JP5143437B2 - Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode - Google Patents

Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode Download PDF

Info

Publication number
JP5143437B2
JP5143437B2 JP2007019738A JP2007019738A JP5143437B2 JP 5143437 B2 JP5143437 B2 JP 5143437B2 JP 2007019738 A JP2007019738 A JP 2007019738A JP 2007019738 A JP2007019738 A JP 2007019738A JP 5143437 B2 JP5143437 B2 JP 5143437B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
silicon
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007019738A
Other languages
Japanese (ja)
Other versions
JP2008186732A (en
Inventor
隆伸 河井
健一 本川
隼人 松本
慎哉 安藤
修平 滝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2007019738A priority Critical patent/JP5143437B2/en
Publication of JP2008186732A publication Critical patent/JP2008186732A/en
Application granted granted Critical
Publication of JP5143437B2 publication Critical patent/JP5143437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用負極活物質及びそれを使用した負極に関し、黒鉛基材に珪素・珪素化合物・珪素合金の微粉末、あるいは、珪素・珪素化合物・珪素合金の微粉末とカーボンブラックの混合物等を複合化することにより得られる高容量でサイクル特性に優れたリチウム二次電池用の負極活物質、それを使用した負極及びその製造法に関する。   TECHNICAL FIELD The present invention relates to a negative electrode active material for a lithium secondary battery and a negative electrode using the same, and a graphite base material containing silicon / silicon compound / silicon alloy fine powder or silicon / silicon compound / silicon alloy fine powder and carbon black. The present invention relates to a negative electrode active material for a lithium secondary battery having a high capacity and excellent cycle characteristics obtained by combining a mixture of the above and the like, a negative electrode using the same, and a method for producing the same.

リチウム二次電池はハイパワー、高容量の二次電池として携帯電話、パソコン、PDA等の可搬型機器類に多く使用され、今後もその需要が更に高くなると予想されている。
可搬型機器類の小型化、軽量化、高性能化への流れを受けて、リチウム二次電池も小型・軽量化あるいは高容量化の要請が強くなっている。
この要請に応えるため、リチウム二次電池の各種のパーツや材料の高性能化も活発に試みられ、中でも電池の性能を左右するものとして、負極活物質の開発は、重要度を増している。
Lithium secondary batteries are often used in portable devices such as mobile phones, personal computers and PDAs as high-power, high-capacity secondary batteries, and it is expected that the demand will continue to increase in the future.
In response to the trend toward smaller, lighter, higher performance portable devices, there is an increasing demand for smaller, lighter, or higher capacity lithium secondary batteries.
In order to meet this demand, various parts and materials of lithium secondary batteries have been actively improved, and the development of a negative electrode active material has become increasingly important as it affects the performance of the battery.

現在、負極活物質としては、カーボン(黒鉛)系が主流であり、放電容量が350〜360mAh/g程度と黒鉛の理論容量の372mAh/gに近い値のものまで実用化されているが、黒鉛の理論容量を超えることは不可能である。一方金属珪素は理論容量が4200mAh/gと桁違いに大きいものの、充放電に伴う膨張収縮により負極材が劣化し電池のサイクル寿命が短い問題があった。
そこで放電容量を高めながらサイクル特性も改善する目的で、珪素と黒鉛粉末を混合したものや、炭素粉末や黒鉛粉末表面に珪素粉末を混合し、ピッチをコーテングした負極活物質が提案されている。
例えば、特許文献1(特許第3268770号公報)では炭素材と珪素粉末を混合して熱処理したものが提案されているが、10サイクルしか評価しておらず、実用には不十分である。
Currently, as the negative electrode active material, carbon (graphite) is mainly used, and a discharge capacity of about 350 to 360 mAh / g and a value close to the theoretical capacity of 372 mAh / g of graphite are practically used. It is impossible to exceed the theoretical capacity of. On the other hand, although metal silicon has an extremely large theoretical capacity of 4200 mAh / g, there is a problem that the negative electrode material deteriorates due to expansion and contraction accompanying charging and discharging, and the cycle life of the battery is short.
In order to improve the cycle characteristics while increasing the discharge capacity, a mixture of silicon and graphite powder, or a negative electrode active material in which silicon powder is mixed on the surface of carbon powder or graphite powder and the pitch is coated has been proposed.
For example, Patent Document 1 (Japanese Patent No. 3268770) proposes a heat treatment by mixing a carbon material and silicon powder, but only 10 cycles are evaluated, which is insufficient for practical use.

また、特許文献2(特許第3282546号公報)では、珪素粉末に代えてFeSi2、NiSi2 、MoSi2 、WSi2 、Mg2Si等の珪素金属間化合物粉末を負極として使用することが提案され、サイクル特性が良好であることが開示されている。 Further, in Patent Document 2 (Japanese Patent No. 3282546), it is proposed to use silicon intermetallic compound powders such as FeSi 2 , NiSi 2 , MoSi 2 , WSi 2 , and Mg 2 Si as the negative electrode instead of the silicon powder. It is disclosed that the cycle characteristics are good.

集電体である銅箔の上に直接珪素や珪素とコバルト等の金属を複合メッキした電極材料等も盛んに研究されているが、リチウムの収蔵・放出に伴う体積変化を吸収するのが困難なため、サイクル特性の点で満足のいくものではない。   Electrode materials such as silicon, silicon and cobalt composite plating directly on copper foil, which is a current collector, have been actively studied, but it is difficult to absorb volume changes associated with lithium storage and release. Therefore, it is not satisfactory in terms of cycle characteristics.

特許文献3(特開2002−270170号)には、珪素やその他の金属、もしくはそれらの合金を含有する負極活物質が開示されているが、初回充放電効率が80%以下であり高性能とはいえないものである。   Patent Document 3 (Japanese Patent Laid-Open No. 2002-270170) discloses a negative electrode active material containing silicon, other metals, or an alloy thereof, and has a high performance with an initial charge / discharge efficiency of 80% or less. It can't be said.

特許第3268770号公報Japanese Patent No. 3268770 特許第3282546号公報Japanese Patent No. 3282546 特開2002−270170号公報JP 2002-270170 A 特開2006−228640号公報JP 2006-228640 A

現在の主流である黒鉛質材を超える高容量の負極活物質の開発が検討されているが、高容量であるとともにサイクル特性や電池効率に優れ、実用化できる負極活物質の開発は未だなされていない。   Development of a high-capacity negative electrode active material that exceeds the current mainstream graphite material has been studied, but development of a negative electrode active material that has a high capacity, is excellent in cycle characteristics and battery efficiency, and can be put into practical use has not yet been made. Absent.

本発明者らは、この問題を解決すべく 黒鉛に珪素・珪素化合物・珪素合金の微粉末を添加して高容量とした負極活物質について、特にサイクル特性の改善について研究をした。そして、サイクルの進行に伴い、珪素表面が活性化して電解液と反応することに起因する放電容量の低下を抑制することについて研究を重ね、また、リチウムイオンの収蔵・放出に伴う珪素微粉の体積変化を吸収するための有効な方法を研究した。   In order to solve this problem, the present inventors have studied a negative electrode active material having a high capacity by adding fine powders of silicon, silicon compounds, and silicon alloys to graphite, and in particular, improving cycle characteristics. As the cycle progresses, research is continued on suppressing the decrease in discharge capacity due to the activation of the silicon surface and reaction with the electrolyte, and the volume of silicon fine powder accompanying the storage and release of lithium ions An effective method to absorb the change was studied.

その結果、珪素系粉末を最適度な粒径に微粉化して黒鉛基材に埋設させた負極活物質とすることが電解液との反応を抑制すること、また、鎖状高分子等の空隙形成剤を珪素系微粉末に被覆して焼成によって、この空隙形成剤を消失乃至、一部の残渣を残して消失させることにより珪素系微粉末の周囲に空隙を形成することが体積変化の吸収に有効であるとの知見を得て特許文献4(特開2006−228640)の発明を完成した。
これは、黒鉛質粉末、黒鉛前駆体、珪素系微粉末、およびポリビニルアルコ−ル等の鎖状高分子材料からなる空隙形成剤を混合して焼成したものであり、放電容量が500mAh/g以上でサイクル特性は50サイクルを超えても放電容量が490mAh/g程度のリチウム二次電池負極活物質が得られたのである。
As a result, the negative electrode active material in which silicon powder is atomized to an optimum particle size and embedded in a graphite substrate suppresses the reaction with the electrolytic solution, and the formation of voids such as chain polymers By covering the material with silicon fine powder and firing, this void forming agent disappears or a void is formed around the silicon fine powder by eliminating some of the residue and absorbing the volume change. Obtaining knowledge that it is effective, the invention of Patent Document 4 (Japanese Patent Laid-Open No. 2006-228640) was completed.
This is obtained by mixing and firing a gap forming agent made of a chain polymer material such as graphite powder, graphite precursor, silicon fine powder, and polyvinyl alcohol, and has a discharge capacity of 500 mAh / g or more. Thus, even when the cycle characteristics exceeded 50 cycles, a lithium secondary battery negative electrode active material having a discharge capacity of about 490 mAh / g was obtained.

しかしながら特許文献4に開示された負極活物質は、負極活物質粒子の表面が、結晶性の低い炭素で被覆されているため、単独では電極の電気伝導度が低く、実際の使用に当たっては、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、鱗片状天然黒鉛、人造黒鉛粉末等の導電補助材を1種以上混合して欠点を補う必要があった。
導電補助材にもリチウムイオンの収蔵・放出に関する容量があるが、最大でも天然黒鉛の360〜370mAh/g程度でしかなく、導電性の向上と容量の向上の両方を達成することができない。
一般に導電補助材の混合量は負極活物質100重量部に対し、5〜30重量部、サイクル特性を特に重視する場合は、人造黒鉛粉末(一般の黒鉛系負極活物質)を100重量部以上とする場合もあり、導電補助材を多量に混合することによってその分だけ容量を低下させてしまっていた。
However, in the negative electrode active material disclosed in Patent Document 4, since the surface of the negative electrode active material particles is coated with carbon having low crystallinity, the electric conductivity of the electrode alone is low, and in actual use, acetylene is used. It was necessary to compensate for the defects by mixing one or more conductive auxiliary materials such as black, ketjen black, vapor grown carbon fiber, scaly natural graphite, and artificial graphite powder.
The conductive auxiliary material also has a capacity for storage and release of lithium ions, but it is only about 360 to 370 mAh / g of natural graphite at the maximum, and it is impossible to achieve both improvement in conductivity and improvement in capacity.
In general, the mixing amount of the conductive auxiliary material is 5 to 30 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the cycle characteristics are particularly important, the artificial graphite powder (general graphite-based negative electrode active material) is 100 parts by weight or more. In some cases, the capacity is reduced by mixing a large amount of the conductive auxiliary material.

そこで、珪素・珪素化合物・珪素合金を複合させることによって得られた高容量を維持しつつ、電極としてリチウムイオンの収蔵・放出に伴う体積変化に対しても導電性のネットワークを維持し、更にサイクル特性の向上を達成するために、負極活物質自体の導電性を高めることが重要であると認識するに至った。   Therefore, while maintaining the high capacity obtained by combining silicon, silicon compounds, and silicon alloys, the electrode maintains a conductive network against volume changes associated with the storage and release of lithium ions. In order to achieve improvement in characteristics, it has been recognized that it is important to increase the conductivity of the negative electrode active material itself.

上記のような状況に鑑み、黒鉛を超える高容量であって、サイクル特性、電池効率に優れたリチウム二次電池負極活物質を提供するものであり、珪素・珪素化合物・珪素合金を複合させることによって高容量化した黒鉛系の負極活物質の導電性を高めるのが本発明の課題である。   In view of the above situation, the present invention provides a lithium secondary battery negative electrode active material having a higher capacity than graphite and having excellent cycle characteristics and battery efficiency, and is a composite of silicon, a silicon compound, and a silicon alloy. It is an object of the present invention to increase the conductivity of the graphite-based negative electrode active material whose capacity is increased by the above.

黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、焼成時にほぼ消滅する空隙形成剤、及びカーボンブラックを混合し、この混合物を炭素前駆体で被覆して焼成することを複数回おこなうものであり、最外層被覆に使用する炭素前駆体を900〜1100℃で焼成することを特徴するリチウムイオン二次電池用負極活物質の製造方法である。
また、最外層の被覆層となる炭素前駆体に焼成後に表面に微小突起となるカーボンブラックを混合して900〜1100℃で焼成することを特徴するリチウムイオン二次電池用負極活物質の製造方法である。
製造されたリチウムイオン二次電池用負極活物質は、負極活物質の導電性向上を図るため、珪素・珪素化合物・珪素合金微粉末とこれを固定・被覆する低結晶性炭素の界面、及び/あるいは低結晶性炭素自体の導電性の向上、更には負極活物質粒子表面に導電性を有する微小突起を付することによって負極活物質粒子表面の導電性を向上させ、電極としてリチウムイオンの収蔵・放出に伴う体積変化に対しても導電性のネットワークを維持し、更にサイクル特性を向上させるものである。
Mixing graphite powder and one or more fine powders of silicon, silicon compound, silicon alloy, void forming agent that disappears almost upon firing, and carbon black, coating this mixture with a carbon precursor and firing the mixture multiple times This is a method for producing a negative electrode active material for a lithium ion secondary battery, characterized in that the carbon precursor used for the outermost layer coating is fired at 900 to 1100 ° C.
Also, a method for producing a negative electrode active material for a lithium ion secondary battery, comprising mixing a carbon precursor to be the outermost coating layer with carbon black that becomes microprotrusions on the surface after firing and firing at 900 to 1100 ° C. It is.
The manufactured negative electrode active material for a lithium ion secondary battery has an interface between a silicon / silicon compound / silicon alloy fine powder and a low crystalline carbon that fixes and covers this, in order to improve the conductivity of the negative electrode active material, and / or Alternatively, the conductivity of the low crystalline carbon itself is improved, and further, the conductivity of the negative electrode active material particle surface is improved by attaching conductive microprojections on the surface of the negative electrode active material particle. The conductive network is maintained against the volume change accompanying the discharge, and the cycle characteristics are further improved.

本発明の製造法は次の通りである。
まず、黒鉛質粉末、炭素前駆体、珪素・珪素化合物・珪素合金、あるいは、これとカーボンブラック及び空隙形成剤の混合物を混合した後、焼成して得た母材に炭素前駆体、あるいは炭素前駆体とカーボンブラックの混合物を被覆して最終的に900℃〜1100℃で焼成して得る。
あるいは、鱗状乃至鱗片状天然黒鉛、珪素・珪素化合物・珪素合金、あるいはこれとカーボンブラック、必要であればバインダーとしての炭素前駆体、または空隙形成剤を予め混合後、球形に賦形した造粒体に炭素前駆体あるいは炭素前駆体とカーボンブラックの混合物を含浸・被覆して最終的に900℃〜1100℃で焼成して得る。
以下、詳細に記述する。
The production method of the present invention is as follows.
First, after mixing graphite powder, carbon precursor, silicon / silicon compound / silicon alloy, or a mixture of this with carbon black and a void forming agent, the base material obtained by firing is mixed with carbon precursor or carbon precursor. The mixture of the body and carbon black is coated and finally fired at 900 ° C to 1100 ° C.
Alternatively, granulated particles that are shaped into a spherical shape after pre-mixing scaly or scaly natural graphite, silicon / silicon compound / silicon alloy, or carbon black, and if necessary, a carbon precursor as a binder, or a void forming agent. The body is impregnated and coated with a carbon precursor or a mixture of carbon precursor and carbon black, and finally fired at 900 ° C. to 1100 ° C.
Details will be described below.

まず、基材である黒鉛粉末は、コークスまたは生コークスの黒鉛化品、コークス(フィラー)とピッチ(バインダー)を混捏・成形・焼成・黒鉛化して得られる黒鉛ブロックを粉砕した人造黒鉛粉末、メソフェーズピッチ粉末の黒鉛化品やこれを成形・焼成・黒鉛化して得られる黒鉛ブロックを粉砕した人造黒鉛粉末、あるいは、市販の黒鉛ブロックを粉末化したものである。
市販品の例では、新日化テクノカーボン株式会社製IGS-603、IGS-644、IGS-743、IGS-744、IGS-844、IGS-895、IGS-652、EGS-743、EGS-763、GS-203、GS-203R、GF-130等が挙げられる。更には鱗状や鱗片状天然黒鉛およびこれら天然黒鉛の造粒品や球状化品などが使用可能で、これら二種以上を任意の割合で混合した混合物を用いてもよい。
黒鉛粉末の平均粒子径は、市販の黒鉛負極材と同程度であれば問題なく、5〜50μm程度が適当である。
First, graphite powder as a base material is a graphitized product of coke or raw coke, artificial graphite powder obtained by pulverizing a graphite block obtained by kneading, molding, firing and graphitizing coke (filler) and pitch (binder), mesophase A graphitized product of pitch powder, an artificial graphite powder obtained by pulverizing a graphite block obtained by molding, firing and graphitizing the powder, or a commercially available graphite block.
Examples of commercial products are IGS-603, IGS-644, IGS-743, IGS-744, IGS-844, IGS-895, IGS-652, EGS-743, EGS-763, manufactured by Nippon Kayaku Techno Carbon Co., Ltd. Examples thereof include GS-203, GS-203R, and GF-130. Furthermore, scaly and scaly natural graphite and granulated products and spheroidized products of these natural graphites can be used, and a mixture obtained by mixing two or more of these in an arbitrary ratio may be used.
The average particle diameter of the graphite powder is no problem as long as it is about the same as that of a commercially available graphite negative electrode material, and about 5 to 50 μm is appropriate.

粒径が50μm以上では、この粒子を造粒後に得られる粒子径がその粒度分布上、負極電極シートの厚さを超える80μm以上の粒子を多く含むことになり好ましくない。なお鱗状乃至鱗片状天然黒鉛、珪素・珪素化合物・珪素合金の微粉末、あるいはこれとカーボンブラック、必要であればバインダーとしての炭素前駆体、または、空隙形成剤を予め混合後球形に賦形した造粒体を経由する場合は、この造粒体の平均粒子径が、市販の黒鉛負極材と同程度の5〜50μm程度であれば問題ない。   If the particle size is 50 μm or more, the particle size obtained after granulation of the particles is not preferable because the particle size distribution includes many particles of 80 μm or more exceeding the thickness of the negative electrode sheet. Scalar or scale-like natural graphite, fine powder of silicon / silicon compound / silicon alloy, or carbon black, and if necessary, a carbon precursor as a binder, or a void forming agent, was mixed in advance and formed into a spherical shape. In the case of passing through the granulated body, there is no problem if the average particle diameter of the granulated body is about 5 to 50 μm, which is the same as that of a commercially available graphite negative electrode material.

炭素前駆体は、次のようなピッチや樹脂を使用する。
ピッチでは石油系、石炭系の非晶質系(イソフェーズピッチ)、晶質系(メソフェーズピッチ)のものいずれも使用可能である。ピッチの融点は360℃以下であることが好ましく、これ以上のものでは、混合やコーテングの過程で不都合が生じやすい。
樹脂の場合、フェノール樹脂、フラン樹脂等を使用する。これらの樹脂は、酸素含有量が20%以下であることが好ましい。焼成熱処理後に過剰な酸素を含有していると、得られる負極活物質の放電容量や電池効率を低下させるので好ましくない。また得率を稼ぐために残炭率の高い樹脂を選定する方が望ましい。
これらの炭素前駆体の使用量は、基材である黒鉛粉末の比表面積や吸油量により若干異なるが、概ね黒鉛粉末100重量部に対して5〜30重量部程度が適当で、黒鉛粉末の粉末特性により調整する必要がある。
5重量部以下では少量で効果が得られず、30重量部を超えると充放電効率を減少させてしまうため好ましくない。
The carbon precursor uses the following pitch or resin.
As the pitch, any of petroleum-based and coal-based amorphous (isophase pitch) and crystalline (mesophase pitch) can be used. The melting point of the pitch is preferably 360 ° C. or lower, and if it is higher than this, inconvenience is likely to occur during mixing and coating.
In the case of resin, phenol resin, furan resin or the like is used. These resins preferably have an oxygen content of 20% or less. It is not preferable that excessive oxygen is contained after the baking heat treatment because the discharge capacity and battery efficiency of the obtained negative electrode active material are lowered. In order to increase the yield, it is desirable to select a resin with a high residual carbon ratio.
The amount of carbon precursor used is slightly different depending on the specific surface area and oil absorption of the graphite powder as the base material, but is generally about 5 to 30 parts by weight with respect to 100 parts by weight of graphite powder. It is necessary to adjust according to the characteristics.
If it is 5 parts by weight or less, the effect cannot be obtained in a small amount, and if it exceeds 30 parts by weight, the charge / discharge efficiency is decreased.

高容量化のための添加材には金属珪素、一酸化珪素等の珪素化合物、あるいは、珪素合金の1種以上を用いることができる。珪素合金は珪素と合金を形成可能なものであればいずれも使用することができるし、配合する種類も、割合も任意でかまわない。目指す珪素合金のリチウムイオンとの合金化による膨張のコントロールやその安定性、あるいは入手性、コスト、合金化更には微粉調製にかかわるコスト等総合的に考慮して選択するのが好ましい。
これらの微粉末は、基材の黒鉛粉末に埋設させるため、あるいは、基材の黒鉛粉末と混合造粒するため、及びリチウムイオンの収蔵・放出に伴う体積変化による破壊を防ぐため微粒子であることが必要で、最大粒径が、1μm以下であることが好ましい。1μm以上のものが存在するとサイクル特性に悪影響を及ぼしやすい。
珪素・珪素化合物・珪素合金の微粉末の使用量は、黒鉛粉末100重量部に対して1〜20重量部が好ましい。1重量部以下では放電容量増加の効果が乏しく、20重量部を超えるとサイクル特性を劣化させるので好ましくない。
また珪素・珪素化合物・珪素合金の微粉末は、前記の粒度を満足するものであれば、その結晶状態を問わない。
珪素・珪素化合物・珪素合金の微粉末は、所望の粒度品を得るため、出発原料のサイズにもよるが、通常はボールミル、振動ミル、パルベライザー、ジェットミル等の乾式粉砕機を用いてなるべく細かくしておき、次いでビーズミルによる湿式粉砕により最終的に粒度を合わせることによって調製する。また湿式粉砕時にカーボンブラックと混合粉砕し、このまま使用することも可能である。
湿式粉砕する場合、用いる分散媒は、珪素・珪素化合物・珪素合金と反応性が無いか非常に小さいものを適宜選択するのが望ましい。更に必要があれば分散媒に濡らすため、微量の分散剤(界面活性剤)を添加してもかまわない。分散剤も、珪素・珪素化合物・珪素合金の粉末と反応性が無いか非常に小さいものを適宜選択するのが望ましい。
As an additive for increasing the capacity, one or more of silicon compounds such as metal silicon and silicon monoxide, or silicon alloys can be used. Any silicon alloy can be used as long as it can form an alloy with silicon, and the type and proportion of the silicon alloy may be arbitrarily selected. It is preferable to select in consideration of the control of expansion by alloying the target silicon alloy with lithium ions, its stability, availability, cost, alloying, and cost related to fine powder preparation.
These fine powders are fine particles to embed in the graphite powder of the base material, or to mix and granulate with the graphite powder of the base material, and to prevent destruction due to volume changes associated with lithium ion storage and release. The maximum particle size is preferably 1 μm or less. If one having a thickness of 1 μm or more is present, the cycle characteristics are liable to be adversely affected.
The amount of the silicon / silicon compound / silicon alloy fine powder used is preferably 1 to 20 parts by weight per 100 parts by weight of the graphite powder. If it is 1 part by weight or less, the effect of increasing the discharge capacity is poor, and if it exceeds 20 parts by weight, the cycle characteristics are deteriorated.
The fine powder of silicon, silicon compound, or silicon alloy may be in any crystalline state as long as it satisfies the above particle size.
The fine powder of silicon / silicon compound / silicon alloy is usually as fine as possible using a dry pulverizer such as ball mill, vibration mill, pulverizer, jet mill, etc. Then, the final particle size is adjusted by wet grinding with a bead mill. Further, it can be mixed and pulverized with carbon black at the time of wet pulverization and used as it is.
In the case of wet pulverization, it is desirable to appropriately select a dispersion medium to be used that is not reactive with silicon, silicon compounds, or silicon alloys or is extremely small. If necessary, a small amount of a dispersant (surfactant) may be added to wet the dispersion medium. It is desirable to appropriately select a dispersing agent that is not reactive with the silicon / silicon compound / silicon alloy powder or is very small.

更に、空隙形成剤として鎖状高分子材料等を添加することもできる。この鎖状高分子材料は、焼成後に残炭として残らない材料で、焼成によって殆どが消失することによって空隙を形成するものである。この空隙が金属珪素微粉末の体積膨張を吸収することにより、電極の破壊を防止し、サイクル特性の向上に優れた効果を発揮する。
鎖状高分子材料等として用いるものは、例えばポリカルボシラン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース等が適当である。
Furthermore, a chain polymer material or the like can be added as a void forming agent. This chain polymer material is a material that does not remain as residual charcoal after firing, and forms voids when almost disappeared by firing. By absorbing the volume expansion of the metal silicon fine powder, the voids prevent the electrode from being broken and exhibit an excellent effect in improving the cycle characteristics.
For example, polycarbosilane, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, methylcellulose, carboxymethylcellulose and the like are suitable as the chain polymer material.

カーボンブラックは、負極活物質内部の導電性を高め、負極活物質表面に固定化されている珪素・珪素化合物・珪素合金表面の導電性を高めるのに用いられる。更には主に負極活物質と有機質の結着剤からなる電極内の導電性向上と維持、及び集電体である銅箔との接触をより強固にするために用いられる。ここで用いるカーボンブラックは、従来補助導電材として広く認知されているアセチレンブラックやケッチェンブラックでもかまわないし、それ以外のファーネスブラックやこれら以外の製法によるカーボンブラックを用いてもかまわない。また負極活物質内部の導電性向上用と負極活物質表面に固定化するカーボンブラックの種類・銘柄は同一でも別々でもかまわないし、二種以上の混合物でもかまわない。更には、予めカーボンブラックを黒鉛化してカーボンブラックの導電性を高めてから用いてもかまわない。
このように用いるカーボンブラックはどのような種類、形態、製法、特性でもかまわないが、それぞれの比表面積、DBP吸油量等の特性を考慮して、カーボンブラック添加量や炭素前駆体の使用量等を調節する必要がある。
Carbon black is used to increase the conductivity inside the negative electrode active material and to increase the conductivity of the silicon, silicon compound, and silicon alloy surface immobilized on the surface of the negative electrode active material. Further, it is used to improve and maintain conductivity in an electrode mainly composed of a negative electrode active material and an organic binder, and to make contact with a copper foil as a current collector stronger. The carbon black used here may be acetylene black or ketjen black, which is widely recognized as an auxiliary conductive material, or other furnace black or carbon black produced by other methods may be used. Also, the types and brands of carbon black for improving conductivity inside the negative electrode active material and immobilized on the surface of the negative electrode active material may be the same or different, or a mixture of two or more. Furthermore, carbon black may be graphitized in advance to increase the conductivity of carbon black before use.
The carbon black used in this way may be of any type, form, manufacturing method, and characteristics, but in consideration of characteristics such as specific surface area and DBP oil absorption, the amount of carbon black added, the amount of carbon precursor used, etc. Need to be adjusted.

本発明の負極活物質の製造方法について詳細に述べる。
まず、黒鉛粉末と所望の粒度に調製された珪素・珪素化合物・珪素合金の微粉末、あるいはこれとカーボンブラック、あるいは珪素・珪素化合物・珪素合金の微粉末とカーボンブラックを湿式混合粉砕して得た混合物を混合する。混合の方法は特に限定しないが、例えばこれらの材料に珪素・珪素化合物・珪素合金等の湿式粉砕時に用いた分散媒を過剰に加え、攪拌更には超音波分散等の手段により均質化した後、エバポレーター等を用いて分散媒を蒸発除去・乾燥させる。または、過剰の分散媒を加えることなく、そのまま高速撹拌機中で加温しながら分散媒を蒸発させながら混合する方法もある。空隙形成剤を加える場合は、この段階で加えてもよいし、湿式粉砕時に添加してもよい。
次にこの処理物にピッチ等の炭素前駆体あるいはカーボンブラックを加え加熱ニーダー等で加熱混合する。この後は窒素、自己雰囲気等の非酸化性雰囲気または還元性雰囲気中で900〜1100℃で焼成を行い、更に解砕・篩通しする。
ピッチ等の炭素前駆体を加えての加熱混合処理は、複数回行う。複数回の混合処理において、その最終焼成を900〜1100℃で行えば良く途中回での焼成はこれより低くてもかまわない。
The method for producing the negative electrode active material of the present invention will be described in detail.
First, graphite powder and silicon / silicon compound / silicon alloy fine powder prepared to a desired particle size, or carbon black, or silicon / silicon compound / silicon alloy fine powder and carbon black are wet mixed and pulverized. Mix the mixture. The method of mixing is not particularly limited. For example, these materials are excessively added with a dispersion medium used at the time of wet pulverization such as silicon, silicon compound, and silicon alloy, and after homogenization by means such as stirring and ultrasonic dispersion, The dispersion medium is evaporated and dried using an evaporator or the like. Alternatively, there is a method of mixing while evaporating the dispersion medium while heating in a high-speed stirrer without adding an excessive dispersion medium. When a void forming agent is added, it may be added at this stage, or may be added during wet pulverization.
Next, a carbon precursor such as pitch or carbon black is added to the treated product and heated and mixed with a heating kneader or the like. Thereafter, firing is performed at 900 to 1100 ° C. in a non-oxidizing atmosphere such as nitrogen and a self-atmosphere or a reducing atmosphere, and further pulverization and sieving are performed.
The heating and mixing treatment with the addition of a carbon precursor such as pitch is performed a plurality of times. In the plural times of mixing treatment, the final baking may be performed at 900 to 1100 ° C., and the baking in the middle may be lower than this.

または、鱗状乃至鱗片状の天然黒鉛粉末と湿式粉砕された微粉末等を分散媒を含んだまま前述の方法によって均一混合を行い、更にバインダーとしてピッチ等炭素前駆体、あるいはこれにカーボンブラックを添加して機械的に概略球形に造粒する。
黒鉛粉末に予め微粉砕した珪素系微粉末及びカーボンブラックを均一に分散させ、これを造粒することで、粉体内部に珪素系微粉末及びカーボンブラックを分散させた造粒物ができあがる(図7参照)。
造粒するための装置は、例えばハイブリタイザー(株式会社奈良機械製作所)やメカノフージョン(ホソカワミクロン株式会社)、クリプトロン(株式会社アーステクニカ製)のような一般に粉末の造粒機能乃至球形化機能を有する装置が適宜選択できる。 以後は、加熱ニーダー等に移し、前述の方法で加熱混合し、次いで焼成、解砕、篩い通しを行う。
Alternatively, scaly or flaky natural graphite powder and wet-pulverized fine powder, etc., are uniformly mixed by the above-mentioned method while containing a dispersion medium, and carbon precursor such as pitch or carbon black is added as a binder. And mechanically granulated into a roughly spherical shape.
By uniformly dispersing finely pulverized silicon-based fine powder and carbon black in graphite powder and granulating this, a granulated product is obtained in which the silicon-based fine powder and carbon black are dispersed inside the powder (Fig. 7).
The apparatus for granulation generally has a powder granulating function or spheroidizing function such as a hybridizer (Nara Machinery Co., Ltd.), Mechano-Fusion (Hosokawa Micron Co., Ltd.), or Kryptron (Earth Technica Co., Ltd.). The apparatus which has can be selected suitably. Thereafter, it is transferred to a heating kneader or the like, heated and mixed by the above-mentioned method, and then baked, crushed and sieved.

上記の製造方法で得られた負極活物質は、以下の特徴を有する。
負極活性物質の主体となるコア部分は黒鉛であり、炭素前駆体を焼成して炭化した炭素層がコアを覆っており、珪素、珪素化合物、または、珪素合金の微粉末やカーボンブラックが炭素に埋設した構造になる。
更に、製造工程の最後において、炭素前駆体としてのバインダーピッチとカーボンブラックとを加熱混合した混捏物で黒鉛粒子を被覆して焼成すると、表層に微小突起が形成される。この微小突起はカーボンブラックが炭素で被覆されたものである。
珪素・珪素化合物・珪素合金の微粉末は負極活物質一粒子の中に、1〜20%程度含有されており、これらは粒子表面に露出しておらず、埋設された状態で存在する。
また、負極活物質内部には、空隙形成剤が焼成熱処理によって消失することにより形成された空隙が存在する。この空隙の存在が、充放電に伴う珪素系微粉末の膨張収縮を吸収するための一つの手段となる。
The negative electrode active material obtained by the above production method has the following characteristics.
The core part that is the main component of the negative electrode active material is graphite, a carbon layer obtained by firing and carbonizing a carbon precursor covers the core, and silicon, a silicon compound, or a fine powder of silicon alloy or carbon black is carbon. It becomes a buried structure.
Furthermore, at the end of the manufacturing process, when the graphite particles are coated and fired with a kneaded material obtained by heating and mixing a binder pitch as a carbon precursor and carbon black, fine protrusions are formed on the surface layer. These minute protrusions are carbon black coated with carbon.
The fine powder of silicon, silicon compound, and silicon alloy is contained in about 1 to 20% in one particle of the negative electrode active material, and these are not exposed on the particle surface but exist in an embedded state.
In addition, voids formed by the void forming agent disappearing by baking heat treatment exist in the negative electrode active material. The existence of the voids is one means for absorbing the expansion and contraction of the silicon-based fine powder accompanying charge / discharge.

本発明による負極活物質は、リチウムイオン電池の容量を調整するため、また、形成された電極の充填性調節のため、あるいは形成された電極の膨張を抑制するため、任意の割合で天然黒鉛、人造黒鉛、更には低結晶炭素の粉末を単独あるいは混合して加える。   The negative electrode active material according to the present invention is made of natural graphite at an arbitrary ratio in order to adjust the capacity of the lithium ion battery, to adjust the filling property of the formed electrode, or to suppress the expansion of the formed electrode. Artificial graphite and further low crystalline carbon powder are added alone or in admixture.

また、本発明による負極活物質は電極にしたときの結晶配向が揃ってしまうことを防ぐために粉体のアスペクト比は1.0〜2.0であることが好ましい。   Moreover, in order to prevent that the negative electrode active material according to the present invention has a uniform crystal orientation when formed into an electrode, the aspect ratio of the powder is preferably 1.0 to 2.0.

本発明による負極活物質は、有機系結着材と混合し、加圧成形もしくは溶剤を用いてペースト化し、銅箔上に塗布、乾燥、プレスしてリチウム二次電池用負極とする。
上記有機結着材にはポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム、ポリアクリル酸、ポリエチレン、ポリプロピレン、ポリアクリロニトリル等が使用することができ、充放電時の膨れを抑制するため、及び充放電のサイクルによる容量劣化を防ぐため、機械的強度の高い結着材を選択することが好ましい。
小型電池では一般的に集電体を除いた電極厚さが30μm〜100μm、電極密度が1.4g/cm3〜1.8/cm3において使用される。
The negative electrode active material according to the present invention is mixed with an organic binder, formed into a paste using pressure molding or a solvent, and coated, dried and pressed on a copper foil to obtain a negative electrode for a lithium secondary battery.
Polyvinylidene fluoride (PVdF), styrene butadiene rubber, polyacrylic acid, polyethylene, polypropylene, polyacrylonitrile, etc. can be used for the organic binder, in order to suppress swelling during charging and discharging, and for charging and discharging. In order to prevent capacity deterioration due to cycling, it is preferable to select a binder having high mechanical strength.
In a small battery, the electrode thickness excluding the current collector is generally 30 μm to 100 μm and the electrode density is 1.4 g / cm 3 to 1.8 / cm 3 .

本発明のリチウム二次電池負極活物質によると、微粉化された珪素・珪素化合物・珪素合金が負極活物質の中に埋設された構成とすることにより、珪素・珪素化合物・珪素合金の微粉末と電解液との反応に起因するサイクル特性の劣化を有効に抑制することができる。
また、活物質内部に形成された空隙が、リチウムのドープ・アンドープに伴う体積膨張を吸収し、電極の破壊防止に優れた効果を発揮する。
活物質各所に添加・固定されたカーボンブラックは、それぞれ活物質内部、活物質同士の導電性を高める働きをになう。
これらの作用、効果により従来の黒鉛負極活物質を超える高容量であるとともに、サイクル特性、電池効率にも優れた負極活物質を提供できるものである。
According to the negative electrode active material of the lithium secondary battery of the present invention, a fine powder of silicon, silicon compound, or silicon alloy is obtained by making the finely divided silicon / silicon compound / silicon alloy embedded in the negative electrode active material. It is possible to effectively suppress the deterioration of the cycle characteristics due to the reaction between the electrolyte and the electrolyte.
In addition, the void formed inside the active material absorbs volume expansion associated with lithium doping / undoping, and exhibits an excellent effect in preventing the destruction of the electrode.
The carbon black added / fixed in various parts of the active material functions to increase the electrical conductivity inside the active material and between the active materials.
These functions and effects can provide a negative electrode active material that has a higher capacity than conventional graphite negative electrode active materials and is excellent in cycle characteristics and battery efficiency.

以下、本発明を実施例及び比較例により説明する。なお本発明は、この実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to examples and comparative examples. The present invention is not limited to this example.

平均粒子径(D50)が12μmの球状天然黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素13.5重量部及び空隙形成剤としてポリビニルアルコール1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更に、この焼成物100重量部に対してバインダーピッチ10重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=16.82μm、最大粒子径(Dtop)=54.64μm、BET法による比表面積はSSA=2.50m2/g、アスペクト比は1.2であった。
この負極活物質の構造のモデルを図1に、SEM写真を図2に示す。
コアが黒鉛粒子(1)であり、粒子全体の形状は概略球形である。粒子の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表面にはカーボンブラック(3)が突起となって存在している。金属珪素(4)は、黒鉛粒子(1)の表面に散在しており、粒子(1)の表面を覆う炭素層(2)の内層に存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層には比較的小さな空隙(5)がほぼ均一に形成されている。
この負極活物質100重量部に対しPVdF5重量部を混合してN−メチル−2−ピロリドン(NMP)を分散媒にしたスラリーを調製し、銅箔上にドクターブレードを用いて塗布し、140℃で乾燥し、ロールプレスを掛けた後φ12mmに打ち抜き電極とした。プレス後の電極厚は41μmであり、電極密度は1.60g/cm3であった。これに対極としてLi金属を用い、セパレーターを介し対向させ電極群とした後1M LiPF6/EC:MEC(1:2)の電解液を加えてコインセルを形成し充放電試験に供した。
0.5mA/cm3で定電流充電し、電位が10mVとなったときに定電圧充電を電流値が10μAとなるまで充電した。充電後0.5mA/cm3で定電流放電したときの初回放電容量は536mAh/gであり、初回放電効率は86.1%であった。
100 parts by weight of spherical natural graphite having an average particle diameter (D50) of 12 μm, 13.5 parts by weight of metallic silicon pulverized to an average particle diameter (D50) of 0.2 μm and a maximum particle diameter (Dtop) of <1 μm, and a void forming agent 1.0 part by weight of polyvinyl alcohol is mixed with a high-speed stirring mixer. 18 parts by weight of binder pitch is heated and mixed with 100 parts by weight of the mixture with a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. Further, 10 parts by weight of acetylene black (AB) was added to 100 parts by weight of the fired product while mixing 10 parts by weight of a binder pitch with a heating kneader, and this was fired at 1000 ° C. in a nitrogen atmosphere. The fired product was crushed and passed through a sieve having an opening of 38 μm to obtain the desired product.
Average particle diameter (D50) = 16.82 μm, maximum particle diameter (Dtop) = 54.64 μm, specific surface area by BET method was SSA = 2.50 m 2 / g, and aspect ratio was 1.2.
A model of the structure of this negative electrode active material is shown in FIG. 1, and an SEM photograph is shown in FIG.
The core is graphite particles (1), and the overall shape of the particles is approximately spherical. Two carbon layers (2) obtained by firing the pitch of the carbon precursor are formed on the surface of the particles, and carbon black (3) is present as protrusions on the surface. Metallic silicon (4) is scattered on the surface of the graphite particles (1) and is present in the inner layer of the carbon layer (2) covering the surfaces of the particles (1). A relatively large void (5) is formed in the graphite particles (1) as the core, and a relatively small void (5) is formed almost uniformly in the inner layer of the carbon layer.
A slurry in which N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium is prepared by mixing 5 parts by weight of PVdF with 100 parts by weight of the negative electrode active material, and is applied onto a copper foil using a doctor blade. Then, after applying a roll press, a punched electrode having a diameter of 12 mm was obtained. The electrode thickness after pressing was 41 μm, and the electrode density was 1.60 g / cm 3 . Li metal was used as a counter electrode to face the electrode group through a separator, and then an electrolyte solution of 1M LiPF6 / EC: MEC (1: 2) was added to form a coin cell for a charge / discharge test.
Constant current charging was performed at 0.5 mA / cm 3 , and constant voltage charging was performed until the current value reached 10 μA when the potential reached 10 mV. When discharged at a constant current of 0.5 mA / cm 3 after charging, the initial discharge capacity was 536 mAh / g, and the initial discharge efficiency was 86.1%.

平均粒子径(D50)が12μmの球状天然黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部、及び空隙形成剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更にこの焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=14.5μm、最大粒子径(Dtop)=46.1μm、BET法による比表面積はSSA=3.18m2/g、アスペクト比は1.2であった。
この負極活物質の構造モデルを図3に、SEM写真を図4に示す。
コアが黒鉛粒子(1)であり、粒子の形状は概略球形である。黒鉛粒子の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表面にはカーボンブラック(3)が突起となって存在している。また、カーボンブラック(3)は炭素層(2)の内層に認められた。金属珪素(4)は、黒鉛粒子(1)の表面を覆う炭素の内層(2)に存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙がほぼ均一に形成されていた。
粒子表面はカーボンブラックによる突起が形成されている。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は37μmであり、電極密度は1.60g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は575mAh/gであり、初回放電効率は88.5%であった。
100 parts by weight of spherical natural graphite having an average particle size (D50) of 12 μm, an average particle size (D50) of 0.2 μm, and a mixture of metallic silicon and acetylene black (AB) pulverized to a maximum particle size (Dtop) of <1 μm (Si / AB = 100/5) 14.2 parts by weight and 1.0 part by weight of polyacrylic acid as a void forming agent are mixed in a high-speed stirring mixer. 18 parts by weight of binder pitch is heated and mixed with 100 parts by weight of the mixture with a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. Furthermore, 10 parts by weight of acetylene black (AB) was added to 100 parts by weight of this fired product while heating and mixing 15 parts by weight of a binder pitch with a heating kneader, and this was fired at 1000 ° C. in a nitrogen atmosphere. The target product was obtained by crushing and passing through a sieve having an opening of 38 μm.
Average particle diameter (D50) = 14.5 μm, maximum particle diameter (Dtop) = 46.1 μm, specific surface area by BET method was SSA = 3.18 m 2 / g, and aspect ratio was 1.2.
FIG. 3 shows a structural model of this negative electrode active material, and FIG. 4 shows an SEM photograph.
The core is graphite particles (1), and the shape of the particles is approximately spherical. Two layers of carbon (2) obtained by firing the pitch of the carbon precursor are formed on the surface of the graphite particles, and carbon black (3) is present as protrusions on the surface. Carbon black (3) was found in the inner layer of the carbon layer (2). Metallic silicon (4) is present in the carbon inner layer (2) covering the surface of the graphite particles (1). Then, relatively large voids (5) were formed in the graphite particles (1) as the core, and relatively small voids were formed almost uniformly in the inner layer (2) of the carbon layer.
Projections made of carbon black are formed on the particle surface.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, and the electrode thickness after pressing was 37 μm, and the electrode density was 1.60 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 575 mAh / g, and the initial discharge efficiency was 88.5%.

平均粒子径(D50)が10μmに粉砕されたコークスとバインダーピッチとを加熱混合後成型、焼成、黒鉛化、粉砕して得られる平均粒子径(D50)が15μmの人造黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部及び空隙剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)5重量部を添加し、これを窒素雰囲気下にて1000℃で焼成する。更にこの焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=18.3μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA=4.19m2/g、アスペクト比は1.4であった。
この負極活物質の構造モデルを図5に、SEM写真を図6に示す。
コアが表面に窪みを有する黒鉛粒子(1)であり、粒子の形状は概略球形である。黒鉛粒子(1)の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表層にカーボンブラック(4)が突起となって存在している。カーボンブラックは表層の下の層にも認められた。金属珪素(4)は、黒鉛粒子(1)の表面及び一部が黒鉛粒子(1)の窪みに存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙が形成されていた。また、珪素微粒子(4)の一部が黒鉛粒子(1)の表面の窪みにも入り込んでいる。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は555mAh/gであり、初回放電効率は84.3%であった。
Coke with an average particle size (D50) pulverized to 10 μm and binder pitch are mixed by heating and then molded, fired, graphitized, and pulverized. 100 parts by weight of artificial graphite with an average particle size (D50) of 15 μm and average particles 14.2 parts by weight of a mixture of metallic silicon and acetylene black (AB) (Si / AB = 100/5) pulverized to a diameter (D50) of 0.2 μm and a maximum particle diameter (Dtop) <1 μm, and polyacrylic acid as a voiding agent 1.0 part by weight is mixed with a high-speed stirring mixer. 5 parts by weight of acetylene black (AB) is added to 100 parts by weight of the mixture while heating and mixing 18 parts by weight of a binder pitch with a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. Furthermore, 10 parts by weight of acetylene black (AB) was added to 100 parts by weight of this fired product while heating and mixing 15 parts by weight of a binder pitch with a heating kneader, and this was fired at 1000 ° C. in a nitrogen atmosphere. The target product was obtained by crushing and passing through a sieve having an opening of 38 μm.
Average particle diameter (D50) = 18.3 μm, maximum particle diameter (Dtop) = 54.6 μm, specific surface area by BET method was SSA = 4.19 m 2 / g, and aspect ratio was 1.4.
A structural model of this negative electrode active material is shown in FIG. 5, and an SEM photograph is shown in FIG.
The core is a graphite particle (1) having a depression on the surface, and the shape of the particle is approximately spherical. On the surface of the graphite particles (1), two carbon layers (2) obtained by firing the pitch of the carbon precursor are formed, and carbon black (4) is present as protrusions on the surface layer. Carbon black was also observed in the layer below the surface layer. In the metal silicon (4), the surface and part of the graphite particles (1) are present in the depressions of the graphite particles (1). A relatively large void (5) was formed in the graphite particle (1) as the core, and a relatively small void was formed in the inner layer (2) of the carbon layer. Further, a part of the silicon fine particles (4) also enter the depressions on the surface of the graphite particles (1).
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, the electrode thickness after pressing was 41 μm, and the electrode density was 1.61 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 555 mAh / g, and the initial discharge efficiency was 84.3%.

実施例3で用いた人造黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部及び空隙剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更に、この焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=20.2μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA=2.26m2/g、アスペクト比は1.4であった。
この負極活物質の構造モデルを図7に、SEM写真を図8に示す。
コアが表面に窪みを有する黒鉛粒子(1)であり、粒子の形状は概略球形である。黒鉛粒子(1)の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成されている。カーボンブラック(3)は、炭素層の下の層に認められた。金属珪素(4)は、黒鉛粒子(1)の表面及び一部が黒鉛粒子(1)の窪みに存在している。そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙が形成されていた。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は44μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は548mAh/gであり、初回放電効率は87.5%であった。
100 parts by weight of artificial graphite used in Example 3, average particle size (D50) 0.2 μm, maximum particle size (Dtop) <1 μm, a mixture of metal silicon and acetylene black (AB) (Si / AB = 100 / 5) Mix 14.2 parts by weight and 1.0 part by weight of polyacrylic acid as a voiding agent with a high-speed stirring mixer. 18 parts by weight of binder pitch is heated and mixed with 100 parts by weight of the mixture with a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. Furthermore, 15 parts by weight of binder pitch is heated and mixed with 100 parts by weight of the fired product using a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. The desired product was obtained.
Average particle diameter (D50) = 20.2 μ, maximum particle diameter (Dtop) = 54.6 μm, specific surface area by BET method was SSA = 2.26 m 2 / g, and aspect ratio was 1.4.
A structural model of this negative electrode active material is shown in FIG. 7, and an SEM photograph is shown in FIG.
The core is a graphite particle (1) having a depression on the surface, and the shape of the particle is approximately spherical. On the surface of the graphite particle (1), two carbon layers (2) obtained by firing the pitch of the carbon precursor are formed. Carbon black (3) was found in the layer below the carbon layer. In the metal silicon (4), the surface and part of the graphite particles (1) are present in the depressions of the graphite particles (1). A relatively large void (5) was formed in the graphite particle (1) as the core, and a relatively small void was formed in the inner layer (2) of the carbon layer.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, and the electrode thickness after pressing was 44 μm and the electrode density was 1.61 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 548 mAh / g, and the initial discharge efficiency was 87.5%.

平均粒子径(D50)が16μmの鱗状黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素15重量部、アセチレンブラック(AB)5重量部及び空隙形成剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて均一混合し、これを株式会社奈良機械製作所製ハイブリタイゼーションを用いて造粒、球形化を行った。更に、この造粒物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=5.0μ、最大粒子径(Dtop)=31.1μm、BET法による比表面積はSSA=2.41m2/gであった。
この負極活物質粒子の構造モデルを図9に、SEM写真を図10に示す。
粒子は、ほぼ球状であり、鱗状黒鉛(1)が球体の殻となっており、アセチレンブラックを焼成した炭素(3)、金属珪素微粒子(4)、及び空隙(5)は殻の内部に存在している。粒子の表面は、炭素前駆体のピッチを焼成した炭素の層(2)が形成されている。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は553mAh/gであり、初回放電効率は89.2%であった。
100 parts by weight of scaly graphite having an average particle diameter (D50) of 16 μm, an average particle diameter (D50) of 0.2 μm, a maximum particle diameter (Dtop) of 15 parts by weight of metal silicon and an acetylene black (AB) of 5 parts by weight Part and 1.0 part by weight of polyacrylic acid as a gap forming agent were uniformly mixed with a high-speed stirring mixer, and this was granulated and spheroidized using a hybridization manufactured by Nara Machinery Co., Ltd. Further, 15 parts by weight of binder pitch is heated and mixed with 100 parts by weight of this granulated product with a heating kneader, and this is fired at 1000 ° C. under a nitrogen atmosphere. The target object was obtained.
The average particle diameter (D50) = 5.0 μm, the maximum particle diameter (Dtop) = 31.1 μm, and the specific surface area by the BET method was SSA = 2.41 m 2 / g.
FIG. 9 shows a structural model of the negative electrode active material particles, and FIG. 10 shows an SEM photograph.
The particles are almost spherical, scaly graphite (1) is a spherical shell, and carbon (3), metal silicon fine particles (4), and voids (5) obtained by firing acetylene black are present inside the shell. doing. On the surface of the particles, a carbon layer (2) obtained by firing a pitch of a carbon precursor is formed.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, and the electrode thickness after pressing was 40 μm and the electrode density was 1.59 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 553 mAh / g, and the initial discharge efficiency was 89.2%.

実施例5の負極活物質100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を混合し、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=5.4μ、最大粒子径(Dtop)=31.1μm、BET法による比表面積はSSA=4.17m2/gであった。
この負極活物質粒子の構造モデルを図11に示す。
実施例5の粒子の外側に炭素前駆体のピッチを焼成した炭素の層(2)が形成されており、表面にはカーボンブラック(3)が点在し、表面突起を形成している。金属珪素微粒子(4)は粒子内部に存在し、その周辺には空隙(5)が形成されている。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は541mAh/gであり、初回放電効率は86.5%であった。
10 parts by weight of acetylene black (AB) was mixed with 100 parts by weight of the negative electrode active material of Example 5 while mixing 15 parts by weight of a binder pitch with a heating kneader, and this was fired at 1000 ° C. in a nitrogen atmosphere. The fired product was crushed and passed through a sieve having an opening of 38 μm to obtain the desired product.
The average particle size (D50) = 5.4 μm, the maximum particle size (Dtop) = 31.1 μm, and the specific surface area by the BET method was SSA = 4.17 m 2 / g.
FIG. 11 shows a structural model of the negative electrode active material particles.
The carbon layer (2) obtained by firing the pitch of the carbon precursor is formed on the outside of the particles of Example 5, and the surface is dotted with carbon black (3) to form surface protrusions. Metallic silicon fine particles (4) are present inside the particles, and voids (5) are formed in the vicinity thereof.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, and the electrode thickness after pressing was 40 μm and the electrode density was 1.59 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 541 mAh / g, and the initial discharge efficiency was 86.5%.

実施例3の負極材75重量部に対して平均粒径が16μmの人造黒鉛25重量部を混合した。
平均粒子径(D50)=16.4μ、最大粒子径(Dtop)=64.5μm、BET法による比表面積はSSA=6.44m2/g、アスペクト比は1.2であった。
この混合物に結着材としてPVdFを外割5%を加え、混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は502mAh/gであり、初回放電効率は84.8%であった。
25 parts by weight of artificial graphite having an average particle diameter of 16 μm was mixed with 75 parts by weight of the negative electrode material of Example 3.
Average particle diameter (D50) = 16.4 μ, maximum particle diameter (Dtop) = 64.5 μm, specific surface area by BET method was SSA = 6.44 m 2 / g, and aspect ratio was 1.2.
An electrode was prepared by adding 5% of PVdF as a binder to this mixture and mixing it. The electrode thickness after pressing was 40 μm, and the electrode density was 1.59 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 502 mAh / g, and the initial discharge efficiency was 84.8%.

金属珪素の代わりに一酸化珪素を用いたこと以外は実施例3と同様に行った。
平均粒子径(D50)=17.9μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA3.98m2/g、アスペクト比は1.4であった。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は548mAh/gであり、初回放電効率は86.5%であった。
The same operation as in Example 3 was performed except that silicon monoxide was used instead of metal silicon.
Average particle diameter (D50) = 17.9 μ, maximum particle diameter (Dtop) = 54.6 μm, specific surface area by BET method was SSA 3.98 m 2 / g, and aspect ratio was 1.4.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, the electrode thickness after pressing was 41 μm, and the electrode density was 1.61 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 548 mAh / g, and the initial discharge efficiency was 86.5%.

金属珪素の代わりにチタン−珪素合金(TiSi2)を用いたこと以外は実施例3と同様に行った。
平均粒子径(D50)=18.2μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA4.17m2/g、アスペクト比は1.4であった。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は545mAh/gであり、初回放電効率は87.5%であった。
The same operation as in Example 3 was performed except that a titanium-silicon alloy (TiSi 2 ) was used instead of metal silicon.
Average particle diameter (D50) = 18.2 μ, maximum particle diameter (Dtop) = 54.6 μm, specific surface area by BET method was SSA 4.17 m 2 / g, and aspect ratio was 1.4.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, the electrode thickness after pressing was 41 μm, and the electrode density was 1.61 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal as the counter electrode and 1M LiPF6 / EC: MEC (1: 2) as the electrolyte. The initial discharge capacity of the produced coin cell was 545 mAh / g, and the initial discharge efficiency was 87.5%.

比較例1
キノリン不溶(QI)成分が10%の軟化点110℃の石炭系ピッチ(光学的等方性)を窒素ガスバブリング下(2l/min・kg)500℃で熱処理し、偏光顕微鏡下での観察による光学的異方性が30%の炭素前駆体を得た。これを粉砕・整粒し、平均粒子系16μmとした後、焼成、黒鉛化し黒鉛粉末を得た。この黒鉛粉末100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素13重量部を高速撹拌混合機にて混合する。この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。更にこの焼成物100重量部に対してバインダーピッチ10重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成し、その後解砕・目開き38μmの篩を通し目的物を得た。
平均粒子径(D50)=21.0μm、最大粒子径(Dtop)=64.79μm、BET法による比表面積はSSA=4.01m2/g、アスペクト比は1.8であった。
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は34μmであり、電極密度は1.60g/cm3であった。対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。作製したコインセルでの初回放電容量は519mAh/gであり、初回放電効率は85.7%であった。
Comparative Example 1
By heat treatment at 500 ° C under nitrogen gas bubbling (2 l / min · kg) coal-based pitch (optical isotropy) having a softening point of 110 ° C with a quinoline insoluble (QI) component of 10%, and observation under a polarizing microscope A carbon precursor having an optical anisotropy of 30% was obtained. This was pulverized and sized to obtain an average particle size of 16 μm, and then fired and graphitized to obtain a graphite powder. 100 parts by weight of this graphite powder and 13 parts by weight of metal silicon pulverized to an average particle diameter (D50) of 0.2 μm and a maximum particle diameter (Dtop) <1 μm are mixed in a high-speed stirring mixer. 18 parts by weight of binder pitch is heated and mixed with 100 parts by weight of the mixture with a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. Further, 10 parts by weight of binder pitch is heated and mixed with 100 parts by weight of the fired product using a heating kneader, and this is fired at 1000 ° C. in a nitrogen atmosphere. Obtained.
Average particle diameter (D50) = 21.0 μm, maximum particle diameter (Dtop) = 64.79 μm, specific surface area by BET method was SSA = 4.01 m 2 / g, and aspect ratio was 1.8.
An electrode was prepared by mixing PVdF with a 5% outer split as a binder, the electrode thickness after pressing was 34 μm, and the electrode density was 1.60 g / cm 3 . A charge / discharge test was conducted in the same manner as in Example 1 using Li metal for the counter electrode and 1M LiPF6 / EC: MEC (1: 2) for the electrolyte. The initial discharge capacity of the produced coin cell was 519 mAh / g, and the initial discharge efficiency was 85.7%.

実施例1〜9及び比較例1のサイクル特性試験結果を図12に示す。本発明の黒鉛粒子を使用したリチウム電池はサイクル特性が優れており、向上したことがわかる。
また、図13及び図14に実施例4(図7のモデル)の黒鉛粒子を樹脂に埋め込み、通常の研磨剤により研磨したのち、更にイオンミリング法によって処理したもののSEM写真を示す。図13の粒子断面写真から、粒子表層近くの金属珪素周辺に空隙が存在していることが認められた。図14の粒子断面写真からは、粒子内部にも空隙の存在が確認されており、金属珪素の粒子表層近くだけでなく、空隙が粒子内部にも形成されていることがわかる。
The cycle characteristic test results of Examples 1 to 9 and Comparative Example 1 are shown in FIG. It can be seen that the lithium battery using the graphite particles of the present invention has excellent cycle characteristics and is improved.
FIGS. 13 and 14 show SEM photographs of the graphite particles of Example 4 (model of FIG. 7) embedded in a resin, polished with a normal abrasive and further processed by an ion milling method. From the particle cross-sectional photograph of FIG. 13, it was recognized that voids exist around the metal silicon near the particle surface layer. The particle cross-sectional photograph in FIG. 14 confirms the presence of voids inside the particles, indicating that voids are formed not only near the particle surface of metal silicon but also inside the particles.

なお、本発明の実施例、比較例における各数値の測定法、測定装置は次の通りである。
本発明の負極活物質の比表面積は、窒素ガスの吸脱着により測定し、測定装置、米国Maicromeritics社製の自動比表面積/細孔分布測定装置ASAP−2405Nを使用した。
In addition, the measuring method and measuring apparatus of each numerical value in the Example of this invention and a comparative example are as follows.
The specific surface area of the negative electrode active material of the present invention was measured by adsorption / desorption of nitrogen gas, and a measuring device, an automatic specific surface area / pore distribution measuring device ASAP-2405N manufactured by US Micromeritics, Inc. was used.

比表面積は、吸着等温線から得られた吸着ガス量を、単分子層として評価して表面積を計算するBETの多点法によって求めた
P/V(P0-P)=(1/VmC)+{(C-1)/VmC(P/P0)}……………………………(1)
S=kVm…………………………………………………………………(2)
0:飽和蒸気圧
P:吸着平衡圧
V:吸着平衡圧Pにおける吸着量
Vm:単分子層吸着量
C:吸着熱などに関するパラメーター
S:比表面積
k:窒素単分子占有面積 0.162nm2
The specific surface area was determined by the BET multipoint method in which the amount of adsorbed gas obtained from the adsorption isotherm was evaluated as a monolayer and the surface area was calculated.
P / V (P 0 -P) = (1 / VmC) + {(C-1) / VmC (P / P 0 )} ……………………………… (1)
S = kVm ………………………………………………………………… (2)
P 0 : Saturated vapor pressure P: Adsorption equilibrium pressure V: Adsorption amount at adsorption equilibrium pressure P Vm: Monomolecular layer adsorption amount C: Parameters related to heat of adsorption S: Specific surface area k: Nitrogen monomolecular occupation area 0.162 nm 2

粒子径の測定は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定器のLMS-30システムを用いて、水を分散媒として微量の界面活性剤を分散剤にして、超音波分散をさせた状態で測定した。   The particle size is measured using the LMS-30 system of a laser diffraction / scattering type particle size distribution analyzer manufactured by Seishin Co., Ltd., and ultrasonic dispersion is performed using water as a dispersion medium and a small amount of surfactant as a dispersant. Measured in the state.

実施例1の黒鉛粒子のモデル図。3 is a model diagram of graphite particles of Example 1. FIG. 実施例1の黒鉛粒子のSEM写真。3 is an SEM photograph of the graphite particles of Example 1. 実施例2の黒鉛粒子のモデル図。3 is a model diagram of graphite particles of Example 2. FIG. 実施例2の黒鉛粒子のSEM写真。4 is an SEM photograph of graphite particles of Example 2. 実施例3の黒鉛粒子のモデル図。4 is a model diagram of graphite particles of Example 3. FIG. 実施例3の黒鉛粒子のSEM写真。4 is an SEM photograph of graphite particles of Example 3. 実施例4の黒鉛粒子のモデル図。4 is a model diagram of graphite particles of Example 4. FIG. 実施例4の黒鉛粒子のSEM写真。4 is an SEM photograph of the graphite particles of Example 4. 実施例5の黒鉛粒子のモデル図。FIG. 6 is a model diagram of graphite particles of Example 5. 実施例5の黒鉛粒子のSEM写真。6 is an SEM photograph of the graphite particles of Example 5. 実施例6の黒鉛粒子のモデル図。FIG. 6 is a model diagram of graphite particles of Example 6. サイクル特性試験の比較グラフ。Comparison graph of cycle characteristic test. 粒子断面写真(金属珪素周辺の空隙の様子)Particle cross-sectional photograph (state of void around metal silicon) 粒子断面写真(黒鉛母材内部に存在する空隙及び金属珪素の様子)Particle cross-sectional photograph (state of voids and metallic silicon existing inside the graphite base material)

符号の説明Explanation of symbols

1 黒鉛
2 炭素前駆体を焼成してなる炭素
3 カーボンブラック
4 珪素、珪素化合物、または珪素合金
5 空隙
1 Graphite 2 Carbon obtained by firing a carbon precursor 3 Carbon black 4 Silicon, silicon compound, or silicon alloy 5 Void

Claims (10)

黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、及び焼成時にほぼ消滅する空隙形成剤、及びカーボンブラックを混合し、この混合物に炭素前駆体を加えて炭素前駆体で被覆して焼成することを複数回おこなうものであり、最外層の被覆となる炭素前駆体の焼成温度が900〜1100℃であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 Graphite powder, one or more fine powders of silicon, silicon compound, and silicon alloy, a void forming agent that almost disappears upon firing, and carbon black are mixed, and a carbon precursor is added to the mixture and coated with the carbon precursor. The method for producing a negative electrode active material for a lithium ion secondary battery is characterized in that the firing is performed a plurality of times, and the firing temperature of the carbon precursor serving as the outermost layer coating is 900 to 1100 ° C. 請求項1において、最外層の被覆となる炭素前駆体には、焼成後に表面に微小突起となるカーボンブラックを加えて被覆層とすることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 2. The production of a negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the carbon precursor serving as the coating of the outermost layer is added with carbon black that becomes microprojections on the surface after firing to form a coating layer. Method. 請求項1または2において、黒鉛粉末が鱗状乃至鱗片状黒鉛であり、この黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、及び焼成時にほぼ消滅する空隙形成剤及びカーボンブラックを加えた混合物を球形に造粒することを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 3. The graphite powder according to claim 1 or 2, wherein the graphite powder is scaly or scaly graphite, and the graphite powder and one or more fine powders of silicon, silicon compound, and silicon alloy, and a void forming agent and carbon black that substantially disappear upon firing. A method for producing a negative electrode active material for a lithium ion secondary battery, comprising granulating the added mixture into a spherical shape. 請求項1〜3のいずれかにおいて、最外層の被覆となる炭素前駆体が石炭・石油系の非晶質ピッチあるいは晶質ピッチであることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 The negative electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the carbon precursor serving as a coating of the outermost layer is a coal / petroleum amorphous pitch or a crystalline pitch. Production method. 請求項1〜4のいずれかにおいて、珪素または珪素化合物もしくは珪素合金の平均粒子径が0.5μm以下で、かつ最大粒子径が1μm以下であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 5. The negative electrode active for lithium ion secondary battery according to claim 1, wherein the average particle diameter of silicon, a silicon compound, or a silicon alloy is 0.5 μm or less and the maximum particle diameter is 1 μm or less. A method for producing a substance. 請求項1〜5のいずれかにおいて、焼成によってほぼ消滅する空隙形成剤がポリビニルアルコール、ポリエチレングリコール、ポリカルボシラン、ポリアクリル酸、セルロース系高分子等から選ばれたものであり、焼成得率が20%以下であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 In any one of Claims 1-5, the space | gap formation agent which lose | disappears substantially by baking is what was chosen from polyvinyl alcohol, polyethyleneglycol, polycarbosilane, polyacrylic acid, a cellulose polymer, etc., and baking yield is The manufacturing method of the negative electrode active material for lithium ion secondary batteries characterized by being 20% or less. 請求項1〜6のいずれかにおいて、焼成によってほぼ消滅する空隙形成剤を予め金属珪素微粉末に被覆させて用いることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a lithium ion secondary battery according to any one of claims 1 to 6, wherein a void forming agent that substantially disappears upon firing is coated with metal silicon fine powder in advance. 請求項1〜7のいずれかの方法によって製造されたリチウムイオン二次電池用負極活物質。 The negative electrode active material for lithium ion secondary batteries manufactured by the method in any one of Claims 1-7. 請求項8のリチウムイオン二次電池用負極活物質に導電性の調節、電極密度の調節、充放電容量の調節を目的として天然黒鉛、人造黒鉛、更には低結晶炭素の粉末を単独あるいは混合したものを加えたことを特徴とするリチウムイオン二次電池用負極活物質。 9. The negative electrode active material for a lithium ion secondary battery according to claim 8 is mixed with natural graphite, artificial graphite, and low crystalline carbon powder for the purpose of adjusting conductivity, adjusting electrode density, and adjusting charge / discharge capacity. What is added is a negative electrode active material for a lithium ion secondary battery. 請求項8または請求項9のリチウムイオン二次電池用負極活物質を有機バインダーと混合し、銅箔上に塗布、乾燥、プレスして得られる銅箔をのぞいた電極厚が30〜100μm及び電極密度が1.4〜1.8g/cm3であることを特徴とするリチウムイオン二次電池用負極。 An electrode thickness of 30 to 100 μm except for a copper foil obtained by mixing the negative electrode active material for a lithium ion secondary battery according to claim 8 or 9 with an organic binder, coating, drying, and pressing on the copper foil, and an electrode A negative electrode for a lithium ion secondary battery, wherein the density is 1.4 to 1.8 g / cm 3 .
JP2007019738A 2007-01-30 2007-01-30 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode Active JP5143437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019738A JP5143437B2 (en) 2007-01-30 2007-01-30 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019738A JP5143437B2 (en) 2007-01-30 2007-01-30 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode

Publications (2)

Publication Number Publication Date
JP2008186732A JP2008186732A (en) 2008-08-14
JP5143437B2 true JP5143437B2 (en) 2013-02-13

Family

ID=39729623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019738A Active JP5143437B2 (en) 2007-01-30 2007-01-30 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode

Country Status (1)

Country Link
JP (1) JP5143437B2 (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
KR101002539B1 (en) * 2008-04-29 2010-12-17 삼성에스디아이 주식회사 Negative electrode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
US8580155B2 (en) 2008-09-03 2013-11-12 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
KR101057162B1 (en) * 2008-12-01 2011-08-16 삼성에스디아이 주식회사 Anode active material, anode and lithium secondary battery having same
CN102227835B (en) * 2008-12-19 2014-05-14 Nec能源元器件株式会社 Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
JP4922457B2 (en) 2008-12-26 2012-04-25 積水化学工業株式会社 Method for producing carbon particles for electrodes
KR101090598B1 (en) * 2009-03-16 2011-12-08 주식회사 엘지화학 Binder of anode for secondary battery and secondary battery using the same
JP5495887B2 (en) * 2009-04-28 2014-05-21 株式会社デンソー Negative electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR101093705B1 (en) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 Rechargeable lithium battery
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2495951B (en) 2011-10-26 2014-07-16 Nexeon Ltd A composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
CN102428763A (en) 2009-05-19 2012-04-25 纳米***公司 Nanostructured materials for battery applications
JP5369031B2 (en) * 2009-08-11 2013-12-18 積水化学工業株式会社 Carbon material, electrode material, and negative electrode material for lithium ion secondary battery
JP2011048992A (en) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd Carbon material, electrode material, and lithium ion secondary battery negative electrode material
JP2011071063A (en) * 2009-09-28 2011-04-07 Kobe Univ Carbon-semimetal oxide composite material, method of manufacturing the same, and negative electrode for lithium ion battery using this
CN102630355A (en) * 2009-11-03 2012-08-08 安维亚***公司 High capacity anode materials for lithium ion batteries
JP5512355B2 (en) * 2010-03-31 2014-06-04 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and production method thereof
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
JP5494343B2 (en) * 2010-08-12 2014-05-14 日立化成株式会社 Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5494344B2 (en) * 2010-08-12 2014-05-14 日立化成株式会社 Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
KR101126202B1 (en) 2010-11-04 2012-03-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP5799500B2 (en) * 2010-12-10 2015-10-28 日立化成株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5881943B2 (en) * 2010-12-10 2016-03-09 日立化成株式会社 Lithium secondary battery
JP5885919B2 (en) * 2010-12-10 2016-03-16 日立化成株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
EP2639866B1 (en) * 2010-12-21 2017-02-22 LG Chem, Ltd. Anode active material and secondary battery using the same
WO2012105009A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Composite active material, method for manufacturing composite active material, and electric cell
EP2650950B1 (en) * 2011-02-15 2017-03-15 Lg Chem, Ltd. Method for manufacturing anode active material
KR101182433B1 (en) * 2011-05-11 2012-09-12 삼성에스디아이 주식회사 Negative active material, method for preparing the same, and lithium battery comprising the same
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP5516529B2 (en) * 2011-07-29 2014-06-11 住友ベークライト株式会社 The manufacturing method of the carbon material for lithium ion secondary batteries, the carbon material for lithium ion secondary batteries, the negative mix for lithium ion secondary batteries, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
JP5639017B2 (en) * 2011-07-29 2014-12-10 住友ベークライト株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013073920A (en) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd Composition, carbon composite material for lithium ion secondary battery negative electrode material, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2573845B1 (en) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Structural active material for battery electrodes
US10050262B2 (en) * 2011-12-28 2018-08-14 Panasonic Intellectual Property Mangement Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2015508934A (en) 2012-01-30 2015-03-23 ネクソン リミテッドNexeon Limited Si / C electroactive material composition
GB2499984B (en) * 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
KR101660001B1 (en) * 2012-03-22 2016-09-26 신닛테츠스미킨 카부시키카이샤 Silicon-graphite composite particles and method for manufacturing same
JP5921672B2 (en) 2012-03-26 2016-05-24 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and battery pack
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
US20130344391A1 (en) * 2012-06-18 2013-12-26 Sila Nanotechnologies Inc. Multi-shell structures and fabrication methods for battery active materials with expansion properties
JP5993337B2 (en) * 2012-07-03 2016-09-14 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP6252034B2 (en) 2012-08-23 2017-12-27 三菱ケミカル株式会社 Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbon material for non-aqueous electrolyte secondary battery
US10374221B2 (en) 2012-08-24 2019-08-06 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
JP2015038852A (en) 2012-09-19 2015-02-26 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, nonaqueous secondary battery negative electrode and nonaqueous secondary battery
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
JP2014154236A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Method for manufacturing electrode composite body
JP5827977B2 (en) * 2013-07-30 2015-12-02 住友ベークライト株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110098399B (en) 2013-08-05 2022-08-23 优美科公司 Method for producing composite and negative electrode material for lithium ion battery
US10109848B2 (en) 2013-08-05 2018-10-23 Showa Denko K.K. Negative electrode material for lithium ion batteries and use thereof
JP6508870B2 (en) 2013-08-14 2019-05-08 東ソー株式会社 Composite active material for lithium secondary battery and method of manufacturing the same
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
JP2015060641A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Silicon oxide-graphite composite particle and method for producing the same
JP6422208B2 (en) * 2013-09-27 2018-11-14 三菱ケミカル株式会社 Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP2015079621A (en) * 2013-10-16 2015-04-23 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrodes, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
CN103560247B (en) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 Vehicle-mounted and energy-storage lithium ion battery cathode material and preparation method thereof
CN113410423A (en) 2013-11-27 2021-09-17 三菱化学株式会社 Carbon material for negative electrode of nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP6476814B2 (en) * 2013-12-18 2019-03-06 三菱ケミカル株式会社 Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
KR102211528B1 (en) * 2014-01-09 2021-02-02 삼성에스디아이 주식회사 Negative electrode and rechargeable lithium battery including same
KR102164001B1 (en) * 2014-01-09 2020-10-12 삼성에스디아이 주식회사 Rechargeable lithium battery
JP6301142B2 (en) * 2014-01-31 2018-03-28 信越化学工業株式会社 Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
DE102014202156A1 (en) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si / G / C composites for lithium-ion batteries
US10128493B2 (en) 2014-02-25 2018-11-13 Nippon Steel & Sumitomo Metal Corporation Negative electrode active material, negative electrode and battery
KR20220025130A (en) 2014-03-26 2022-03-03 미쯔비시 케미컬 주식회사 Composite graphite particles for nonaqueous secondary battery negative electrodes, active material for nonaqueous secondary battery negative electrodes and nonaqueous secondary battery
KR101567203B1 (en) 2014-04-09 2015-11-09 (주)오렌지파워 Negative electrode material for rechargeable battery and method of fabricating the same
WO2015162848A1 (en) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, process for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101604352B1 (en) 2014-04-22 2016-03-18 (주)오렌지파워 Negative electrode active material and rechargeable battery having the same
KR20160008041A (en) * 2014-07-11 2016-01-21 오씨아이 주식회사 Anode active material for lithium secondary battery and manufacturing mehtod of the same
JP6020533B2 (en) * 2014-10-29 2016-11-02 日立化成株式会社 Lithium ion secondary battery
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP2018041529A (en) * 2015-01-29 2018-03-15 三洋電機株式会社 Discharge controller of nonaqueous electrolyte secondary battery, and method therefor
JP2015165510A (en) * 2015-05-18 2015-09-17 日立化成株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6748120B2 (en) * 2015-06-15 2020-08-26 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP6975435B2 (en) * 2015-11-06 2021-12-01 国立大学法人 新潟大学 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method
CN108292779B (en) * 2015-11-30 2021-06-15 日本电气株式会社 Lithium ion secondary battery
JP6678446B2 (en) * 2015-12-21 2020-04-08 株式会社東芝 Battery active material, battery electrode, non-aqueous electrolyte battery, battery pack, and vehicle using the same
CN107546375B (en) 2016-06-27 2022-08-12 松下知识产权经营株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing same
CN107546365B (en) 2016-06-27 2022-04-29 松下知识产权经营株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing same
CN109923708A (en) * 2016-09-09 2019-06-21 昭和电工株式会社 Anode material for lithium-ion secondary battery
US10720638B2 (en) 2016-10-19 2020-07-21 Tee One Co., Ltd. Carbon-silicon composite material, negative electrode, secondary battery, and carbon-silicon composite material producing method
CN107820645B (en) 2017-04-27 2020-02-14 太克万株式会社 Carbon-silicon composite material, negative electrode and secondary battery
JP6283800B1 (en) * 2017-07-05 2018-02-28 テックワン株式会社 Carbon-silicon composite material, negative electrode, secondary battery, carbon-silicon composite material manufacturing method
KR102278996B1 (en) * 2017-10-27 2021-07-20 주식회사 엘지에너지솔루션 Silicon-carbon composite, and lithium secondary battery comprising the same
JP6413007B2 (en) * 2017-12-04 2018-10-24 信越化学工業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP7293645B2 (en) 2017-12-27 2023-06-20 東ソー株式会社 Composite active material for lithium secondary battery and manufacturing method thereof
CN110581260A (en) * 2018-06-07 2019-12-17 山东欧铂新材料有限公司 Lithium ion battery silicon composite negative electrode material, preparation method thereof and lithium ion battery
CN108682829B (en) * 2018-06-11 2020-10-23 清华大学深圳研究生院 Preparation method of nitrogen-doped carbon-coated silicon composite graphite material
US11028242B2 (en) * 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
CN111834612A (en) * 2019-04-23 2020-10-27 四川佰思格新能源有限公司 Hard carbon-silicon carbon composite material, preparation method thereof and lithium ion battery
KR20210050348A (en) * 2019-10-28 2021-05-07 주식회사 엘지화학 Method for preparing a negative electrode material, the negative electrode material, a negative electrode comprising the negative electrode material, and a secondary battery comprising the negative electrode
ES2963611T3 (en) * 2020-04-30 2024-04-01 Contemporary Amperex Technology Co Ltd Secondary battery, its preparation process and device comprising the secondary battery
WO2021217587A1 (en) * 2020-04-30 2021-11-04 宁德时代新能源科技股份有限公司 Secondary battery and manufacturing method therefor, and apparatus comprising secondary battery
CN111755681A (en) * 2020-07-06 2020-10-09 马鞍山科达普锐能源科技有限公司 Silicon-carbon negative electrode material for lithium ion battery and preparation method thereof
WO2023053842A1 (en) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 Negative electrode for secondary batteries, and secondary battery
WO2023100548A1 (en) * 2021-12-03 2023-06-08 Dic株式会社 Negative electrode active material, secondary battery, and method for manufacturing negative electrode active material
KR20230150873A (en) * 2022-04-21 2023-10-31 비티알 뉴 머티리얼 그룹 코., 엘티디. Cathode materials, manufacturing methods thereof, and lithium ion batteries
WO2024036485A1 (en) * 2022-08-16 2024-02-22 宁德时代新能源科技股份有限公司 Negative electrode active material, manufacturing method, secondary battery, and electrical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897709B2 (en) * 2002-02-07 2007-03-28 日立マクセル株式会社 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP4040381B2 (en) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4686974B2 (en) * 2002-12-17 2011-05-25 三菱化学株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4623940B2 (en) * 2003-06-02 2011-02-02 日本電気株式会社 Negative electrode material and secondary battery using the same
JP3957692B2 (en) * 2004-02-27 2007-08-15 Jfeケミカル株式会社 Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5158460B2 (en) * 2005-02-21 2013-03-06 日本カーボン株式会社 Silicon-added graphite negative electrode material for lithium ion secondary battery and production method

Also Published As

Publication number Publication date
JP2008186732A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5143437B2 (en) Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode
TWI536646B (en) Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR101342601B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
JP6334195B2 (en) Composite active material for lithium secondary battery and method for producing the same
CN102576874B (en) Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5627250B2 (en) Lithium ion battery
JP5494344B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022506881A (en) Electrically active material for metal ion batteries
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6508870B2 (en) Composite active material for lithium secondary battery and method of manufacturing the same
WO2018179813A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CA2889306A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP7452599B2 (en) Composite active material for lithium secondary batteries
CN115667136B (en) Composite carbon particles and uses thereof
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP2015079621A (en) Composite graphite particle for nonaqueous secondary battery negative electrodes, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6759583B2 (en) Composite active material for lithium secondary battery and its manufacturing method, lithium secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2015185443A (en) Carbon material for nonaqueous secondary battery and nonaqueous secondary battery
JP2017183113A (en) Composite active material for lithium ion secondary battery, and method for manufacturing the same
JP2007173156A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2014067636A (en) Composite carbon material for nonaqueous secondary battery negative electrode, negative electrode, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250