JP6975435B2 - Non-aqueous electrolyte secondary battery Negative electrode manufacturing method - Google Patents

Non-aqueous electrolyte secondary battery Negative electrode manufacturing method Download PDF

Info

Publication number
JP6975435B2
JP6975435B2 JP2020087415A JP2020087415A JP6975435B2 JP 6975435 B2 JP6975435 B2 JP 6975435B2 JP 2020087415 A JP2020087415 A JP 2020087415A JP 2020087415 A JP2020087415 A JP 2020087415A JP 6975435 B2 JP6975435 B2 JP 6975435B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
graphite
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020087415A
Other languages
Japanese (ja)
Other versions
JP2020129556A (en
Inventor
健司 戸田
峰夫 佐藤
和義 上松
宏文 福岡
健 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Niigata University
Original Assignee
Shin Etsu Chemical Co Ltd
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015218410A external-priority patent/JP2017088437A/en
Application filed by Shin Etsu Chemical Co Ltd, Niigata University filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020087415A priority Critical patent/JP6975435B2/en
Publication of JP2020129556A publication Critical patent/JP2020129556A/en
Application granted granted Critical
Publication of JP6975435B2 publication Critical patent/JP6975435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池の負極活物質として用いた際に、高容量及び優れたサイクル特性を有する、非水電解質二次電池負極材として好適な黒鉛被覆珪素複合体の製造法方法に関する。 INDUSTRIAL APPLICABILITY The present invention has a graphite coating suitable as a negative electrode material for a non-aqueous electrolyte secondary battery, which has high capacity and excellent cycle characteristics when used as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The present invention relates to a method for producing a silicon composite.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報他)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3:特開平10−294112号公報)、負極材料に酸化珪素を用いる方法(特許文献4:特許第2997741号公報)、負極材料にSi22O及びGe22Oを用いる方法(特許文献5:特開平11−102705号公報)、負極材料に炭素質物中に、シリコン及びシリコン酸化物が分散された複合体粒子と粒子の全面を被覆する炭素質物の被覆層を有する材料を用いる方法(特許文献6:特開2006−92969号公報)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特許文献7:特開2000−243396号公報)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8:特開2000−215887号公報)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献9:特開2002−42806号公報)等が挙げられる。 In recent years, with the remarkable development of portable electronic devices, communication devices and the like, there is a strong demand for non-aqueous electrolyte secondary batteries having a high energy density from the viewpoints of economy, miniaturization and weight reduction of the devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn as a negative electrode material and a composite oxide thereof (Patent Document 1: JP-A-5). -174818, Patent Document 2: JP-A-6-60867, etc.), Method of applying melt-quenched metal oxide as negative electrode material (Patent Document 3: JP-A-10-294112), Oxidation to negative electrode material A method using silicon (Patent Document 4: Patent No. 2997741), a method using Si 2 N 2 O and Ge 2 N 2 O as the negative electrode material (Patent Document 5: Japanese Patent Application Laid-Open No. 11-102705), as the negative electrode material. A method of using a composite particle in which silicon and a silicon oxide are dispersed in a carbonaceous material and a material having a carbonaceous material coating layer covering the entire surface of the particles (Patent Document 6: Japanese Patent Application Laid-Open No. 2006-92969) and the like. Are known. Further, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after mechanical arranging with graphite (Patent Document 7: JP-A-2000-2433396), and a carbon layer on the surface of silicon particles by a chemical vapor deposition method. (Patent Document 8: JP-A-2000-215887), a method of coating a carbon layer on the surface of silicon oxide particles by a chemical vapor deposition method (Patent Document 9: JP-A-2002-42806), and the like can be mentioned. ..

特開平5−174818号公報Japanese Unexamined Patent Publication No. 5-174818 特開平6−60867号公報Japanese Unexamined Patent Publication No. 6-60867 特開平10−294112号公報Japanese Unexamined Patent Publication No. 10-294112 特許第2997741号公報Japanese Patent No. 2997741 特開平11−102705号公報Japanese Unexamined Patent Publication No. 11-102705 特開2006−92969号公報Japanese Unexamined Patent Publication No. 2006-92969 特開2000−243396号公報Japanese Unexamined Patent Publication No. 2000-2433396 特開2000−215887号公報Japanese Unexamined Patent Publication No. 2000-2158887 特開2002−42806号公報Japanese Unexamined Patent Publication No. 2002-42806

上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、市場の要求特性に対し不十分であったり、導電性付与工程が複雑で生産性に劣ったり、コストが高くなったりする課題があり、必ずしも満足でき得るものではなく、さらなるエネルギー密度の向上が望まれていた。特に、特許第2997741号公報では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、酸化珪素は電子伝導性が非常に低いため、単に導電助剤を共存させるだけでは不十分であり、電子伝導性を高める技術が検討されている。従来の負極材に導電性を付与した技術については、特開2000−243396号公報では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題があり、また特開2000−215887号公報の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報の方法においては、高容量を維持したままサイクル性の向上は確認されるも、工程が複雑であるため、量産化には不向きであり、コストが高くなるといった問題があった。 Although the above-mentioned conventional method increases the charge / discharge capacity and the energy density, it is insufficient for the characteristics required by the market, the conductivity imparting process is complicated, the productivity is inferior, and the cost is high. There were problems, and it was not always satisfactory, and further improvement in energy density was desired. In particular, in Japanese Patent No. 2997741, silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, since silicon oxide has very low electronic conductivity, a conductive auxiliary agent simply coexists. It is not enough to just make it, and a technique to improve electron conductivity is being studied. Regarding the conventional technique for imparting conductivity to a negative electrode material, Japanese Patent Application Laid-Open No. 2000-243366 states that a uniform carbon film is not formed and the conductivity is insufficient because it is a fusion of solids. There is a problem, and in the method of JP-A-2000-2158887, although a uniform carbon film can be formed, since Si is used as the negative electrode material, expansion / contraction during adsorption / desorption of lithium ions occurs. It is too large to withstand practical use as a result, and the cycleability is deteriorated. Therefore, a limit on the amount of charge must be provided to prevent this, and in the method of JP-A-2002-42806, Although it is confirmed that the cycle performance is improved while maintaining the high capacity, there is a problem that the process is complicated, so that it is not suitable for mass production and the cost is high.

本発明は上記事情に鑑みなされたもので、電池特性のバラツキが少なく、高容量でサイクル特性に優れた、非水電解質二次電池負極材として好適な黒鉛被覆珪素複合体が得られ、かつ量産化が可能で、コストを抑えた工業的規模の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a graphite-coated silicon composite suitable as a negative electrode material for a non-aqueous electrolyte secondary battery, which has little variation in battery characteristics, has a high capacity and is excellent in cycle characteristics, can be obtained and mass-produced. The purpose is to provide an industrial-scale manufacturing method that is capable of conversion and keeps costs down.

本発明者らは、上記目的を達成するため鋭意検討した結果、充放電容量が現在主流であるグラファイト系のものと比較して、その数倍の容量であることから期待されている半面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質に着目した。そして、珪素系物質の表面を黒鉛皮膜で被覆することで著しい電池特性の向上が見られた。しかしながら、従来の黒鉛被覆処理は複雑であり、工業的規模の生産が困難であった。工業的規模の生産に耐えうる黒鉛被覆処理方法について、詳細検討を行った。その結果、高分子材料を黒鉛源として用いることで、量産化が可能なことを確認した。但し、従来技術にあるような単純な混合・焼成では、均一被膜の生成が困難であり、電池特性にバラツキが生じ易いといった課題があった。そこで、高分子材料の混合・焼成を複数回施すことで、黒鉛被膜の均一被覆が可能になり、結果として電池特性が安定することを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors are expected to have a charge / discharge capacity several times that of the graphite-based one, which is currently the mainstream, but repeatedly. We focused on silicon-based materials, which have a major bottleneck in performance deterioration due to charging and discharging. By coating the surface of the silicon-based substance with a graphite film, significant improvement in battery characteristics was observed. However, the conventional graphite coating treatment is complicated, and it is difficult to produce on an industrial scale. A detailed study was conducted on a graphite coating treatment method that can withstand industrial-scale production. As a result, it was confirmed that mass production is possible by using a polymer material as a graphite source. However, there is a problem that it is difficult to form a uniform film by simple mixing and firing as in the prior art, and the battery characteristics are likely to vary. Therefore, it has been found that uniform coating of the graphite coating is possible by mixing and firing the polymer material a plurality of times, and as a result, the battery characteristics are stabilized, and the present invention has been completed.

従って、本発明は、下記の黒鉛被覆珪素複合体の製造方法を提供する。
[1].(I−1)(A)珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子と、(B)高分子材料とを混合し、混合物を作製する混合工程、
(II−1)得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程を含み、さらに下記
(I−2)得られた焼成物と、(B)高分子材料とを混合し、焼成物と高分子材料との混合物を作製する混合工程、及び
(II−2)得られた焼成物と高分子材料との混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程を含む、又は上記(I−2)及び(II−2)工程を複数回繰り返すことを特徴とする黒鉛被覆珪素複合体の製造方法。
[2].(A)粒子の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/gである[1]記載の黒鉛被覆珪素複合体の製造方法。
[3].(B)高分子材料が、芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーから選ばれるポリマーである[1]又は[2]記載の黒鉛被覆珪素複合体の製造方法。
[4].(I)混合工程が、(B)高分子材料を有機溶媒に溶解した溶液と、(A)粒子又は焼成物とを混合することを特徴とする[1]〜[3]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
[5].(II)焼成工程の焼成温度が、600〜1,200℃である[1]〜[3]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
[6].黒鉛被覆珪素複合体の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/g、黒鉛被覆率が0.5〜40質量%である[1]〜[5]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
[7].黒鉛被覆珪素複合体が、非水電解質二次電池負極材用である[1]〜[6]のいずれかに記載の黒鉛被覆珪素複合体の製造方法。
Therefore, the present invention provides the following method for producing a graphite-coated silicon complex.
[1]. (I-1) (A) Silicon particles, silicon oxide particles represented by the general formula SiOx (0.5≤x <1.5), particles having a fine structure in which fine particles of silicon are dispersed in a silicon-based compound, And the mixing step of mixing the particles selected from these mixtures with (B) the polymer material to prepare a mixture.
(II-1) The obtained mixture is calcined in an inert atmosphere or a vacuum atmosphere to prepare a calcined product, which further comprises the following (I-2) obtained calcined product and (B). The mixing step of mixing the polymer material to prepare a mixture of the calcined product and the polymer material, and (II-2) the mixture of the obtained calcined product and the polymer material in an inert atmosphere or a vacuum atmosphere. A method for producing a graphite-coated silicon composite, which comprises a firing step of firing in the middle to prepare a fired product, or repeats the above steps (I-2) and (II-2) a plurality of times.
[2]. (A) The method for producing a graphite-coated silicon composite according to [1], wherein the average particle size of the particles is 0.1 to 30 μm and the BET specific surface area is 0.1 to 30 m 2 / g.
[3]. (B) The method for producing a graphite-coated silicon composite according to [1] or [2], wherein the polymer material is a polymer selected from an aromatic group-containing thermoplastic polymer and a polyolefin-based thermoplastic polymer.
[4]. (I) Described in any one of [1] to [3], wherein the mixing step is a mixture of (B) a solution of a polymer material in an organic solvent and (A) particles or a fired product. A method for producing a graphite-coated silicon composite.
[5]. (II) The method for producing a graphite-coated silicon complex according to any one of [1] to [3], wherein the firing temperature in the firing step is 600 to 1,200 ° C.
[6]. Of [1] to [5], the graphite-coated silicon composite has an average particle size of 0.1 to 30 μm, a BET specific surface area of 0.1 to 30 m 2 / g, and a graphite coating ratio of 0.5 to 40% by mass. The method for producing a graphite-coated silicon composite according to any one.
[7]. The method for producing a graphite-coated silicon composite according to any one of [1] to [6], wherein the graphite-coated silicon composite is used as a negative electrode material for a non-aqueous electrolyte secondary battery.

本発明の製造方法によれば、リチウムイオン二次電池等の非水電解質二次電池の負極活物質に用いることで、高容量及び優れたサイクル特性を有する、非水電解質二次電池負極材として好適な黒鉛被覆珪素複合体が得られる。この製造方法は、簡便であるため量産が可能であり、コスト低減が図れる。 According to the manufacturing method of the present invention, as a negative electrode material for a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics by using it as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. A suitable graphite-coated silicon composite is obtained. Since this manufacturing method is simple, mass production is possible and cost reduction can be achieved.

以下、本発明の製造方法について、各工程について詳細に説明する。
本発明においては、(I)工程とは、(I−1)工程及び(I−2)工程をいい、(II)工程とは、(II−1)工程及び(II−2)工程をいう。
Hereinafter, each step of the manufacturing method of the present invention will be described in detail.
In the present invention, the (I) step means the (I-1) step and the (I-2) step, and the (II) step means the (II-1) step and the (II-2) step. ..

(I−1)珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子と、(B)高分子材料とを混合し、混合物を作製する混合工程 (I-1) Silicon particles, silicon oxide particles represented by the general formula SiOx (0.5≤x <1.5), particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, and these. A mixing step of mixing particles selected from the mixture and (B) the polymer material to prepare a mixture.

本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明においては、一般式SiOx(0.5≦x<1.5)を用いる。xは1.0≦x<1.3が好ましく、1.0≦x≦1.2がより好ましい。 In the present invention, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metallic silicon. In the present invention, the general formula SiOx (0.5 ≦ x <1.5) is used. x is preferably 1.0 ≦ x <1.3, more preferably 1.0 ≦ x ≦ 1.2.

珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子は、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子を出発原料とし、熱処理を行い不均化反応することによって得ることができる。なお、珪素の微粒子の大きさは1〜500nmであることが好ましい。なお、微粒子の大きさは、銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径である。また、珪素系化合物については、不活性なものが好ましく、製造し易さの点において二酸化珪素が好ましい。 The particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound are disproportionated by heat treatment using silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5) as a starting material. It can be obtained by reacting. The size of the silicon fine particles is preferably 1 to 500 nm. As for the size of the fine particles, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° was observed in X-ray diffraction (Cu-Kα) with copper as the counter cathode. It is the particle size of the silicon crystal obtained by the Scheller's equation based on the spread of the diffraction line. Further, as the silicon-based compound, an inert compound is preferable, and silicon dioxide is preferable in terms of ease of production.

(A)粒子の平均粒子径は0.1〜30μmが好ましく、0.3〜25μmがより好ましい。また、BET比表面積は0.1〜30m2/gが好ましく、0.1〜25m2/gがより好ましく、0.2〜20m2/gがさらに好ましい。(A)粒子の平均粒子径及びBET比表面積が、上記範囲外では所望の平均粒子径及びBET比表面積を有する黒鉛被覆珪素複合体が得られない場合がある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径であり、BET比表面積は、N2ガス吸着量によって評価するBET1点法にて測定した値である。 The average particle size of the particles (A) is preferably 0.1 to 30 μm, more preferably 0.3 to 25 μm. Further, BET specific surface area is preferably 0.1~30m 2 / g, more preferably 0.1~25m 2 / g, more preferably 0.2~20m 2 / g. (A) If the average particle size and BET specific surface area of the particles are out of the above ranges, a graphite-coated silicon composite having a desired average particle size and BET specific surface area may not be obtained. The average particle size is the weight average particle size in the particle size distribution measurement by the laser light diffraction method, and the BET specific surface area is the value measured by the BET 1-point method evaluated by the N 2 gas adsorption amount.

(B)高分子材料
黒鉛被覆珪素複合体は、上記(A)粒子の表面を、(B)高分子材料を炭素源として用い、黒鉛皮膜を被覆したものである。高分子材料としては、ポリスチレン、キシレン樹脂、ビフェニル樹脂、ナフチレン樹脂、アントラセン樹脂、ポリ1−ビニルナフタリン、ポリ3−ビニルピレン、ポリアルキルフルオレン系等といった芳香族基含有系熱可塑性ポリマー、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキサン、ポリオクテン、ポリノネン、ポリデセン等といったポリオレフィン系熱可塑性ポリマー、縮合多核芳香族樹脂、フラン樹脂、フェノール樹脂等といった熱可塑性樹脂、ポリトリアジン樹脂、ポリピリダジン樹脂、ポリピリジン樹脂、ポリピペリジン樹脂、ポリトリアゾール樹脂、ポリピラゾール樹脂、ポリピルロリデン樹脂等といった窒素含有樹脂等が挙げられ、これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。中でも、芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーが、黒鉛被覆効果の点から好ましい。中でも、ポリスチレン、ポリエチレンが、コスト、入手のし易さより好適に用いられる。
(B) Polymer Material The graphite-coated silicon composite is formed by coating the surface of the particles (A) with a graphite film using the polymer material (B) as a carbon source. Examples of the polymer material include aromatic group-containing thermoplastic polymers such as polystyrene, xylene resin, biphenyl resin, naphthylene resin, anthracene resin, poly1-vinylnaphthalin, poly3-vinylpyrene, and polyalkylfluorene-based thermoplastic polymers, polyethylene, and polypropylene. Polyolefin-based thermoplastic polymers such as polybutene, polypentene, polyhexane, polyoctene, polynonene, polydecene, etc., thermoplastic resins such as condensed polynuclear aromatic resin, furan resin, phenol resin, etc., polytriazine resin, polypyridazine resin, polypyridine resin, polypiperidine Examples thereof include nitrogen-containing resins such as resins, polytriazole resins, polypyrazole resins, and polypyrrolidene resins, and these can be used alone or in combination of two or more. Of these, aromatic group-containing thermoplastic polymers and polyolefin-based thermoplastic polymers are preferable from the viewpoint of graphite coating effect. Among them, polystyrene and polyethylene are preferably used because of their cost and availability.

(B)高分子材料は粉末として混合することもでき、予めトルエン、アセトン、ヘキサン、キシレン、エタノール等の有機溶媒に溶解した溶液を(A)粒子と混合することもできるが、より均一な混合が可能となる点から、溶液で混合することが好ましい。混合方法は、特に限定されるものではなく、ボールミル、撹拌型混合器、乳鉢等が挙げられるが、ボールミルが簡便であり、より好適に用いられる。 The polymer material (B) can be mixed as a powder, or a solution previously dissolved in an organic solvent such as toluene, acetone, hexane, xylene, or ethanol can be mixed with the particles (A), but more uniformly mixed. It is preferable to mix with a solution from the viewpoint that The mixing method is not particularly limited, and examples thereof include a ball mill, a stirring type mixer, and a mortar, but a ball mill is simple and is more preferably used.

(II−1)得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程
不活性ガスは、アルゴン又は窒素が一般的に用いられ、ガス通気中又は封入し、焼成を行うことができるが、圧力上昇防止及び副生ガスを系外に排出させるため、ガス通気・流入中にて行うことが好ましい。なお、不活性ガスの流量が過剰の場合、炭化水素系ガスが系外に排出され、黒鉛被覆処理速度が低下するおそれがあるため、必要最小限であることが好ましい。
(II-1) Firing step of calcining the obtained mixture in an inert atmosphere or a vacuum atmosphere to prepare a calcined product Argon or nitrogen is generally used as the inert gas, and the gas is aerated or sealed. However, in order to prevent the pressure from rising and to discharge the by-product gas to the outside of the system, it is preferable to perform the firing while the gas is aerated or inflowing. If the flow rate of the inert gas is excessive, the hydrocarbon gas may be discharged to the outside of the system and the graphite coating treatment speed may decrease. Therefore, the minimum necessary amount is preferable.

焼成温度は、600〜1,200℃が好ましく、700〜1,100℃がより好ましい。焼成温度が600℃より低いと黒鉛被覆処理に長時間を要し、生産性が低下するおそれがある。逆に、処理温度が1,200℃を超えると、一般式SiOx(0.5≦x<1.5)で表される酸化珪素を黒鉛被覆処理した場合、不均化反応が進行し過ぎ、本黒鉛被覆珪素複合体を非水電解質二次電池負極材として用いた場合に、サイクル特性が低下してしまう。焼成時間は、適宜選択されるが、0.2〜15時間が好ましく、0.5〜10時間がより好ましい。 The firing temperature is preferably 600 to 1,200 ° C, more preferably 700 to 1,100 ° C. If the firing temperature is lower than 600 ° C., the graphite coating treatment takes a long time, and the productivity may decrease. On the contrary, when the treatment temperature exceeds 1,200 ° C., the disproportionation reaction proceeds too much when the silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) is coated with graphite. When this graphite-coated silicon composite is used as a negative electrode material for a non-aqueous electrolyte secondary battery, the cycle characteristics are deteriorated. The firing time is appropriately selected, but is preferably 0.2 to 15 hours, more preferably 0.5 to 10 hours.

焼成装置については、不活性ガス雰囲気又は真空雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、環状炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。 As the firing device, a reaction device having a heating mechanism may be used in an inert gas atmosphere or a vacuum atmosphere, and the treatment is not particularly limited, and can be processed by a continuous method or a batch method. , A rotary furnace, an annular furnace, a vertical mobile layer reactor, a tunnel furnace, a batch furnace, a rotary kiln, etc. can be appropriately selected according to the purpose.

(I−2)得られた焼成物と、(B)高分子材料とを混合し、焼成物と高分子材料との混合物を作製する混合工程
本発明においては、上記(I)の工程で得られた焼成物に、さらに(B)高分子材料を混合し、焼成物と高分子材料との混合物を作製する。(B)成分の好適成分、混合方法等については、上記(I−1)工程の記載と同様であり、(B)高分子材料は粉末として混合することもでき、予め有機溶媒に溶解した溶液を(A)粒子と混合することもでき、混合方法は、特に限定されるものではなく、ボールミル、撹拌型混合器、乳鉢等が挙げられるが、ボールミルが簡便であり、より好適に用いられる。(B)高分子材料、混合の方法等その他の条件は、上記(I−1)と同じであっても、違っていてもよい。
(I-2) Mixing step of mixing the obtained calcined product and (B) polymer material to prepare a mixture of calcined product and polymer material In the present invention, it is obtained by the above step (I). (B) The polymer material is further mixed with the fired product to prepare a mixture of the fired product and the polymer material. The suitable components of the component (B), the mixing method, etc. are the same as those described in the above step (I-1), and the polymer material (B) can be mixed as a powder, and is a solution previously dissolved in an organic solvent. (A) can be mixed with the particles, and the mixing method is not particularly limited, and examples thereof include a ball mill, a stirring type mixer, and a mortar, but the ball mill is simple and more preferably used. (B) Other conditions such as the polymer material and the mixing method may be the same as or different from the above (I-1).

(II−2)得られた焼成物と高分子材料との混合物を、不活性雰囲気中又は真空雰囲気中で焼成し焼成物を作製する焼成工程
焼成工程の焼成温度等の条件等は、上記(I−2)の工程と同じように選択できるが、上記(I−2)と同じであっても、違っていてもよい。焼成温度は、600〜1,200℃が好ましく、700〜1,100℃がより好ましい。焼成時間は、適宜選択されるが、0.2〜15時間が好ましく、0.5〜10時間がより好ましい。
(II-2) Firing step of calcining the obtained mixture of the calcined product and the polymer material in an inert atmosphere or a vacuum atmosphere to prepare a calcined product. It can be selected in the same manner as in step I-2), but may be the same as or different from (I-2) above. The firing temperature is preferably 600 to 1,200 ° C, more preferably 700 to 1,100 ° C. The firing time is appropriately selected, but is preferably 0.2 to 15 hours, more preferably 0.5 to 10 hours.

本発明においては、上記(I−2)及び(II−2)を含み、さらに(I−2)及び(II−2)工程を複数回繰り返してもよい。このように、高分子材料の混合・焼成を複数回繰返し行うことで、黒鉛被膜の均一被覆が可能となる。(I−2)及び(II−2)工程の回数は特に限定されず、高分子材料の混合比率、焼成温度によって適宜選定されるが、1〜4回が好ましく((I)工程を含めると2〜5回)、1回がより好ましい。(I−2)及び(II−2)工程の回数が4回を超えると本来の目的である量産化、低コスト化が困難になるため、できるだけ少ないほうが好ましい。 In the present invention, the above steps (I-2) and (II-2) may be included, and the steps (I-2) and (II-2) may be repeated a plurality of times. By repeating the mixing and firing of the polymer material a plurality of times in this way, uniform coating of the graphite coating becomes possible. The number of steps (I-2) and (II-2) is not particularly limited and is appropriately selected depending on the mixing ratio of the polymer material and the firing temperature, but 1 to 4 times is preferable (including the step (I)). 2 to 5 times), more preferably once. If the number of steps (I-2) and (II-2) exceeds four, mass production and cost reduction, which are the original purposes, become difficult, so it is preferable to reduce the number as much as possible.

(A)粒子と(B)高分子材料との混合比は、全工程の合計量として、(A)粒子100質量部に対して、(B)高分子材料20〜500質量部が好ましく、より好ましくは30〜400質量部である。各(I)工程の(A)粒子又は焼成物に対する混合量は、上記全工程の量を(I)工程の数で割った数±30質量部等から適宜選定されるが、各(I)工程あたりの混合量は、(A)粒子又は焼成物100質量部に対して、(B)高分子材料5〜300質量部が好ましく、より好ましくは7〜250質量部である。(B)高分子材料が少なすぎると、黒鉛被覆量が少なくなるおそれがあり、一方、多すぎると、黒鉛被覆量が多くなり、非水電解質二次電池負極材として用いた場合、充放電容量が低下するおそれがある。 The mixing ratio of the particles (A) and the polymer material (B) is preferably 20 to 500 parts by mass of the polymer material (B) with respect to 100 parts by mass of the particles (A) as the total amount of all steps. It is preferably 30 to 400 parts by mass. The mixing amount of each step (I) with respect to the particles (A) or the fired product is appropriately selected from the number ± 30 parts by mass obtained by dividing the amount of all the steps by the number of steps (I), and each (I). The mixing amount per step is preferably 5 to 300 parts by mass, more preferably 7 to 250 parts by mass, based on 100 parts by mass of the particles or the calcined product (B). (B) If the polymer material is too small, the graphite coating amount may be small, while if it is too large, the graphite coating amount is large, and when used as a negative electrode material for a non-aqueous electrolyte secondary battery, the charge / discharge capacity May decrease.

[黒鉛被覆珪素複合体]
上記製造方法で得られた黒鉛被覆珪素複合体は、珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子表面が、上記(B)高分子材料を黒鉛源とした黒鉛被覆されたものである。珪素粒子、酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子については、(A)粒子で説明した通りである。なお、原料として一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子を用いた場合に、焼結によって不均化反応が進み、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子表面が、(B)高分子材料を黒鉛源とした黒鉛被覆された黒鉛被覆珪素複合体となる場合がある。
[Graphite-coated silicon complex]
The graphite-coated silicon composite obtained by the above production method has silicon particles, silicon oxide particles represented by the general formula SiOx (0.5≤x <1.5), and fine particles of silicon dispersed in a silicon-based compound. The particles having such a structure and the surface of the particles selected from the mixture thereof are coated with the above (B) polymer material as a graphite source. The silicon particles, silicon oxide particles, and particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound are as described in (A) particles. When silicon oxide particles represented by the general formula SiOx (0.5 ≦ x <1.5) are used as the raw material, the disproportionation reaction proceeds by sintering, and the silicon fine particles are dispersed in the silicon-based compound. The surface of the particles having a fine structure may be a graphite-coated silicon-coated silicon composite using (B) a polymer material as a graphite source.

黒鉛被覆珪素複合体の黒鉛被覆率(%:黒鉛被覆珪素複合体に対する割合)は、0.5〜40質量%が好ましく、2〜30質量%がより好ましい。黒鉛被覆量が0.5質量%未満では、導電性膜形成といった点で不十分であり、十分な導電性を維持できなくなるおそれがあり、結果として非水電解質二次電池負極材とした場合にサイクル性が低下するおそれがある。一方、黒鉛被覆量が40質量%を超えても、効果の向上が見られないばかりか、負極材に占める黒鉛の割合が多くなり、黒鉛被覆珪素複合体を非水電解質二次電池負極材として用いた場合、充放電容量が低下する。なお、混合・焼成の各回における黒鉛被覆量については、特に限定されるものではなく、全黒鉛被覆量を混合・焼成の各回で除した黒鉛被覆量の±30%程度とすることで、均一な黒鉛被覆処理が可能となる。 The graphite coverage of the graphite-coated silicon composite (%: ratio to the graphite-coated silicon composite) is preferably 0.5 to 40% by mass, more preferably 2 to 30% by mass. If the graphite coating amount is less than 0.5% by mass, it is insufficient in terms of forming a conductive film, and there is a possibility that sufficient conductivity cannot be maintained. As a result, when it is used as a negative electrode material for a non-aqueous electrolyte secondary battery. Cycleability may decrease. On the other hand, even if the graphite coating amount exceeds 40% by mass, not only the effect is not improved, but also the ratio of graphite in the negative electrode material increases, and the graphite-coated silicon composite is used as the negative electrode material for the non-aqueous electrolyte secondary battery. When used, the charge / discharge capacity decreases. The graphite coating amount in each mixing and firing is not particularly limited, and is uniform by setting the total graphite coating amount to about ± 30% of the graphite coating amount divided by each mixing and firing. Graphite coating treatment becomes possible.

黒鉛被覆珪素複合体は粒子であり、その平均粒子径は0.1〜30μmが好ましく、0.3〜25μmがより好ましい。平均粒子径が0.1μmより小さいと、表面酸化の影響で純度が低下し、非水電解質二次電池負極材として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下するおそれがある。逆に30μmより大きいと、黒鉛被覆処理における黒鉛析出量が減少し、結果として非水電解質二次電池負極材として用いた場合にサイクル性能が低下するおそれがある。また、BET比表面積は0.1〜30m2/gが好ましく、0.1〜25m2/gがより好ましく、0.2〜20m2/gがさらに好ましい。BET比表面積が0.1m2/g未満では、表面活性が小さくなり、結果として非水電解質二次電池負極材とした場合に、充放電容量が低下するおそれがある。逆に、BET比表面積が30m2/gを超えると、電極作製時の結着剤量が多くなり、電極としての容量が低下するおそれがある。 The graphite-coated silicon complex is a particle, and the average particle size thereof is preferably 0.1 to 30 μm, more preferably 0.3 to 25 μm. If the average particle size is smaller than 0.1 μm, the purity will decrease due to the effect of surface oxidation, and when used as a negative electrode material for non-aqueous electrolyte secondary batteries, the charge / discharge capacity will decrease, the bulk density will decrease, and the unit volume will decrease. There is a risk that the charge / discharge capacity per unit will decrease. On the contrary, if it is larger than 30 μm, the amount of graphite deposited in the graphite coating treatment is reduced, and as a result, the cycle performance may be deteriorated when used as a negative electrode material for a non-aqueous electrolyte secondary battery. Further, BET specific surface area is preferably 0.1~30m 2 / g, more preferably 0.1~25m 2 / g, more preferably 0.2~20m 2 / g. If the BET specific surface area is less than 0.1 m 2 / g, the surface activity becomes small, and as a result, the charge / discharge capacity may decrease when the non-aqueous electrolyte secondary battery negative electrode material is used. On the contrary, when the BET specific surface area exceeds 30 m 2 / g, the amount of the binder at the time of manufacturing the electrode increases, and the capacity as the electrode may decrease.

[非水電解質二次電池負極材]
黒鉛被覆珪素複合体は、リチウムイオン二次電池等の非水電解質二次電池の負極活物質として好適であり、非水電解質二次電池負極材用として用いられる。上記非水電解質二次電池負極材を用いて負極を作製する場合、非水電解質二次電池負極材に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
[Non-water electrolyte secondary battery negative electrode material]
The graphite-coated silicon composite is suitable as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and is used as a negative electrode material for a non-aqueous electrolyte secondary battery. When a negative electrode is manufactured using the negative electrode material of the non-aqueous electrolyte secondary battery, a conductive agent such as graphite can be added to the negative electrode material of the non-aqueous electrolyte secondary battery. Even in this case, the type of the conductive agent is not particularly limited as long as it is an electron-conducting material that does not decompose or deteriorate in the configured battery, and specifically, Al, Ti, Fe, Ni, Cu, Metal powder or metal fiber such as Zn, Ag, Sn, Si, natural graphite, artificial graphite, various coke powder, mesophase carbon, gas phase growth carbon fiber, pitch carbon fiber, PAN carbon fiber, various resin firing Graphite such as body can be used.

[負極]
負極(成型体)の調製方法としては下記の方法が挙げられる。黒鉛被覆珪素複合体と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
[Negative electrode]
Examples of the method for preparing the negative electrode (molded body) include the following methods. A graphite-coated silicon composite, a conductive agent if necessary, and another additive such as a binder are kneaded with a solvent such as N-methylpyrrolidone or water to form a paste-like mixture. Is applied to the sheet of the current collector. In this case, as the current collector, any material such as copper foil or nickel foil, which is usually used as a current collector for the negative electrode, can be used without particular limitation on the thickness and surface treatment. The molding method for molding the mixture into a sheet is not particularly limited, and a known method can be used.

[非水電解質二次電池]
リチウムイオン二次電池等の非水電解質二次電池は、上記黒鉛被覆珪素複合体を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Non-water electrolyte secondary battery]
A non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is characterized in that the above-mentioned graphite-coated silicon composite is used, and other materials such as a positive electrode, a negative electrode, an electrolyte, a separator, and a battery shape are known. Can be used and is not particularly limited. For example, as the positive electrode active material , oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , lithium, and chalcogen compounds are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used, and as the non-aqueous solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, etc. It is used by one kind or a combination of two or more kinds such as 2-methyltetraethane. In addition, various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1]
平均粒子径5μmの一般式SiOx(x=1.02)で表される酸化珪素粒子50gを、トルエン25gにポリスチレン25gを溶解した溶液に入れて、ボールミルにて1時間混合し、酸化珪素/ポリスチレン混合物を作製した。次にφ120の環状炉内に混合物を全量仕込み、アルゴン(Ar)ガスを0.2L/min流入させながら、1,000℃で1時間焼成を実施した。焼成終了後に降温し、黒色粉末を得た。得られた黒色粉末は、黒鉛被覆率が2.5質量%であった。次に得られた黒色粉末を上記と同様に、ポリスチレンと混合した。つまり、得られた黒色粉末を、トルエン25gにポリスチレン25gを溶解した溶液に入れて、ボールミルにて1時間混合し、黒色粉末/ポリスチレン混合物を作製した。その後上記同様の焼成処理を実施した。最終的に得られた黒色粉末は、平均粒子径5.0μm、BET比表面積4.7m2/g、黒鉛被覆率4.5質量%の黒鉛被覆珪素複合体であった。
[Example 1]
50 g of silicon oxide particles represented by the general formula SiO x (x = 1.02) having an average particle diameter of 5 μm are placed in a solution in which 25 g of polystyrene is dissolved in 25 g of toluene, mixed for 1 hour with a ball mill, and silicon oxide / A polystyrene mixture was made. Next, the entire amount of the mixture was charged into the annular furnace of φ120, and firing was carried out at 1,000 ° C. for 1 hour while inflowing 0.2 L / min of argon (Ar) gas. After the completion of firing, the temperature was lowered to obtain a black powder. The obtained black powder had a graphite coverage of 2.5% by mass. The resulting black powder was then mixed with polystyrene in the same manner as above. That is, the obtained black powder was put into a solution in which 25 g of polystyrene was dissolved in 25 g of toluene and mixed with a ball mill for 1 hour to prepare a black powder / polystyrene mixture. After that, the same firing treatment as described above was carried out. The finally obtained black powder was a graphite-coated silicon composite having an average particle size of 5.0 μm, a BET specific surface area of 4.7 m 2 / g, and a graphite coverage of 4.5% by mass.

○電池評価
次に、以下の方法で、得られた黒鉛被覆珪素複合体を負極活物質として用いた電池評価を行った。
まず、得られた黒鉛被覆珪素複合体にポリイミドを10質量%加え、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。
○ Battery evaluation Next, a battery evaluation was performed using the obtained graphite-coated silicon complex as a negative electrode active material by the following method.
First, 10% by mass of polyimide was added to the obtained graphite-coated silicon composite, and N-methylpyrrolidone was further added to form a slurry. This slurry was applied to a copper foil having a thickness of 20 μm, dried at 80 ° C. for 1 hour, and then dried. The electrode was pressure-molded by a roller press, vacuum dried at 350 ° C. for 1 hour, and then punched to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として、六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。 Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as the counter electrode, and lithium hexafluoride was mixed as a non-aqueous electrolyte with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate. A lithium ion secondary battery for evaluation was prepared by using a non-aqueous electrolyte solution dissolved in a liquid at a concentration of 1 mol / L and using a microporous polyethylene film having a thickness of 30 μm as a separator.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。 The produced lithium-ion secondary battery was left at room temperature overnight, and then used with a secondary battery charge / discharge test device (manufactured by Nagano Co., Ltd.) at 0.5 mA / cm 2 until the voltage of the test cell reached 0 V. Charging was performed with a constant current, and after reaching 0 V, charging was performed by reducing the current so as to keep the cell voltage at 0 V. Then, charging was terminated when the current value fell below 40 μA / cm 2. The discharge was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage exceeded 2.0 V, the discharge was terminated and the discharge capacity was determined.

以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1,850mAh/g、初回放電容量1,500mAh/g、初回充放電効率81.1%、50サイクル目の放電容量1,350mAh/g、50サイクル後のサイクル保持率90.0%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。 The above charge / discharge test was repeated, and the charge / discharge test was performed after 50 cycles of the lithium ion secondary battery for evaluation. As a result, the initial charge capacity is 1,850 mAh / g, the initial discharge capacity is 1,500 mAh / g, the initial charge / discharge efficiency is 81.1%, the discharge capacity at the 50th cycle is 1,350 mAh / g, and the cycle retention rate after 50 cycles is 90. It was confirmed that the lithium ion secondary battery has a high capacity of 0.0% and is excellent in initial charge / discharge efficiency and cycle performance.

[実施例2]
焼成温度を650℃、焼成時間を5時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
1回目での混合・焼成処理(I)で得られた黒色粉末の黒鉛被覆量は、2.3質量%であった。最終的に得られた黒色粉末は、平均粒子径5.1μm、BET比表面積9.8m2/g、黒鉛被覆率4.1質量%の黒鉛被覆珪素複合体であった。
[Example 2]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the firing temperature was 650 ° C. and the firing time was 5 hours.
The graphite coating amount of the black powder obtained in the first mixing / firing treatment (I) was 2.3% by mass. The finally obtained black powder was a graphite-coated silicon composite having an average particle size of 5.1 μm, a BET specific surface area of 9.8 m 2 / g, and a graphite coverage of 4.1% by mass.

この黒鉛被覆珪素複合体を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,920mAh/g、初回放電容量1,520mAh/g、初回充放電効率79.2%、50サイクル目の放電容量1,350mAh/g、50サイクル後のサイクル保持率88.8%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。 As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity was 1,920 mAh / g, the initial discharge capacity was 1,520 mAh / g, the initial charge / discharge efficiency was 79.2%, and 50. It was confirmed that the lithium-ion secondary battery has a discharge capacity of 1,350 mAh / g at the first cycle, a high capacity of 88.8% of the cycle retention after 50 cycles, and excellent initial charge / discharge efficiency and cycle performance. rice field.

[実施例3]
トルエン80gにポリスチレン80gを溶解した溶液を用いる他は実施例1と同様の条件で黒鉛被覆処理を行った。
[Example 3]
Graphite coating treatment was performed under the same conditions as in Example 1 except that a solution in which 80 g of polystyrene was dissolved in 80 g of toluene was used.

1回目での混合・焼成処理(I)で得られた黒色粉末の黒鉛被覆量は、3.5%であった。最終的に得られた黒色粉末は、平均粒子径5.1μm、BET比表面積7.3m2/g、黒鉛被覆率6.2質量%の黒鉛被覆珪素複合体であった。 The graphite coating amount of the black powder obtained in the first mixing / firing treatment (I) was 3.5%. The finally obtained black powder was a graphite-coated silicon composite having an average particle diameter of 5.1 μm, a BET specific surface area of 7.3 m 2 / g, and a graphite coverage of 6.2% by mass.

この黒鉛被覆珪素複合体を実施例1と同様の方法で電池評価を行った結果、初回充電容量1,830mAh/g、初回放電容量1,480mAh/g、初回充放電効率80.9%、50サイクル目の放電容量1,330mAh/g、50サイクル後のサイクル保持率89.9%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。 As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity was 1,830 mAh / g, the initial discharge capacity was 1,480 mAh / g, the initial charge / discharge efficiency was 80.9%, and 50. It was confirmed that the lithium-ion secondary battery has a discharge capacity of 1,330 mAh / g at the first cycle, a high capacity of 89.9% with a cycle retention rate after 50 cycles, and excellent initial charge / discharge efficiency and cycle performance. rice field.

[実施例4]
トルエン25gにポリスチレン5gを溶解した溶液を用い、混合・焼成処理を5回(I:1回、II:4回)繰り返した他は実施例1と同様な条件で黒鉛被覆処理を行った。
1回目(I)での混合・焼成処理で得られた黒色粉末の黒鉛被覆量は、1.2質量%、2回目(II)では、2.1質量%、3回目(II)では3.1質量%、4回目(II)では4.0質量%であり、5回目(II)の最終的に得られた黒色粉末は、平均粒子径5.2μm、BET比表面積5.3m2/g、黒鉛被覆率4.8質量%の黒鉛被覆珪素複合体であった。
[Example 4]
Using a solution in which 5 g of polystyrene was dissolved in 25 g of toluene, the graphite coating treatment was performed under the same conditions as in Example 1 except that the mixing and firing treatments were repeated 5 times (I: 1 time, II: 4 times).
The graphite coating amount of the black powder obtained by the mixing and firing treatment in the first (I) was 1.2% by mass, the second (II) was 2.1% by mass, and the third (II) was 3. 1% by mass, 4.0% by mass in the 4th time (II), and the finally obtained black powder in the 5th time (II) had an average particle diameter of 5.2 μm and a BET specific surface area of 5.3 m 2 / g. , It was a graphite-coated silicon composite having a graphite coverage of 4.8% by mass.

この黒鉛被覆珪素複合体を実施例1と同様の方法で電池評価を行った結果、初回充電容量1,850mAh/g、初回放電容量1,500mAh/g、初回充放電効率81.1%、50サイクル目の放電容量1,370mAh/g、50サイクル後のサイクル保持率91.3%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。 As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity was 1,850 mAh / g, the initial discharge capacity was 1,500 mAh / g, and the initial charge / discharge efficiency was 81.1%, 50. It was confirmed that the lithium-ion secondary battery has a discharge capacity of 1,370 mAh / g at the first cycle, a high capacity with a cycle retention rate of 91.3% after 50 cycles, and excellent initial charge / discharge efficiency and cycle performance. rice field.

[比較例1]
平均粒子径5μmの一般式SiOx(x=1.02)で表される酸化珪素粉末50gをトルエン120gにポリスチレン120gを溶解した溶液に入れて、ボールミルにて時間混合し、酸化珪素/ポリスチレン混合物を作製した。次にφ120の環状炉内に混合物を全量仕込み、Arガスを0.2L/min流入させながら、1,000℃で1時間焼成を実施した。得られた黒色粉末は、平均粒子径5.1μm、BET比表面積5.3m2/g、黒鉛被覆率4.7質量%の黒鉛被覆珪素複合体であった。
[Comparative Example 1]
50 g of silicon oxide powder represented by the general formula SiO x (x = 1.02) having an average particle diameter of 5 μm was placed in a solution in which 120 g of polystyrene was dissolved in 120 g of toluene, and the mixture was mixed for a time in a ball mill to form a silicon oxide / polystyrene mixture. Was produced. Next, the entire amount of the mixture was charged into a φ120 annular furnace, and firing was carried out at 1,000 ° C. for 1 hour while inflowing 0.2 L / min of Ar gas. The obtained black powder was a graphite-coated silicon composite having an average particle diameter of 5.1 μm, a BET specific surface area of 5.3 m 2 / g, and a graphite coverage of 4.7% by mass.

この黒鉛被覆珪素複合体を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,840mAh/g、初回放電容量1,480mAh/g、初回充放電効率80.4%、50サイクル目の放電容量1,280mAh/g、50サイクル後のサイクル保持率86.5%であり、実施例に比べ、サイクル性に劣るリチウムイオン二次電池であることが確認された。 As a result of battery evaluation of this graphite-coated silicon composite by the same method as in Example 1, the initial charge capacity was 1,840 mAh / g, the initial discharge capacity was 1,480 mAh / g, the initial charge / discharge efficiency was 80.4%, and 50. It was confirmed that the lithium ion secondary battery had a discharge capacity of 1,280 mAh / g at the first cycle and a cycle retention rate of 86.5% after 50 cycles, and was inferior in cycleability to the examples.

実施例及び比較例の条件及び結果を下記表に示す。 The conditions and results of Examples and Comparative Examples are shown in the table below.

Figure 0006975435
Figure 0006975435

Figure 0006975435
Figure 0006975435

Figure 0006975435
Figure 0006975435

Claims (6)

(I−1)(A)珪素粒子、一般式SiOx(0.5≦x<1.5)で表される酸化珪素粒子、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、及びこれらの混合物から選ばれる粒子と、(B)芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーから選ばれる材料を、有機溶媒に溶解した溶液とを混合し、混合物を作製する混合工程、
(II−1)得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程、
(I−2)得られた焼成物と、(B)芳香族基含有系熱可塑性ポリマー及びポリオレフィン系熱可塑性ポリマーから選ばれる材料を、有機溶媒に溶解した溶液とを混合し、焼成物と高分子材料との混合物を作製する混合工程、
(II−2)(I−2)工程で得られた混合物を、不活性雰囲気中又は真空雰囲気中で焼成し、焼成物を作製する焼成工程により、又は
上記(I−2)及び(II−2)工程を複数回繰り返し、
上記(B)材料を炭素源とする皮膜で被覆された被覆珪素複合体を製造する工程、
(III)得られた被覆珪素複合体と、導電剤と、結着剤と、溶剤とを混錬してペースト状の合剤を作製する工程、及び
(IV)得られた合剤を集電体に塗布し、シート状に成形する工程
を含む非水電解質二次電池負極の製造方法。
(I-1) (A) Silicon particles, silicon oxide particles represented by the general formula SiOx (0.5≤x <1.5), particles having a fine structure in which fine particles of silicon are dispersed in a silicon-based compound, And a mixing step of mixing particles selected from these mixtures with a solution prepared by dissolving (B) a material selected from an aromatic group-containing thermoplastic polymer and a polyolefin-based thermoplastic polymer in an organic solvent to prepare a mixture. ,
(II-1) A firing step of calcining the obtained mixture in an inert atmosphere or a vacuum atmosphere to prepare a calcined product.
(I-2) The obtained calcined product and (B) a material selected from the aromatic group-containing thermoplastic polymer and the polyolefin-based thermoplastic polymer are mixed with a solution in which a solution is dissolved in an organic solvent, and the calcined product and the high-grade product are mixed. Mixing process to make a mixture with a molecular material,
The (II-2) (I- 2) mixed-product obtained in step, and fired at or in a vacuum atmosphere in an inert atmosphere, the baking step of preparing a baked product, or the (I-2) and ( II-2) Repeat the process multiple times,
(B) A step of manufacturing a coated silicon complex coated with a film using the material as a carbon source.
(III) and the object to be covered silicon composite obtained, a conductive agent and a binder, step by kneading a solvent to prepare a paste-like mixture, and the mixture obtained (IV) condensing A method for manufacturing a non-aqueous electrolyte secondary battery negative electrode, which comprises a step of applying to an electric body and forming it into a sheet.
(A)粒子の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30m2/gである請求項1記載の非水電解質二次電池負極の製造方法。 (A) The method for manufacturing a non-aqueous electrolyte secondary battery negative electrode according to claim 1, wherein the average particle size of the particles is 0.1 to 30 μm and the BET specific surface area is 0.1 to 30 m 2 / g. 被覆珪素複合体の平均粒子径が0.1〜30μm、BET比表面積が0.1〜30mThe average particle size of the coated silicon complex is 0.1 to 30 μm, and the BET specific surface area is 0.1 to 30 m. 22 /gである請求項1又は2記載の非水電解質二次電池負極の製造方法。The method for manufacturing a non-aqueous electrolyte secondary battery negative electrode according to claim 1 or 2, wherein / g. 被覆珪素複合体に対する、(B)材料を炭素源とする皮膜の被覆率が0.5〜40質量%である請求項1〜3のいずれか1項記載の非水電解質二次電池負極の製造方法。The production of the non-aqueous electrolyte secondary battery negative electrode according to any one of claims 1 to 3, wherein the coating ratio of the coating film (B) using the material as a carbon source is 0.5 to 40% by mass with respect to the coated silicon composite. Method. 被覆珪素複合体に対する、(B)材料を炭素源とする皮膜の被覆率が、0.5〜6.2質量%である請求項4記載の非水電解質二次電池負極の製造方法。The method for manufacturing a non-aqueous electrolyte secondary battery negative electrode according to claim 4, wherein the coverage of the coating film (B) using the material as a carbon source with respect to the coated silicon composite is 0.5 to 6.2% by mass. (II)焼成工程の焼成温度が、600〜1,200℃である請求項1〜のいずれか1項記載の非水電解質二次電池負極の製造方法。 (II) The method for manufacturing a non-aqueous electrolyte secondary battery negative electrode according to any one of claims 1 to 5 , wherein the firing temperature in the firing step is 600 to 1,200 ° C.
JP2020087415A 2015-11-06 2020-05-19 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method Active JP6975435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020087415A JP6975435B2 (en) 2015-11-06 2020-05-19 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218410A JP2017088437A (en) 2015-11-06 2015-11-06 Method for producing graphite-covered silicon composite body
JP2020087415A JP6975435B2 (en) 2015-11-06 2020-05-19 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015218410A Division JP2017088437A (en) 2015-11-06 2015-11-06 Method for producing graphite-covered silicon composite body

Publications (2)

Publication Number Publication Date
JP2020129556A JP2020129556A (en) 2020-08-27
JP6975435B2 true JP6975435B2 (en) 2021-12-01

Family

ID=72174749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020087415A Active JP6975435B2 (en) 2015-11-06 2020-05-19 Non-aqueous electrolyte secondary battery Negative electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP6975435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074217A1 (en) * 2021-10-27 2023-05-04 三菱ケミカル株式会社 Silicon oxide particles and method for producing same, particles and method for producing same, and secondary battery and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
CN1913200B (en) * 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 Silicon carbone compound negative polar material of lithium ion battery and its preparation method
JP5143437B2 (en) * 2007-01-30 2013-02-13 日本カーボン株式会社 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode

Also Published As

Publication number Publication date
JP2020129556A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP7228975B2 (en) Composite positive electrode active material, manufacturing method thereof, positive electrode containing same, and lithium battery
WO2007034823A1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
CA2748800A1 (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JP2015222733A (en) Active material for non-aqueous secondary battery negative electrodes and non-aqueous secondary battery
KR20150118540A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing negative electrode material for lithium ion secondary battery
WO2018021554A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2007299668A (en) Positive electrode active material for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using it
KR20170085575A (en) Anode materials for sodium-ion batteries and methods of making same
WO2016132662A1 (en) Carbon coating treatment device, negative-electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium-ion secondary battery, and electrochemical capacitor
JP3446639B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP2017088437A (en) Method for producing graphite-covered silicon composite body
EP2762449B1 (en) Method of manufacturing a silicon oxide-carbon composite
KR20160012558A (en) Composite positive electrode active electrode material for lithium secondary battery and lithium secondary battery comprising positive electrode including the positive electrode active material
JP6975435B2 (en) Non-aqueous electrolyte secondary battery Negative electrode manufacturing method
CN111668462B (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2014067508A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
KR101551407B1 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode
Shi et al. Synthesis and electrochemical properties of LiNi0. 9Co0. 1O2 cathode material for lithium secondary battery
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
JP2014167873A (en) Negative electrode active material for lithium ion secondary battery, process of manufacturing the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6975435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150