画素部41の光電変換素子へ入射する光をより確実に防ぐことができる。
また、このように、撮像画素部41だけでなく、周辺回路部55を含めたシリコン基板20の全体を配線やダミー配線で覆うことによって、シリコン基板20上における配線の被覆率を均一にすることができる。その結果、多層配線層の絶縁膜でのクラックの発生や界面剥がれなどを防止することができる。以下に、この効果について詳細に説明する。
ここでは、シリコン基板20上(多層配線層)に、配線が密に形成されている領域と、配線が疎の領域と、が存在し、配線がCuで形成される場合と、この第3の実施の形態と、を比較して説明する。Cuは熱膨張係数が大きく、ヤング率が大きい材料(硬くて伸びやすい材料)であり、層間絶縁膜を構成する一般的な絶縁膜は、これとは反対に熱膨張係数が小さく、ヤング率が小さい材料(柔らかくて伸び難い材料)である。そのため、シリコン基板20を薄くしたり、個片化したりするパッケージ時や、固体撮像装置14をパッケージ化することで組み立てられたカメラモジュール10の基板への実装時(マウント時)に、シリコン基板20に熱応力や外部応力がかかると、配線が密な部分と疎な部分とが存在するシリコン基板20上でパターンにゆがみが生じ、それらの境界部付近に割れ目が生じてしまうことがある。
しかし、上記した実施の形態で説明したように、シリコン基板20上における配線の被覆率をほぼ均一化することで、パッケージ時やマウント時に、シリコン基板20に熱応力や外部応力が加えられても、シリコン基板20全体にかかる熱荷重や外部荷重が均一化され、チップの反りが抑制される。
この第3の実施の形態によれば、撮像画素部41だけでなく、周辺回路部55も固体撮像装置14の表面側や側面側から入射する光を遮光する構造としたので、撮像画素部41の周縁部にビアリングを形成することなく、撮像画素部41の表面側や側面側から光電変換素子へと入射する光をより確実に防ぐことができる。また、撮像画素部41だけでなくシリコン基板20全体の配線被覆率が均一となるように配線やダミー配線を配置したので、固体撮像装置14の剛性が高くなり、マウント時やパッケージ時に生じる熱荷重や外部荷重が均一化され、固体撮像装置14の反りが抑制される。その結果、固体撮像装置14の性能を向上させると同時に、絶縁膜クラックや界面剥がれ不良が抑制され、高品質、高信頼性の固体撮像装置14が得られるという効果も有する。
(第4の実施の形態)
多層配線層においては、多層配線間での寄生容量を低減させるために、層間絶縁膜の誘電率を低減させることが望まれている。しかし、一般的に低誘電率膜はヤング率が小さく、配線層を構成する金属材料(たとえば、Cu)と比較して1桁以上小さい。ヤング率が小さくなると、低誘電率膜の材料自体の機械的強度や低誘電率膜を含む積層膜の界面における密着強度が劣化するおそれが生じるという問題点があった。実際に、比誘電率の低い低誘電率膜を用いて層間絶縁膜を形成した場合に、固体撮像装置の層間絶縁膜でのクラックや界面剥がれなどの不良が生じるおそれがあった。そのため、従来では、多層配線層における層間絶縁膜には、酸化シリコンやシリコン窒化膜などの比誘電率の高い材料が使用されていた。そこで、この第4の実施の形態では、固体撮像装置の多層配線層における層間絶縁膜に比誘電率の小さい材料を使用しても、固体撮像装置の層間絶縁膜でのクラックや界面剥がれなどの不良を抑制することができる構造について説明する。
第3の実施の形態に示したように、撮像画素部だけでなく、周辺回路部にも表面側からの光を遮光するための構造を設けることで、固体撮像装置全体の配線被覆率がほぼ均一化される。すなわち、固体撮像装置の場所によって、配線が密であったり、配線が疎であったりするような構造が解消され、ダミー配線によって、固体撮像装置のどの場所でもほぼ同じ配線被覆率を得ることができる。その結果、マウント時やパッケージ時に固体撮像装置に印加される熱応力や外部応力は均一化されるので、層間絶縁膜を、従来のように比誘電率が高く大きいヤング率を有する材料で構成する必要がなくなる。そのため、多層配線層を構成する層間絶縁膜のうち少なくとも1層を比誘電率3.4以下の低誘電率膜で構成することができる。
図10は、第4の実施の形態による固体撮像装置の多層配線層の構造を模式的に示す断面図である。ここでは、多層配線層29は、第1〜第3の配線層31−1〜31−3と、それぞれの第1〜第3の配線層31−1〜31−3の上下に形成される第1〜第4の層間絶縁膜30−1〜30−4と、を含む。そして、多層配線層29を構成する少なくとも1層の層間絶縁膜は、比誘電率が3.4以下の材料で構成される。
たとえば、第1の層間絶縁膜30−1上に形成される第1の配線層31−1では、実際に電流を流すための配線311Aを囲むように電気的に切断されたダミー配線311Bが配置されている。また、この第1の配線層31−1上には、シリコン窒化膜302A(比誘電率=7.0)と、比誘電率が3.4以下の材料からなる低誘電率膜302Bとが積層された第2の層間絶縁膜30−2が形成され、配線311Aの形成位置の一部が露出するように第2の層間絶縁膜30−2にビアホールが形成され、ここにビア351が配設される。さらに、第2の層間絶縁膜30−2のビア351を含む所定の領域上に配線312Aと、配線312Aを取り囲むようにダミー配線312Bとを含む第2の配線層31−2が形成される。
この第2の配線層31−2上にも、第2の層間絶縁膜30−2と同様に、シリコン窒化膜303Aと低誘電率膜303Bとが積層された第3の層間絶縁膜30−3が形成される。そして、配線312Aの形成位置の一部が露出するように、第3の層間絶縁膜30−3にビアホールが形成され、ここにビア352が配設される。また、第3の層間絶縁膜30−3のビア352を含む所定の領域上に配線313Aと、配線313Aを取り囲むようにダミー配線313Bとを含む第3の配線層31−3が形成される。さらに、その上にシリコン窒化膜304Aとシリコン酸化膜304Bが積層された第4の層間絶縁膜30−4が形成され、この第4の層間絶縁膜30−4の上部に図示しない外部接続端子接続用のパッドが形成される。このとき、上述した実施の形態で説明したように、受光面と反対側からの不要な光の入射を遮るために、配線311A,312A,313Aとダミー配線311B,312B,313Bとを、お互いの配線間を補間するように配置する。
ここでは、配線311A,312A,313A、ビア351,352、およびダミー配線311B,312B,313Bは、層間絶縁膜30−1〜30−3の表面の所定の位置に沿って配設されたバリアメタルと、バリアメタル上に形成された導電材料と、からなるものとする。バリアメタルとして、Ta,Ti,Nb,W,Ru,Rh、これらを含む合金、これらの化合物、またはこれらの積層膜を使用することができる。また、導電材料として、Cu,Alまたはこれらを含む合金を使用することができる。
さらに、低誘電率膜302B,303Bとしては、たとえば、ポリメチルシロキサン膜(比誘電率=2.8)などの有機絶縁膜やハイドロジェンシルセスキオキサンなどの高分子膜、カーボン含有SiO2膜(SiOC膜)、多孔質シリカ膜、アモルファスカーボン膜(Fドープ)などを用いることができる。これらの材料は、いずれも比誘電率3.4以下である。また、低誘電率膜302B,303Bを、上記の低誘電率材料の内の1種類以上を含む積層膜により形成してもよい。
また、配線312A(313A)とビア351(352)が配設されたシリコン窒化膜302A(303A)と低誘電率膜302B(303B)をさらに多層化してもよい。さらに、ここでは、多層配線層29のうち、第2と第3の層間絶縁膜30−2,30−3の2層に低誘電率膜302B,303Bを使用した場合を示したが、多層配線層29のうち、少なくとも1層以上の層間絶縁膜に低誘電率膜を使用していればよく、それ以外の層間絶縁膜には比誘電率が3.4より大きい材料からなる層間絶縁膜を用いてもよい。
つぎに、固体撮像装置の全体における配線被覆率を変化させた場合の層間絶縁膜の剥がれやすさについて実験を行った結果を示す。ここでは、ダミー配線311B,312B,313Bの形状は、図8(a)に示されるようなドット形状(略正方形の平面形状)とし、ダミー配線配置後の表面側から見たシリコン基板に対する配線被覆率を100%とする。また、比較対象としてダミー配線を配置しない固体撮像装置も作製する。なお、いずれの構造においても、実際に電流を流すのに使用する配線の位置と形状を同じものとする。
このダミー配線を用いて配線被覆率を変化させた構造とダミー配線のない構造の固体撮像装置を形成し、それぞれについて、プロセス中の熱応力と外部応力による絶縁膜クラック不良の有無を観察する。その結果、表面側から見た配線被覆率が100%の構造のものについては、クラックは観察されないが、ダミー配線を配置しない構造のものにおいては、表面側から見た場合に配線が広い範囲で存在しない領域の絶縁膜に、クラックが観察された。
これらの固体撮像装置14の多層配線層29を形成する低誘電率膜は一般的にヤング率が15GPa以下と小さい。これに対して、配線層として使用されるCuのヤング率は130GPaであり、低誘電率膜に比較して約1桁大きい。そのため、固体撮像装置14に熱応力や外部応力が印加されると、Cu配線近傍の歪量と低誘電率膜(絶縁膜)内部の歪量との間に差が生じ、この差が絶縁膜クラック進展の駆動力となる。この歪量の差は、低誘電率膜中のCuの配線被覆率分布が不均一であるほど大きくなる。ここで、ダミー配線を配置しない場合には、配線被覆率分布が不均一となり、歪量の差が大きくなり、絶縁膜クラックが進展しやすくなる一方、表面側から見た配線被覆率を100%とすることによって、絶縁膜中のCuの配線被覆率分布を均一化し、歪量の差を小さくすることができる。これによって、配線被覆率が100%の構造のものについては、プロセス中の熱応力、外部応力による絶縁膜クラック不良を抑制することが可能となる。
この第4の実施の形態によれば、多層配線層に少なくとも1層の比誘電率が3.4以下である低誘電率膜を用いた固体撮像装置において、多層配線層内で、実効配線とは電気的に切断されたダミー配線を、受光面とは反対側から見た配線被覆率が100%になるように、複数の配線層間でお互いの配線間を補間するように配置した。これによって、受光部とは反対側からの不要な光の入射を遮るとともに、ダミー配線は絶縁膜の補強材としての効果をもち、機械的強度低下による絶縁膜クラックや界面剥がれ不良を抑制することができる。その結果、多層配線層29に低誘電率の層間絶縁膜を用いることができ、多層配線間での寄生容量を低減させることができるという効果を有する。
なお、この第4の実施の形態では、ダミー配線の平面形状を略正方形状(ドット状)としたが、図8に示す他の形状でも同様の効果を得ることができる。また、配線層毎にダミー配線の形状や被覆率を変化させてもよいし、1つの配線層内で異なる形状のダミー配線を混在させて配置してもよい。このように、配線層毎にダミー配線の形状や被覆率を変化させることによって、必要最小限の被覆率のダミー配線で、表面側からの不要な光の入射を遮ることが可能になる。また、ダミー配線の配置による多層配線間の寄生容量増大を最小限に抑えることもできる。
本発明の実施の形態の固体撮像装置を適用したカメラモジュールの一例を模式的に示す断面図である。 固体撮像装置の回路構成の一例を模式的に示す図である。 図1のカメラモジュール内の固体撮像装置の一部を拡大して示す断面図である。 第1の実施の形態にかかる固体撮像装置の平面構造の一例を示す図である。 図4のA−A断面図である。 第1の実施の形態による固体撮像装置の製造方法の手順の一例を模式的に示す平面図である(その1)。 第1の実施の形態による固体撮像装置の製造方法の手順の一例を模式的に示す平面図である(その2)。 第1の実施の形態による固体撮像装置の製造方法の手順の一例を模式的に示す平面図である(その3)。 第1の実施の形態による固体撮像装置の製造方法の手順の一例を模式的に示す平面図である(その4)。 図6−4における断面図である。 ダミー配線の形状の一例を示す平面図である。 第3の実施の形態による固体撮像装置の配線被覆率の関係を模式的に示す平面図である。 第4の実施の形態による固体撮像装置の多層配線層の構造を模式的に示す断面図である。
符号の説明
10…カメラモジュール、11…レンズユニット、12…カバーガラス、13…接着剤、14…固体撮像装置、15…半田ボール、20…シリコン基板、21…光電変換素子、22…ウェル、23…電界効果型トランジスタ、25…カラーフィルタ、26…遮光膜、27…パッシベーション膜、28…マイクロレンズ、29…多層配線層、30−1〜30−4…層間絶縁膜、31−1〜31−4…配線層、32…パッド、33…耐熱性コーティング材、35−1〜35−3…ビアホール、41…撮像画素部、42…画素、55…周辺回路部、70…ビアリング、71…配線、72…プラグ、FD…電荷検出部、PD…フォトダイオード、Ta…行選択トランジスタ、Tb…増幅トランジスタ、Tc…リセットトランジスタ、Td…読出トランジスタ。

Claims (4)

  1. 半導体基板に、光電変換素子と電界効果型トランジスタを含む画素を複数配列した撮像画素部と、前記撮像画素部の周辺回路部と、を設け、前記撮像画素部の電界効果型トランジスタを駆動する配線層を複数積層した多層配線層が前記半導体基板の第1面側に形成され、前記光電変換素子の受光面が前記半導体基板の第2面側に配置された固体撮像装置であって、
    前記第1面側から見て、前記半導体基板の少なくとも前記撮像画素部における配線の被覆率が100%となるように、前記多層配線層を構成する各配線層内の配線が配置され
    前記撮像画素部に形成される前記多層配線層の周縁部に、紫外線以上の波長の光を反射する材料によって塀状のビアリングを備えることを特徴とする固体撮像装置。
  2. 半導体基板に、光電変換素子と電界効果型トランジスタを含む画素を複数配列した撮像画素部と、前記撮像画素部の周辺回路部と、を設け、前記撮像画素部の電界効果型トランジスタを駆動する配線層を複数積層した多層配線層が前記半導体基板の第1面側に形成され、前記光電変換素子の受光面が前記半導体基板の第2面側に配置された固体撮像装置であって、
    前記第1面側から見て、前記半導体基板の少なくとも前記撮像画素部での配線で被覆されていない領域を挟む前記多層配線層を構成する隣接する配線間の距離が、紫外線の最短波長以下となるように、前記多層配線層を構成する各配線層内の配線が配置され
    前記撮像画素部に形成される前記多層配線層の周縁部に、紫外線以上の波長の光を反射する材料によって塀状のビアリングを備えることを特徴とする固体撮像装置。
  3. 前記第1面側から見て、前記半導体基板の前記撮像画素部以外の領域で前記配線で被覆されていない領域を有する場合に、前記第1面側から見て前記配線で被覆されていない領域を挟む前記多層配線層を構成する隣接する配線間の距離が、紫外線の最短波長以下となるように、前記多層配線層を構成する各配線層内の配線が配置されることを特徴とする請求項1または2に記載の固体撮像装置。
  4. 前記多層配線層を構成する層間絶縁膜の少なくとも1層は、比誘電率が3.4以下の低誘電率材料によって構成されることを特徴とする請求項に記載の固体撮像装置。
JP2008141304A 2008-05-29 2008-05-29 固体撮像装置 Expired - Fee Related JP5198150B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008141304A JP5198150B2 (ja) 2008-05-29 2008-05-29 固体撮像装置
US12/404,675 US8098312B2 (en) 2008-05-29 2009-03-16 Back-illuminated type solid-state image pickup apparatus with peripheral circuit unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141304A JP5198150B2 (ja) 2008-05-29 2008-05-29 固体撮像装置

Publications (2)

Publication Number Publication Date
JP2009290000A JP2009290000A (ja) 2009-12-10
JP5198150B2 true JP5198150B2 (ja) 2013-05-15

Family

ID=41379327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141304A Expired - Fee Related JP5198150B2 (ja) 2008-05-29 2008-05-29 固体撮像装置

Country Status (2)

Country Link
US (1) US8098312B2 (ja)
JP (1) JP5198150B2 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438374B2 (ja) * 2009-05-12 2014-03-12 キヤノン株式会社 固体撮像装置
JP5150566B2 (ja) * 2009-06-22 2013-02-20 株式会社東芝 半導体装置およびカメラモジュール
KR101648200B1 (ko) * 2009-10-22 2016-08-12 삼성전자주식회사 이미지 센서 및 그 제조 방법
JP2011216865A (ja) * 2010-03-17 2011-10-27 Canon Inc 固体撮像装置
JP5422455B2 (ja) * 2010-03-23 2014-02-19 パナソニック株式会社 固体撮像装置
JP2012009816A (ja) * 2010-05-28 2012-01-12 Casio Comput Co Ltd 半導体装置およびその製造方法
US9406621B2 (en) * 2010-06-10 2016-08-02 Texas Instruments Incorporated Ultraviolet energy shield for non-volatile charge storage memory
JP5542543B2 (ja) 2010-06-28 2014-07-09 株式会社東芝 半導体装置の製造方法
JP2012044091A (ja) * 2010-08-23 2012-03-01 Canon Inc 撮像装置、撮像モジュール及びカメラ
JP2012064703A (ja) * 2010-09-15 2012-03-29 Sony Corp 撮像素子および撮像装置
JP2012064709A (ja) 2010-09-15 2012-03-29 Sony Corp 固体撮像装置及び電子機器
JP5570377B2 (ja) 2010-09-30 2014-08-13 キヤノン株式会社 固体撮像装置
JP5644341B2 (ja) * 2010-10-04 2014-12-24 ソニー株式会社 固体撮像素子、および、その製造方法、電子機器
JP5633323B2 (ja) * 2010-11-11 2014-12-03 ソニー株式会社 固体撮像装置及び電子機器
KR101133154B1 (ko) * 2011-02-03 2012-04-06 디지털옵틱스 코포레이션 이스트 상이한 파장을 균일하게 수광하기 위한 차등 높이 실리콘을 포함하는 이면 조사 센서 패키지
KR101095945B1 (ko) * 2011-02-03 2011-12-19 테쎄라 노쓰 아메리카, 아이엔씨. 상이한 파장을 균일하게 수광하기 위한 흡광 재료를 포함하는 이면 조사 센서 패키지
US20120241905A1 (en) * 2011-03-25 2012-09-27 Tang William W K Substrate isolation structure
US20120274811A1 (en) * 2011-04-28 2012-11-01 Dmitry Bakin Imaging devices having arrays of image sensors and precision offset lenses
EP2717561B1 (en) 2011-05-24 2019-03-27 Sony Semiconductor Solutions Corporation Solid-state imaging element and camera system
JP5794002B2 (ja) * 2011-07-07 2015-10-14 ソニー株式会社 固体撮像装置、電子機器
JP2013058661A (ja) * 2011-09-09 2013-03-28 Sony Corp 固体撮像素子および電子機器
US9153490B2 (en) 2011-07-19 2015-10-06 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, manufacturing method of semiconductor device, semiconductor device, and electronic device
US8748828B2 (en) * 2011-09-21 2014-06-10 Kla-Tencor Corporation Interposer based imaging sensor for high-speed image acquisition and inspection systems
WO2013077121A1 (ja) * 2011-11-24 2013-05-30 富士フイルム株式会社 固体撮像装置
CN107863362B (zh) 2012-02-03 2022-09-09 索尼公司 半导体器件和电子设备
JP2013187360A (ja) * 2012-03-08 2013-09-19 Sony Corp 固体撮像装置、及び、電子機器
JP6053333B2 (ja) 2012-05-31 2016-12-27 キヤノン株式会社 撮像装置、撮像システム、撮像装置の駆動方法
JP5926634B2 (ja) * 2012-07-03 2016-05-25 キヤノン株式会社 固体撮像装置及びカメラ
JP2014135326A (ja) * 2013-01-08 2014-07-24 Toshiba Corp 固体撮像装置
JP6270335B2 (ja) * 2013-04-26 2018-01-31 オリンパス株式会社 撮像装置
JP6270336B2 (ja) * 2013-04-26 2018-01-31 オリンパス株式会社 撮像装置
WO2014174994A1 (ja) 2013-04-26 2014-10-30 オリンパス株式会社 撮像装置
JP6209890B2 (ja) * 2013-07-29 2017-10-11 ソニー株式会社 裏面照射型イメージセンサ、撮像装置、および電子機器
JP6184240B2 (ja) 2013-08-08 2017-08-23 オリンパス株式会社 固体撮像装置および撮像装置
US9473719B2 (en) * 2013-12-30 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer in CMOS image sensor array region
JP2015185823A (ja) * 2014-03-26 2015-10-22 ソニー株式会社 固体撮像素子、及び、撮像装置
US9467606B2 (en) * 2014-06-10 2016-10-11 Omnivision Technologies, Inc. Wafer level stepped sensor holder
JP6682175B2 (ja) * 2014-07-31 2020-04-15 キヤノン株式会社 固体撮像素子および撮像システム
JP6079807B2 (ja) * 2015-03-24 2017-02-15 ソニー株式会社 固体撮像装置及び電子機器
JP6197901B2 (ja) * 2016-03-04 2017-09-20 ソニー株式会社 固体撮像装置、及び、電子機器
US10818718B2 (en) * 2016-07-20 2020-10-27 Sony Corporation Light receiving element, method of manufacturing light receiving element, imaging device, and electronic apparatus
JP6691101B2 (ja) 2017-01-19 2020-04-28 ソニーセミコンダクタソリューションズ株式会社 受光素子
JP6910814B2 (ja) * 2017-02-22 2021-07-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器
JP6804395B2 (ja) * 2017-06-21 2020-12-23 ソニー株式会社 固体撮像装置
JP6947550B2 (ja) * 2017-06-27 2021-10-13 株式会社ジャパンディスプレイ 表示装置
JP2019075441A (ja) * 2017-10-13 2019-05-16 キヤノン株式会社 光電変換装置および機器
CN115145019B (zh) * 2018-01-25 2023-12-08 台湾东电化股份有限公司 光学***
JP7175655B2 (ja) * 2018-07-18 2022-11-21 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距モジュール
TW202038456A (zh) * 2018-10-26 2020-10-16 日商索尼半導體解決方案公司 固態攝像元件、固態攝像元件封裝及電子機器
US11573320B2 (en) * 2019-02-20 2023-02-07 Sony Semiconductor Solutions Corporation Light receiving element and ranging module
CN115088074A (zh) * 2020-02-20 2022-09-20 新唐科技日本株式会社 固体摄像装置以及摄像装置
JP2021158348A (ja) * 2020-03-27 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び固体撮像装置の製造方法
JP2024070699A (ja) * 2022-11-11 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235475A (ja) 1991-01-10 1992-08-24 Olympus Optical Co Ltd 固体撮像装置
JPH11326954A (ja) 1998-05-15 1999-11-26 Semiconductor Energy Lab Co Ltd 半導体装置
JP3434740B2 (ja) * 1999-06-30 2003-08-11 Necエレクトロニクス株式会社 固体撮像装置
JP3722367B2 (ja) 2002-03-19 2005-11-30 ソニー株式会社 固体撮像素子の製造方法
JP4306265B2 (ja) * 2003-02-04 2009-07-29 株式会社ニコン 固体撮像装置
JP4499386B2 (ja) * 2003-07-29 2010-07-07 浜松ホトニクス株式会社 裏面入射型光検出素子の製造方法
JP4619705B2 (ja) * 2004-01-15 2011-01-26 株式会社東芝 半導体装置
JP2005209674A (ja) * 2004-01-20 2005-08-04 Sony Corp 電荷転送装置、電荷転送装置の製造方法および固体撮像装置
JP4349232B2 (ja) * 2004-07-30 2009-10-21 ソニー株式会社 半導体モジュール及びmos型固体撮像装置
JP4867152B2 (ja) 2004-10-20 2012-02-01 ソニー株式会社 固体撮像素子
JP4285432B2 (ja) 2005-04-01 2009-06-24 ソニー株式会社 固体撮像素子及びその製造方法
JP4752447B2 (ja) * 2005-10-21 2011-08-17 ソニー株式会社 固体撮像装置およびカメラ
KR101225317B1 (ko) 2005-12-28 2013-01-22 엘지디스플레이 주식회사 액정표시소자의 구동 장치 및 방법
JP4976765B2 (ja) * 2006-07-07 2012-07-18 ルネサスエレクトロニクス株式会社 固体撮像装置
JP2008103572A (ja) * 2006-10-19 2008-05-01 Sony Corp 固体撮像装置及びその製造方法
JP5151375B2 (ja) * 2007-10-03 2013-02-27 ソニー株式会社 固体撮像装置およびその製造方法および撮像装置

Also Published As

Publication number Publication date
US20090295979A1 (en) 2009-12-03
JP2009290000A (ja) 2009-12-10
US8098312B2 (en) 2012-01-17

Similar Documents

Publication Publication Date Title
JP5198150B2 (ja) 固体撮像装置
JP5843475B2 (ja) 固体撮像装置および固体撮像装置の製造方法
JP5693060B2 (ja) 固体撮像装置、及び撮像システム
JP5451547B2 (ja) 固体撮像装置
US20220415956A1 (en) Solid-state image sensor, method for producing solid-state image sensor, and electronic device
US8519459B2 (en) Solid-state imaging device and electronic equipment
JP4383959B2 (ja) 光電変換装置およびその製造方法
JP5553693B2 (ja) 固体撮像装置及び撮像システム
US20110127629A1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US11817471B2 (en) Imaging device and electronic device configured by bonding a plurality of semiconductor substrates
JP2023055816A (ja) 固体撮像装置および固体撮像装置の製造方法
US9287318B2 (en) Solid-state imaging sensor, method of manufacturing the same, and camera
JP2011166033A (ja) 固体撮像素子及びその製造方法、並びに電子情報機器
JP5225233B2 (ja) 光電変換装置
CN117063296A (zh) 光检测装置和电子设备
JP2008181973A (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees