JP3533459B2 - Manufacturing method of coated metal quasi-fine particles - Google Patents

Manufacturing method of coated metal quasi-fine particles

Info

Publication number
JP3533459B2
JP3533459B2 JP21928193A JP21928193A JP3533459B2 JP 3533459 B2 JP3533459 B2 JP 3533459B2 JP 21928193 A JP21928193 A JP 21928193A JP 21928193 A JP21928193 A JP 21928193A JP 3533459 B2 JP3533459 B2 JP 3533459B2
Authority
JP
Japan
Prior art keywords
particles
quasi
coating
particle
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21928193A
Other languages
Japanese (ja)
Other versions
JPH0754008A (en
Inventor
晴男 吉田
正市 粂
幸良 山田
正 冬木
聡 秋山
美明 濱田
英輔 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nisshin Seifun Group Inc
Priority to JP21928193A priority Critical patent/JP3533459B2/en
Publication of JPH0754008A publication Critical patent/JPH0754008A/en
Priority to US08/949,901 priority patent/US6024915A/en
Application granted granted Critical
Publication of JP3533459B2 publication Critical patent/JP3533459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属準微粒子表面に被
覆形成物質を被覆した被覆金属準微粒子、この被覆金属
準微粒子又はこの被覆金属準微粒子を含む混合物を焼結
する金属基焼結体の製造法、及びこの方法で得られる金
属基焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated metal quasi-fine particle in which the surface of a metal quasi-fine particle is coated with a coating-forming substance, a metal-based sintered body for sintering the coated metal quasi-fine particle or a mixture containing the coated metal quasi-fine particle. And a metal-based sintered body obtained by this method.

【0002】[0002]

【従来の技術】金属基焼結体について、その組織の微細
化や均質化を図るための開発研究が精力的に進められて
きているが、これは大気中で比較的安定な限られた種類
の金属についてのものであって、活性金属を始め、近年
活発に研究が進められつつある金属間化合物や微細な粉
体粒子にした場合に化学的安定性が十分でない多くの金
属にあっては10μmを越える粒子径の金属準微粒子の
サイズのものを焼結することが多用されている。
2. Description of the Related Art Metal-based sintered bodies have been vigorously researched and developed for the purpose of refining and homogenizing their structures. For active metals, intermetallic compounds that have been actively researched in recent years and many metals that have insufficient chemical stability when made into fine powder particles It is often used to sinter metal quasi-fine particles having a particle size of more than 10 μm.

【0003】このような状況の中で、金属基焼結体の高
性能化のために、可能な範囲での粒子の微細化や粒子径
の粗大化の抑止、更に異種の物質の分散添加を始めとす
る複合化及びそうした微組織の均質化が強く望まれてい
る。
Under such circumstances, in order to improve the performance of the metal-based sintered body, it is necessary to prevent the particles from becoming finer and the particle diameter from becoming coarser to the extent possible, and to disperse and add different substances. There is a strong demand for initial compounding and homogenization of such microstructures.

【0004】このような金属基焼結体の製造には、殆ど
の場合は粉末冶金法が適用される。粉末冶金法では、目
的とする金属基材料を製造するために最適な原料粉末を
調製することが重要であり、この金属準微粒子の表面で
の、金属基焼結体を高性能化させる基体と同種及び/又
は基体と異種の物質、例えばこの金属準微粒子とは化学
的に反応しない物質、或いはこの金属準微粒子との反応
により生成する反応生成物等が焼結体中でむらなく分布
することが不可欠である。
In most cases, powder metallurgy is applied to the production of such a metal-based sintered body. In powder metallurgy, it is important to prepare the optimum raw material powder for producing the target metal-based material, and the surface of the metal quasi-fine particles is used as a base material for improving the performance of the metal-based sintered body. The same kind and / or a substance different from the substrate, for example, a substance that does not chemically react with the metal quasi-fine particles, or a reaction product generated by the reaction with the metal quasi-fine particles, is evenly distributed in the sintered body. Is essential.

【0005】この原料粉末の段階で添加が可能な方法と
して、メカニカルアロイング法がある。この方法は、金
属とセラミックス、合金或いは金属間化合物等とを混合
後、アトライターと呼ばれる鋼球を入れた強力なボール
ミルで混練する方法であり、この混練時の金属準微粒子
の破砕、及びこの破砕粒子への他種の粒子の凝着の過程
を経て金属準微粒子内に他の粒子を分散添加させること
が可能であり、更に準微粒子の大きさや種類等の選択の
自由度が大きいという特徴から、多用されるようになっ
てきた。
As a method that can be added at the stage of this raw material powder, there is a mechanical alloying method. This method is a method in which a metal and ceramics, an alloy, an intermetallic compound, or the like are mixed and then kneaded with a powerful ball mill containing steel balls called an attritor. The feature that other particles can be dispersed and added in the metal quasi-fine particles through the process of adhering other kinds of particles to the crushed particles, and the degree of freedom in selecting the size and type of quasi-fine particles is large. Since then, it has become popular.

【0006】しかし、メカニカルアロイング法は、一般
的な粉体混合法以上に不純物の混入が避けられないのみ
ならず、原理的に組織の均一化に限度があり、目的の金
属基材料とする同種又は異種の金属、セラミックス或い
は金属間化合物等の添加物質の粒子が微細であっても理
想的な均一な混合、即ち金属準微粒子にこの添加物質の
粒子がむらなく行き渡る均ーな分散は極めて困難であ
る。仮にこの均一な分散が実現されたとしても、添加物
質粒子が粒子単位で混合されるために、微視的に均一の
意味にも限界がある。特に相対的にその量が少ない場
合、分布むらが必然的に出来ることになる。
However, the mechanical alloying method is unavoidable in that the mixing of impurities is more than the general powder mixing method, and in principle, there is a limit to the homogenization of the structure, so that the intended metal base material is used. Even if the particles of the additive substance such as the same kind or different kind of metal, ceramics or intermetallic compound are fine, ideally uniform mixing, that is, the uniform dispersion in which the particles of the additive substance are evenly distributed in the metal quasi-fine particles is extremely high. Have difficulty. Even if this uniform dispersion is realized, since the additive substance particles are mixed in particle units, there is a limit to the meaning of being microscopically uniform. Especially when the amount is relatively small, uneven distribution is inevitable.

【0007】現実には、多くの場合、金属準微粒子が集
中し、又はこの添加物質の粒子が凝集して金属基焼結体
中に塊状に存在したり、或いはこの焼結体中において偏
在して金属基焼結体の性能を著しく低下させる。
In reality, in many cases, metal quasi-fine particles are concentrated, or particles of this additive substance are aggregated and present in a lump form in the metal-based sintered body, or unevenly distributed in this sintered body. And significantly deteriorate the performance of the metal-based sintered body.

【0008】従って、微視的に均質化を実現するために
は、金属準微粒子一個一個に確実にこの添加物質を分布
させる必要がある。しかも、金属準微粒子表面への高度
に制御された均一な被覆即ち個々の金属準微粒子の表面
に一様な形態の被覆で、且つこの一様な被覆が個々の全
ての金属準微粒子に漏れがなく成される被覆が要求され
る。しかも、この高度に制御された均一な被覆は、その
粒子径が大きいものについては、未被覆部分が殆どない
均一な被覆が求められる。
Therefore, in order to achieve homogenization microscopically, it is necessary to surely distribute this additive substance to each of the metal quasi-fine particles. Moreover, a highly controlled uniform coating on the surface of the metal quasi-fine particles, that is, a uniform morphology coating on the surface of the individual metal quasi-fine particles, and this uniform coating does not leak to all individual metal quasi-fine particles. A coating that is made free is required. Moreover, this highly controlled and uniform coating is required to have a uniform particle size with almost no uncoated portion for particles having a large particle size.

【0009】このように、高度に制御された均一な被覆
による被覆金属準微粒子の製造、及びこの被覆金属準微
粒子による高性能な金属基焼結体の製造が強く望まれて
いる。
As described above, there is a strong demand for the production of coated metal quasi-fine particles by highly controlled and uniform coating, and the production of a high-performance metal-based sintered body using the coated metal quasi-fine particles.

【0010】この金属準微粒子への被覆形成物質の被覆
法としては、気相法、湿式メッキ法など種々の方法が考
慮されうるが、中でも気相法は、原理的に、(1)雰囲
気の制御が容易である、(2)基本的に被覆形成物質の
選択に制限がなく、活性金属を始めとする金属単体物
質、窒化物、炭化物、硼素物、酸化物など、いろいろな
種類の物質を被覆できる、(3)目的とする被覆形成物
質を、不純物を混入することなく被覆出来る、(4)被
覆量を任意に制御できるなど、他の被覆法では成し得な
い大きな特徴がある。
Various methods such as a vapor phase method and a wet plating method can be considered as a method of coating the metal quasi-fine particles with the coating forming substance. Among them, the vapor phase method is, in principle, (1) in the atmosphere. It is easy to control (2) There is basically no limitation on the selection of coating forming substances, and various types of substances such as simple metal substances including active metals, nitrides, carbides, boron compounds, oxides, etc. can be used. There are major features that cannot be achieved by other coating methods, such as coating, (3) target coating material can be coated without mixing impurities, and (4) coating amount can be controlled arbitrarily.

【0011】しかし、以下の理由により、公知の技術と
して提案されている種々の被覆装置や被覆方法では前記
高度に制御された均一な被覆が成し得なかった。
However, due to the following reasons, the highly controlled and uniform coating cannot be achieved by various coating apparatuses and coating methods proposed as known techniques.

【0012】即ち、金属準微粒子は微粒子程には凝集力
が強くはないが、それでもこの準微粒子芯粒子粉体の粒
子又は主に準微粒子からなる芯粒子粉体の粒子である金
属準微粒子を一個一個単位の単一粒子状態とすることが
できなかった。このため、凝集して他の金属準微粒子に
より遮られたところではこの金属準微粒子表面に未被覆
部分が残存した。前記のように高度に制御された均一な
被覆が求められているにもかかわらず、金属準微粒子で
はこの程度の凝集力とは言えこの凝集力による影響が甚
大で、大変深刻な問題となっていたというのが実状であ
る。
That is, although the metal quasi-fine particles are not as strong in cohesive force as the fine particles, the metal quasi-fine particles which are particles of the quasi-fine particle core particle powder or particles of the core particle powder mainly composed of quasi-fine particles are It was not possible to make a single particle state one by one. For this reason, an uncoated portion remained on the surface of the metal quasi-fine particles where they aggregated and were blocked by other metal quasi-fine particles. Despite the demand for a highly controlled and uniform coating as described above, even though the metal quasi-fine particles have this level of cohesive force, the effect of this cohesive force is great and has become a very serious problem. That is the actual situation.

【0013】例えば、特開昭58−31076号公報に
開示されている装置・方法によれば、PVD装置内に設
置された容器の中に芯粒子粉体の粒子を入れ、容器を電
磁気的な方法により振動させ、前記容器内の芯粒子を転
動させながらPVD法により被覆する。また、特開昭6
1−30663号公報に開示されている装置によれば、
PVD装置内に設置された容器の中に芯粒子粉体の粒子
を入れ、容器を機械的な方法により振動させ、前記容器
内の芯粒子を転動させながらPVD法により被覆するこ
とができるとされている。しかし、これらの容器の振動
により芯粒子粉体の粒子を転動させながら被覆する装置
或いは方法では、実際には、準微粒子芯粒子粉体の粒子
又は主に準微粒子からなる芯粒子粉体の粒子は何層にも
重なった状態で摺動するのみで単一粒子状態で被覆でき
なかった。
For example, according to the apparatus and method disclosed in Japanese Patent Application Laid-Open No. 58-31076, particles of core particle powder are put in a container installed in a PVD apparatus and the container is electromagnetically charged. The core particles in the container are covered with the PVD method while rolling by vibrating according to the method. In addition, JP-A-6
According to the device disclosed in Japanese Patent Publication No. 1-30663,
Particles of the core particle powder can be put into a container installed in a PVD apparatus, and the container can be vibrated by a mechanical method so that the core particles in the container can be covered by the PVD method while rolling. Has been done. However, in an apparatus or method for coating while rolling the particles of the core particle powder by the vibration of these containers, in practice, the particles of the quasi-fine particle core particle powder or the core particle powder mainly composed of quasi-fine particles are The particles were slid only in the state of stacking many layers, and could not be coated in a single particle state.

【0014】特開平3−153864号公報に開示され
ている装置及び方法は、内面に障壁及び/又は凹凸を備
えた回転容器内に粒子を入れ、回転容器を回転しながら
蒸着法により芯粒子表面に表面を行なうことを目的とす
るものであるが、このような装置或いは方法において
は、準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子は、何層にも重なった状態で多くの
粒子が接触したまま軽く撹拌されるだけで、単一粒子状
態で被覆できなかった。
The apparatus and method disclosed in Japanese Patent Application Laid-Open No. 3-153864 is such that particles are placed in a rotary container having a barrier and / or unevenness on the inner surface, and the core particle surface is formed by vapor deposition while rotating the rotary container. However, in such an apparatus or method, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles are formed in many layers. In the overlapping state, many particles were simply agitated while being in contact with each other, and the single particle state could not be coated.

【0015】特開昭58−141375号公報には、反
応ガス雰囲気中におかれた粉体を反応ガスの流れと重力
の作用とによって浮遊させて、反応ガスの化学反応によ
り生成される析出物質によって粉体の表面を被覆する装
置が開示されている。又、特開平2−43377号公報
には、粒子を減圧下において流動化させながら、熱化学
反応処理を行い被覆を行なう方法が開示されている。
又、特開昭64−80437号公報には、低・高周波合
成音波により芯粒子粉体の凝集体を崩して流動化させ被
覆する方法が開示されている。しかし、これらの気流や
振動により準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子の流動層利用する方法又は装
置では、全ての芯粒子を同じ様に単一粒子状態で独立に
流動、浮遊させることは事実上不可能であり、粒子同士
が陰になってできる各粒子の被覆むらをなくすことがで
きなかった。
Japanese Patent Laid-Open No. Sho 58-141375 discloses a deposit material produced by a chemical reaction of a reaction gas by suspending a powder placed in a reaction gas atmosphere by the flow of the reaction gas and the action of gravity. Discloses a device for coating the surface of powder. Further, Japanese Patent Application Laid-Open No. 2-43377 discloses a method of performing coating by performing thermochemical reaction treatment while fluidizing particles under reduced pressure.
Further, JP-A-64-80437 discloses a method in which agglomerates of core particle powder are broken down and fluidized by low and high frequency synthetic sound waves to cover the particles. However, in the method or apparatus utilizing the fluidized bed of the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles by these air flows and vibrations, all the core particles are the same as a single particle. It is virtually impossible to independently flow and float in a state, and it was not possible to eliminate the uneven coating of each particle due to the shadow of the particles.

【0016】特開昭54−153789号公報には、金
属の蒸気を発生させた真空容器内を粉末材料を落下させ
金属を被覆する装置が開示されている。又、特開昭60
−47004号公報には真空槽中の高周波プラズマ領域
にモノマーガスと粉体粒子を導入し、プラズマ重合によ
り有機物の被覆膜を形成させる方法が開示されている。
これらの装置或いは方法の如く、導入するだけでは準微
粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子
粉体の粒子は、単一粒子状態でない凝集体を形成して落
下するだけで、粒子の陰ができて被覆むらができたり、
凝集体の内部の粒子は全く被覆されなかったり、或いは
単一粒子に被覆されたものにくらべ被覆量の違いが生じ
てしまった。
Japanese Unexamined Patent Publication (Kokai) No. 54-153789 discloses a device for coating a metal by dropping a powder material in a vacuum container in which vapor of metal is generated. In addition, JP-A-60
-47004 discloses a method of introducing a monomer gas and powder particles into a high-frequency plasma region in a vacuum chamber and forming a coating film of an organic substance by plasma polymerization.
As with these devices or methods, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles can be simply introduced to form agglomerates that are not in a single particle state and fall. , The shade of the particles creates uneven coating,
The particles inside the agglomerates were not coated at all, or there was a difference in the coating amount compared to the coating of single particles.

【0017】特開昭62−250172号公報には、前
処理として、ジェットミル処理した粉体を、減圧加熱処
理室で滞留せしめ、ここで加熱処理を施した後、粉体フ
ィーダーでスパッタリング室に自然落下により導入せし
め、ターゲットを垂直に設けた円筒状のスパッタリング
室に自然落下させ被覆させる装置及び方法が開示されて
いる。又、特開平2−153068号公報には、前処理
として、ジェットミル処理した粉体を、減圧加熱処理室
で滞留させ、ここで加熱処理を施した後、粉体フィーダ
ーでスパッタリング室のスパッタリング源を納めた回転
容器に(単一粒子でない)粉体状で導入し、容器を回転
させた状態でスパッタリングする装置及び方法が開示さ
れている。これら装置及び方法では、被覆前の加熱工程
で、ジェットミル処理した芯粒子粉体を滞留させる工程
があり、加熱工程でのこの粉体の滞留のため再び単一粒
子状態でない凝集体を形成し、結局被覆工程ではこの凝
集体は単一粒子状態にはならない。
In Japanese Patent Laid-Open No. 62-250172, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced pressure heat treatment chamber, and after heat treatment is performed therein, the powder is fed into a sputtering chamber by a powder feeder. An apparatus and a method are disclosed in which the target is introduced by natural falling and the target is naturally dropped into a vertically-arranged cylindrical sputtering chamber to cover the target. Further, in Japanese Patent Application Laid-Open No. 2-153068, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced pressure heat treatment chamber, where after heat treatment is performed, a powder feeder is used to sputter the sputtering source in the sputtering chamber. There is disclosed an apparatus and a method for introducing powder in the form of powder (not single particles) into a rotating container containing therein and sputtering the container while rotating the container. In these devices and methods, there is a step of retaining the jet milled core particle powder in the heating step before coating, and due to the retention of this powder in the heating step, aggregates that are not in the single particle state are formed again. After all, in the coating process, this aggregate does not become a single particle state.

【0018】以上のように、これまでのものでは、いず
れも準微粒子の金属粒子である芯粒子粉体の粒子又は主
に準微粒子の金属粒子からなる芯粒子粉体の粒子に被覆
する装置或いは方法としての問題解決はなされておら
ず、準微粒子の金属粒子である芯粒子粉体の粒子又は主
に準微粒子の金属粒子からなる芯粒子粉体の粒子は、現
実には接触したままの凝集体の状態で被覆処理に供さ
れ、そのために各粒子への高度に制御された均一な被覆
がなされることはなかった。すなわち高度に制御された
均一な被覆がなされる被覆準微粒子の製造方法もそのた
めの製造装置もなかった。それが為、事実上、上記問題
が解消できなかった。
As described above, in the above-mentioned devices, the apparatus for coating the particles of the core particle powder, which are all quasi-fine metal particles, or the particles of the core particle powder, which are mainly quasi-fine metal particles, or The problem as a method has not been solved, and the particles of the core particle powder, which are the metal particles of the quasi-fine particles, or the particles of the core particle powder, which mainly consist of the metal particles of the quasi-fine particles, actually coagulate while being in contact with each other. It was subjected to the coating treatment in the aggregated state, which did not result in a highly controlled and uniform coating on each particle. That is, there has been neither a method for producing coated quasi-fine particles capable of performing highly controlled and uniform coating nor a production apparatus therefor. As a result, the above problems could not be practically resolved.

【0019】[0019]

【発明が解決しようとする課題】従って、現実に、被覆
されるべき金属準微粒子であって、例えば10μmを越
える平均粒径の粒子である準微粒子の芯粒子粉体の粒子
又は主に準微粒子からなる芯粒子粉体の粒子の単一粒子
単位に、被覆形成物質で被覆をした被覆された金属準微
粒子の提供と、この被覆された金属準微粒子による高性
能な金属基焼結体及びその製造方法の実現が強く求めら
れている。
Therefore, in reality, the metal quasi-fine particles to be coated, for example, the quasi-fine particles of the quasi-fine particles having an average particle diameter of more than 10 μm, or mainly quasi-fine particles. A core metal powder consisting of a single particle unit of a particle is coated with a coating-forming substance to provide coated metal quasi-fine particles, and the coated metal quasi-fine particles provide a high-performance metal-based sintered body and the same. Realization of a manufacturing method is strongly demanded.

【0020】本発明は、準微粒子の金属粒子である芯粒
子粉体の粒子又は主に準微粒子の金属粒子からなる芯粒
子粉体の粒子の単一粒子単位に、被覆形成物質で被覆を
施した被覆された金属粒子、及びこの被覆された金属準
微粒子による、組織が微細で、かつ均質であり、そして
高性能な金属基焼結体及びその製造法を提供することを
目的とする。
In the present invention, a single particle unit of core particle powder particles which are quasi-fine metal particles or core particle powder particles which are mainly quasi-fine metal particles is coated with a coating forming substance. It is an object of the present invention to provide a metal-based sintered body having a fine and uniform structure, and a high-performance metal-based sintered body, and a method for producing the same by the coated metal particles and the coated metal quasi-fine particles.

【0021】[0021]

【課題を解決するための手段】前記課題を解決するため
に、本発明者が鋭意研究を重ねた結果、準微粒子の金属
粒子である芯粒子粉体の粒子又は主に準微粒子の金属粒
子からなる芯粒子粉体の粒子の単一粒子単位に、目的の
金属基焼結体製造のための添加物質を被覆形成物質とし
て被覆させるためには、体積基準頻度分布で平均粒子径
が10μmを越える金属粒子である芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物中のこの芯粒子粉体の粒子に、分散度
βが準微粒子の粒径に応じて80%以上、90%以上、
95%以上、97%以上、99%以上である高い分散状
態の被覆空間の被覆開始領域で、被覆を開始しなければ
ならないことを見出した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of intensive studies by the present inventor, it was found that core particles, which are metal particles of quasi-fine particles, or particles of quasi-fine particles are mainly used. In order to coat a single particle unit of the particles of the core particle powder with the additive material for producing the intended metal-based sintered body as the coating-forming material, the average particle diameter exceeds 10 μm in the volume-based frequency distribution. Particles of core particle powder, which are metal particles, are mainly present in the air in a single particle state. Particles of highly dispersed core particle powder-The particles of this core particle powder in a gas mixture have a degree of dispersion β of 80% or more, 90% or more, depending on the particle size of the fine particles,
It has been found that the coating must be initiated in the coating initiation region of the coating space in the highly dispersed state, which is 95% or more, 97% or more, 99% or more.

【0022】即ち、本発明の被覆金属準微粒子は、金属
の準微粒子からなる芯粒子粉体を被覆空間に投入し、気
相を経て生成する被覆形成物質前駆体及び/又は気相状
態の被覆形成物質前駆体を、この芯粒子粉体の粒子に接
触及び/又は衝突させて、芯粒子粉体の粒子の表面を被
覆形成物質で被覆して得られる被覆金属準微粒子であっ
て、 (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) この芯粒子粉体の粒子を気中に分散させる分散
手段、及び(b) 芯粒子粉体の粒子を気中に分散させ
た芯粒子粉体の粒子と気体との混合物において低分散芯
粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒
子状態で気中に存在する高分散芯粒子粉体の粒子・気体
混合物を選択する高分散芯粒子粉体の粒子・気体混合物
選択手段とこの高分散芯粒子粉体の粒子・気体混合物選
択手段により選択分離された低分散芯粒子粉体部分を準
微粒子高分散処理手段群中の分散手段の内の最終分散手
段及び/又は最終分散手段以前の処理手段に搬送するフ
ィードバック手段とを備えた高分散芯粒子粉体の粒子・
気体混合物選択手段、から選ばれる準微粒子高分散処理
手段群により、体積基準頻度分布で平均粒子径が10μ
mを越える準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子を、気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とする分散工程、 (B) この分散工程で分散させた芯粒子粉体の粒子
を、その平均粒子径が10μmを越え20μm以下のと
きには分散度βが80%以上、20μmを越え50μm
以下のときには分散度βが90%以上、50μmを越え
300μm以下のときには分散度βが95%以上、30
0μmを越え800μm以下のときには分散度が97%
以上、800μmを越えるときには分散度が99%以上
の分散状態で、被覆空間の被覆開始領域において被覆形
成物質前駆体と接触及び/又は衝突させて被覆を開始す
る被覆工程、からなる被覆手段によって調製された被覆
金属準微粒子に関する。
That is, the coated metal quasi-fine particles of the present invention are obtained by introducing a core particle powder made of metal quasi-fine particles into a coating space and producing a coating-forming substance precursor and / or a gas-phase coating through a gas phase. Coated metal quasi-fine particles obtained by contacting and / or colliding a forming substance precursor with the particles of the core particle powder to coat the surface of the particles of the core particle powder with the coating forming substance, ) The final treatment means of the semi-fine particle high dispersion treatment means group is
(A) Dispersing means for dispersing the particles of the core particle powder in the air, and (b) Low dispersion in a mixture of the particles of the core particle powder and the gas in which the particles of the core particle powder are dispersed in the air. Highly dispersed core particle powder particles that separate the core particle powder part and select the particle / gas mixture of highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. The gas dispersion selection means and the particles of the highly dispersed core particle powder, and the low dispersion core particle powder portion selectively separated by the gas mixture selection means are the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group. And / or feedback means for conveying to the processing means before the final dispersing means, particles of highly dispersed core particle powder,
The average particle diameter is 10 μm in the volume-based frequency distribution by means of the quasi-fine particle high dispersion treatment means group selected from the gas mixture selecting means.
a dispersion step of dispersing particles of the quasi-fine particle core particle powder exceeding m or particles of the core particle powder mainly consisting of quasi-fine particles into the air to form a particle / gas mixture of the highly dispersed core particle powder; ) When the average particle diameter of the particles of the core particle powder dispersed in this dispersion step is more than 10 μm and less than 20 μm, the dispersity β is 80% or more and more than 20 μm and 50 μm.
When the dispersity β is 90% or more, and when the dispersity β exceeds 50 μm and is 300 μm or less, the dispersity β is 95% or more and 30
When it exceeds 0 μm and 800 μm or less, the dispersity is 97%.
As described above, when the particle size exceeds 800 μm, in a dispersion state of 99% or more in dispersion state, a coating step of contacting and / or colliding with the coating material precursor in the coating start region of the coating space to start coating, is prepared by a coating means. Coated metal quasi-fine particles.

【0023】更に本発明は、前記被覆金属準微粒子が、
被覆された金属準微粒子の被覆形成物質を介して接触状
態で集合塊を形成した被覆された金属準微粒子の集合塊
を、解砕及び/又は破砕する被覆された金属準微粒子集
合塊の解砕・破砕工程、及び/又はこの被覆されたセラ
ミック準微粒子集合塊と一次粒子単位の被覆された金属
準微粒子とを選択分離する選択分離工程を更に経て調製
されたものであることを特徴とする被覆金属準微粒子に
も関するものである。
Further, in the present invention, the coated metal quasi-fine particles are
Crushing and / or crushing the agglomerates of coated metal quasi-fine particles that have formed agglomerates in contact with the coated metal quasi-fine particles through a coating-forming substance .A coating prepared by further undergoing a crushing step and / or a selective separation step of selectively separating the coated ceramic quasi-fine particle aggregate from the coated metal quasi-fine particles of primary particle units It also relates to metal quasi-fine particles.

【0024】更に本発明は、被覆された金属準微粒子が
体積基準頻度分布で平均粒子径が10μmを越え20μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
80%以上とする分散性能を有する準微粒子高分散処理
手段群、又は体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを90%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が50μmを越え300μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを95%以上とする分散性能
を有する準微粒子高分散処理手段群、又は体積基準頻度
分布で平均粒子径が300μmを越え800μm以下の
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを97%以
上とする分散性能を有する準微粒子高分散処理手段群、
又は
Further, in the present invention, the coated metal quasi-fine particles have a volume-based frequency distribution and an average particle diameter of more than 10 μm and 20 μm.
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of high-dispersion quasi-fine particles having a dispersion performance of 80% or more, or a volume-based frequency distribution with an average particle diameter of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion treatment means group having a dispersion performance of making the degree β 90% or more, or the core particle powder having an average particle diameter exceeding 50 μm and 300 μm or less in the volume standard frequency distribution A quasi-particulate high dispersion treatment means group having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment, and the degree of dispersion β of the particles of the core particle powder is 95% or more. , Or a particle / gas of a highly dispersed core particle powder, in which a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a mixture, the core particles Quasi particle group of means for high dispersion treatment with a dispersing performance of the body of the dispersity β of the particles and 97% or more,
Or

【0025】体積基準頻度分布で平均粒子径が800μ
mを越える芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を99%以上とする分散性能を有する準微粒子高分散処
理手段群による分散工程を設け、準微粒子高分散処理手
段群によるり分散させた高分散芯粒子粉体の粒子・気体
混合物を被覆工程に直接放出するか、又は分散工程と被
覆工程の間に、準微粒子高分散処理手段群により分散さ
せた高分散芯粒子粉体の粒子・気体混合物を放出する放
出部から、搬送に不可避の、中空部材、中空を形成する
部材からなる中間部材、及びパイプから選択される一種
類又はそれ以上の部材を介して搬送するか、及び/又
は、前記分散性能で気中に分散させた高分散芯粒子粉体
の粒子・気体混合物中の粒子の気中分散状態を維持する
気中分散維持手段、前記分散性能で気中に分散させた高
分散芯粒子粉体の粒子・気体混合物中の粒子の気中分散
状態を高める気中分散促進手段、芯粒子粉体の粒子と気
体との混合物の内の、低分散芯粒子粉体部分を分離し、
芯粒子粉体の粒子が主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物を選択する高分散
芯粒子粉体の粒子・気体混合物選択手段の一種類又はそ
れ以上を介して搬送して調製されたものであることを特
徴とする被覆された金属準微粒子にも関するものであ
る。
The volume-based frequency distribution has an average particle diameter of 800 μ.
The core particle powder exceeding m is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder
The dispersion process by means of the quasi-fine particle high dispersion treatment means group having a dispersion performance of 99% or more, and the particle-gas mixture of the highly dispersed core particle powder dispersed by the quasi-fine particle high dispersion treatment means group is applied in the coating step. A hollow part, which is unavoidable for conveyance, from a discharge part that directly discharges or discharges a particle / gas mixture of highly dispersed core particle powder dispersed by a quasi-fine particle high dispersion treatment means group between the dispersion process and the coating process. Highly dispersed core particles which are conveyed through one or more members selected from a member, an intermediate member composed of a member forming a hollow, and a pipe, and / or dispersed in the air with the above dispersion performance. Airborne dispersion maintaining means for maintaining the airborne state of particles in powder particles / gas mixture, high-dispersion core particles dispersed in air with the above-mentioned dispersion performance, airborne particles in powder / gas mixture Mid-air content that enhances medium dispersion Promoting means, of the mixture of particles and gas a powder of core particles, low dispersion powder of core particles partially separated,
One kind of means for selecting a particle / gas mixture of a highly dispersed core particle powder for selecting a particle / gas mixture of a highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state, or The present invention also relates to coated metal quasi-fine particles, which are prepared by transporting them through the above.

【0026】更に本発明は、被覆された金属準微粒子
が、体積基準頻度分布で平均粒子径が10μmを越え2
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを80%以上とする分散性能を有する準微粒子高分散
処理手段群、又は体積基準頻度分布で平均粒子径が20
μmを越え50μm以下の芯粒子粉体を、準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを90%以上とする分散性能を有する準
微粒子高分散処理手段群、又は体積基準頻度分布で平均
粒子径が50μmを越え300μm以下の芯粒子粉体
を、準微粒子高分散処理手段群の最終処理により気中に
分散させて高分散芯粒子粉体の粒子・気体混合物とし、
その芯粒子粉体の粒子の分散度βを95%以上とする分
散性能を有する準微粒子分散処理手段群、又は体積基準
頻度分布で平均粒子径が300μmを越え800μm以
下の芯粒子粉体を、準微粒子高分散処理手段群の最終処
理により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とし、その芯粒子粉体の粒子の分散度βを97
%以上とする分散性能を有する準微粒子高分散処理手段
群、又は体積基準頻度分布で平均粒子径が800μmを
越える芯粒子粉体を、準微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βを9
9%以上とする分散性能を有する準微粒子高分散処理手
段群による分散工程の一部以上と前記被覆工程の一部以
上とを、空間を一部以上有して行うことにより調製され
たものであることを特徴とする、被覆された金属準微粒
子にも関する。
Further, in the present invention, the coated metal quasi-fine particles have a volume-based frequency distribution with an average particle size of more than 10 μm.
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 80% or more of quasi-fine particle high-dispersion treatment means having a dispersion performance, or a volume-based frequency distribution with an average particle diameter of 20.
A core particle powder having a particle diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder. Quasi-fine particle high-dispersion treatment means group having a dispersibility β of 90% or more and having quasi-fine particle high-dispersion treatment means group, or core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in volume standard frequency distribution By the final treatment of, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder,
A group of quasi-fine particle dispersion treatment means having a dispersibility of making the particle dispersity β of the core particle powder 95% or more, or a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume standard frequency distribution, The particles / gas mixture of the highly dispersed core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group, and the degree of dispersion β of the particles of the core particle powder is 97.
% Or more quasi-fine particle high-dispersion processing means group or core particle powder having an average particle size of more than 800 μm in volume-based frequency distribution is dispersed in the air by the final treatment of quasi-fine particle high-dispersion processing means group. Let high-dispersion core particles powder particles
As a gas mixture, the degree of particle dispersion β of the core particle powder is 9
It is prepared by performing a part or more of the dispersion step by a group of quasi-fine particle high dispersion treatment means having a dispersibility of 9% or more and a part or more of the coating step with a part or more space. It also relates to coated metal quasi-fine particles, characterized in that

【0027】更に本発明は、被覆された金属準微粒子
が、体積基準頻度分布で平均粒子径が10μmを越え2
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを80%以上とする空間領域、又は体積基準頻度分布
で平均粒子径が、20μmを越え50μm以下の芯粒子
粉体を、準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを90%以上とす
る空間領域、又は体積基準頻度分布で平均粒子径が、5
0μmを越え300μm以下の芯粒子粉体を、準微粒子
高分散処理手段群の最終処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉
体の粒子の分散度βを95%以上とする空間領域、又は
体積基準頻度分布で平均粒子径が、300μmを越え8
00μm以下の芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを97%以上とする空間領域、又は体積基準頻度分
布で平均粒子径が、800μmを越える芯粒子粉体を、
準微粒子高分散処理手段群の最終処理により気中に分散
させて高分散芯粒子粉体の粒子・気体混合物とし、その
芯粒子粉体の粒子の分散度βを99%以上とする空間領
域の内の当該高分散芯粒子粉体の粒子・気体混合物中の
芯粒子粉体の粒子の全ての粒子が通過する面を含む空間
領域に、被覆空間の被覆開始領域を位置せしめるか、又
は体積基準頻度分布で平均粒子径が、10μmを越え2
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを80%以上とする空間領域、又は
Further, according to the present invention, the coated metal quasi-fine particles have an average particle size of more than 10 μm in volume-based frequency distribution.
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 80% or more, or a core particle powder having an average particle size of more than 20 μm and not more than 50 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group, As a particle / gas mixture of dispersed core particle powder, the average particle size is 5 in the spatial region where the degree of dispersion β of the particles of the core particle powder is 90% or more, or in the volume standard frequency distribution.
A core particle powder having a particle size of more than 0 μm and not more than 300 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. The average particle size exceeds 300 μm in the spatial region where the dispersity β is 95% or more, or in the volume standard frequency distribution.
The core particle powder having a particle size of 00 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of core particles having an average particle size of more than 800 μm in a spatial region with a volume ratio of 97% or more, or a volume-based frequency distribution,
By the final treatment of the quasi-fine particle high dispersion treatment means group, the particles are dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 99% or more. In the space area including the surface through which all the particles of the high-dispersion core particle powder / particles of the core particle powder in the gas mixture in are located the coating start area of the coating space, or by volume basis Average particle size exceeds 10 μm in frequency distribution 2
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Area of 80% or more, or

【0028】体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、芯粒子粉体の粒子の分
散度βを90%以上とする空間領域、又は体積基準頻度
分布で平均粒子径が、50μmを越え300μm以下の
芯粒子粉体を準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを95%とす
る空間領域、又は体積基準頻度分布で平均粒子径が30
0μmを越え800μm以下の芯粒子粉体を、準微粒子
高分散処理手段群の最終処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、芯粒子粉体の
粒子の分散度βを97%以上とする空間領域、又は体積
基準頻度分布で平均粒子径が、800μmを越える芯粒
子粉体を準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを99%以上とす
る空間領域の内の、回収手段の回収部に回収する全ての
粒子が通過する面を含む空間領域に、被覆空間の被覆開
始領域を位置せしめることにより調製されたものである
ことを特徴とする被覆された金属準微粒子にも関する。
Volume-based frequency distribution with an average particle size of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion of the particles of the core particle powder. The core particle powder having a spatial region of β of 90% or more, or a volume-based frequency distribution and an average particle size of more than 50 μm and 300 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a high A particle / gas mixture of dispersed core particle powder is used, and the average particle size is 30 in a spatial region where the degree of dispersion β of the particles of the core particle powder is 95%, or in a volume-based frequency distribution.
A core particle powder having a particle size of more than 0 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder is performed. Highly dispersed cores by dispersing the core particle powder whose average particle diameter exceeds 800 μm in the spatial region where the degree β is 97% or more or the volume standard frequency distribution by the final treatment of the quasi-fine particle high dispersion treatment means group. A particle / gas mixture of the particle powder, including a surface through which all particles to be recovered by the recovery unit of the recovery means pass within the spatial region where the degree of dispersion β of the particles of the core particle powder is 99% or more. It also relates to coated metal quasi-fine particles, characterized in that they are prepared by locating the coating start region of the coating space in the spatial region.

【0029】更に本発明は、使用する、芯粒子粉体の準
微粒子の粒度分布が、平均粒子径をDMとしたとき、体
積基準頻度分布で(〔DM/5,5DM〕,≧90%)で
あることを特徴とする被覆された金属準微粒子にも関す
るものである。
[0029] The present invention uses the particle size distribution of the quasi-particles in a powder of core particles is, when the average particle diameter is D M, by volume frequency distribution ([D M / 5,5D M], ≧ 90%). The present invention also relates to coated metal quasi-fine particles.

【0030】そして本発明は、上記した被覆された金属
準微粒子又は被覆された金属準微粒子を含む混合物を焼
結することを特徴とする金属基焼結体の製造法にも関す
る。そして本発明はまた上記した金属基焼結体の製造法
により製造した金属基焼結体にも関する。
The present invention also relates to a method for producing a metal-based sintered body, which comprises sintering the above-mentioned coated metal quasi-fine particles or a mixture containing the coated metal quasi-fine particles. The present invention also relates to a metal-based sintered body produced by the above-mentioned method for producing a metal-based sintered body.

【0031】而して、本発明によれば、金属の準微粒子
からなる芯粒子粉体の準微粒子又は主に同準微粒子から
なる芯粒子粉体の準微粒子であって、その表面が被覆形
成物質で被覆されたものを、焼結して金属基焼結体を製
造するに際して、上記した表面が被覆形成物質で被覆さ
れた芯粒子の粉体として、気相法により気相を経て生成
する被覆形成物質前駆体及び/又は気相状態の被覆形成
物質前駆体と、準微粒子高分散処理手段群の最終処理手
段により気中に分散させた10μmを越える準微粒子か
らなる高分散芯粒子粉体の粒子・気体混合物とを、被覆
空間の被覆開始領域で、高分散芯粒子粉体の粒子・気体
混合物中の芯粒子粉体の粒子の分散度を準微粒子の粒径
に応じて上記の値とした分散状態で合流させ、接触及び
/又は衝突させて芯粒子粉体の粒子の表面を被覆形成物
質で被覆したものを用いることにより、これまでに得ら
れなかった組織が微細で均質でありそして高性能な金属
基焼結体を得ることができた。そして、上記した被覆芯
粒子の調製に際して、被覆形成物質前駆体は、原子、分
子、イオン、クラスター、原子クラスター、分子クラス
ター、クラスターイオン等からなる気相状態、或は気相
を経て生成したばかりのもので、高分散状態の芯粒子と
接触及び/又は衝突を始めることにより、一次粒子状態
の個々の芯粒子の表面に被覆形成物質は強固に結合し、
その結果、芯粒子粉体の表面を被覆形成物質により単一
粒子単位で被覆を施した被覆された金属準微粒子が製造
できるのである。
Thus, according to the present invention, the quasi-fine particles of the core particle powder consisting of the quasi-fine particles of the metal or the quasi-fine particles of the core particle powder consisting mainly of the same quasi-fine particles, the surface of which is formed by coating. When a material-coated material is sintered to produce a metal-based sintered body, it is produced as a powder of core particles whose surface is coated with a coating-forming material through a gas phase by a gas phase method. Highly dispersed core particle powder composed of a coating-forming substance precursor and / or a coating-forming substance precursor in a vapor phase state, and quasi-fine particles of more than 10 μm dispersed in the air by the final treatment means of the quasi-fine particle high-dispersion treatment means group. The particle / gas mixture of the above, in the coating start region of the coating space, the degree of dispersion of the particles of the highly dispersed core particle powder / particle of the core particle powder in the gas mixture is set to the above value according to the particle diameter of the quasi-fine particles. Combined in the dispersed state, contacted and / or collided By using those obtained by coating the surface of particles of the particle powder in the coat forming substance, which tissue obtained could not so far been possible to obtain a fine and homogeneous and high-performance metal-based sintered body. Then, in the preparation of the above-mentioned coated core particles, the coating-forming substance precursor is a gas phase state composed of atoms, molecules, ions, clusters, atomic clusters, molecular clusters, cluster ions, etc. By initiating contact and / or collision with the core particles in a highly dispersed state, the coating forming substance is strongly bonded to the surface of each core particle in a primary particle state,
As a result, coated metal quasi-fine particles can be produced in which the surface of the core particle powder is coated with the coating forming substance in single particle units.

【0032】以下に本発明を詳細に説明する前に、本明
細書中に使用する用語をはじめに定義することにし、そ
して必要によってその用語の具体的内容を説明し、次い
で被覆形成物質で被覆された金属準微粒子の調製がどの
ような技術的手段によって行なわれるものであるのかの
説明を行うことにする。
Before describing the present invention in detail below, the terms used in the present specification will be defined first, and if necessary, the specific contents of the terms will be explained, followed by coating with a coating forming material. The technical means for preparing the metal quasi-fine particles will be described below.

【0033】被覆された金属粒子 被覆された金属粒子とは、被覆が施された下記する金属
粒子をいう。例えば、具体的には、被覆形成物質が、超
微粒子状、島状、連続質状、一様な膜状、突起物状等の
内の一種以上の形態で芯粒子に被覆された粒子をいう。
Coated Metal Particles Coated metal particles are the following metal particles coated. For example, specifically, it means particles in which the coating forming substance is coated on the core particles in one or more forms of ultrafine particles, islands, continuous substances, uniform films, protrusions and the like. .

【0034】金属粒子用原料粉体粒子 本発明に係る、金属粉体粒子が準微粒子芯粒子粉体の粒
子又は主に準微粒子からなる芯粒子粉体の粒子である金
属粒子は、一種類以上の被覆形成物質と反応及び/又は
合金化しない単位の金属、半金属、半導体等を始め、一
種類以上の被覆形成物質と反応及び/又は合金化等をし
て目的とする無機化合物、合金、金属間化合物等を生成
する単位の金属、半金属、半導体等の一種類以上が選択
できる。
Raw Material Powder Particles for Metal Particles One or more kinds of metal particles according to the present invention, in which the metal powder particles are particles of quasi-fine particle core particle powder or particles of core particle powder mainly composed of quasi-fine particles, Including a unit of metal, semimetal, semiconductor, etc., which does not react and / or alloy with the coating-forming substance, the desired inorganic compound or alloy that reacts and / or alloys with one or more coating-forming substances, One or more kinds of metals, semimetals, semiconductors, etc. can be selected as a unit for generating an intermetallic compound.

【0035】気相被覆法 気相被覆法とは、被覆形成物質の原料が、分子流、イオ
ン流、プラズマ、ガス、蒸気、エアロゾルの一種以上か
らなる気相状態を少なくとも一度は経て被覆する方法、
又は気相状態の被覆形成物質の原料により被覆する方法
をいう。
Vapor-phase coating method The vapor-phase coating method is a method in which the raw material of the coating-forming material is at least once in a gas-phase state in which the raw material of the coating material is one or more of molecular flow, ionic flow, plasma, gas, vapor and aerosol. ,
Alternatively, it refers to a method of coating with a raw material of a coating forming substance in a gas phase.

【0036】芯粒子 芯粒子とは、被覆を施す対象物となる金属準微粒子をい
う。これはまた、母材粒子、種粒子或いは被覆される準
微粒子ともいう。
Core Particles Core particles are metallic quasi-fine particles to be coated. This is also referred to as matrix particles, seed particles or coated quasi-fine particles.

【0037】この芯粒子を構成する物質は、周期律表第
1a、2a、3a、4a、5a、6a、7a、1b、2
b、3b、4b、8族の金属、半導体、半金属、希土類
金属の一種類または二種類以上を構成成分とする金属、
合金または金属間化合物からなるもので、その具体例に
は、例えばAl、B、Si、Fe、Ni、Co、Ti、
Nb、V、Zr、Hf、Ta、W、Re、Cr、Cu、
Mo、Y、La、TiAl、Ti3Al、TiAl3、T
iNi、NiAl、Ni3Alを挙げることができる。
The substances constituting the core particles are the periodic table 1a, 2a, 3a, 4a, 5a, 6a, 7a, 1b, 2
b, 3b, 4b, 8 group metals, semiconductors, semi-metals, metals containing one or more kinds of rare earth metals as constituent components,
It is made of an alloy or an intermetallic compound, and specific examples thereof include Al, B, Si, Fe, Ni, Co, Ti,
Nb, V, Zr, Hf, Ta, W, Re, Cr, Cu,
Mo, Y, La, TiAl, Ti 3 Al, TiAl 3 , T
iNi, mention may be made of NiAl, Ni 3 Al.

【0038】芯粒子粉体 芯粒子粉体とは、芯粒子からなる粉体をいう。芯粒子粉
体の準微粒子とは、芯粒子粉体を構成する準微粒子をい
う。本発明において被覆に供する準微粒子芯粒子粉体の
粒子又は主に準微粒子からなる芯粒子粉体の粒子は、平
均粒子径が体積基準頻度分布で10μmを越えるもので
ある。
Core particle powder The core particle powder is a powder composed of core particles. The quasi-fine particles of the core particle powder are the quasi-fine particles constituting the core particle powder. In the present invention, the particles of the quasi-fine particle core particle powder used for coating or the particles of the core particle powder mainly consisting of quasi-fine particles have an average particle diameter of more than 10 μm in volume-based frequency distribution.

【0039】好ましくは、平均粒子径をDMとしたと
き、粒度分布が体積基準頻度分布で(〔DM/5,5
M〕,≧90%)のものである。このような比較的分
布の幅の狭い粉体では、平均粒子径で粉体の分散特性又
は凝集特性が特徴付けられ、DMの値に適した条件で微
粒子高分散処理手段群を作動させれば分散できる。
Preferably, when the average particle size is D M , the particle size distribution is a volume-based frequency distribution ([D M / 5,5
D M ], ≧ 90%). In such a powder having a relatively narrow distribution, the dispersion property or agglomeration property of the powder is characterized by the average particle size, and the fine particle high dispersion treatment means group is operated under the conditions suitable for the value of D M. Can be dispersed.

【0040】平均粒子径が10μmを越える芯粒子粉体
の粒子の粒度分布が、幅広い分布又は互いに離れた複数
のピークを持つ分布の粉体では、好適には適当な選択分
離処理、例えば分級処理を行ってそれぞれ分級された粉
体ごとに、被覆処理を施す。これにより、それぞれ分級
された粉体ごとに上記条件の下で、被覆空間の被覆開始
領域で分散度βが80%以上、90%以上、95%以
上、97%以上又は99%以上の状態の被覆が開始さ
れ、芯粒子粉体の粒子一つ一つの準微粒子に被覆が可能
となる。
Core powders having an average particle size of more than 10 μm, in which the particle size distribution of the particles is broad or have a plurality of peaks separated from each other, preferably a suitable selective separation treatment, for example, classification treatment. The coating treatment is applied to each of the classified powders. As a result, under the above conditions for each classified powder, the degree of dispersion β in the coating start region of the coating space is 80% or more, 90% or more, 95% or more, 97% or more or 99% or more. The coating is started, and it becomes possible to coat the quasi-fine particles of each particle of the core particle powder.

【0041】被覆形成物質 被覆形成物質とは、被覆を施す対象物に被覆を形成する
物質をいう。例えば、具体的には、超微粒子状、島状、
連続質状、一様な膜状、突起物状等の一種以上からなる
形態で芯粒子粉体の粒子被覆を形成する物質をいう。
Coating-forming substance The coating-forming substance is a substance that forms a coating on an object to be coated. For example, specifically, ultrafine particles, islands,
It refers to a substance that forms the particle coating of the core particle powder in the form of one or more of continuous material, uniform film, and protrusion.

【0042】特に、被覆形成物質の形態が超微粒子状の
場合、この超微粒子の粒子径は、例えば0.005μm
〜0.5μmの範囲のものをいう。
Particularly, when the form of the coating forming material is ultrafine particles, the particle diameter of the ultrafine particles is, for example, 0.005 μm.
To 0.5 μm.

【0043】この被覆形成物質は、被覆形成物質自体が
そのままで被覆を形成するか、又は被覆形成物質と芯粒
子の金属とが反応して及び/又は金属粒子に固溶して及
び/又は合金化して及び/又は二種類以上の被覆形成物
質同志が反応して及び/又は固溶して被覆を形成するた
めの目的とする無機化合物、合金、金属間化合物等の一
種類又はそれ以上を生成し、被覆された金属準微粒子の
焼結を促進する焼結助剤及び/又は結合材となる単体物
質及び/又は化合物及び/又は金属準微粒子の表面改質
剤となる単体物質及び/又は化合物から選択される。金
属準微粒子の粒界を制御せしめる表面改質剤を被覆形成
物質としても選択可能である。例えば、金属準微粒子に
表面改質剤を被覆形成物質として被覆し、金属準微粒子
の粒成長を抑止することができる。また、金属準微粒子
と反応及び/又は合金化及び/又は固溶する被覆形成物
質と金属準微粒子の間に表面改質剤を被覆形成物質とし
て被覆し、反応、固溶、合金化等の速度を抑制すること
ができる。或は金属準微粒子の焼結を促進する焼結助剤
及び/又は結合材を被覆形成物質として被覆する場合
に、焼結助剤及び/又は結合材との化学結合性を高めた
り、又は個々の金属準微粒子を任意の物質から隔離せし
め、これにより、金属準微粒子と任意の物質との反応を
抑止せしめることができる。何れも、被覆形成物質の選
択の幅が飛躍的に大きく広がり好適である。
This coating forming substance forms the coating as it is, or the coating forming substance reacts with the metal of the core particles and / or forms a solid solution with the metal particles and / or an alloy. And / or two or more kinds of coating-forming substances react with each other and / or form a solid solution to form one or more desired inorganic compounds, alloys, intermetallic compounds, etc. And / or a single substance and / or compound serving as a sintering aid and / or a binder for promoting the sintering of the coated metal quasi-fine particles and / or a single substance and / or compound serving as a surface modifier of the metal quasi-fine particles. Selected from. A surface modifier that controls the grain boundaries of the metal quasi-fine particles can also be selected as the coating forming substance. For example, the metal quasi-fine particles can be coated with a surface modifier as a coating forming substance to suppress the particle growth of the metal quasi-fine particles. Further, a surface modifier is coated as a coating forming substance between the coating forming substance that reacts with and / or alloys with and / or forms a solid solution with the metal quasi-fine particles, and the rate of reaction, solid solution, alloying, etc. Can be suppressed. Alternatively, when a sintering aid and / or a binder that promotes the sintering of metal quasi-fine particles is coated as a coating forming substance, the chemical bond with the sintering aid and / or the binder is enhanced, or individually. The metal quasi-fine particles of are isolated from an arbitrary substance, whereby the reaction between the metal quasi-fine particles and the arbitrary substance can be suppressed. In either case, the range of selection of the coating forming material is greatly expanded and suitable.

【0044】また、金属基焼結体用被覆形成物質は、前
記金属準微粒子よりも高融点の無機化合物、及び/又は
前記金属準微粒子と反応して及び/又は金属準微粒子に
固溶して、及び/又は二種類以上からなる被覆形成物質
同士が反応及び/又は合金化して生成する反応生成物
が、金属準微粒子よりも高融点の無機化合物である反応
生成物を生成せしめる被覆形成物質が選択できる。これ
らの被覆形成物質は、周期律表1a、2a、3a、4
a、5a、6a、7a、1b、2b、3b、4b、5
b、6b、7b、8族の金属、半導体、半金属、希土類
金属、非金属及びその酸化物、窒化物、炭化物、酸窒化
物、酸炭化物、炭窒化物、酸炭窒化物、硼化物、珪化物
の一種類又はそれ以上、例えばAl、B、Si、Fe、
Ni、Co、Ti、Nb、V、Zr、Hf、Ta、W、
Re、Cr、Cu、Mo、Y、La、TiAl、Ti
Al、TiAl、TiNi、NiAl、NiAl、
SiC、TiC、ZrC、BC、WC、WC、Hf
C、VC、TaC、TaC、NbC、MoC、Cr
、Si、TiN、ZrN、SiO、
AlN、HfN、VN(x=1〜3)、NbN、Ta
N、TaN、TiB、TiB、ZrB、VB、V
、VB、NbB、NbB、TaB、Ta
、MoB、MoB、MoB、MoB、WB、
B、W、LaB、B13、MoS
、BP、Al、ZrO、MgAl
(スピネル)、AlSiO(ムライト)の一種類
又はそれ以上を含む物質であることができる。
The metal-based sintered body coating forming substance reacts with the inorganic compound having a higher melting point than the metal quasi-fine particles and / or the metal quasi-fine particles and / or forms a solid solution with the metal quasi-fine particles. And / or a reaction product formed by reacting and / or alloying two or more kinds of coating-forming substances with each other is a coating-forming substance that produces a reaction product which is an inorganic compound having a higher melting point than the metal quasi-fine particles. You can choose. These coating-forming substances are used in the periodic table 1a, 2a, 3a, 4
a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5
b, 6b, 7b, group 8 metals, semiconductors, semimetals, rare earth metals, nonmetals and their oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides, borides, One or more silicides, such as Al, B, Si, Fe,
Ni, Co, Ti, Nb, V, Zr, Hf, Ta, W,
Re, Cr, Cu, Mo, Y, La, TiAl, Ti 3
Al, TiAl 3 , TiNi, NiAl, Ni 3 Al,
SiC, TiC, ZrC, B 4 C, WC, W 2 C, Hf
C, VC, TaC, Ta 2 C, NbC, Mo 2 C, Cr
3 C 2 , Si 3 N 4 , TiN, ZrN, Si 2 N 2 O,
AlN, HfN, V x N ( x = 1~3), NbN, Ta
N, Ta 2 N, TiB, TiB 2 , ZrB 2 , VB, V
3 B 2 , VB 2 , NbB, NbB 2 , TaB, Ta
B 2 , MoB, MoB 2 , MoB 4 , Mo 2 B, WB,
W 2 B, W 2 B 5 , LaB 6 , B 13 P 2 , MoS
i 2 , BP, Al 2 O 3 , ZrO 2 , MgAl 2 O
It may be a substance containing one or more of 4 (spinel) and Al 2 SiO 5 (mullite).

【0045】均一な被覆 一様な膜状の被覆形成物質の場合には、単一粒子におい
て被覆膜の厚さがいたるところで均一であることをい
う。被覆形成物質が超微粒子状、島状又は突起物状の場
合には、超微粒子状、島状又は突起物状の被覆形成物質
が均一な分布で被覆することをいう。被覆形成物質の生
成過程で、避けられない不均一さは、均一の範疇に含ま
れるものである。
Uniform coating In the case of a uniform film-forming coating material, it means that the thickness of the coating film is uniform every single particle. When the coating forming substance is in the form of ultrafine particles, islands or protrusions, it means that the coating forming substance in the form of ultrafine particles, islands or protrusions is coated in a uniform distribution. Inevitable inhomogeneities in the process of producing coating-forming substances are included in the category of uniformity.

【0046】被覆空間に投入の定義 被覆空間に投入とは、例えば、自由落下等の落下によっ
て芯粒子粉体を被覆空間に導入することをいう。搬送ガ
スにより投入する場合には、芯粒子粉体を芯粒子粉体の
準微粒子・気体混合物の流れの方向に乗せて導入した
り、気体に乗って流れの方向へ、或いは気体に乗り方向
が変えられて導入することをいう。または、搬送ガスの
作用を受けて導入することをもいう。例えば、搬送ガス
の波動現象、具体的には非線系波動によって導入するこ
とをもいう。或いは、ガス中の音波、超音波、磁場、電
子線等によって被覆空間に導入することをもいう。ま
た、外場、例えば電場、磁場、電子線等により導入する
ことをもいう。具体的には、電場、磁場、電子線等によ
り粉体粒子を帯電させ、又は帯磁させ引力又は斥力によ
り被覆空間に導入することをもいう。また、ガスの背圧
や減圧によって吸い込まれ、導入することも含む。
Definition of charging into the coating space The charging into the coating space means, for example, introducing the core particle powder into the coating space by falling such as free fall. In the case of charging with a carrier gas, the core particle powder is introduced while being carried in the flow direction of the quasi-fine particle / gas mixture of the core particle powder, or is carried in the gas in the flow direction or in the gas riding direction. It means changing and introducing. Alternatively, it also means that the gas is introduced under the action of the carrier gas. For example, it also refers to introduction by a wave phenomenon of carrier gas, specifically, a non-linear wave. Alternatively, it also means introducing into the coating space by a sound wave in a gas, an ultrasonic wave, a magnetic field, an electron beam, or the like. It also means introduction by an external field such as an electric field, a magnetic field, or an electron beam. Specifically, it also means that the powder particles are charged or magnetized by an electric field, a magnetic field, an electron beam or the like and introduced into the coating space by an attractive force or a repulsive force. It also includes the introduction and introduction of gas by back pressure or pressure reduction.

【0047】被覆空間 被覆空間とは、被覆形成物質の原料から気相を経て生成
する被覆形成物質前駆体及び/又は気相状態の被覆形成
物質前駆体と芯粒子粉体の粒子が接触及び/又は衝突す
る空間をいう。或いは、芯粒子粉体の粒子の表面を被覆
形成物質で被覆する空間領域をいう。
The coating space is a coating space in which the precursor of the coating-forming substance and / or the precursor of the coating-forming substance in the vapor phase and the particles of the core particle powder contact and / or Or, it means the space where it collides. Alternatively, it refers to a space region in which the surface of the particles of the core particle powder is coated with the coating forming substance.

【0048】被覆室 被覆室とは、被覆空間を一部以上有する室をいう。より
具体的には、被覆室とは、被覆空間を含む仕切られた、
又は略仕切られた(略閉じた、半閉じた)室であって、
被覆空間を一部以上含む室である。
The coating chamber is a chamber having a coating space or more. More specifically, the coating chamber is a partition including a coating space,
Or it is a room that is partitioned (generally closed, semi-closed),
This is a room that contains a part or more of the coated space.

【0049】気中 気中とは、真空又は気相状態の空間内をいう。ここで、
本発明において、気相状態とは、分子流、イオン流、プ
ラズマ、ガス、蒸気、エアロゾル等の状態をいう。真空
とは、技術的には、減圧状態をさす。どんな減圧下で
も、厳密にはガス、分子、原子、イオン等が含まれる。
In the air, the air refers to the inside of a space in a vacuum or gas phase. here,
In the present invention, the gas phase state means a state of molecular flow, ion flow, plasma, gas, vapor, aerosol or the like. The vacuum is technically a reduced pressure state. Strictly speaking, gas, molecule, atom, ion, etc. are contained under any reduced pressure.

【0050】被覆形成物質前駆体 被覆形成物質前駆体とは、被覆形成物質の前駆体であ
る。より詳しくは、気相状態の被覆形成物質の原料がそ
のまま、又は被覆形成物質の原料から気相を経て形成及
び/又は合成され、被覆を施す対象物となる準微粒子で
ある芯粒子に被覆を形成する直前までの物質をいう。被
覆形成物質前駆体は、被覆形成物質の原料から、気相を
経て形成及び/又は合成する限り、状態の制限はない。
被覆形成物質の原料が気相の場合、この原料が被覆形成
物質前駆体にもなりうる。被覆形成物質前駆体そのもの
が気相であってもよい。また、被覆形成物質前駆体が反
応性物質の場合は、反応前でもよく、反応中でもよく、
反応後でもよい。被覆形成物質前駆体の具体例として
は、イオン、原子、分子、クラスター、原子クラスタ
ー、分子クラスター、クラスターイオン、超微粒子、ガ
ス、蒸気、エアロゾル等が挙げられる。
Coating Forming Substance Precursor A coating forming substance precursor is a precursor of a coating forming substance. More specifically, the core particles that are quasi-fine particles to be coated are formed by coating and / or synthesizing the raw material of the coating-forming substance in the vapor phase as it is, or from the raw material of the coating-forming substance through the vapor phase. It refers to the substance until just before it is formed. The coating substance precursor is not limited in its state as long as it is formed and / or synthesized from the raw material of the coating substance via the gas phase.
When the raw material of the coating forming substance is in the gas phase, this raw material can also be a coating forming substance precursor. The coating forming material precursor itself may be in the gas phase. When the coating-forming substance precursor is a reactive substance, it may be before the reaction or during the reaction,
It may be after the reaction. Specific examples of the coating material precursor include ions, atoms, molecules, clusters, atomic clusters, molecular clusters, cluster ions, ultrafine particles, gas, vapor and aerosols.

【0051】被覆形成物質の原料 被覆形成物質の原料とは、気相を経て被覆を形成する物
質となる原料物質をいう。被覆形成物質の原料の形態の
具体例として、塊状の固体、粉体粒子、気体、液体等が
挙げられる。
Raw Material of Coating Forming Material The raw material of the coating forming material is a raw material which becomes a material which forms a coating through a gas phase. Specific examples of the form of the raw material of the coating forming substance include lumpy solids, powder particles, gas and liquid.

【0052】分散度β 分散度βとは、粉体分散装置の分散性能を評価する指数
として増田、後藤氏らが提案(化学工学、第22回、秋
季大会研究発表講演要旨集、P349(1989)参
照)したように、全粒子の重量に対する、見かけの一次
粒子状態の粒子の重量の割合と定義する。ここで、見か
けの一次粒子状態の粒子とは、任意の分散状態の粉体粒
子の質量基準の頻度分布fm2と完全分散されている粉体
粒子の質量基準の頻度分布fm1のオーバーラップしてい
る部分の割合を示し、次の式のβで表される。
Dispersity β Dispersity β is an index for evaluating the dispersion performance of a powder disperser, proposed by Masuda and Goto (Chemical Engineering, 22nd Autumn Meeting, Abstracts of Research Presentations, P349 (1989)). )), The ratio of the weight of particles in the apparent primary particle state to the weight of all particles is defined. Here, the particles in the apparent primary particle state are the overlap of the mass-based frequency distribution f m2 of the powder particles in an arbitrary dispersed state and the mass-based frequency distribution f m1 of the completely dispersed powder particles. The ratio of the part that is shown is represented by β in the following equation.

【0053】[0053]

【数1】 上式において、粒子径の単位(μm)は規定されるもの
ではない。
[Equation 1] In the above equation, the unit of particle diameter (μm) is not specified.

【0054】上式は質量基準で表した粒度分布を基準に
して分散度を評価しているが、本来分散度は体積基準で
表した粒度分布を基にして評価されるべきものである。
しかし粒体粒子密度が同じである場合には質量基基準で
表した粒度分布と体積基準で表した粒度分布は同じにな
る。そこで実用上測定が容易な質量基準の粒度分布を測
定し、それを体積基準の粒度分布として用いている。従
って本来の分散度βは次の式及び図1(a)の斜線部分
の面積で表される。
In the above formula, the dispersity is evaluated based on the particle size distribution expressed on a mass basis, but the dispersity should be evaluated on the basis of the particle size distribution expressed on a volume basis.
However, when the particle densities of particles are the same, the particle size distribution expressed on a mass basis and the particle size distribution expressed on a volume basis are the same. Therefore, the mass-based particle size distribution, which is practically easy to measure, is measured and used as the volume-based particle size distribution. Therefore, the original dispersion degree β is expressed by the following equation and the area of the shaded portion in FIG.

【0055】[0055]

【数2】 上式において、粒子径の単位(μm)は規定されるもの
ではない。そして芯粒子粉体の分布及び平均粒子径は、
特に断らない限り基本的には体積基準を用いることとす
る。
[Equation 2] In the above equation, the unit of particle diameter (μm) is not specified. And the distribution and average particle size of the core particle powder are
Unless otherwise specified, the volume standard is basically used.

【0056】体積基準頻度分布 体積基準頻度分布とは、粒子径の分布をある粒子径に含
まれる体積割合をもって表したものをいう。
Volume-Based Frequency Distribution The volume-based frequency distribution refers to the distribution of particle diameters expressed by the volume ratio contained in a certain particle diameter.

【0057】(〔D1,D2〕,≧90%)の定義 (〔D1,D2〕,≧90%)分布とは、D1、D2を粒子
径、但しD1<D2とするとき、D1以上でD2以下の粒子
が体積で90%以上含まれる分布を表し、図1(b)の
ように斜線の部分の割合が90%以上である粒子からな
る粉体を表す。
[0057] ([D 1, D 2], ≧ 90%) Definition of ([D 1, D 2], ≧ 90%) and the distribution, D 1, the particle diameter D 2, where D 1 <D 2 , A distribution in which 90% or more by volume of particles of D 1 or more and D 2 or less is contained, and a powder composed of particles having a shaded portion ratio of 90% or more as shown in FIG. Represent

【0058】体積基準頻度分布(〔DM/5,5DM〕,
≧90%)の定義 粒度分布が、体積基準頻度分布で(〔DM/5,5
M〕,≧90%)分布とは、DMを体積基準の平均粒子
径とするとき、DMの1/5倍の粒子径以上、DMの5倍
の粒子径以下の粒子を体積で90%以上含む分布を表
す。例えば、平均粒子径DMが20μmで体積基準頻度
分布が(〔DM/5,5DM〕,≧90%)とは、体積基
準の平均粒子径が20μmで、4μm以上且つ100μ
m以下の粒子径の粒子が体積で90%以上含まれるよう
な分布を表す。ここで、体積基準の平均粒子径DMは、
Volume-based frequency distribution ([D M / 5,5D M ],
The defined particle size distribution of ≧ 90% is a volume-based frequency distribution ((D M / 5,5
D M], and is ≧ 90%) distribution, when the average particle diameter on a volume basis of D M, 1/5 times the particle size or less on the D M, volume 5 times under particle size or less particles of D M Represents a distribution containing 90% or more. For example, when the average particle size D M is 20 μm and the volume-based frequency distribution is ([D M / 5,5D M ], ≧ 90%), the volume-based average particle size is 20 μm, 4 μm or more and 100 μm or more.
The distribution is such that particles having a particle diameter of m or less are contained in an amount of 90% or more by volume. Here, the volume-based average particle diameter D M is

【数3】 f(D):体積基準頻度分布 又は技術的には、ある粒子径間隔をDi±△Di/2(△
iは区分の幅)内にある粒子群の体積をviとすると、 DM=Σ(vii)/Σvi と表される。
[Equation 3] f (D): Volume-based frequency distribution or technically, a certain particle size interval is D i ± ΔD i / 2 (Δ
D i is the volume of the particles within the width) of the segment and v i, is expressed by D M = Σ (v i D i) / Σv i.

【0059】被覆開始領域 微粒子高分散処理手段群の最終処理後、初めて被覆が開
始される領域を被覆開始領域という。従って、準微粒子
高分散処理手段群の最終処理以前では、初めて被覆が開
始される領域でも、ここでいう被覆開始領域ではない。
Coating start region The region where coating is started for the first time after the final treatment of the fine particle high dispersion treatment means group is called the coating start region. Therefore, even before the final treatment of the quasi-fine particle high dispersion treatment means group, the region where the coating is first started is not the coating start region here.

【0060】被覆開始領域での分散度β 本発明では、体積基準頻度分布で平均粒子径が10μm
を越える芯粒子粉体を、微粒子高分散処理手段群の最終
の分散処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βをこの準微粒子の平均粒径に応じて80%以上、90
%以上、95%以上、97%以上又は99%以上とした
領域に被覆空間の被覆開始領域を位置せしめる被覆室を
設ける。この被覆空間の被覆開始領域における分散度で
あれば、体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子を、実質的に粒子一個一個の単位に
気中に分散して被覆に供することができ、被覆空間の被
覆開始領域を通過する全ての芯粒子粉体の粒子の表面の
少なくとも一部と、被覆形成物質前駆体とは接触及び/
又は衝突するため、必ず準微粒子一個一個の単位に被覆
形成物質を付けることができる。平均粒子径が10μm
を越える準微粒子において、上記分散度βは、芯粒子粉
体の平均粒子径と共に連続的に変化するが表現困難なた
め便宜的に段階的な表現とした。
Dispersion degree β in the coating start region In the present invention, the average particle size is 10 μm in the volume standard frequency distribution.
The core particle powder exceeding the above is dispersed in the air by the final dispersion treatment of the fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Depending on the average particle size of the quasi-fine particles, 80% or more, 90
A coating chamber for locating the coating start region of the coating space is provided in the region of% or more, 95% or more, 97% or more, or 99% or more. If the degree of dispersion is in the coating start region of the coating space, the particles of the quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in the volume-based frequency distribution or the particles of the core particle powder mainly composed of quasi-fine particles are substantially At least a part of the surface of the particles of all the core particle powders that can be provided for coating by being dispersed in the air in units of individual particles and pass through the coating start region of the coating space, and the precursor for forming the coating material. Contact with the body and /
Or, because of collision, the coating forming substance can be attached to each quasi-fine particle unit. Average particle size is 10 μm
In the case of quasi-fine particles exceeding 0, the dispersity β changes continuously with the average particle diameter of the core particle powder, but it is difficult to express, so it is expressed stepwise for convenience.

【0061】好適には、被覆空間の被覆開始領域におい
て、体積基準頻度分布で平均粒子径が10μmを越え2
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを90%以上とするか、体積基準頻度分布で平均粒子
径が20μmを越え50μm以下の芯粒子粉体を、準微
粒子高分散処理手段群の最終処理により気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とし、その芯粒
子粉体の粒子の分散度βを95%以上とするか、体積基
準頻度分布で平均粒子径が50μmを越え300μm以
下の芯粒子粉体を、準微粒子高分散処理手段群の最終の
分散処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を97%以上とするか、又は体積基準頻度分布で平均粒
子径が300μmを越える芯粒子粉体を準微粒子高分散
処理手段群の最終の分散処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉
体の粒子の分散度βを99%以上とする。
Preferably, in the coating start region of the coating space, the average particle size exceeds 2 μm in a volume-based frequency distribution and exceeds 2 μm.
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 90% or more, or a core particle powder having an average particle size of more than 20 μm and not more than 50 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain highly dispersed core particles. A powder particle / gas mixture is used, and the dispersity β of the particles of the core particle powder is set to 95% or more, or a core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in a volume standard frequency distribution is By the final dispersion treatment of the fine particle high dispersion treatment means group, the particles are dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder
Of 97% or more, or a core particle powder having an average particle size of more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final dispersion treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. The particle-gas mixture of the body is used, and the dispersity β of the particles of the core particle powder is set to 99% or more.

【0062】この被覆空間の被覆開始領域での分散度で
あれば、芯粒子粉体の準微粒子が体積基準頻度分布で平
均粒子径が10μmを越える準微粒子芯粒子粉体の粒子
又は主に準微粒子からなる芯粒子粉体の粒子に対して事
実上芯粒子同士による閉ざされた部分がなく、一個一個
の粒子の表面のいたるところに被覆形成物質前駆体を接
触及び/又は衝突させることが可能であり、一個一個の
粒子表面にほぼ一様に被覆できる。
As far as the degree of dispersion in the coating start region of this coating space is concerned, the quasi-fine particles of the core particle powder have a volume-based frequency distribution and the average particle diameter exceeds 10 μm. Core particles consisting of fine particles There is virtually no closed part due to the core particles with respect to the particles of the powder, and it is possible to make the coating material precursor contact and / or collide everywhere on the surface of each particle. Therefore, the surface of each particle can be coated almost uniformly.

【0063】体積基準頻度分布で平均粒子径が10μm
を越える準微粒子の芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子は気中に於いては凝集作用が
働き、粒子同士で接触及び/又は衝突しあい高分散芯粒
子粉体の粒子・気体混合物中の芯粒子粉体の粒子の分布
が不均一になる。しかし、上記分散度のごとき分散状態
で被覆を開始すれば、準微粒子芯粒子粉体の粒子又は主
に準微粒子からなる芯粒子粉体の粒子一個一個単位によ
り均一に、被覆形成物質を被覆でき、且つ各粒子ごとに
より均一な量に被覆形成物質を被覆できる。
Volume-based frequency distribution with an average particle diameter of 10 μm
Particles of core particles of quasi-fine particles that exceed the above or particles of core particles of mainly quasi-fine particles have an aggregating action in the air, and the particles come into contact with each other and / or collide with each other to obtain highly dispersed core particles. Non-uniform distribution of particles in the core particle powder in the body particle / gas mixture. However, if coating is started in a dispersed state such as the above-mentioned dispersity, it is possible to uniformly coat the coating-forming substance with the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles. In addition, the coating forming substance can be coated in a more uniform amount for each particle.

【0064】準微粒子高分散処理手段群準微粒子高分散
処理手段群とは、 (A) 少なくとも分散手段を1以上有し、 (B) 最終の処理手段として、(a) 芯粒子粉体の
準微粒子を気中に分散させる分散手段、又は(b) 芯
粒子粉体の準微粒子を気中に分散させた芯粒子粉体の粒
子と気体との混合物において低分散芯粒子粉体部分を分
離し、芯粒子粉体の粒子が主に単一粒子状態で気中に存
在する高分散芯粒子粉体の粒子・気体混合物を選択する
高分散芯粒子粉体の粒子・気体混合物選択手段とこの高
分散芯粒子粉体の粒子・気体混合物選択手段により分離
された低分散芯粒子粉体部分をこの準微粒子高分散処理
手段群中の分散手段の内の最終分散手段及び/又は最終
分散手段以前の処理手段に搬送するフィードバック手段
とを備えた高分散芯粒子粉体の粒子・気体混合物選択手
段、を有するものである。
Semi-fine particle high-dispersion processing means group The semi-fine particle high-dispersion processing means group includes (A) at least one dispersion means, and (B) as a final processing means, (a) a core particle powder Dispersing means for dispersing fine particles in air, or (b) separating low-dispersion core particle powder portion in a mixture of particles and gas of core particle powder in which quasi-fine particles of core particle powder are dispersed in air , The particles of the core particle powder are mainly present in the air in the form of a single particle. The particles / gas mixture of the highly dispersed core particle powder for selecting the particle / gas mixture of the highly dispersed core particle powder and this high The low dispersion core particle powder portion separated by the particle / gas mixture selecting means of the dispersion core particle powder is used as the final dispersion means and / or before the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group. A high-performance device equipped with feedback means for conveying to the processing means Particles selecting a mixture of a gas means a powder of core particles, and has a.

【0065】好適には、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体を準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを80%以上とするか、又は
(2)体積基準頻度分布で平均粒子径が20μmを越え
50μm以下の芯粒子粉体を準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを90%以上とするか、又は(3)体積基準頻度分布
で平均粒子径が50μmを越え300μm以下の芯粒子
粉体を準微粒子高分散処理手段群の最終処理により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを95%以上とす
るか、又は(4)体積基準頻度分布で平均粒子径が30
0μmを越え800μm以下の芯粒子粉体を準微粒子高
分散処理手段群の最終処理により気中に分散させて高分
散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体
の粒子の分散度βを97%以上とするか、又は(5)体
積基準頻度分布で平均粒子径が800μmを越える芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを99%以上と
する分散性能を有するものである。
Preferably, (1) a core particle powder having an average particle size of more than 10 μm and 20 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a highly dispersed core. A particle / gas mixture of particle powder, and the particle dispersity β of the core particle powder is 80% or more, or (2) core particles having an average particle size of more than 20 μm and not more than 50 μm in a volume-based frequency distribution. The powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 90% or more. Alternatively, (3) a core particle powder having an average particle size of more than 50 μm and 300 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. Particle / gas mixture, core particle powder particles Dispersion degree β of 95% or more, or (4) the volume-based frequency distribution has an average particle size of 30
A core particle powder having a particle size of more than 0 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β is set to 97% or more, or (5) core particle powder having an average particle diameter of more than 800 μm in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a high This is a particle-gas mixture of dispersed core particle powder, and has a dispersion performance such that the degree of dispersion β of the particles of the core particle powder is 99% or more.

【0066】前記被覆開始領域における種々の分散度、
例えばβ≧70%、80%、90%に対応してそれらと
同等以上の分散性能の準微粒子高分散処理手段群を設け
ることにより、被覆開始領域において、各分散度に応じ
た高品位な被覆を施すことができる。
Various degrees of dispersion in the coating start region,
For example, by providing a group of quasi-fine particle high-dispersion processing means having a dispersion performance equal to or higher than those corresponding to β ≧ 70%, 80%, and 90%, a high-quality coating corresponding to each degree of dispersion in the coating start region. Can be applied.

【0067】最終処理手段 準微粒子高分散処理手段群の最終の処理手段が分散手段
の場合、分散処理手段を準微粒子高分散処理手段群の最
終処理手段という。又、準微粒子高分散処理手段群の最
終の処理手段が、準微粒子高分散処理手段の最終の分散
手段へ、高分散芯粒子粉体の粒子・気体混合物選択処理
工程時に於いて低分散状態であったために選択分離され
た部分を搬送するフィードバック手段を備えた高分散芯
粒子粉体の粒子・気体混合物選択手段、又は最終の分散
手段より前の処理手段に、高分散芯粒子粉体の粒子・気
体混合物選択処理工程時に於いて低分散状態であったた
めに選択分離された部分を搬送するフィードバック手段
を備えた高分散芯粒子粉体の粒子・気体混合物選択手段
の場合この高分散芯粒子粉体の粒子・気体混合物選択手
段を準微粒子高分散処理手段群の最終処理手段という。
Final Treatment Means When the final treatment means of the quasi-fine particle high dispersion treatment means group is a dispersion means, the dispersion treatment means is referred to as the final treatment means of the quasi-fine particle high dispersion treatment means group. Also, the final processing means of the quasi-fine particle high dispersion processing means group is added to the final dispersion means of the quasi-fine particle high dispersion processing means in a low dispersion state at the time of the particle / gas mixture selective processing step of the highly dispersed core particle powder. Particles of highly dispersed core particle powder having a means for feeding particles / gas mixture of highly dispersed core particle powder provided with a feedback means for transporting the selected and separated portion, or particles of highly dispersed core particle powder. Particles of highly dispersed core particle powder provided with feedback means for conveying the selectively separated portion due to the low dispersion state in the gas mixture selection treatment step. The means for selecting a body particle / gas mixture is referred to as the final treatment means of the quasi-fine particle high dispersion treatment means group.

【0068】尚、この準微粒子高分散処理手段群の最終
処理手段であるフィードバック手段を備えた高分散芯粒
子粉体の粒子・気体混合物選択手段より前に設ける(例
えば、このフィードバック手段を備えた高分散芯粒子粉
体の粒子・気体混合物選択手段と最終分散手段の間、或
いは最終分散手段より前)高分散芯粒子粉体の粒子・気
体混合物選択手段は、フィードバック手段の有無にかか
わらず準微粒子高分散処理手段群の構成要素である。
It should be noted that it is provided before the particle / gas mixture selecting means of the highly dispersed core particle powder, which is provided with the feedback means which is the final processing means of the quasi-fine particle high dispersion processing means group (for example, this feedback means is provided. Between the particle / gas mixture selection means of the highly dispersed core particle powder and the final dispersion means, or before the final dispersion means) The particle / gas mixture selection means of the highly dispersed core particle powder is quasi regardless of the presence or absence of the feedback means. It is a constituent element of a group of means for highly dispersing fine particles.

【0069】分散手段 準微粒子を分散するために用いる手段を分散手段とい
う。この分散手段は少しでも或いは僅かでも分散効果を
有するものは分散手段として使用可能であり、これを分
散手段とする。例えば、一般に供給手段として用いる空
気輸送用のロータリーフィーダーやインジェクションフ
ィーダー(粉体工学会編:“粉体工学便覧”、日刊工業
新聞社(1986)P568、P571)は、分散効果
も有するので、分散目的の手段として使用する場合は分
散手段である。後述の分散維持・促進手段も分散目的で
(βを高める目的で)使用する場合は分散手段となる。
そしてこの分散手段は単一の装置、機器である場合も、
複合された装置、機器である場合もあり、これらを総称
して分散処理手段群と呼ぶ。
Dispersing Means A means used to disperse the quasi-fine particles is called a dispersing means. This dispersing means can be used as a dispersing means if it has a dispersing effect even if only a little or slightly. For example, a rotary feeder for air transportation and an injection feeder (edited by Japan Society of Powder Engineering: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P568, P571), which are generally used as a supply means, have a dispersing effect, and thus are dispersed. When used as a target means, it is a dispersion means. When the dispersion maintaining / promoting means described later is also used for the purpose of dispersion (to increase β), it becomes a dispersion means.
And even if this dispersion means is a single device or device,
It may be a combined device or device, and these are collectively referred to as a distributed processing means group.

【0070】この準微粒子高分散処理手段群は、芯粒子
粉体の粒子の加速及び/又は速度勾配に置く気流による
分散、芯粒子粉体の粒子の制止障害物及び/又は回転体
である障害物への衝突による分散、芯粒子粉体の粒子の
流動層及び/又は脈流及び/又は回転ドラム及び/又は
振動及び/又は掻取りからなる機械的解砕による分散等
の内の選択された一種類以上の分散の機構を備えたもの
をいう。
This group of quasi-fine particle high-dispersion treatment means comprises particles of the core particle powder that are accelerated and / or dispersed by an air flow that is placed in a velocity gradient, obstacles that prevent particles of the core particle powder, and / or obstacles that are rotating bodies. Dispersion by collision with objects, fluidized bed of particles of core particle powder and / or pulsating flow and / or rotating drum and / or dispersion by mechanical disintegration consisting of vibration and / or scraping, etc. It is one that has one or more types of dispersion mechanisms.

【0071】具体的には、準微粒子高分散処理手段群
は、エジェクタ型分散機、ベンチュリ型分散機、細管、
撹拌機、気流中の障害物を利用した分散機、ジェットの
吹付けを利用した分散機、螺旋管、回転羽根を利用した
分散機、回転するピンを利用した分散機(ケージミ
ル)、流動層型分散機、脈流を利用した分散機、回転ド
ラムを利用した分散機、振動を利用した分散機、振動ふ
るい、スクレーパによる掻取りを利用した分散機、SA
EI、Gonell式分散機、中条式分散機、Roller式分散
機、オリフィス型分散機、B.M式分散機、Timbnell式分
散機、Wright式分散機等の内の選択された一種以上から
なる分散手段を備えたものである(粉体工学会編:“粉
体工学便覧”、日刊工業新聞社(1986)P43
0)。
Specifically, the quasi-fine particle high dispersion treatment means group includes an ejector type disperser, a venturi type disperser, a capillary tube,
Stirrer, Disperser that uses obstacles in the air flow, Disperser that uses jet spraying, Spiral tube, Disperser that uses rotating blades, Disperser that uses rotating pins (cage mill), fluidized bed type Disperser, Disperser using pulsating flow, Disperser using rotating drum, Disperser using vibration, Vibrating sieve, Disperser using scraping by scraper, SA
EI, Gonell type disperser, Nakajo type disperser, Roller type disperser, Orifice type disperser, BM type disperser, Timbnell type disperser, Wright type disperser, etc. (Powder Engineering Society: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P43)
0).

【0072】又、特開昭56−1336号に記載の撹拌
羽根を利用した分散機、特開昭58−163454号に
記載の高速気流と分散ノズルを利用した分散機、特開昭
59−199027号に記載の回転羽根による分散作用
とプラズマイオンによる分散作用を利用した分散機、特
開昭59−207319号に記載のプラズマイオンによ
る分散作用を利用した分散機、特開昭59−21661
6号に記載のエジェクタとプラズマイオンによる分散作
用を利用した分散機、特開昭59−225728号に記
載のエジェクタとイオン流の分散作用を利用した分散
機、特開昭59−183845号に記載のプラズマイオ
ンの分散作用を利用した分散機、特開昭63−1664
21号に記載の分散羽根と圧力気体による分散作用を利
用した分散機、特開昭62−176527号に記載のラ
イン状又はリング状スリット型噴出口を用いた分散機、
特開昭63−221829号に記載の網状羽根を利用し
た分散機、特開昭63−1629号に記載の噴射ノズル
からの高速気流による分散作用を利用した分散機、実開
昭63−9218号に記載の多数の細孔を利用した分散
機、実開昭62−156854号に記載のエジェクタ型
分散機、実開昭63−6034号に記載の細孔とオリフ
ィスを利用した分散機等の公報に記載のものも使用可能
である。
Further, a disperser using a stirring blade described in JP-A-56-1336, a disperser using a high-speed air stream and a dispersion nozzle described in JP-A-58-163454, and JP-A-59-199027. No. 59-21661, a dispersing machine utilizing the dispersing action by the rotating blades and the dispersing action by the plasma ions described in JP-A No. 59-207319.
No. 6, a disperser utilizing the dispersing action of an ejector and plasma ions, No. 59-225728, a disperser utilizing the dispersing action of an ejector and an ion flow, and No. 59-183845. Disperser utilizing the dispersing action of plasma ions of JP-A-63-1664
No. 21, a disperser utilizing a dispersing action by a dispersion blade and a pressure gas, a disperser using a line-shaped or ring-shaped slit type jet outlet described in JP-A-62-176527,
A disperser using a mesh blade described in JP-A No. 63-221829, a disperser using a dispersing action by a high-speed air stream from an injection nozzle described in JP-A No. 63-1629, No. Shokai 63-9218. And the ejector type disperser described in Japanese Utility Model Publication No. 62-156854, and the disperser using the micropores and orifices described in Japanese Utility Model Publication No. 63-6034. Those described in can also be used.

【0073】準微粒子高分散処理手段群に好適な分散手
段として、特願昭63−311358号、特願平1−7
1071号、特願平2−218537号等に記載の装置
が挙げられる。
Dispersing means suitable for the group of means for high-dispersion fine particles are disclosed in Japanese Patent Application Nos. 63-311358 and 1-7.
The apparatus described in Japanese Patent Application No. 1071 and Japanese Patent Application No. 2-218537 can be used.

【0074】高分散芯粒子粉体の粒子・気体混合物選択
手段 高分散芯粒子粉体の粒子・気体混合物選択手段とは、芯
粒子粉体の粒子・気体混合物から、低分散芯粒子粉体の
粒子・気体混合物を分離し、主に単一粒子状態の粒子を
含む高分散芯粒子粉体の粒子・気体混合物を選択する手
段をいう。一次粒子の集合体である凝集粒子は、見かけ
の粒子径が一次粒子の粒子径に比べ大きくなることか
ら、例えば乾式分級手段により分離が可能である。この
高分散芯粒子粉体の粒子・気体混合物選択手段には重力
を利用した分級手段、慣性力を利用した分級手段、遠心
力を利用した分級手段、静電気を利用した分級手段、流
動層を利用した分級手段等から一種以上選択された乾式
分級手段が挙げられる。
Highly-dispersed core particle powder particle / gas mixture selection means Highly dispersed core particle powder particle / gas mixture selection means means a low-dispersion core particle powder from a core particle powder particle / gas mixture. A means for separating a particle / gas mixture and selecting a particle / gas mixture of highly dispersed core particle powder mainly containing particles in a single particle state. Aggregated particles, which are aggregates of primary particles, have an apparent particle diameter larger than the particle diameter of primary particles, and therefore can be separated by, for example, a dry classification means. Gravity-based classification means, inertial force-based classification means, centrifugal-forced classification means, static electricity-based classification means, and fluidized bed are used as the particle / gas mixture selection means for this highly dispersed core particle powder. Examples of the dry classification means include one or more selected from the above classification means.

【0075】この高分散芯粒子粉体の粒子・気体混合物
選択手段の例としては、重力分級機、慣性分級機、遠心
分級機、サイクロン、エアセパレータ、ミクロンセパレ
ータ、ミクロプレックス、ムルチプレックス、ジグザク
分級機、アキュカット、コニカルセパレータ、ターボク
ラシファイア、スーパセパレータ、ディスパージョンセ
パレータ、エルボジェット、流動層分級機、バーチュア
ルインパクタ、O−Sepa、ふるい、バイブレーティ
ングスクリーン、シフタ(粉体工学会編:“粉体工学便
覧”日刊工業新聞社、P514(1986))等が挙げ
られる。
Examples of means for selecting the particle / gas mixture of the highly dispersed core particle powder include gravity classifier, inertia classifier, centrifugal classifier, cyclone, air separator, micron separator, microplex, multiplex, zigzag classifier. Machine, accu-cut, conical separator, turbo classifier, super separator, dispersion separator, elbow jet, fluidized bed classifier, virtual impactor, O-Sepa, sieve, vibrating screen, shifter (Powder Engineering Society: “Powder Engineering Society” Engineering Handbook "Nikkan Kogyo Shimbun, P514 (1986)) and the like.

【0076】芯粒子粉体の粒子・気体混合物 芯粒子粉体の粒子・気体混合物とは、(a)芯粒子粉体
の粒子が気中に一様に浮遊した均質流れ(一様な浮遊流
れ)、(b)芯粒子粉体の粒子が気中のある領域で非一
様な分布を示す不均質流れ(非均質浮遊流れ)、(c)
芯粒子粉体の粒子の摺動層を伴う流れ(摺動流れ)、又
は(d)芯粒子粉体の粒子の静止層を伴う流れをいう。
Particle / gas mixture of core particle powder Particle / gas mixture of core particle powder means (a) Homogeneous flow in which particles of core particle powder are uniformly suspended in air (uniform suspension flow). ), (B) Heterogeneous flow (inhomogeneous suspended flow) in which particles of the core particle powder show a non-uniform distribution in a certain region in the air, (c)
A flow accompanied by a sliding layer of particles of the core particle powder (sliding flow), or (d) a flow accompanied by a stationary layer of particles of the core particle powder.

【0077】低分散芯粒子粉体の粒子・気体混合物 低分散芯粒子粉体の粒子・気体混合物とは、芯粒子粉体
の粒子・気体混合物の内、芯粒子粉体の粒子が主に単一
粒子状態以外の状態で気中に存在する芯粒子粉体の粒子
・気体混合物をいう。
Particles / gas mixture of low-dispersion core particle powder The particles / gas mixture of low-dispersion core particle powder means particles of the core particle powder mainly in the particles / gas mixture of the core particle powder. A particle-gas mixture of core particle powder that exists in the air in a state other than a single particle state.

【0078】高分散芯粒子粉体の粒子・気体混合物 高分散芯粒子粉体の粒子・気体混合物とは、芯粒子粉体
の粒子が主に単一粒子状態で気中に存在する芯粒子粉体
の粒子・気体混合物をいう。高分散芯粒子粉体の粒子・
気体混合物は、極めて高分散であっても、実際には凝集
粒子を含む。低分散芯粒子粉体の粒子・気体混合物は、
実際には、凝集していない単粒子を含み、選択分離して
低分散芯粒子粉体の粒子・気体混合物と高分散芯粒子粉
体の粒子・気体混合物に分けられる。低分散芯粒子粉体
の粒子・気体混合物は、凝集粒子の選択分離及び/又は
再分散により、高分散芯粒子粉体の粒子・気体混合物と
なる。
Particle / gas mixture of highly dispersed core particle powder A particle / gas mixture of highly dispersed core particle powder is a core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. A particle / gas mixture of the body. Highly dispersed core particles Powder particles
The gas mixture, even with a very high dispersion, actually contains agglomerated particles. The particle / gas mixture of low-dispersion core particle powder is
Actually, it contains unaggregated single particles, and is selectively separated into a particle / gas mixture of low-dispersion core particle powder and a particle / gas mixture of high-dispersion core particle powder. The particle / gas mixture of the low-dispersion core particle powder becomes a particle / gas mixture of the high-dispersion core particle powder by selectively separating and / or re-dispersing the agglomerated particles.

【0079】回収手段 被覆空間で被覆した被覆準微粒子を取り出す手段を回収
手段という。回収手段の内で回収処理の行われる部分を
回収部という。被覆空間の被覆開始領域を通過して被覆
した被覆準微粒子は、気中から直接取り出して回収する
か、又は気中から取り出して一時的に蓄えてから回収す
るか、又は、気体と共に回収される。
Collecting Means The means for taking out the coated quasi-fine particles coated in the coating space is called collecting means. The part of the recovery means that performs the recovery process is called the recovery part. The coated quasi-fine particles coated by passing through the coating start region of the coating space are directly taken out from the air and collected, or taken out from the air and temporarily stored and then collected, or are collected together with the gas. .

【0080】回収手段の回収部としては、隔壁(障害
物)を利用した回収手段の回収部、重力を利用した回収
手段の回収部、慣性力を利用した回収手段の回収部、遠
心力を利用した回収手段の回収部、帯電による引力を利
用した回収手段の回収部、熱泳動力を利用した回収手段
の回収部、ブラウン拡散を利用した回収手段の回収部、
ガスの背圧や減圧等による吸引力を利用した回収手段の
回収部等が利用可能である。
As the collecting part of the collecting means, the collecting part of the collecting means using a partition wall (obstacle), the collecting part of the collecting means using gravity, the collecting part of the collecting means using inertial force, and the centrifugal force are used. A collecting section of the collecting means, a collecting section of the collecting means using the attractive force by charging, a collecting section of the collecting means using thermophoretic force, a collecting section of the collecting means using Brownian diffusion,
It is possible to use a recovery unit or the like of a recovery unit that uses suction force due to back pressure or pressure reduction of gas.

【0081】この回収手段の回収部の好適な例として
は、重力集塵機、慣性集塵機、遠心力集塵機、濾過集塵
機、電気集塵機、洗浄集塵機、粒子充填層、サイクロ
ン、バグフィルター、金属フィルター、スクラバー等が
挙げられる。
Suitable examples of the recovery unit of this recovery means include a gravity dust collector, an inertial dust collector, a centrifugal dust collector, a filter dust collector, an electric dust collector, a washing dust collector, a particle packing layer, a cyclone, a bag filter, a metal filter, a scrubber, and the like. Can be mentioned.

【0082】次に、本発明で用いる被覆された金属準微
粒子を調製する場合に採用される準微粒子高分散処理手
段群を添付の図面に基づいて説明することにする。
Next, a group of means for high dispersion treatment of quasi-fine particles used when preparing coated metal quasi-fine particles used in the present invention will be described with reference to the accompanying drawings.

【0083】準微粒子高分散処理手段群の図の説明 図2(a)は被覆された金属準微粒子を調製する際の準
微粒子高分散処理手段群の基本的な構成の一例を表すブ
ロック図である。芯粒子粉体の準微粒子を分散させる最
終の分散手段A、最終の分散手段以前の分散処理手段群
の構成要素dで構成されている。εは、芯粒子粉体の準
微粒子の内、主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物である。構成要素dとし
ては、分散手段、供給手段、高分散芯粒子粉体の粒子・
気体混合物選択手段等任意の処理手段を単独又は組み合
わせて使用できる。構成要素dは、必ずしも設けなくと
も良い。準微粒子高分散処理手段群は、最終の処理手段
である分散手段Aの処理後、(1)体積基準頻度分布で
平均粒子径が10μmを越え20μm以下の芯粒子粉体
に対し、分散度βが80%以上、又は(2)体積基準頻
度分布で平均粒子径が20μmを越え50μm以下の芯
粒子粉体に対し、分散度βが90%以上、又は(3)体
積基準頻度分布で平均粒子径が50μmを越え300μ
m以下の芯粒子粉体に対し、分散度βが95%以上、又
は(4)体積基準頻度分布で平均粒子径が300μmを
越え800μm以下の芯粒子粉体に対し、分散度βが9
7%以上、又は(5)体積基準頻度分布で平均粒子径が
800μmを越える芯粒子粉体に対し、分散度βが99
%以上を実現できる構成のものである。
FIG. 2 (a) is a block diagram showing an example of the basic structure of the quasi-particulate high-dispersion processing means group when the coated metal quasi-fine particles are prepared. is there. It is composed of the final dispersion means A for dispersing the quasi-fine particles of the core particle powder and the constituent element d of the dispersion processing means group before the final dispersion means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the quasi-fine particles of core particle powder. As the component d, dispersing means, supplying means, particles of highly dispersed core particle powder,
Any processing means such as a gas mixture selecting means can be used alone or in combination. The component d does not necessarily have to be provided. After the dispersion means A which is the final processing means, the quasi-fine particle high dispersion treatment means group has (1) the degree of dispersion β with respect to the core particle powder having an average particle diameter of more than 10 μm and 20 μm or less in the volume standard frequency distribution. Is 80% or more, or (2) the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume standard frequency distribution has a dispersity β of 90% or more, or (3) an average particle in the volume standard frequency distribution. Diameter exceeds 50μm and 300μ
The dispersity β is 95% or more with respect to the core particle powder of m or less, or (4) the dispersity β is 9 with respect to the core particle powder of which the average particle diameter exceeds 300 μm and 800 μm or less in the volume standard frequency distribution.
7% or more, or (5) the core particle powder having an average particle size of more than 800 μm in the volume standard frequency distribution has a dispersity β of 99.
% Or more.

【0084】図2(b)は被覆された金属準微粒子を調
製する際の準微粒子高分散処理手段群の基本的な構成の
他の一例を表すブロック図である。芯粒子粉体の粒子を
分散させる最終の分散手段A、最終の分散手段Aへ芯粒
子粉体の粒子が、主に単一粒子状態で気中に存在する高
分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒
子粉体の粒子・気体混合物ηをフィードバックさせるフ
ィードバック手段Cを備えた最終の高分散芯粒子粉体の
粒子・気体混合物選択手段B、最終の分散手段以前の分
散処理手段群の構成要素d、最終分散手段と最終選択手
段の間の準微粒子高分散処理手段群の構成要素eで構成
されている。εは、芯粒子粉体の粒子の内、主に単一粒
子状態で気中に存在する高分散芯粒子粉体の粒子・気体
混合物である。構成要素dとしては、分散手段、供給手
段、選択手段等任意の処理手段を単独又は組み合わせて
使用できる。構成要素eとしては、分散手段以外の処理
手段、例えば供給手段、選択手段等任意の処理手段を単
独又は組み合わせて使用できる。構成要素d及びeは、
必ずしも設けなくとも良い。準微粒子高分散処理手段群
は、最終の処理手段である選択手段Bによる処理後、前
記平均粒子径の芯粒子粉体に対し前記分散度を実現でき
る構成である。
FIG. 2B is a block diagram showing another example of the basic constitution of the group of means for high dispersion treatment of quasi-fine particles when preparing coated metal quasi-fine particles. The final dispersion means A for dispersing the particles of the core particle powder, and the particles of the core particle powder to the final dispersion means A are particles of the highly dispersed core particle powder in the air mainly in the form of a single particle. Other than the gas mixture, the particles / gas mixture selecting means B of the final high-dispersion core particle powder having the feedback means C for feeding back the particles / gas mixture η of the low-dispersion core particle powder, the dispersion before the final dispersion means It is composed of a constituent element d of the processing means group and a constituent element e of the quasi-fine particle high dispersion processing means group between the final dispersion means and the final selection means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the component e, a processing means other than the dispersion means, for example, an arbitrary processing means such as a supply means and a selection means can be used alone or in combination. The components d and e are
It does not have to be provided. The quasi-fine particle high-dispersion processing means group is configured to realize the degree of dispersion with respect to the core particle powder having the average particle diameter after the processing by the selecting means B which is the final processing means.

【0085】図2(c)は、被覆された金属準微粒子を
調製する際の準微粒子高分散処理手段群の基本的な構成
の他の一例を表すブロック図である。芯粒子粉体の粒子
を分散させる最終の分散手段A、最終の分散手段Aより
前の処理手段へ芯粒子粉体の粒子が、主に単一粒子状態
で気中に存在する高分散芯粒子粉体の粒子・気体混合
物、以外の低分散芯粒子粉体の粒子・気体混合物ηをフ
ィードバックさせるフィードバック手段Cを備えた高分
散芯粒子粉体の粒子・気体混合物選択手段B、最終の分
散手段以前の準微粒子高分散処理手段群の構成要素d、
最終の分散手段と最後の選択手段の間の準微粒子高分散
処理手段群の構成要素eで構成されている。εは、芯粒
子粉体の粒子の内、主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物である。構成要素
dとしては、分散手段、供給手段、選択手段等任意の処
理手段を単独又は組み合わせて使用できる。構成要素d
としては、分散手段以外の処理手段、例えば供給手段、
選択手段等任意の処理手段を単独又は組み合わせて使用
できる。構成要素d及びeは、必ずしも設けなくともよ
い。準微粒子高分散処理手段群は、最終の処理手段であ
る選択手段Bによる処理後、前記平均粒子径の芯粒子粉
体に対し前記分散度を実現できる構成である。
FIG. 2 (c) is a block diagram showing another example of the basic constitution of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles. Highly dispersed core particles in which the particles of the core particle powder are mainly present in the air in a single particle state to the final dispersion means A for dispersing the particles of the core particle powder and the processing means prior to the final dispersion means A. Powder / particle mixture of low-dispersion core particles other than powder / particle / gas mixture η of high-dispersion core particles having feedback means C for feeding back powder / gas mixture η, final dispersion means The component d of the former quasi-particulate high dispersion treatment means group,
It is composed of the component e of the quasi-fine particle high dispersion treatment means group between the final dispersion means and the final selection means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. Component d
As the processing means other than the dispersion means, for example, the supply means,
Any processing means such as selection means can be used alone or in combination. The components d and e do not necessarily have to be provided. The quasi-fine particle high-dispersion processing means group is configured to realize the degree of dispersion with respect to the core particle powder having the average particle diameter after the processing by the selecting means B which is the final processing means.

【0086】なお、以上のような構成であるから、供給
槽、芯粒子生成手段等の粉体の供給源も本準微粒子高分
散処理手段群の構成に含めてもよい。例えば図2(c)
の場合、フィードバック手段Cのフィードバック先を供
給槽とする構成も高分散処理手段群の構成としてよいこ
とは言うまでもない。又、準微粒子高分散処理手段群の
分散工程の前に、芯粒子粉体の準微粒子を解砕及び/又
は粉砕する解砕工程を入れても良いことは言うまでもな
い。
Because of the above-mentioned structure, the powder supply sources such as the supply tank and the core particle generating means may be included in the structure of the quasi-fine particle high dispersion processing means group. For example, FIG. 2 (c)
In this case, it goes without saying that the configuration in which the feedback destination of the feedback means C is the supply tank may be the configuration of the high dispersion processing means group. Further, it goes without saying that a crushing step of crushing and / or crushing the quasi-fine particles of the core particle powder may be added before the dispersing step of the quasi-fine particle high dispersion treatment means group.

【0087】上記した準微粒子高分散処理手段群の基本
的な構成の具体的な代表例をより詳細にしたブロック図
に基づいて更に詳しく説明することにする。
A more specific representative example of the basic structure of the above-mentioned quasi-fine particle high dispersion processing means group will be described in more detail with reference to a more detailed block diagram.

【0088】構成1 図3(a)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第1の構成を説明するブロ
ック図であって図2(a)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給槽100、被
覆される芯粒子粉体を分散させる最終分散手段Aから構
成されている。εは、芯粒子粉体の粒子の内、主に単一
粒子状態で気中に存在する高分散芯粒子粉体の粒子・気
体混合物である。
Structure 1 FIG. 3 (a) is a block diagram for explaining the first structure of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles, and corresponds to FIG. 2 (a). To do. This example comprises a supply tank 100 for supplying the core particle powder to be coated, and a final dispersion means A for dispersing the core particle powder to be coated. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0089】構成2 図3(b)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第2の構成を説明するブロ
ック図であって図2(a)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給槽100、被
覆される芯粒子粉体を分散させる分散手段a、被覆され
る芯粒子粉体を分散させる最終分散手段Aから構成され
ている。εは、芯粒子粉体の粒子の内、主に単一粒子状
態で気中に存在する高分散芯粒子粉体の粒子・気体混合
物である。
Structure 2 FIG. 3 (b) is a block diagram for explaining the second structure of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles, and corresponds to FIG. 2 (a). To do. This example comprises a supply tank 100 for supplying the core particle powder to be coated, a dispersing means a for dispersing the core particle powder to be coated, and a final dispersing means A for dispersing the core particle powder to be coated. There is. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0090】構成3 図3(c)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第3の構成を説明するブロ
ック図であって図2(a)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給100、被覆
される芯粒子粉体を分散させる分散手段a、分散手段a
で分散させた芯粒子粉体の粒子・気体混合物のうちから
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気
体混合物ηを分散手段aへフィードバックさせるフィー
ドバック手段C、主に高分散芯粒子粉体の粒子・気体混
合物を最終の分散手段Aへ導入する高分散芯粒子粉体の
粒子・気体混合物選択手段b、被覆される芯粒子粉体を
分散させる最終分散手段A、から構成されている。ε
は、芯粒子粉体の粒子の内、主に単一粒子状態で気中に
存在する高分散芯粒子粉体の粒子・気体混合物である。
Structure 3 FIG. 3 (c) is a block diagram for explaining the third structure of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles, and corresponds to FIG. 2 (a). To do. In this example, supply 100 for supplying core particle powder to be coated, dispersing means a for dispersing core particle powder to be coated, dispersing means a
Particles of highly dispersed core particles powder / gas mixture mainly existing in the air in the form of a single particle from particles / gas mixture of core particles powder dispersed in A feedback means C for feeding back the gas mixture η to the dispersing means a, mainly particles of the highly dispersed core particle powder, and a highly dispersed core particle powder particle / gas mixture selecting means for introducing the gas mixture into the final dispersing means A b, the final dispersion means A for dispersing the core particle powder to be coated. ε
Is a particle / gas mixture of the highly dispersed core particle powder, which is mainly present in the air in the form of a single particle among the particles of the core particle powder.

【0091】構成4 図3(d)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第4の構成を説明するブロ
ック図であって図2(b)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給槽100、被
覆される芯粒子粉体を分散させる最終分散手段A、最終
分散手段Aで分散させた芯粒子粉体の粒子・気体混合物
のうちから主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体
の粒子・気体混合物ηを分散手段Aへフィードバックす
るフィードバック手段C、高分散芯粒子粉体の粒子・気
体混合物を放出する最終の高分散芯粒子粉体の粒子・気
体混合物選択手段Bから構成されている。εは、芯粒子
粉体の粒子の内、主に単一粒子状態で気中に存在する高
分散芯粒子粉体の粒子・気体混合物である。
Structure 4 FIG. 3 (d) is a block diagram for explaining the fourth structure of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles, and corresponds to FIG. 2 (b). To do. In this example, a supply tank 100 for supplying the core particle powder to be coated, a final dispersion means A for dispersing the core particle powder to be coated, and a particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Feedback means for feeding back the particles / gas mixture η of the low-dispersion core particle powder other than the above, mainly the particles / gas mixture of the high-dispersion core particle powder existing in the air in the form of a single particle to the dispersion means A C, the final high-dispersion core particle powder particle / gas mixture selecting means B for releasing the high-dispersion core particle powder particle / gas mixture. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0092】構成5 図3(e)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第5の構成を説明するブロ
ック図であって図2(b)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給槽100、被
覆される芯粒子粉体を分散させる分散手段a、被覆され
る芯粒子粉体を分散させる最終分散手段A、最終分散手
段Aで分散させた芯粒子粉体の粒子・気体混合物のうち
から主に単一粒子状態で気中に存在する高分散芯粒子粉
体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子
・気体混合物ηを分散手段Aへフィードバックするフィ
ードバック手段C、高分散芯粒子粉体の粒子・気体混合
物を放出する最終の高分散芯粒子粉体の粒子・気体混合
物選択手段Bから構成されている。εは、芯粒子粉体の
粒子の内、主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物である。
Structure 5 FIG. 3 (e) is a block diagram for explaining the fifth structure of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles, and corresponds to FIG. 2 (b). To do. In this example, a supply tank 100 for supplying the core particle powder to be coated, a dispersing means a for dispersing the core particle powder to be coated, a final dispersing means A for dispersing the core particle powder to be coated, and a final dispersing means. Of the low-dispersion core particle powder other than the high-dispersion core particle powder particle / gas mixture mainly existing in the air in the form of a single particle among the particle / gas mixture particles of the core particle powder dispersed in A. It comprises a feedback means C for feeding back the particle / gas mixture η to the dispersing means A, and a final particle / gas mixture selecting means B for releasing the particle / gas mixture of the highly dispersed core particle powder. There is. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0093】構成6 図3(f)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第6の構成を説明するブロ
ック図であって図2(b)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給槽100、芯
粒子粉体の粒子・気体混合物のうちから主に低分散芯粒
子粉体の粒子・気体混合物を取り除き、主に高分散芯粒
子粉体の粒子・気体混合物を分散手段Aへ導入する高分
散芯粒子粉体の粒子・気体混合物選択手段b、選択分離
された芯粒子粉体の粒子を分散させる最終分散手段A、
最終分散手段Aで分散させた芯粒子粉体の粒子・気体混
合物のうちから主に単一粒子状態で気中に存在する高分
散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子
粉体の粒子・気体混合物ηを分散手段Aへフィードバッ
クさせるフィードバック手段C、高分散芯粒子粉体の粒
子・気体混合物を放出する最終の高分散芯粒子粉体の粒
子・気体混合物選択手段Bから構成されている。εは、
芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物である。
Structure 6 FIG. 3 (f) is a block diagram for explaining the sixth structure of the quasi-fine particle high dispersion treatment means group when preparing coated metal quasi-fine particles, and corresponds to FIG. 2 (b). To do. In this example, a low-dispersion core particle powder / gas mixture is mainly removed from the supply tank 100 for supplying the core particle powder to be coated, and a particle / gas mixture of the core particle powder is removed, and mainly high dispersion is performed. A highly dispersed core particle powder particle / gas mixture selecting means b for introducing the particle / gas mixture of the core particle powder into the dispersing means A, a final dispersing means A for dispersing the particles of the core particle powder selected and separated,
Low-dispersion core particles other than particles / gas mixture of highly dispersed core particle powder mainly existing in the air in a single particle state from particles / gas mixture of core particle powder dispersed by final dispersion means A. From the feedback means C for feeding back the powder particle / gas mixture η to the dispersion means A, the final high dispersion core particle powder particle / gas mixture selection means B for releasing the high dispersion core particle powder particle / gas mixture. It is configured. ε is
Among the particles of the core particle powder, it is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in the form of a single particle.

【0094】構成7 図3(g)は、被覆された金属準微粒子を調製する際の
準微粒子高分散処理手段群の第7の構成を説明するブロ
ック図であって図2(c)に対応するものである。本例
は、被覆される芯粒子粉体を供給する供給槽100、被
覆される芯粒子粉体を分散させる分散手段a、被覆され
る芯粒子粉体を分散させる最終分散手段A、最終分散手
段Aで分散させた芯粒子粉体の粒子・気体混合物のうち
から主に単一粒子状態で気中に存在する高分散芯粒子粉
体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子
・気体混合物ηを分散手段aへフィードバックするフィ
ードバック手段C、高分散芯粒子粉体の粒子・気体混合
物を放出する最終の高分散芯粒子粉体の粒子・気体混合
物選択手段Bから構成されている。εは、芯粒子粉体の
粒子の内、主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物である。
Structure 7 FIG. 3 (g) is a block diagram for explaining the seventh structure of the means for high dispersion treatment of quasi fine particles when preparing coated metal quasi fine particles, and corresponds to FIG. 2 (c). To do. In this example, a supply tank 100 for supplying the core particle powder to be coated, a dispersing means a for dispersing the core particle powder to be coated, a final dispersing means A for dispersing the core particle powder to be coated, and a final dispersing means. Of the low-dispersion core particle powder other than the high-dispersion core particle powder particle / gas mixture mainly existing in the air in the form of a single particle among the particle / gas mixture particles of the core particle powder dispersed in A. It comprises a feedback means C for feeding back the particle / gas mixture η to the dispersing means a, and a final particle / gas mixture selecting means B of the highly dispersed core particle powder for discharging the highly dispersed core particle powder particle / gas mixture. There is. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0095】このようにして達成された準微粒子の高分
散状態を維持するために、気中分散維持手段を準微粒子
高分散処理手段群と被覆室の間に付加することもでき
る。ここでいう気中分散維持手段とは、気中に分散担持
された芯粒子粉体の粒子の再凝集を防止して分散度βを
維持する手段をという。又、このようにして達成された
芯粒子の高分散状態を促進するために、気中分散促進手
段を微粒子高分散処理手段群と被覆室の間に付加するこ
ともできる。ここでいう気中分散促進手段とは、気中に
分散担持された芯粒子粉体の粒子のうち主に再凝集した
粒子の再分散を促進し、分散状態を低下を鈍らせたり、
一旦低下した分散状態を元の高分散の状態まで回復する
ように再分散を促す手段をいう。
In order to maintain the high dispersion state of the quasi-fine particles thus achieved, an air dispersion maintaining means may be added between the quasi-fine particle high dispersion treatment means group and the coating chamber. The air dispersion maintaining means referred to here is a means for preventing reaggregation of particles of the core particle powder dispersed and carried in the air and maintaining the degree of dispersion β. Further, in order to promote the highly dispersed state of the core particles thus achieved, an air dispersion promoting means can be added between the fine particle high dispersion treatment means group and the coating chamber. The aerial dispersion promoting means here is to promote redispersion of particles that are mainly reaggregated among particles of core particle powder that are dispersed and carried in the air, and slow down the dispersion state.
A means for promoting re-dispersion so that the once lowered dispersion state is restored to the original high dispersion state.

【0096】この気中分散維持手段又は気中分散促進手
段の好適な例としては、パイプ振動装置、パイプ加熱装
置、プラズマ発生装置、荷電装置等が挙げられる。
Suitable examples of the air dispersion maintaining means or the air dispersion promoting means include a pipe vibrating device, a pipe heating device, a plasma generator, a charging device and the like.

【0097】パイプ振動装置は、発振器を設置したパイ
プの振動により、気中に分散している粒子に分散機とは
言えない振動を与えることで、再凝集を抑制し高分散状
態を維持する手段又は再凝集した粒子の分散を促進する
手段である。
The pipe vibrating device is a means for suppressing re-agglomeration and maintaining a high dispersion state by vibrating the particles in the air by vibrating a pipe provided with an oscillator, which is not a dispersion machine. Alternatively, it is a means for promoting the dispersion of reaggregated particles.

【0098】パイプ加熱装置は、加熱したパイプにより
搬送気体の外側から熱を加えて搬送気体を膨張させ、分
散機とは言えないほどに流速を加速して再凝集を抑制
し、再凝集した粒子の分散を促進する手段である。
The pipe heating apparatus applies heat from the outside of the carrier gas by the heated pipe to expand the carrier gas, accelerates the flow velocity so that it cannot be called a disperser, suppresses reaggregation, and reaggregates particles. Is a means of promoting the dispersion of

【0099】プラズマ発生装置は、芯粒子粉体を分散担
持している気中にプラズマを発生させ、そのプラズマイ
オンと芯粒子との衝突により、再凝集を抑制し高分散状
態を維持する手段又は再凝集した粒子の分散を促進する
手段である。
The plasma generator is a means for generating plasma in the air carrying the core particle powder in a dispersed manner and suppressing re-aggregation by the collision of the plasma ions with the core particles to maintain a high dispersion state. It is a means of promoting the dispersion of reaggregated particles.

【0100】荷電装置は、芯粒子粉体を分散担持してい
る気中に、コロナ放電、電子ビーム、放射線等の方法で
単極イオンを発生させ、単極イオン雰囲気中を通過させ
ることで粒子を単極に帯電させ、静電気の斥力により再
凝集を抑制し高分散状態を維持する手段又は再凝集した
準微粒子の分散を促進する手段である。
The charging device generates monopolar ions in the air carrying the core particle powder by a method such as corona discharge, electron beam or radiation, and passes the particles in a monopolar ion atmosphere. Is charged monopolarly, and means for suppressing re-aggregation by repulsive force of static electricity to maintain a high dispersion state or means for promoting dispersion of re-aggregated quasi-fine particles.

【0101】このようにして形成された準微粒子の高分
散状態の芯粒子粉体の準微粒子の表面を被覆形成物質で
被覆するために被覆室に送られる。この被覆室には被覆
開始領域を含む被覆空間が設けられている。
The quasi-fine particles of the quasi-fine particles in a highly dispersed state of the quasi-fine particles thus formed are sent to the coating chamber for coating the surface of the quasi-fine particles with the coating forming substance. A coating space including a coating start area is provided in the coating chamber.

【0102】準微粒子高分散処理手段群と被覆室とは直
結することが望ましいが、搬送に不可避の中空部材及び
/又はパイプを使って接続しても良い。この場合にも、
被覆開始領域での分散度βを上記した範囲の値とするこ
とが不可欠である。
It is desirable that the quasi-fine particle high dispersion treatment means group and the coating chamber are directly connected, but they may be connected using a hollow member and / or a pipe which is inevitable for transportation. Also in this case,
It is indispensable to set the dispersion degree β in the coating start region to a value within the above range.

【0103】準微粒子高分散処理手段群と被覆室を別々
に置いてその間を連結する場合は、芯粒子粉体をその分
散状態のまま被覆室へ導入してやれば良い。そのために
は、この間に芯粒子粉体の分散状態を維持するための装
置である気中分散維持手段及び/又は分散状態を高める
ための装置である気中分散促進手段及び/又は芯粒子粉
対の粒子・気体混合物から、低分散芯粒子粉体部分を分
離し、主に単一粒子状態の粒子を含む高分散芯粒子粉体
の粒子・気体混合物を選択する高分散芯粒子粉体の粒子
・気体混合物選択手段を設けることもできる。
When the quasi-fine particle high dispersion treatment means group and the coating chamber are separately placed and connected to each other, the core particle powder may be introduced into the coating chamber in the dispersed state. For that purpose, the air dispersion maintaining means which is a device for maintaining the dispersion state of the core particle powder and / or the air dispersion promoting means which is a device for increasing the dispersion state and / or the core particle powder pair Particles of high-dispersion core particle powder that separates low-dispersion core particle powder portion from the particle-gas mixture and selects the particle / gas mixture of high-dispersion core particle powder that mainly contains particles in a single particle state -Gas mixture selection means can also be provided.

【0104】又、被覆された金属準微粒子を調製するに
際して、準微粒子高分散処理手段群が、(1)被覆室、
又は(2)被覆空間、又は(3)被覆開始領域と一部以
上空間を有することもできる。
Further, in preparing the coated metal quasi-fine particles, the quasi-fine particle high dispersion treatment means group is (1) a coating chamber,
Alternatively, (2) the coating space, or (3) the coating start region and a part or more of the space may be provided.

【0105】例えば、準微粒子高分散処理手段群中の分
散空間と被覆室とを、又は準微粒子高分散処理手段群中
の分散空間と被覆開始領域を有する被覆空間とを、又は
準微粒子高分散処理手段群中の分散空間と被覆開始領域
とを、空間的に共有することもできる。
For example, the dispersion space and the coating chamber in the quasi-fine particle high dispersion treatment means group, or the dispersion space and the coating space having the coating start region in the quasi-fine particle high dispersion treatment means group, or the quasi-fine particle high dispersion treatment. It is also possible to spatially share the dispersed space and the coating start region in the processing means group.

【0106】ここで被覆開始領域とは、芯粒子の平均粒
子径に応じて、前記分散度の分散状態で搬送された高分
散状態の芯粒子粉体に気相を経て生成する被覆形成物質
前駆体及び/又は気相状態の被覆形成物質前駆体が接触
及び/又は衝突し、被覆を開始する領域を指し、次の図
4(a)〜(e)で示される態様が考慮される。
Here, the coating start region is a precursor of a coating forming substance which is produced in the highly dispersed core particle powder conveyed in a dispersed state of the above-mentioned dispersity in a gas phase according to the average particle diameter of the core particles. The region where the coating-forming substance precursor in the body state and / or the gas phase contacts and / or collides with each other to start coating, and the modes shown in FIGS. 4 (a) to 4 (e) below are considered.

【0107】すなわち、図4(a)〜(e)において被
覆開始領域は2で示される領域である。
That is, the coating start region is the region indicated by 2 in FIGS. 4 (a) to 4 (e).

【0108】図4(a)において芯粒子の平均粒子径に
応じて、前記分散度の分散状態で被覆を始める被覆空間
の被覆開始領域2を準微粒子高分散処理手段群又は準微
粒子高分散処理手段群の放出部1を覆って設ける。
In FIG. 4 (a), the coating start region 2 of the coating space where coating is started in the dispersion state of the degree of dispersion is treated with a group of quasi-fine particle high-dispersion treatment means or quasi-fine particle high-dispersion treatment in accordance with the average particle diameter of the core particles. The discharge part 1 of the means group is provided so as to cover the discharge part 1.

【0109】図4(b)において準微粒子高分散処理手
段群又は準微粒子高分散処理手段群の放出部1から放出
される芯粒子粉体の粒子4が全て通る前記分散度の分散
状態で被覆を始める被覆空間の被覆開始領域2を設け
る。上記の構成により、全ての芯粒子粉体の粒子は上記
した分散度βで被覆が始められる。
In FIG. 4 (b), coating is carried out in a dispersed state of the above-mentioned dispersity through which all particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion treatment means group or the quasi-fine particle high dispersion treatment means group pass. The coating start region 2 of the coating space for starting is provided. With the above structure, all the particles of the core particle powder can be coated with the above-described dispersity β.

【0110】図4(c)において準微粒子高分散処理手
段群又は準微粒子高分散処理手段群の放出部1から放出
される芯粒子粉体の粒子4の内、回収部5に入る準微粒
子は必ず通過する前記分散度の分散状態で被覆を始める
被覆空間の被覆開始領域2を設ける。
In FIG. 4C, among the particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion treatment means group or the quasi-fine particle high dispersion treatment means group, the quasi-fine particles entering the recovery part 5 are The coating start region 2 of the coating space in which coating is started in the dispersion state of the above-mentioned dispersion degree which is surely passed is provided.

【0111】図4(d)において回収部5を囲む前記分
散度の分散状態で被覆を始める被覆空間の被覆開始領域
2を設ける。図4(e)において高分散芯粒子粉体の粒
子・気体混合物の粒子のみが到達可能な位置に回収部5
を設ける。従って、ここでの領域6は重力を利用した選
択手段となる。回収部に入る高分散芯粒子粉体の粒子・
気体混合物の粒子が、必ず通過する前記分散度の分散状
態で被覆を始める被覆空間の被覆開始領域2を図の斜線
部のように設ける。
In FIG. 4 (d), the coating start region 2 of the coating space that surrounds the recovery section 5 and starts coating in the dispersion state of the dispersion degree is provided. In FIG. 4 (e), the recovery unit 5 is placed at a position where only the particles of the highly dispersed core particle powder and the particles of the gas mixture can reach.
To provide. Therefore, the area 6 here is a selecting means utilizing gravity. Particles of highly dispersed core particles powder that enters the collection section
The coating start region 2 of the coating space in which the particles of the gas mixture always pass through in a dispersed state of the above-described degree of dispersion is provided as shown by the hatched portion in the figure.

【0112】前記分散度βの分散状態で被覆始めた芯粒
子のみ回収でき、被覆開始領域を通っていない芯粒子と
被覆開始領域を通過した被覆された準微粒子とは混ざる
ことはない。
Only core particles that have begun to be coated in the dispersed state of the degree of dispersion β can be recovered, and core particles that have not passed through the coating start region and coated quasi-fine particles that have passed through the coating start region do not mix.

【0113】上記したところから、被覆された金属準微
粒子を製造するための装置は、準微粒子高分散処理手段
群と被覆室と回収手段から構成されるものであるが、こ
れらの装置の構成要素は、種々の組み合わせ方をするこ
とが可能で、これらの装置の構成例を図面に基づいて説
明すると次のとおりである。
From the above, an apparatus for producing coated metal quasi-fine particles comprises a group of quasi-fine particle high dispersion treatment means, a coating chamber and a recovery means. Can be combined in various ways, and the configuration examples of these devices will be described below with reference to the drawings.

【0114】装置の構成1 図5(a)は、被覆された金属準微粒子を製造するため
の第一の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、回収手段2−Dか
ら構成されている。準微粒子高分散処理手段群2−C1
は、被覆室2−B1に直結してある。
Apparatus Configuration 1 FIG. 5A is a block diagram illustrating the configuration of a first apparatus for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
It comprises a quasi-fine particle high dispersion treatment means group 2-C1 and a collection means 2-D. Semi-fine particle high dispersion treatment means group 2-C1
Is directly connected to the coating chamber 2-B1.

【0115】装置の構成2 図5(b)は、被覆された金属準微粒子を製造するため
の第二の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、不可避の中空部材
2−C2、回収手段2−Dから構成されている。準微粒
子高分散処理手段群2−C1は、被覆室2−B1に不可
避の中空部材2−C2を介して接続してある。
Apparatus Configuration 2 FIG. 5B is a block diagram illustrating the configuration of a second apparatus for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
It comprises a quasi-fine particle high dispersion treatment means group 2-C1, an unavoidable hollow member 2-C2, and a collection means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is connected to the coating chamber 2-B1 via an unavoidable hollow member 2-C2.

【0116】装置の構成3 図5(c)は、被覆された金属準微粒子を製造するため
の第三の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、気中分散維持手段
2−C3、回収手段2−Dから構成されている。準微粒
子高分散処理手段群2−C1は、被覆室2−B1に気中
分散維持手段2−C3を介して接続してある。
Apparatus Configuration 3 FIG. 5C is a block diagram illustrating the configuration of a third apparatus for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
It comprises a group of quasi-fine particle high dispersion treatment means 2-C1, an air dispersion maintaining means 2-C3, and a collecting means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is connected to the coating chamber 2-B1 via the air dispersion maintaining means 2-C3.

【0117】装置の構成4 図5(d)は、被覆された金属準微粒子を製造するため
の第四の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、回収手段2−Dか
ら構成されている。準微粒子高分散処理手段群2−C1
は、被覆室2−B1と空間を共有している。
Apparatus Configuration 4 FIG. 5D is a block diagram illustrating the configuration of a fourth apparatus for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
It comprises a quasi-fine particle high dispersion treatment means group 2-C1 and a collection means 2-D. Semi-fine particle high dispersion treatment means group 2-C1
Shares a space with the coating chamber 2-B1.

【0118】装置の構成5 図5(e)は、被覆された金属準微粒子を製造するため
の第五の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、回収手段2−Dか
ら構成されている。準微粒子高分散処理手段群2−C1
は、被覆室2−B1中に設けている。
Device Configuration 5 FIG. 5 (e) is a block diagram illustrating the configuration of a fifth device for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
It comprises a quasi-fine particle high dispersion treatment means group 2-C1 and a collection means 2-D. Semi-fine particle high dispersion treatment means group 2-C1
Is provided in the coating chamber 2-B1.

【0119】装置の構成6 図5(f)は、被覆された金属準微粒子を製造するため
の第六の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、回収手段2−Dか
ら構成されている。準微粒子高分散処理手段群2−C1
の分散空間中に、被覆室2−B1を設けている。
Apparatus Configuration 6 FIG. 5 (f) is a block diagram illustrating the configuration of a sixth apparatus for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
It comprises a quasi-fine particle high dispersion treatment means group 2-C1 and a collection means 2-D. Semi-fine particle high dispersion treatment means group 2-C1
The coating chamber 2-B1 is provided in the dispersion space.

【0120】装置の構成7 図5(g)は、被覆された金属準微粒子を製造するため
の第七の装置の構成を説明するブロック図である。本例
のこの装置は、被覆装置の製造装置本体2−A、被覆室
2−B1、被覆空間2−B2、被覆開始領域2−B3、
準微粒子高分散処理手段群2−C1、回収手段2−D、
再被覆供給手段2−Eから構成されている。回収手段2
−Dから被覆後の被覆準微粒子を高分散処理手段群2−
C1の再被覆供給手段2−Eにより搬送して、繰り返し
て被覆処理が行える。かかる構成の装置のいずれかによ
り、被覆された金属準微粒子が製造されるものである。
Apparatus Configuration 7 FIG. 5 (g) is a block diagram illustrating the configuration of a seventh apparatus for producing coated metal quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3,
Semi-fine particle high dispersion treatment means group 2-C1, recovery means 2-D,
It is composed of recoating and supplying means 2-E. Collection means 2
High-dispersion processing means group 2-
It can be conveyed by the re-coating supply means 2-E of C1 and can be repeatedly coated. The coated metal quasi-fine particles are produced by any of the apparatuses having such a configuration.

【0121】上記のようにして金属準微粒子で芯粒子粉
体を被覆形成物質で被覆を施した被覆された準微粒子に
ついて、再び被覆形成物質で被覆すること、又はこの再
被覆を反復することもできる。この場合、被覆された準
微粒子は再被覆供給手段に送られる。ここで再被覆供給
手段とは、再被覆を行うために被覆後の被覆された準微
粒子を準微粒子高分散処理手段群へ搬送する手段をい
う。具体的には、(a)被覆された準微粒子の回収する
回収手段、及び(b)回収手段から準微粒子高分散処理
手段群にこの被覆された準微粒子を搬送する被覆粒子搬
送手段を備えた手段である。又は、(a)被覆された準
微粒子を回収する回収手段、(b)この回収手段から準
微粒子高分散処理手段群に被覆された準微粒子を搬送す
る被覆粒子搬送手段、(c)及び被覆後の被覆された準
微粒子を分級する被覆粒子分級手段を備えた手段であ
る。被覆量が多い場合、被覆前の芯粒子粉体の粒子の粒
度分布と被覆後の被覆された準微粒子の粒度分布は変わ
ってしまう。そこで、被覆後の被覆された準微粒子の粒
度分布を被覆粒子分級手段により調整し、再被覆処理を
行えば効果的である。
The coated quasi-fine particles obtained by coating the core particle powder with the metal quasi-fine particles as described above with the coating-forming substance may be coated with the coating-forming substance again, or this re-coating may be repeated. it can. In this case, the coated quasi-fine particles are sent to the recoating supply means. Here, the re-coating supply means means for transporting the coated quasi-fine particles after coating to the quasi-fine particle high dispersion treatment means group for performing re-coating. Specifically, (a) a collecting means for collecting the coated quasi-fine particles, and (b) a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion treatment means group. It is a means. Alternatively, (a) a collecting means for collecting the coated quasi-fine particles, (b) a coated particle conveying means for conveying the quasi-fine particles coated with the quasi-fine particle high dispersion treatment means group from this collecting means, (c) and after coating Is a means provided with a coated particle classification means for classifying the coated quasi-fine particles. When the coating amount is large, the particle size distribution of the core particle powder before coating and the particle size distribution of the coated quasi-fine particles after coating change. Therefore, it is effective to adjust the particle size distribution of the coated quasi-fine particles after coating by the coated particle classification means and perform recoating treatment.

【0122】この再被覆処理は、必要によって繰り返す
ことができ、そして被覆形成物質の被覆量を所望のもの
に設定することができる。更に、この被覆形成物質の種
類を変えてこの被覆処理を繰り返すことができ、このよ
うにして複数成分の物質を被覆形成物質として多重被覆
することもできる。
This recoating process can be repeated if necessary, and the coating amount of the coating forming substance can be set to a desired value. Further, this coating treatment can be repeated by changing the type of the coating forming substance, and in this way, it is also possible to multiply coat a substance of a plurality of components as a coating forming substance.

【0123】本発明で用いる被覆された準微粒子の製造
装置は、被覆形成物質が、気相を経る気相法によって、
芯粒子粉体の粒子表面に被覆が施される被覆された準微
粒子の製造装置であれば制限はない。例えば、化学蒸着
(CVD)装置としては、熱CVD装置、プラズマCV
D装置、電磁波を利用したCVD(可視光線CVD、レ
ーザCVD、紫外線CVD、赤外線CVD、遠赤外線C
VD)装置、MOCVD装置等、或いは、物理蒸着(P
VD)装置としては、真空蒸着装置、イオンスパッタリ
ング装置、イオンプレーティング装置等が適用可能であ
る。より具体的には、例えば特開平3−75302号公
報の超微粒子で表面が被覆された粒子及びその製造方法
に記載の被覆粒子製造装置が好適である。
In the apparatus for producing coated quasi-fine particles used in the present invention, the coating forming substance is subjected to a vapor phase method by a vapor phase method.
There is no limitation as long as it is an apparatus for producing coated quasi-fine particles in which the particle surface of the core particle powder is coated. For example, as a chemical vapor deposition (CVD) device, a thermal CVD device, plasma CV
D device, CVD using electromagnetic waves (visible light CVD, laser CVD, ultraviolet CVD, infrared CVD, far infrared C
VD) equipment, MOCVD equipment, or physical vapor deposition (P
As the VD) device, a vacuum vapor deposition device, an ion sputtering device, an ion plating device, or the like can be applied. More specifically, for example, a particle whose surface is coated with ultrafine particles disclosed in JP-A-3-75302 and a coated particle manufacturing apparatus described in the manufacturing method thereof are suitable.

【0124】以上述べたとおり、本発明では金属の準微
粒子からなる芯粒子粉体、又は主に準微粒子からなる芯
粒子粉体の粒子を被覆空間に投入し、気相を経て生成す
る被覆形成物質前駆体及び/又は気相状態の被覆形成物
質前駆体をこの芯粒子粉体の粒子に接触及び/又は衝突
させてこの芯粒子粉体の粒子の表面を被覆形成物質で被
覆して被覆された金属準微粒子が製造されるが、この準
微粒子からなる芯粒子を被覆するための基本的な工程を
要約するとつぎの通りである。
As described above, according to the present invention, a core particle powder composed of metal quasi-fine particles, or particles of core particle powder mainly composed of quasi-fine particles are charged into the coating space, and a coating is formed through the gas phase. The precursor of the substance and / or the precursor of the coating substance in the gas phase are brought into contact with and / or collide with the particles of the powder of the core particle to coat the surface of the particle of the powder of the core particle with the coating material. Metal quasi-fine particles are produced, and the basic process for coating the core particles composed of these quasi-fine particles is summarized as follows.

【0125】I (A) 準微粒子高分散処理手段群により、体積基準頻
度分布で平均粒子径が10μmを越える準微粒子芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とする分散工程、(B) この分
散工程で分散させた高分散芯粒子粉体の粒子・気体混合
物の芯粒子粉体の粒子を、分散度βを上記した範囲の値
とする分散状態で、被覆空間の被覆開始領域において被
覆形成物質前駆体と接触及び/又は衝突させて被覆を開
始する被覆工程、を設けた被覆法。
I (A) Particles of a quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in a volume-based frequency distribution or a core particle powder mainly composed of quasi-fine particles by a group of means for highly dispersing quasi-fine particles Dispersing step of dispersing particles of particle powder in air to obtain a particle / gas mixture of highly dispersed core particle powder, (B) Particle / gas mixture of highly dispersed core particle powder dispersed in this dispersing step Coating step of starting the coating by contacting and / or colliding the particles of the core particle powder with the coating forming material precursor in the coating starting region of the coating space in a dispersed state in which the dispersity β is a value in the above range. , The coating method provided.

【0126】II (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを粒子径に
応じて上記した範囲の値とすることを実現する準微粒子
高分散処理手段群により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とする分散工程、(B) この
分散工程で分散させた高分散芯粒子粉体の粒子・気体混
合物の芯粒子粉体の粒子を、分散度βを上記した範囲の
値とする分散状態で、被覆空間の被覆開始領域において
被覆形成物質前駆体と接触及び/又は衝突させて被覆を
開始する被覆工程、を設けた被覆法。
II (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles Quasi-fine particles that realize the degree of dispersion β of the particles of the highly dispersed core particle powder / gas mixture core particle powder dispersed by the high dispersion treatment means group in the range described above according to the particle diameter. A dispersion step of dispersing in air by a high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, (B) a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step A coating step of starting the coating by contacting and / or colliding with the particles of the core particle powder in a dispersion state in which the degree of dispersion β is a value in the above range, in the coating start region of the coating space, and / or colliding with the coating material precursor. The coating method provided with.

【0127】III (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する微粒子高分散処理手段群
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とする分散工程、(B) この分散工程で分散さ
せた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体
の粒子を、被覆工程に直接搬送する搬送工程、(C)
この搬送工程で搬送した高分散芯粒子粉体の粒子・気体
混合物の芯粒子粉体の粒子を、分散度βを上記した範囲
の値とする分散状態で、被覆空間の被覆開始領域におい
て被覆形成物質前駆体と接触及び/又は衝突させて被覆
を開始する被覆工程、を設けた被覆法。
III (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles By means of a group of fine particle high-dispersion processing means for realizing the dispersion degree β of the particles of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above-mentioned range Dispersing step of dispersing in air to form particles / gas mixture of highly dispersed core particle powder, (B) Particles of highly dispersed core particle powder / particles of core particle powder of gas mixture dispersed in this dispersing step Transporting step for directly transporting (C) to the coating step
Forming coating in the coating start region of the coating space in a dispersed state in which the degree of dispersion β is in the above range of values, the particles of the highly dispersed core particle powder and the particles of the core particle powder of the gas mixture transported in this transportation step A coating method including a coating step of contacting and / or colliding with a substance precursor to start coating.

【0128】IV (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、搬送に不可避の、中空部材、中空を形成す
る部材からなる中空部材、及びパイプから選択される1
種類又はそれ以上の部材を介して搬送する搬送工程、
(C) この搬送工程で搬送した高分散芯粒子粉体の粒
子・気体混合物の芯粒子粉体の粒子を、分散度βを上記
した範囲の値とする分散状態で、被覆空間の被覆開始領
域において被覆形成物質前駆体と接触及び/又は衝突さ
せて被覆を開始する被覆工程、を設けた被覆法。
IV (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step 1 is selected from a hollow member, a hollow member made of a member forming a hollow, and a pipe, which are inevitable for transportation of particles.
A transporting process that transports through various types or more members,
(C) The coating start region of the coating space in the dispersed state in which the particles of the highly dispersed core particle powder and the core particle powder of the gas mixture of the gas mixture transported in this transportation step have the dispersity β within the above range. In the coating method, the coating step of contacting and / or colliding with the coating material precursor to start coating is performed.

【0129】V (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、この分散性能で気中に分散させた高分散芯
粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の気中
分散状態を維持する気中分散維持手段、高分散芯粒子粉
体の粒子・気体混合物の芯粒子粉体の粒子の気中分散状
態を高める気中分散促進手段、芯粒子粉体の粒子と気体
との混合物において低分散芯粒子粉体の粒子・気体混合
物を分離し、芯粒子粉体の粒子が主に単一粒子状態で気
中に存在する高分散芯粒子粉体の粒子・気体混合物を選
択する高分散芯粒子粉体の粒子・気体混合物選択手段の
1種類又はそれ以上を介して被覆工程に搬送する搬送工
程、(C) この搬送工程で搬送した高分散芯粒子粉体
の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを
上記した範囲の値とする分散状態で、被覆空間の被覆開
始領域において被覆形成物質前駆体と接触及び/又は衝
突させて被覆を開始する被覆工程、を設けた被覆法。
V (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step High-dispersion core particle powder, which is an air-dispersion maintaining means for maintaining the air-dispersed state of particles of highly dispersed core particle powder / gas mixture core particle powder in which particles are dispersed in the air with this dispersion performance. Core particles of body particles / gas mixture In the air dispersion promoting means, the low-dispersion core-particle powder particles / gas mixture is separated in the mixture of the core-particle powder particles and the gas, and the core-particle powder particles are mainly dispersed in a single-particle state. A conveying step of conveying the particles / gas mixture of the highly dispersed core particle powder present therein to the coating step via one or more particles / gas mixture selecting means of the highly dispersed core particle powder, (C ) Coating the particles of the highly dispersed core particle powder / particles of the gas mixture core particle powder transported in this transportation step in the coating start region of the coating space in a dispersed state with the degree of dispersion β within the above range. A coating method, which comprises a coating step of contacting and / or colliding with a forming substance precursor to start coating.

【0130】以上、I〜Vの全てにおいて、好適には、
体積基準頻度分布で平均粒子径が10μmを越える準微
粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子
粉体の粒子を、準微粒子高分散処理手段群により分散さ
せた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体
の粒子の分散度βを上記した範囲の値とすることを実現
する空間領域の内の、高分散芯粒子粉体の粒子・気体混
合物中の芯粒子粉体の粒子の全ての粒子が通過する面を
含む空間領域に、被覆空間の被覆開始領域を位置させる
か、又は、体積基準頻度分布で平均粒子径が10μmを
越える準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子を、準微粒子高分散処理手段群に
より分散させた高分散芯粒子粉体の粒子・気体混合物の
芯粒子粉体の粒子の分散度βを上記した範囲の値とする
ことを実現する空間領域の内の、回収手段の回収部に回
収する全ての粒子が通過する面を含む空間領域に、被覆
空間の被覆開始領域を位置させるか、又は、前記I及び
IIにおいて、体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子を、準微粒子高分散処理手段群
により分散させた高分散芯粒子粉体の粒子・気体混合物
の芯粒子粉体の粒子の分散度βを上記した範囲の値とす
ることを実現する準微粒子高分散処理手段群により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物とす
る分散工程の一部以上と前記被覆工程の一部以上とを、
空間を一部以上共有して行うものである。
In all of the above I to V, it is preferable that
Highly dispersed core particles obtained by dispersing particles of quasi-fine particle core particle powder having a volume-based frequency distribution of more than 10 μm or particles of core particle powder mainly composed of quasi-fine particles by a quasi-fine particle high dispersion treatment means group. Core particles of powder particles / gas mixture Core particles of highly dispersed core particles powder / gas mixture in the space region that realizes the degree of dispersion β of powder particles within the above range. The coating start region of the coating space is located in the space region including the surface through which all the particles of the particle powder pass, or the quasi-fine particle core particle powder whose average particle size exceeds 10 μm in the volume-based frequency distribution Particles or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by means of a quasi-fine particle high dispersion treatment means group. A space that realizes that Of the band, in the space region including a surface all particles passing through the recovery in the recovery of the recovery means, or to position the coating start region of the coating space, or the I and
In II, the volume-based frequency distribution has an average particle size of 10 μm
Particles of a highly dispersed core particle powder in which particles of a quasi-fine particle core particle powder or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by a quasi-fine particle high dispersion treatment means group In the dispersion step of dispersing the particles in the air into a particle / gas mixture of highly dispersed core particles powder by a quasi-fine particle high-dispersion treatment means group that realizes the degree of dispersion β of the particles of the powder within the range described above. Part or more and part or more of the coating step,
This is done by sharing a part or more of the space.

【0131】本発明によれば、上記のようにして得られ
た被覆された金属準微粒子は金属粒子焼結のための慣用
の圧力および温度で焼結されて金属基の焼結体とされ
る。
According to the present invention, the coated metal quasi-fine particles obtained as described above are sintered at a pressure and temperature which are commonly used for sintering metal particles to obtain a metal-based sintered body. .

【0132】本発明で用いる被覆された金属準微粒子
は、上記したように気相法によりその表面を被覆するの
で基本的に被覆形成物質に制限はない。金属基焼結体
を、用途に応じて任意に材料設計する上で必要に応じ
て、被覆を施す前に、金属準微粒子表面に事前に、同種
及び/又は異種の被覆形成物質を同種及び/又は異種の
被覆方法により被覆を施してもよい。
Since the coated metal quasi-fine particles used in the present invention coat the surface thereof by the vapor phase method as described above, there is basically no limitation on the coating forming substance. If desired, in designing the material of the metal-based sintered body depending on the application, the same kind and / or different kinds of coating forming substances may be formed in advance on the surface of the metal quasi-fine particles before coating. Alternatively, the coating may be applied by a different coating method.

【0133】例えば、金属準微粒子表面に、目的とする
金属の炭化物からなる被覆を形成する場合、事前に炭素
の被覆を施した被覆された金属準微粒子を使用すればよ
い。事前に物質を被覆する方法は、特に制限するもので
はないが、例えば、特開平2−252660号公報に記
載の溶融塩浸漬法を始め、電気メッキ法、無電解メッキ
法、クラッド法、物理蒸着法(スパッタリング法、イオ
ンプレーティング法等)や化学蒸着法が好適である。目
的とする金属化合物の金属の種類は、本発明の結合材及
び/又は焼結助剤として適用可能の範囲であれば特に制
限されない。
For example, when a coating made of a carbide of a target metal is formed on the surface of metal quasi-fine particles, coated metal quasi-fine particles coated with carbon in advance may be used. The method of coating the substance in advance is not particularly limited, and examples thereof include a molten salt dipping method described in JP-A-2-252660, an electroplating method, an electroless plating method, a clad method, and physical vapor deposition. A method (sputtering method, ion plating method, etc.) or a chemical vapor deposition method is suitable. The type of metal of the target metal compound is not particularly limited as long as it is a range applicable as the binder and / or the sintering aid of the present invention.

【0134】前記、被覆された金属準微粒子は、被覆さ
れた準微粒子の被覆形成物質を介して、接触状態で集合
塊を形成する場合がある。この被覆された金属準微粒子
からなる粉体は、単一粒子状態の被覆された状微粒子
と、この単一粒子状態の被覆された準微粒子が数個から
数十個接触した集合塊、更に多数個の単一粒子状態の被
覆された準微粒子が接触した集合塊から構成され、その
形状及び大きさが不均一で不規則になる。この単一粒子
状態の被覆された準微粒子からなる集合塊は、解砕及び
/又は破砕してから成形又は焼結処理に供するのが好ま
しい。この被覆された金属準微粒子の集合塊の解砕及び
/又は破砕には、種々の解砕手段、例えば、ボールミ
ル、振動ボールミル、乳鉢、ジェットミル等が利用可能
である。また、単一粒子状態の被覆された準微粒子と、
この単一粒子状態の被覆された準微粒子の集合塊とを選
択分離して、単一粒子状態の被覆された準微粒子のみを
成形又は焼結処理に供してもよい。
The coated metal quasi-fine particles may form aggregates in a contact state through the coating forming substance of the coated quasi-fine particles. The powder composed of the coated metal quasi-fine particles is composed of the coated fine particles in the state of a single particle and the aggregated particles in which the coated quasi-fine particles in the state of a single particle are in contact with each other from several to several tens. It is composed of agglomerates in which individual coated quasi-fine particles in contact with each other are in a nonuniform and irregular shape and size. It is preferable that the aggregated mass of the coated quasi-fine particles in a single particle state is crushed and / or crushed before being subjected to molding or sintering treatment. Various crushing means, such as a ball mill, a vibrating ball mill, a mortar, and a jet mill, can be used for crushing and / or crushing the coated aggregate of metal quasi-fine particles. Also, coated quasi-fine particles in a single particle state,
The aggregate of coated quasi-fine particles in the single particle state may be selectively separated, and only the coated quasi-fine particles in the single particle state may be subjected to molding or sintering treatment.

【0135】金属基焼結体 本発明の金属基焼結体は、被覆された金属準微粒子又は
被覆された金属準微粒子を含む混合物を焼結することに
より製造される。この金属基焼結体は、被覆された金属
準微粒子又は被覆された金属準微粒子を含む混合物を、
好ましくは射出成形、型押し、泥漿鋳込み、熱間押し出
し、冷間押し出し等の選択される一種以上で成形され
る。こうして成形された被覆された金属準微粒子又は被
覆された金属準微粒子を含む混合物は、射出成形、型押
し、熱間押し出し、冷間押し出し等の成形後、必要に応
じて塑性加工、鍛造加工、切削加工等の二次の成形を行
うことができる。或いは予備焼結を施して仮焼結体と
し、これを更に加工した後、本焼結に供することもでき
る。
Metal-Based Sintered Body The metal-based sintered body of the present invention is produced by sintering coated metal quasi-fine particles or a mixture containing the coated metal quasi-fine particles. This metal-based sintered body, coated metal quasi-fine particles or a mixture containing coated metal quasi-fine particles,
It is preferably molded by one or more selected from injection molding, embossing, slurry casting, hot extrusion, cold extrusion and the like. A mixture containing the coated metal quasi-fine particles or the coated metal quasi-fine particles thus molded, injection molding, embossing, hot extrusion, after cold extrusion and the like, plastic working, forging, if necessary, Secondary molding such as cutting can be performed. Alternatively, pre-sintering may be performed to obtain a temporary sintered body, which is further processed and then subjected to main sintering.

【0136】この成形されてなる被覆された金属準微粒
子又は被覆された金属準微粒子を含む混合物は、従来公
知の焼結法により焼結される。具体的には真空真空法又
は雰囲気焼結法、又はホットプレス(HP)法、カプセ
ルHIP法、擬HIP法、カプセル・フリーHIP法、
カプセル超高圧HIP法、カプセル・フリー超高圧HI
P法、超高圧焼結法等の一種以上で焼結される。この焼
結法の一例としてHP法について述べると、先ず、金属
準微粒子表面に被覆形成物質で被覆を施した被覆された
金属準微粒子を、HP装置のSiC製の型に入れてパン
チをセットする。10-3torrの脱気を数回繰り返す。そ
の後Arガスを流しながら加圧し、所定の焼結温度まで
加熱して所定時間、圧力、温度を保持して焼結する。し
かる後、炉冷し、圧力を開放して、焼結体を取り出すこ
とからなる。
The formed coated metal quasi-fine particles or the mixture containing the coated metal quasi-fine particles is sintered by a conventionally known sintering method. Specifically, a vacuum vacuum method or an atmosphere sintering method, a hot press (HP) method, a capsule HIP method, a pseudo HIP method, a capsule-free HIP method,
Capsule ultra-high pressure HIP method, capsule-free ultra-high pressure HI
It is sintered by one or more of P method, ultra high pressure sintering method and the like. The HP method will be described as an example of the sintering method. First, the metal quasi-fine particles coated with the coating forming substance on the surface of the metal quasi-fine particles are put into a SiC mold of an HP apparatus and a punch is set. . Repeat degassing at 10 -3 torr several times. Thereafter, pressure is applied while flowing Ar gas, heating is performed to a predetermined sintering temperature, and sintering is performed while maintaining the pressure and temperature for a predetermined time. After that, the furnace is cooled, the pressure is released, and the sintered body is taken out.

【0137】焼結温度は使用する個々の金属によって異
なり、例えばアルミニウムの400°程度の温度からタ
ングステンの2000℃又はそれ以上に至る温度が使用
される。
The sintering temperature varies depending on the individual metal used, and for example, a temperature of about 400 ° of aluminum to 2000 ° C. or higher of tungsten is used.

【0138】或いはまた上記した成形を行うことなく、
ホットプレスを用いて焼結と成形を同時に行うこともで
きる。このようにして、結合材及び/又は焼結助剤の分
布が制御された、均一で緻密で、高度に制御された微組
織を有する、特徴的な被覆された金属準微粒子から構成
された高性能な金属基焼結体を得る。
Alternatively, without performing the above-mentioned molding,
It is also possible to perform sintering and molding simultaneously using a hot press. In this way, a high-grade composed of characteristically coated metal quasi-fine particles having a uniform, dense and highly controlled microstructure with a controlled distribution of binder and / or sintering aids. A high-performance metal-based sintered body is obtained.

【0139】[0139]

【実施例】以下、本発明を実施例によって更に詳細に説
明する。 実施例1 平均粒子径DMが40μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)のTiAl金属間化
合物の準微粒子をチタン金属の硼化物である硼化チタン
(TiB2)で被覆した。使用した装置は、図6及びそ
の部分拡大図である図7に示したものである、図5
(a)に示した構成の具体例である。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 The quasi-fine particles of TiAl intermetallic compound having an average particle diameter D M of 40 μm and a volume-based frequency distribution of ([D M / 5,5D M ], ≧ 90%) were borated as titanium metal boride. Coated with titanium (TiB 2 ). The apparatus used is that shown in FIG. 6 and FIG. 7 which is a partially enlarged view thereof.
It is a specific example of the configuration shown in FIG.

【0140】本例の装置は、プラズマトーチ3−A、プ
ラズマ室3−a、被覆形成物質前駆体生成室の冷却槽3
−B、被覆形成物質前駆体生成室3−b、狭義の被覆室
冷却室3−C、狭義の被覆室3−c、被覆準微粒子冷却
室の冷却槽3−D、被覆準微粒子冷却室3−d、被覆形
成物質の原料の供給側に、供給装置3−E1、芯粒子粉
体の供給側に、撹拌式分散機3−F1とエジェクター式
分散機3−H1、細管分散機107及び被覆準微粒子回
収部3−Gより成る。供給装置3−E1は被覆形成物質
の原料粉体の供給槽を備えた供給機112に、撹拌式分
散機3−F1は芯粒子粉体の供給槽を備えた供給機11
1にそれぞれ結合される。本例における被覆室は、定義
ではプラズマ室3−a、被覆形成物質前駆体生成室3−
b、狭義の被覆室3−c、被覆粒子冷却室3−dから構
成されており、ここではこれらを広義の被覆室と称す
る。この広義の被覆室の内、主に被覆処理の行われる室
3−cを狭義の被覆室と称する。
The apparatus of this example comprises a plasma torch 3-A, a plasma chamber 3-a, and a cooling tank 3 for the coating-formation-material precursor production chamber.
-B, coating forming substance precursor generation chamber 3-b, narrowly-defined coating chamber cooling chamber 3-C, narrowly-defined coating chamber 3-c, coating quasi-fine particle cooling chamber cooling tank 3-D, coating quasi-fine particle cooling chamber 3 -D, a supply device 3-E1 on the supply side of the raw material of the coating forming material, a stirring type dispersion machine 3-F1 and an ejector type dispersion machine 3-H1, a capillary tube dispersion machine 107 and a coating on the supply side of the core particle powder. The quasi-fine particle recovery unit 3-G. The feeder 3-E1 is a feeder 112 provided with a feed tank for the raw material powder of the coating forming substance, and the agitation disperser 3-F1 is a feeder 11 provided with a feed tank for the core particle powder.
1 respectively. By definition, the coating chamber in this example is a plasma chamber 3-a and a coating-former precursor-generating chamber 3-a.
b, a coating chamber 3-c in a narrow sense, and a coating particle cooling chamber 3-d, which are referred to as a coating chamber in a broad sense. Of the coating chambers in this broad sense, the chamber 3-c in which the coating process is mainly performed is called the coating chamber in the narrow sense.

【0141】本例における準微粒子高分散処理手段群α
は、供給槽を備えた供給機111、撹拌式分散機3−F
1とエジェクター式分散機3−H1及び内径4mmのス
テンレス製細管分散機107で構成されており、図2
(a)に示したものであり、図3(b)に示した構成に
属するの準微粒子高分散処理手段群の具体例である。準
微粒子高分散処理手段群は、D=40μmの(〔D
/5,5D〕,≧90%〕の芯粒子粉体に対して出力
時β≧90%を実現できるように構成されている。準微
粒子高分散処理手段群の最終処理手段である細管107
は被覆室3−cに直結してあり、被覆空間の3−L2の
被覆開始領域3−L1においてβ≧90%を実現できる
ように構成されている。
Semi-fine particle high dispersion treatment means group α in this example
Is a feeder 111 having a feed tank, a stirring type dispersing machine 3-F
1 and an ejector type disperser 3-H1 and a stainless steel capillary disperser 107 having an inner diameter of 4 mm.
FIG. 3A is a specific example of the quasi-fine particle high dispersion treatment means group belonging to the configuration shown in FIG. 3B. The quasi-fine particle high dispersion treatment means group has a D M = 40 μm ([D M
/ 5,5D M ], ≧ 90%], and β ≧ 90% at the time of output can be realized. Capillary tube 107 which is the final processing means of the quasi-fine particle high dispersion processing means group
Is directly connected to the coating chamber 3-c and is configured so that β ≧ 90% can be realized in the coating start region 3-L1 of the coating space 3-L2.

【0142】プラズマトーチ3−Aの上部に設けられた
ガス噴出口101に供給源102からアルゴンガスを2
0リットル/分の割合で供給する。このアルゴンガスは
印加された高周波によってプラズマ化され、プラズマト
ーチ3−A内プラズマ室3−aでプラズマ焔を形成す
る。
Argon gas was supplied from the supply source 102 to the gas jet port 101 provided on the upper portion of the plasma torch 3-A.
Supply at a rate of 0 liters / minute. The argon gas is turned into plasma by the applied high frequency, and forms a plasma flame in the plasma chamber 3-a in the plasma torch 3-A.

【0143】被覆形成物質の原料の供給槽を備えた供給
機112から供給した被覆形成物質の原料である平均粒
子径2μmの硼化チタンの粉末は、5リットル/分のキ
ャリアガス103に担持されて、プラズマトーチ3−A
の下部に設けられた被覆形成物質の原料の投入口104
から、プラズマ焔中に0.2g/分の割合で導入され、
プラズマ焔の熱により蒸発して気相を経て、被覆形成物
質前駆体生成室3−bで被覆形成物質前駆体となる。
Titanium boride powder having an average particle diameter of 2 μm, which is the raw material of the coating forming substance, supplied from a feeder 112 equipped with a supply tank of the raw material of the coating forming substance is carried on a carrier gas 103 of 5 liter / min. Plasma torch 3-A
Feeding port 104 for the raw material of the coating forming material provided in the lower part of the
Therefore, it was introduced into the plasma flame at a rate of 0.2 g / min,
It evaporates due to the heat of the plasma flame, passes through the gas phase, and becomes a coating material precursor in the coating material precursor production chamber 3-b.

【0144】芯粒子粉体の供給槽を備えた供給機111
から2.0g/分で供給される平均粒子径40μmのT
iAl金属間化合物の芯粒子を、撹拌式分散機3−F1
により分散させ、5リットル/分の割合で供給されるキ
ャリアガス105により担持され、10リットル/分の
流量の分散ガス106によるエジェクター式分散機3−
H1及び細管分散機107により分散度β=94%の分
散状態に分散させ、被覆室に導入する。
Feeder 111 equipped with a supply tank for core particle powder
From the average particle size of 40 μm supplied at 2.0 g / min
The core particles of the iAl intermetallic compound were mixed with a stirring type dispersing machine 3-F1.
Is carried out by the carrier gas 105 supplied at a rate of 5 liters / minute, and is ejected by the dispersion gas 106 at a flow rate of 10 liters / minute.
It is dispersed in a dispersed state with a degree of dispersion β = 94% by H1 and a narrow tube disperser 107, and introduced into the coating chamber.

【0145】高分散状態のTiAl準微粒子は、被覆空
間の3−L2の被覆開始領域3−L1において被覆形成
物質前駆体とβ=94%の分散状態で接触及び/又は衝
突し始める。
The TiAl quasi-fine particles in a highly dispersed state start to contact and / or collide with the coating forming material precursor in a dispersed state of β = 94% in the coating start region 3-L1 of 3-L2 in the coating space.

【0146】このようにして生成した。前記被覆形成物
質で表面が被覆が施された被覆された準微粒子は、気体
と共に被覆準微粒子冷却室3−dを降下し、被覆準微粒
子回収部3−Gに至る。この被覆準微粒子からなる製品
は、フィルター110により気体と分離し、集められ取
り出される。
It was generated in this way. The coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 3-d and reaches the coated quasi-fine particle recovery unit 3-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 110, collected, and taken out.

【0147】得られた被覆された準微粒子である、硼化
チタンで表面に被覆を施したTiAl準微粒子を走査型
電子顕微鏡で観察したところ、図8に示す通り、個々の
粒子は、いずれも、一様に0.005μm程度の硼化チ
タンが超微粒子状に被覆したものであった。硼化チタン
の被覆量は、体積で5%であった。
The obtained coated quasi-fine particles, TiAl quasi-fine particles having the surface coated with titanium boride, were observed with a scanning electron microscope. As a result, as shown in FIG. The titanium boride having a thickness of about 0.005 μm was uniformly coated in the form of ultrafine particles. The coverage of titanium boride was 5% by volume.

【0148】実施例2 平均粒子径DMが15μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)のタングステン準微
粒子を窒化チタン(TiN)で被覆した。
Example 2 Tungsten quasi-fine particles having an average particle diameter D M of 15 μm and a volume-based frequency distribution ([D M / 5,5D M ], ≧ 90%) were coated with titanium nitride (TiN).

【0149】使用した装置は、図9及びその部分拡大図
である図10に示したものであり、図5(d)に示した
構成の具体例である。本例の被覆形成物質前駆体を生成
する装置の構成は実施例1と同一である。準微粒子高分
散処理手段群αは、供給槽を備えた供給機214、撹拌
式分散機5−F1、細管分散機211及び衝突板を利用
した分散機5−H2で構成されており、図2(a)に示
したものであり、図3(b)に示した構成に属するの準
微粒子高分散処理手段群の具体例である。細管分散機2
11は、内径4mmのステンレス製である。準微粒子高
分散処理手段群αの最終分散手段である衝突板を利用し
た分散機5−H2は、SiC製の衝突板213がステン
レス製のホルダー212により設置された構成である。
この衝突板を利用した分散機5−H2の狭義の被覆室5
−cの中に設けられており、準微粒子高分散処理手段群
αと狭義の被覆室5−cは共有の空間を有している。ま
た、被覆空間5−L1及び被覆空間の被覆開始領域5−
L2は、狭義の被覆室5−c内に設けてある。本装置の
準微粒子高分散処理手段群は、平均粒子径Dが15μ
mで、体積基準頻度分布が(〔D/5,5D〕,≧
90%)の芯粒子粉体の粒子を、最終の分散処理である
衝突板を利用した分散機5−H2の衝突板213を衝突
直後、分散度β≧80%に分散できる。従って、分散度
β≧80%の状態で被覆が開始される。
The apparatus used is that shown in FIG. 9 and FIG. 10 which is a partially enlarged view thereof, which is a specific example of the configuration shown in FIG. 5 (d). The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high dispersion treatment means group α is composed of a feeder 214 having a feed tank, a stirring type dispersing machine 5-F1, a narrow tube dispersing machine 211, and a dispersing machine 5-H2 using a collision plate. FIG. 3A is a specific example of the quasi-fine particle high dispersion treatment means group belonging to the configuration shown in FIG. 3B. Capillary disperser 2
Reference numeral 11 is made of stainless steel having an inner diameter of 4 mm. The disperser 5-H2 using a collision plate, which is the final dispersion means of the quasi-fine particle high dispersion treatment means group α, has a structure in which a collision plate 213 made of SiC is installed by a holder 212 made of stainless steel.
Dispersing machine 5 using this collision plate 5-Coating chamber 5 in the narrow sense of H2
The quasi-fine particle high-dispersion processing means group α and the coating chamber 5-c in a narrow sense, which are provided in -c, have a common space. Further, the coating space 5-L1 and the coating start region 5-of the coating space 5-
L2 is provided in the narrowly-defined coating chamber 5-c. The quasi-fine particle high dispersion treatment means group of this apparatus has an average particle diameter D M of 15 μm.
m, the volume-based frequency distribution is ([D M / 5,5D M ], ≧
(90%) of the core particle powder can be dispersed to a dispersity β ≧ 80% immediately after collision with the collision plate 213 of the disperser 5-H2 using the collision plate which is the final dispersion treatment. Therefore, the coating is started in the state where the degree of dispersion β ≧ 80%.

【0150】プラズマトーチ5−Aの上部に設けられた
ガス噴出口201に供給源202から20リットル/分
のアルゴンガスを供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ5
−A内プラズマ室5−aでプラズマ焔を形成する。
20 l / min of argon gas is supplied from a supply source 202 to a gas ejection port 201 provided on the upper part of the plasma torch 5-A. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 5
-A plasma flame is formed in the plasma chamber 5-a in A.

【0151】被覆形成物質の原料の供給槽を備えた供給
機215から1.2g/分で供給した被覆形成物質の原
料である平均粒子径2μmの窒化チタンの粉末は、5リ
ットル/分のキャリアガス203に担持されて、プラズ
マトーチ5−Aの下部に設けられた被覆形成物質の原料
の投入口204から、プラズマ焔中に導入され、プラズ
マ焔の熱により蒸発して気相を経て、被覆形成物質前駆
体生成室5−bで被覆形成物質前駆体となる。
The titanium nitride powder having an average particle diameter of 2 μm, which is the raw material of the coating forming material, was supplied at 1.2 g / min from a feeder 215 equipped with a supply tank of the raw material of the coating forming material. The gas 203 is carried into the plasma flame from the raw material inlet 204 of the coating forming material provided in the lower portion of the plasma torch 5-A, and is evaporated by the heat of the plasma flame to pass through the gas phase to form the coating. It becomes a coating forming material precursor in the forming material precursor generation chamber 5-b.

【0152】芯粒子粉体の供給槽を備えた供給機214
から15.0g/分で供給されるタングステンの芯粒子
は、撹拌式分散機5−F1により分散させ、20リット
ル/分の割合で供給されるキャリアガス205により担
持され、細管分散機211を経て、被覆室中に設けた衝
突板を利用した分散機5−H2によって、分散度β=8
9%に気中に分散させる。
Feeder 214 equipped with a supply tank for core particle powder
The core particles of tungsten supplied at 15.0 g / min from the above are dispersed by the stirring type disperser 5-F1 and carried by the carrier gas 205 supplied at a rate of 20 l / min, and passed through the capillary disperser 211. , The dispersion degree β = 8 by the dispersing machine 5-H2 using the collision plate provided in the coating chamber.
Disperse in air to 9%.

【0153】高分散状態のタングステンの芯粒子は、被
覆空間5−L2の被覆開始領域5−L1において被覆形
成物質前駆体とβ=89%の分散状態で接触及び/又は
衝突し始める。
The highly dispersed tungsten core particles start contact and / or collision with the coating material precursor in the coating start region 5-L1 of the coating space 5-L2 in a dispersed state of β = 89%.

【0154】このようにして生成した、被覆形成物質で
表面に被覆が施された被覆された準微粒子は気体と共に
被覆準微粒子冷却室5−dを降下し、被覆準微粒子回収
部5−Gに至る。この被覆準微粒子からなる製品は、フ
ィルター210により気体と分離し、集められ取り出さ
れる。
The thus-produced coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 5-d, and enters the coated quasi-fine particle recovery section 5-G. Reach The product composed of the coated quasi-fine particles is separated from the gas by the filter 210 and collected and taken out.

【0155】得られた被覆準微粒子である、窒化チタン
で表面を被覆したタングステン準微粒子を、走査型電子
顕微鏡で観察したところ、個々の粒子は、いずれも一様
に0.005μm程度の窒化チタンが超微粒子状に被覆
したものであった。窒化チタンの被覆量は、体積で20
%であった。
The obtained coated quasi-fine particles, that is, the tungsten quasi-fine particles whose surface was coated with titanium nitride, were observed with a scanning electron microscope. As a result, all the individual particles were uniformly titanium nitride having a thickness of about 0.005 μm. Was coated with ultrafine particles. The coating amount of titanium nitride is 20 by volume.
%Met.

【0156】実施例3 平均粒子径DMが120μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)のチタン準微粒子を
アルミニウムで被覆した。
Example 3 Titanium quasi-fine particles having an average particle diameter D M of 120 μm and a volume-based frequency distribution of ([D M / 5,5D M ], ≧ 90%) were coated with aluminum.

【0157】使用した装置は、図11及び、その部分拡
大図である図12に示したものであり、図5(b)に示
した構成の具体例である。本例の被覆形成物質前駆体を
生成する装置の構成は実施例1と同一である。準微粒子
高分散処理手段群αは、供給槽を備えた供給機313、
分散手段である撹拌式分散機6−F1、高分散芯粒子粉
体の粒子・気体混合物選択手段であるサイクロン6−I
で構成されており、図2(b)に示したものであり、図
3(b)に示した構成の具体例である。サイクロン6−
Iの高分散芯粒子粉体の粒子・気体混合物の放出部は、
搬送に不可避のパイプ307で狭義の被覆室6−cへ接
続してあり、低分散芯粒子粉体部分の放出部は、ホッパ
ー6−J、ロータリーバルブ6−Kを介して搬送管31
0で撹拌式分散機6−F1へ接続してある。本装置の準
微粒子高分散処理手段群によれば、体積基準の粒度分布
として、平均粒子径DMが120μmで、体積基準頻度
分布が(〔DM/5,5DM),≧90%)の芯粒子粉体
の粒子を、最終の処理手段であるサイクロン6−Iの高
分散芯粒子粉体流の放出部で、分散度β≧98%に分散
できる。狭義の被覆室6−cに図のごとく被覆空間6−
L2及び被覆空間の被覆開始領域6−L1が設けてあ
る。6−Cと6−Dを結合するフランジ部の制約による
搬送に不可避のパイプ307による分散度βの低下は少
なくとどめられる。従って、被覆開始領域において、分
散度β≧95%で被覆が開始される。
The apparatus used is shown in FIG. 11 and FIG. 12 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. 5 (b). The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high-dispersion processing means group α includes a feeder 313 equipped with a feeding tank,
A stirring type disperser 6-F1 as a dispersing means, and a cyclone 6-I as a means for selecting a particle / gas mixture of highly dispersed core particle powder.
2B, which is a specific example of the configuration shown in FIG. 3B. Cyclone 6-
The discharge part of the particle / gas mixture of the highly dispersed core particle powder of I is
It is connected to the coating chamber 6-c in a narrow sense by a pipe 307 which is inevitable for conveyance, and the discharging portion of the low-dispersion core particle powder portion is conveyed through the hopper 6-J and the rotary valve 6-K to the conveyance pipe 31.
It is connected to the stirring type dispersing machine 6-F1 at 0. According to the quasi-fine particle high dispersion treatment means group of the present apparatus, the volume-based particle size distribution has an average particle diameter D M of 120 μm and a volume-based frequency distribution of ([D M / 5,5D M ) ≧ 90%). The particles of the core particle powder can be dispersed at a dispersity β ≧ 98% at the discharge portion of the cyclone 6-I highly-dispersed core particle powder flow, which is the final processing means. As shown in the drawing, the coating space 6-
A coating start region 6-L1 of L2 and the coating space is provided. The decrease in the degree of dispersion β due to the pipe 307, which is unavoidable for the transportation due to the restriction of the flange portion connecting the 6-C and 6-D, is limited. Therefore, in the coating start region, the coating starts with the dispersity β ≧ 95%.

【0158】プラズマトーチ6−Aの上部に設けられた
ガス噴出口301に供給源302からアルゴンガスを2
0リットル/分で供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ6
−A内プラズマ室6−aでプラズマ焔を形成する。
Argon gas is supplied from the supply source 302 to the gas jet port 301 provided on the upper part of the plasma torch 6-A.
Supply at 0 l / min. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 6
-A plasma flame is formed in the plasma chamber 6-a in A.

【0159】被覆形成物質の原料の供給槽を備えた供給
機314から1.8g/分で供給した被覆形成物質の原
料であるアルミニウムの粉末は、5リットル/分のキャ
リアガス303に担持されて、プラズマトーチ6−Aの
下部に設けられた被覆形成物質の原料の投入口304か
ら、プラズマ焔中に導入され、プラズマ焔の熱により蒸
発して気相を経て、被覆形成物質前駆体生成室6−bで
被覆形成物質前駆体となる。
Aluminum powder as a raw material of the coating forming material, which was supplied at 1.8 g / min from a feeder 314 equipped with a supply tank of the raw material of the coating forming material, was carried on a carrier gas 303 of 5 liters / minute. A coating forming material precursor generation chamber is introduced into the plasma flame through a raw material inlet 304 of the coating forming substance provided in the lower part of the plasma torch 6-A, evaporates by the heat of the plasma flame and passes through the gas phase. 6-b becomes a coating material precursor.

【0160】芯粒子粉体の供給槽を備えた供給機313
から3.0g/分で供給されるチタンの芯粒子は、撹拌
式分散機6−F1により分散させ、15リットル/分の
キャリアガス305により担持されパイプ306を介し
てサイクロン6−Iに搬送される。サイクロン6−I
は、微粉側の最大粒子径が150μmとなるように調節
されており、主に単一粒子からなるβ=98%の分散状
態の高分散芯粒子粉体の粒子・気体混合物を、搬送に不
可避のパイプ307を介し放出口308から狭義の被覆
室6−cに放出させる。一方、サイクロン6−Iにより
選択分離した低分散芯粒子粉体部分は、ホッパー6−
J、ロータリーバルブ6−Kを経て、10リットル/分
のキャリアガス309によりパイプ310中を搬送さ
れ、撹拌式分散機6−F1へフィードバックする。
Feeder 313 equipped with a supply tank for core particle powder
The core particles of titanium supplied at 3.0 g / min from the above are dispersed by the agitation type disperser 6-F1 and carried by the carrier gas 305 of 15 l / min and conveyed to the cyclone 6-I via the pipe 306. It Cyclone 6-I
Is adjusted so that the maximum particle size on the fine powder side is 150 μm, and it is unavoidable for transporting a particle / gas mixture of highly dispersed core particle powder in a dispersed state of β = 98% consisting mainly of single particles. It is made to discharge to the coating chamber 6-c in a narrow sense from the discharge port 308 through the pipe 307 of. On the other hand, the low dispersion core particle powder portion selectively separated by the cyclone 6-I is
After passing through J and the rotary valve 6-K, the carrier gas 309 of 10 liter / min conveys the inside of the pipe 310, and feeds it back to the stirring type dispersing machine 6-F1.

【0161】高分散状態のチタンの芯粒子は、被覆空間
6−L2の被覆開始領域6−L1において被覆形成物質
前駆体とβ=96%の分散状態で接触及び/又は衝突し
始める。
The highly dispersed titanium core particles start to contact and / or collide with the coating material precursor in the coating start region 6-L1 of the coating space 6-L2 in a dispersed state of β = 96%.

【0162】このようにして生成した。前記被覆形成物
質で表面に被覆を施された被覆された準微粒子は、気体
と共に被覆準微粒子冷却室6−dを降下し、被覆準微粒
子回収部6−Gに至る。この被覆された準微粒子からな
る製品は、フィルター312により気体と分離し、集め
られ取り出される。
It was generated in this way. The coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 6-d and reaches the coated quasi-fine particle recovery unit 6-G. The product consisting of the coated quasi-fine particles is separated from the gas by the filter 312, collected and taken out.

【0163】得られた被覆された準微粒子である、アル
ミニウムで表面を被覆したチタン準微粒子を、走査型電
子顕微鏡で観察したところ、個々の粒子は、いずれも、
一様に0.005μm程度のアルミニウムが超微粒子状
に被覆したものであった。アルミニウムの被覆量は、モ
ルで50%であった。
The obtained coated quasi-fine particles, titanium quasi-fine particles whose surface was coated with aluminum, were observed by a scanning electron microscope.
The aluminum was uniformly coated with ultrafine particles of about 0.005 μm. The coverage of aluminum was 50% on a molar basis.

【0164】実施例4 実施例1で得られた硼化チタン(TiB2)で被覆した
TiAl準微粒子を、直径16mm、厚さ10mmの円盤状
に型押し成形し、その外側に六方晶窒化硼素(h−B
N)粉末を充填した黒鉛製の型を装備するホットプレス
(HP)装置に配置し、10-3torrで200℃まで脱気
後、アルゴンガスを流しながら、温度1200℃、圧力
20MPaで3時間保持して焼結した。その後炉冷し圧力
を開放して焼結体を取り出した。
Example 4 The TiAl quasi-fine particles coated with titanium boride (TiB 2 ) obtained in Example 1 were embossed into a disk shape having a diameter of 16 mm and a thickness of 10 mm, and hexagonal boron nitride was formed on the outside thereof. (H-B
N) It was placed in a hot press (HP) device equipped with a graphite mold filled with powder, degassed to 200 ° C. at 10 −3 torr, and then argon gas was flowed at a temperature of 1200 ° C. and a pressure of 20 MPa for 3 hours. Hold and sinter. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.

【0165】得られた焼結体をX線回折で調べたとこ
ろ、TiAlとTiB2のみ存在していた。焼結体の相
対密度は測定誤差内で99%以上と大変緻密であり、ビ
ッカース硬度は230であった。この焼結体の研磨面の
電子顕微鏡写真(×1000)を図13に示す。図13
から焼結体には未焼結部や気孔、欠陥等は全くなく、T
iAl粒子の周りに硼化チタンが均一に分布する高度に
制御された微組織の焼結体であることが分かる。
When the obtained sintered body was examined by X-ray diffraction, only TiAl and TiB 2 were present. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers hardness was 230. An electron micrograph (× 1000) of the polished surface of this sintered body is shown in FIG. FIG.
Therefore, the sintered body has no unsintered parts, pores, defects, etc.
It can be seen that the sintered body has a highly controlled microstructure in which titanium boride is uniformly distributed around the iAl particles.

【0166】比較のために実施例1で用いたTiAl準
微粒子で硼化チタンを被覆していないものと、相当する
量の硼化チタン粒子とを混合した粉末を実施例4と同一
の焼結条件で焼結した。このようにして得られた焼結体
の研磨面の電子顕微鏡写真(×1000)を図14に示
す。この図から同一の焼結条件にもかかわらず粒子は粒
成長して粗大となり、硼化チタンの分布が不均一でしか
も気孔が多数認められ、微組織が全く制御されていない
ことがわかる。
For comparison, a powder obtained by mixing TiAl quasi-fine particles not coated with titanium boride used in Example 1 and a corresponding amount of titanium boride particles was sintered in the same manner as in Example 4. Sintered under the conditions. An electron micrograph (× 1000) of the polished surface of the sintered body thus obtained is shown in FIG. From this figure, it can be seen that the grains grow and become coarse under the same sintering conditions, the distribution of titanium boride is nonuniform, and a large number of pores are recognized, and the microstructure is not controlled at all.

【0167】実施例5 実施例2で得られた窒化チタン(TiN)で被覆したタ
ングステン準微粒子を、直径16mm、厚さ10mmの円盤
状に型押し成形し、その外側に六方晶窒化硼素(h−B
N)粉末を充填したパイレックスガラス製のカプセルに
配置し、10-6torrで400℃、12時間脱気後封入
し。このカプセルをアルゴンガスを圧力媒体とするHI
P装置に配置し、焼結温度1800℃、圧力200MPa
で3時間保持して焼結した。その後炉冷し圧力を開放し
て、焼結体を取り出した。
Example 5 The tungsten quasi-fine particles coated with titanium nitride (TiN) obtained in Example 2 were embossed into a disk shape having a diameter of 16 mm and a thickness of 10 mm, and hexagonal boron nitride (h -B
N) The mixture was placed in a Pyrex glass capsule filled with powder, degassed at 400 ° C. for 12 hours at 10 −6 torr, and then sealed. HI using this capsule as a pressure medium for argon gas
Placed in P device, sintering temperature 1800 ℃, pressure 200MPa
And held for 3 hours for sintering. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.

【0168】得られた焼結体は、相対密度が測定誤差内
で99%以上と大変緻密であり、ビッカース硬度は70
0であった。また、焼結体には未焼結部分や気孔、欠陥
等は全くなく、タングステン粒子の周りに窒化チタンが
均一に分布した高度に制御された微組織の焼結体であっ
た。
The sintered body thus obtained had a relative density of 99% or more within a measurement error and was extremely dense, and had a Vickers hardness of 70.
It was 0. Further, the sintered body had no unsintered parts, pores, defects, etc., and was a highly controlled microstructured sintered body in which titanium nitride was uniformly distributed around the tungsten particles.

【0169】実施例6 実施例3で得られたアルミニウムで被覆したTi準微粒
子を直径16mm、厚さ10mmの円盤状に押し出し成形
し、その外側に六方晶窒化硼素(h−BN)粉末を充填
した黒鉛製の型を装備するホットプレス(HP)装置に
配置し、10-3torrで200℃まで脱気後、アルゴンガ
スを流しながら、焼結温度1200℃、焼結圧力20MP
aで2時間保持して焼結した。その後炉冷し圧力を開放
して、焼結体を取り出した。得られた焼結体をX線回折
で調べたところ、TiAlのみ存在していた。焼結体の
相対密度は測定誤差内で99%以上と大変緻密であり、
ビッカース硬度は230であった。また、焼結体には未
焼結部分や気孔、欠陥等は全くなく、TiAlからなる
粒成長が制御された微組織の焼結体であった。
Example 6 The aluminum-coated Ti quasi-fine particles obtained in Example 3 were extruded into a disk shape having a diameter of 16 mm and a thickness of 10 mm, and the outside thereof was filled with hexagonal boron nitride (h-BN) powder. It was placed in a hot press (HP) device equipped with a graphite mold and degassed to 200 ° C at 10 -3 torr, then flowing argon gas, sintering temperature 1200 ° C, sintering pressure 20MP.
Hold at a for 2 hours for sintering. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the obtained sintered body was examined by X-ray diffraction, only TiAl was present. The relative density of the sintered body is 99% or more within the measurement error, which is very dense,
The Vickers hardness was 230. Further, the sintered body had no unsintered portion, pores, defects, etc., and was a sintered body of TiAl having a fine structure in which grain growth was controlled.

【0170】実施例7 実施例3と略同様の条件により、平均粒子径DMが12
0μmで、体積基準頻度分布が(〔DM/5,5DM〕,
≧90%)のチタン準微粒子をアルミニウムで被覆し、
アルミニウムをモルで50%被覆した被覆チタン準微粒
子粉体を得た。このアルミニウムで被覆したチタン準微
粒子にアルミナ(Al23)ウィスカーを体積で15%
加えて混合し、直径16mm、厚さ10mmの円盤状に押し
出し成形し、h−BN粉体を充填したパイレックスガラ
ス製のカプセルに配置し、10-6torr、400℃、12
時間脱気後封入した。このカプセルをアルゴンガスを圧
力媒体とするHIP装置に配置し、焼結温度1200
℃、焼結圧力200MPaで2時間保持して焼結した。そ
の後、炉冷し圧力を開放して、焼結体を取り出した。得
られた焼結体をX線回折で調べたところ、TiAlとア
ルミナのみ存在していた。焼結体の相対密度は測定誤差
内で99%以上と大変緻密であり、ビッカース微小硬度
が230であった。また、焼結体の未焼結部分や気孔、
欠陥等は全くなく、TiAlからなる粒成長が制御され
アルミナウィスカーが均一に分布した微組織の焼結体で
あった。
Example 7 Under the same conditions as in Example 3, the average particle diameter D M was 12
At 0 μm, the volume-based frequency distribution is ([D M / 5,5D M ],
≧ 90%) titanium quasi fine particles are coated with aluminum,
A coated titanium quasi-fine particle powder obtained by coating aluminum with 50% by mole was obtained. 15% by volume of alumina (Al 2 O 3 ) whiskers was added to the titanium quasi-fine particles coated with aluminum.
In addition, they were mixed, extruded into a disk shape with a diameter of 16 mm and a thickness of 10 mm, placed in a Pyrex glass capsule filled with h-BN powder, and placed at 10 -6 torr, 400 ° C, 12
After deaeration for a certain time, it was sealed. The capsule was placed in a HIP device using argon gas as a pressure medium, and the sintering temperature was set to 1200.
Sintering was carried out at a temperature of 200 ° C. and a sintering pressure of 200 MPa for 2 hours. Then, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the obtained sintered body was examined by X-ray diffraction, only TiAl and alumina were present. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers microhardness was 230. In addition, unsintered parts and pores of the sintered body,
It was a sintered body having no defects and the like and having a fine structure in which grain growth of TiAl was controlled and alumina whiskers were uniformly distributed.

【0171】実施例8 実施例3と略同様の条件により、平均粒子径DMが12
0μmで、体積基準頻度分布が(〔DM/5,5DM〕,
≧90%)のチタン準微粒子を硼化チタン(TiB2
で被覆し、更にこの被覆された準微粒子をアルミニウム
で被覆して硼化チタンをモルで2.0%、アルミニウム
をモルで49.0%被覆したチタン準微粒子粉体を得
た。この被覆されたチタン準微粒子を押し出し成形機、
直径16mm、厚さ10mmの円盤状に、h−BN粉体を充
填したパイレックスガラス製のカプセルに配置し、10
-6torr、400℃、12時間脱気後封入した。
Example 8 Under the same conditions as in Example 3, the average particle diameter D M was 12
At 0 μm, the volume-based frequency distribution is ([D M / 5,5D M ],
≧ 90%) titanium quasi-fine particles as titanium boride (TiB 2 )
Then, the coated quasi-fine particles were coated with aluminum to obtain titanium quasi-fine particle powder coated with titanium boride in an amount of 2.0% by mole and aluminum in an amount of 49.0% by mole. An extrusion molding machine for the coated titanium quasi-fine particles,
Place in a Pyrex glass capsule filled with h-BN powder in a disk shape with a diameter of 16 mm and a thickness of 10 mm, and
After deaeration at -6 torr and 400 ° C for 12 hours, it was sealed.

【0172】このカプセルをアルゴンガスを圧力媒体と
するHIP装置に配置し、焼結温度1200℃、焼結圧
力200MPaで2時間保持して焼結した。その後炉冷し
圧力を開放して、焼結体を取り出した。得られた焼結体
をX線回折で調べたところ、TiAlとTiB2のみが
存在していた。焼結体の相対密度は測定誤差内で99%
以上と大変緻密で、ビッカース微小硬度は230であっ
た。また、焼結体には未焼結部分や気孔、欠陥等は全く
なく、TiAl粒子の周りに硼化チタンが均一に分布し
た制御された微組織の焼結体であった。
This capsule was placed in a HIP device using argon gas as a pressure medium, and sintered by holding it at a sintering temperature of 1200 ° C. and a sintering pressure of 200 MPa for 2 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the obtained sintered body was examined by X-ray diffraction, only TiAl and TiB 2 were present. The relative density of the sintered body is 99% within the measurement error.
It was very dense as described above, and the Vickers microhardness was 230. The sintered body had no unsintered portion, pores, defects, etc., and was a sintered body having a controlled microstructure in which titanium boride was uniformly distributed around the TiAl particles.

【0173】実施例9 実施例1と略同様の条件により、平均粒子径DMが40
μmで、体積基準頻度分布が(〔DM/5,5DM〕,≧
90%)のTiAl準微粒子をアルミナ(Al23)で
被覆し、アルミナを体積で5%被覆した被覆TiAl準
微粒子粉体を得た。このアルミナで被覆したTiAl準
微粒子を、直径16mm、厚さ5mmの円盤状に型押し成形
し、その外側に六方晶窒化硼素(h−BN)粉体を充填
した黒鉛製の型を装備するホットプレス(HP)装置に
配置し、10-3torrで200℃まで脱気後、アルゴンガ
スを流しながら、焼結温度1200℃、焼結圧力200
MPaで2時間保持して焼結した。その後炉冷し圧力を開
放して、焼結体を取り出した。得られた焼結体をX線回
折で調べたところ、TiAlとα−アルミナのみが存在
していた。焼結体の相対密度は測定誤差内で99%以上
と大変緻密であり、ビッカース硬度は230であった。
また、焼結体には未焼結部分や気孔、欠陥等は全くな
く、TiAl準微粒子の周りにアルミナが均一に分布し
た高度に制御された微組織の焼結体であった。
Example 9 Under the same conditions as in Example 1, the average particle diameter D M was 40.
μm, the volume-based frequency distribution is ([D M / 5,5D M ], ≧
90% of TiAl quasi-fine particles were coated with alumina (Al 2 O 3 ) to obtain coated TiAl quasi-fine particles of 5% by volume of alumina. This TiAl quasi-fine particle coated with alumina is embossed into a disk shape with a diameter of 16 mm and a thickness of 5 mm, and a graphite mold with hexagonal boron nitride (h-BN) powder filled outside is hot-equipped. It is placed in a press (HP) device, degassed to 200 ° C. at 10 −3 torr, and then a sintering temperature of 1200 ° C. and a sintering pressure of 200 while flowing an argon gas.
It hold | maintained at MPa for 2 hours and sintered. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the obtained sintered body was examined by X-ray diffraction, only TiAl and α-alumina were present. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers hardness was 230.
Further, the sintered body had no unsintered parts, pores, defects, etc., and was a highly controlled microstructured sintered body in which alumina was uniformly distributed around the TiAl quasi-fine particles.

【0174】実施例10 実施例1と略同様の条件により、平均粒子径DMが40
μmで、体積基準頻度分布が(〔DM/5,5DM〕,≧
90%)のTiAl準微粒子を硼化チタン(TiB2
で被覆し、硼化チタンを体積で5%被覆した被覆TiA
l準微粒子粉体を得た。この硼化チタンで被覆したTi
Al準微粒子にアルミナウィスカーを体積で15%加え
て混合し、直径16mm、厚さ10mmの円盤状に型押し成
形し、その外側に六方晶窒化硼素(h−BN)粉体を充
填した黒鉛製の型を装備するホットプレス(HP)装置
に配置し、10-3torrで200℃まで脱気後、アルゴン
ガスを流しながら、焼結温度1200℃、焼結圧力20
MPaで2時間保持して焼結した。その後炉冷し圧力を開
放して、焼結体を取り出した。焼結体の相対密度は測定
誤差内で99%以上と大変緻密であり、ビッカース硬度
は230であった。また、焼結体には未焼結部分や気
孔、欠陥等は全くなく、TiAl準微粒子の周りに硼化
チタン及びアルミナウィスカーが均一に分布した高度に
制御された微組織の焼結体であった。
Example 10 Under the same conditions as in Example 1, the average particle diameter D M was 40.
μm, the volume-based frequency distribution is ([D M / 5,5D M ], ≧
90%) TiAl quasi-fine particles are used as titanium boride (TiB 2 ).
TiA coated with 5% by volume of titanium boride
1 quasi-fine particle powder was obtained. Ti coated with this titanium boride
15% by volume of alumina whiskers are added to Al quasi-fine particles and mixed, and molded into a disk shape having a diameter of 16 mm and a thickness of 10 mm, and the outside is filled with hexagonal boron nitride (h-BN) powder made of graphite. It is placed in a hot press (HP) device equipped with a mold for degassing, degassed to 200 ° C. at 10 −3 torr, and then argon gas is flowed while sintering temperature is 1200 ° C. and sintering pressure is 20.
It hold | maintained at MPa for 2 hours and sintered. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers hardness was 230. Further, the sintered body has no unsintered parts, pores, defects, etc., and is a sintered body having a highly controlled microstructure in which titanium boride and alumina whiskers are uniformly distributed around TiAl quasi-fine particles. It was

【0175】実施例11 実施例2と略同様の条件により、平均粒子径DMが20
μmで、体積基準頻度分布が(〔DM/5,5DM〕,≧
90%)のニッケル準微粒子をアルミニウムで被覆し、
アルミニウムをモルで50%被覆した被覆ニッケル準微
粒子粉体を得た。このアルミニウム被覆されたニッケル
準微粒子を直径16mm、厚さ10mmの円盤状に押し出し
成形し、h−BN粉体を充填したパイレックスガラス製
のカプセルに配置し、10-6torr、400℃、12時間
脱気後封入した。このカプセルをアルゴンガスを圧力媒
体とするHIP装置に配置し、焼結温度1200℃、焼
結圧力200MPaで2時間保持して焼結した。その後炉
冷し圧力を開放して、焼結体を取り出した。得られた焼
結体をX線回折で調べたところ、NiAlのみ存在して
いた。焼結体の相対密度は測定誤差内で99%以上と大
変緻密であり、ビッカース硬度は700であった。ま
た、焼結体には未焼結部分や気孔、欠陥等は全くなく、
粒成長が制御された微組織の焼結体であった。
Example 11 The average particle diameter D M was 20 under the same conditions as in Example 2.
μm, the volume-based frequency distribution is ([D M / 5,5D M ], ≧
90%) nickel quasi fine particles are coated with aluminum,
A coated nickel quasi-fine particle powder obtained by coating aluminum with 50% by mole was obtained. The aluminum-coated nickel quasi-fine particles were extruded into a disk shape with a diameter of 16 mm and a thickness of 10 mm, and the extruded particles were placed in a capsule made of Pyrex glass filled with h-BN powder and placed at 10 -6 torr, 400 ° C, 12 hours. After degassing, it was enclosed. This capsule was placed in a HIP device using argon gas as a pressure medium, and sintered at a sintering temperature of 1200 ° C. and a sintering pressure of 200 MPa for 2 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the obtained sintered body was examined by X-ray diffraction, only NiAl was present. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers hardness was 700. Also, the sintered body has no unsintered parts, pores, defects, etc.
It was a microstructured sintered body with controlled grain growth.

【0176】実施例12 実施例2と略同様の条件により、平均粒子径DMが20
μmで、体積基準頻度分布が(〔DM/5,5DM〕,≧
90%)のニッケル準微粒子をアルミニウムで被覆し、
アルミニウムをモルで25%被覆した被覆ニッケル準微
粒子粉体を得た。更にこの被覆されたニッケル準微粒子
に実施例2と略同様の条件により、体積で5%のアルミ
ナ(Al23)を再被覆した被覆されたニッケル準微粒
子を得た。この被覆されたニッケル準微粒子を直径16
mm、厚さ5mmの円盤状に押し出し成形し、h−BN粉体
を充填したパイレックスガラス製のカプセルに配置し、
10-6torr、400℃、12時間脱気後封入した。この
カプセルをアルゴンガスを圧力媒体とするHIP装置に
配置し、焼結温度1200℃、焼結圧力200MPaで2
時間保持して、炉冷し、圧力を開放して、焼結体を取り
出した。得られた焼結体をX線回折で調べたところ、N
3Alとα−アルミナのみ存在していた。焼結体の相
対密度は測定誤差内で99%以上と大変緻密であり、ビ
ッカース硬度は750であった。また、焼結体には未焼
結部分や気孔、欠陥等は全くなく、Ni3Alの粒子の
周りをアルミナが均一に分布する高度に制御された微組
織の焼結体であった。
Example 12 An average particle diameter D M of 20 was obtained under substantially the same conditions as in Example 2.
μm, the volume-based frequency distribution is ([D M / 5,5D M ], ≧
90%) nickel quasi fine particles are coated with aluminum,
A coated nickel quasi-fine particle powder obtained by coating aluminum with 25% by mole was obtained. Further, the coated nickel quasi-fine particles were obtained by recoating the coated nickel quasi-fine particles with 5% by volume of alumina (Al 2 O 3 ) under substantially the same conditions as in Example 2. This coated nickel quasi-fine particle has a diameter of 16
mm, 5 mm thick, extruded into a disk and placed in a Pyrex glass capsule filled with h-BN powder.
After deaeration at 10 −6 torr, 400 ° C. for 12 hours, it was sealed. This capsule is placed in a HIP device using argon gas as a pressure medium, and the sintering temperature is 1200 ° C. and the sintering pressure is 200 MPa.
The temperature was maintained, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the obtained sintered body was examined by X-ray diffraction, it was found to be N
Only i 3 Al and α-alumina were present. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers hardness was 750. The sintered body had no unsintered parts, pores, defects, etc., and was a highly controlled microstructured sintered body in which alumina was uniformly distributed around the Ni 3 Al particles.

【0177】[0177]

【発明の効果】本発明によれば、体積基準頻度分布で平
均粒子径が10μmを越える金属準微粒子からなる芯粒
子粉体を気中に分散させ、この分散した芯粒子粉体の準
微粒子を粒子径に応じて分散度βが80%以上、90%
以上、95%以上、97%以上、99%以上である分散
状態で被覆形成物質前駆体と接触又は衝突させることに
よって、単一粒子状態でその表面を被覆形成物質で被覆
した被覆された金属準微粒子が得られる。この被覆され
た金属準微粒子を焼結することにより、均一で、緻密
で、且つ強固に焼結された、高度に制御された微組織を
有する高性能な金属基焼結体が得られた。
According to the present invention, a core particle powder composed of metal quasi-fine particles having an average particle size of more than 10 μm in a volume-based frequency distribution is dispersed in the air, and the quasi-fine particles of the dispersed core particle powder are obtained. Dispersity β is 80% or more, 90% depending on particle size
Above, 95% or more, 97% or more, 99% or more are contacted or collided with the coating forming substance precursor in a dispersed state, and the surface thereof is coated with the coating forming substance in a single particle state. Fine particles are obtained. By sintering the coated metal quasi-fine particles, a high-performance metal-based sintered body having a uniform, dense, and strongly sintered microstructure with a highly controlled microstructure was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉体粒子の分布図であり、(a)は分散度βを
表わし、(b)は粒径D1〜D3の範囲の粒子が体積で9
0%を占める粉体の粒径対体積基準頻度を表わす。
FIG. 1 is a distribution diagram of powder particles, (a) shows a dispersity β, and (b) shows a volume of particles having a particle size of D 1 to D 3 of 9
The particle size vs. volume standard frequency of the powder occupying 0% is shown.

【図2】(a)〜(c)は準微粒子高分散処理手段群の
基本構成を示すブロック図。
2A to 2C are block diagrams showing the basic configuration of a quasi-fine particle high dispersion treatment means group.

【図3】(a)〜(g)は準微粒子高分散処理手段群の
構成をより詳細に説明するブロック図。
3 (a) to 3 (g) are block diagrams for explaining the configuration of a quasi-fine particle high dispersion processing means group in more detail.

【図4】(a)〜(e)は芯粒子粉体に被覆が開始され
る態様を示す図。
4 (a) to (e) are views showing an aspect in which coating of core particle powder is started.

【図5】(a)〜(g)は被覆された金属粒子を製造す
るための装置の構成を説明するブロック図。
5A to 5G are block diagrams illustrating the configuration of an apparatus for producing coated metal particles.

【図6】実施例1で用いる装置を示す図。FIG. 6 is a diagram showing an apparatus used in Example 1.

【図7】実施例1で用いる装置の部分拡大図。FIG. 7 is a partially enlarged view of the device used in the first embodiment.

【図8】実施例1で得られた被覆粒子の走査電子顕微鏡
写真。
8 is a scanning electron micrograph of the coated particles obtained in Example 1. FIG.

【図9】実施例2で用いる装置を示す図。FIG. 9 is a view showing an apparatus used in Example 2.

【図10】実施例2で用いる装置の部分拡大図。FIG. 10 is a partially enlarged view of the device used in the second embodiment.

【図11】実施例3で用いる装置を示す図。FIG. 11 is a diagram showing an apparatus used in Example 3;

【図12】実施例3で用いる装置の部分拡大図。FIG. 12 is a partially enlarged view of the apparatus used in Example 3.

【図13】実施例4で得られた焼結体の研磨面の電子顕
微鏡写真。
FIG. 13 is an electron micrograph of a polished surface of the sintered body obtained in Example 4.

【図14】比較例の焼結体の研磨面の電子顕微鏡写真。FIG. 14 is an electron micrograph of a polished surface of a sintered body of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粂 正市 愛知県津島市鹿伏兎町字二之割150番地 の2 (72)発明者 山田 幸良 埼玉県比企郡川島町八幡3丁目6番18号 (72)発明者 冬木 正 埼玉県入間郡大井町緑ヶ丘2丁目23番16 号 (72)発明者 秋山 聡 埼玉県川越市稲荷町17番22号 (72)発明者 濱田 美明 埼玉県川越市末広町3丁目4番8号 (72)発明者 黒田 英輔 埼玉県川越市西小仙波町2丁目16番4号 (56)参考文献 特開 平3−245835(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/02 C23C 16/44 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) No. 150, Ninowari, Kanafuto-cho, Tsushima City, Tsushima City, Aichi Prefecture 2 (72) Inventor Yuki Yamada 3-6-18, Hachiman, Kawashima Town, Hiki-gun, Saitama Prefecture ( 72) Inventor Tadashi Tadashi, 2-23-16 Midorigaoka, Oi-cho, Iruma-gun, Saitama Prefecture (72) Inventor Satoshi Akiyama 17-22, Inari-cho, Kawagoe City, Saitama Prefecture (72) Inventor, Miaki Hamada Suehiro-cho, Kawagoe City, Saitama Prefecture 3-4-8 (72) Inventor Eisuke Kuroda 2-16-4 Nishikosenba-cho, Kawagoe-shi, Saitama Prefecture (56) Reference JP-A-3-245835 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) B22F 1/02 C23C 16/44

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属の準微粒子からなる芯粒子粉体を被
覆空間に投入し、気相を経て生成する被覆形成物質前駆
体及び/又は気相状態の被覆形成物質前駆体を、この芯
粒子粉体の粒子に接触及び/又は衝突させて、この芯粒
子粉体の粒子の表面を被覆形成物質で被覆して得られる
被覆金属準微粒子の製造法であって、(A)最終処理手
段として、 (a)芯粒子粉体の粒子を気中に分散させる分散手段、
及び (b)芯粒子粉体の粒子を気中に分散させた芯粒子粉体
の粒子と気体との混合物において低分散芯粒子粉体部分
を分離し、芯粒子粉体の粒子が主に単一粒子状態で気中
に存在する高分散芯粒子粉体の粒子・気体混合物を選択
する高分散芯粒子粉体の粒子・気体混合物選択手段とこ
の高分散芯粒子粉体の粒子・気体混合物選択手段により
選択分離された低分散芯粒子粉体部分を準微粒子高分散
処理手段群中の分散手段の内の最終分散手段及び/又は
最終分散手段以前の処理手段に搬送するフィードバック
手段とを備えた高分散芯粒子粉体の粒子・気体混合物選
択手段、 から選ばれる手段を有する準微粒子高分散処理手段群に
より、体積基準頻度分布で平均粒子径が10μmを越え
る準微粒子芯粒子粉体の粒子又は主に準微粒子からなる
芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とする分散工程、並びに (B)この分散工程で分散させた芯粒子粉体の粒子を、 その平均粒子径が10μmを越え20μm以下のときに
は分散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上の分散状態で、被覆空間の被覆開始領域にお
いて被覆形成物質前駆体と接触及び/又は衝突させて被
覆を開始する被覆工程を備えることを特徴とする、被覆
金属準微粒子の製造法。
1. A core-forming powder and a coating-forming substance precursor in a gas phase, which are produced by introducing a core-particle powder made of metal quasi-fine particles into a coating space to form a gas-phase coating-forming substance precursor. A method for producing coated metal quasi-fine particles, which is obtained by contacting and / or colliding with particles of a powder to coat the surfaces of the particles of the core particle powder with a coating-forming substance, which comprises (A) a final treatment means (A) Dispersing means for dispersing the particles of the core particle powder in the air,
And (b) the low-dispersion core particle powder portion is separated in the mixture of the particles of the core particle powder in which the particles of the core particle powder are dispersed in the air and the gas, and the particles of the core particle powder are mainly separated. Particles / gas mixture of highly dispersed core particle powder for selecting particle / gas mixture of highly dispersed core particle powder existing in the air in one particle state and selection of particle / gas mixture of highly dispersed core particle powder And a feedback means for conveying the low-dispersion core particle powder portion selectively separated by the means to the final dispersion means and / or the processing means before the final dispersion means in the dispersion means in the quasi-fine particle high dispersion processing means group. Particles of a quasi-fine particle core particle powder having an average particle size of more than 10 μm in a volume-based frequency distribution by a group of quasi-fine particle high-dispersion processing means having a means for selecting a particle / gas mixture of a highly dispersed core particle powder, or Core particles mainly composed of quasi-fine particles The dispersion step of dispersing the particles of the powder in the air to form a particle / gas mixture of the highly dispersed core particle powder, and (B) the particles of the core particle powder dispersed in this dispersion step When the diameter exceeds 10 μm and 20 μm or less, the dispersity β is 80% or more, and when the diameter exceeds 20 μm and 50 μm or less, the dispersity β is 90.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
A coating step of contacting and / or colliding with the coating material precursor in the coating start region of the coating space in a dispersed state having a dispersity β of 99% or more when it exceeds 7% and 800 μm A method for producing coated metal quasi-fine particles, which comprises:
【請求項2】 前記被覆金属準微粒子が、 被覆金属準微粒子の集合塊を、解砕及び/又は破砕する
工程及び/又はこの被覆金属準微粒子集合塊と一次粒子
単位の被覆金属準微粒子とを選択分離する選択分離工程
を更に経て調製されたものであることを特徴とする、請
求項1に記載の被覆金属準微粒子の製造法。
2. The step of crushing and / or crushing an aggregate of the coated metal quasi-fine particles, and / or the aggregate of the coated metal quasi-fine particles and the coated metal quasi-fine particles in a primary particle unit. The method for producing coated metal quasi-fine particles according to claim 1, which is prepared through a selective separation step of selectively separating.
【請求項3】 前記芯粒子粉体の粒子が、溶融塩浴を用
いる浸漬法により、浸漬法に由来する被覆物質で一層以
上被覆された準微粒子芯粒子粉体の粒子又は主に準微粒
子からなる芯粒子粉体の粒子であることを特徴とする、
請求項1又は2に記載の被覆金属準微粒子の製造法。
3. Particles of the core particle powder, wherein particles of the quasi-fine particle core particle powder or mainly quasi-fine particles are further coated with a coating material derived from the immersion method by an immersion method using a molten salt bath. Which is a particle of a core particle powder
The method for producing coated metal quasi-fine particles according to claim 1 or 2.
【請求項4】 被覆金属準微粒子が、 平均粒子径が10μmを越え20μm以下のときには分
散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上とする分散性能を有する準微粒子高分散処理
手段群の最終処理により気中に分散させる分散工程を設
け、 (A)当該分散させた高分散芯粒子粉体の粒子・気体混
合物を被覆工程に直接放出するか、又は (B)分散工程と被覆工程の間に、 当該分散させた高分散芯粒子粉体の粒子・気体混合物を
放出する放出部から、搬送に不可避の中空部材、中空を
形成せしめる部材からなる中間部材、及びパイプから選
択される一種類又はそれ以上の部材を介して搬送する
か、及び/又は、気中分散維持手段、気中分散促進手
段、高分散芯粒子粉体の粒子・気体混合物選択手段の一
種類又はそれ以上を介して搬送して調製されることを特
徴とする、請求項1に記載の被覆金属準微粒子の製造
法。
4. When the average particle size of the coated metal quasi-fine particles is more than 10 μm and less than 20 μm, the dispersity β is 80% or more, and when the average particle size is more than 20 μm and less than 50 μm, the dispersity β is 90.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
When it is 7% or more, and when it exceeds 800 μm, a dispersion step of dispersing in the air by the final treatment of the quasi-fine particle high dispersion treatment means group having a dispersity β of 99% or more is provided. The particle / gas mixture of the highly dispersed core particle powder is directly discharged to the coating step, or (B) the particle / gas mixture of the dispersed highly dispersed core particle powder is discharged between the dispersing step and the coating step. From the discharge part for discharging, it is conveyed through one or more members selected from a hollow member inevitable for conveyance, an intermediate member composed of a member for forming a hollow, and a pipe, and / or air dispersion. The coating according to claim 1, wherein the coating is prepared by transporting through one or more kinds of a maintaining means, an air dispersion promoting means, and a particle / gas mixture selecting means of highly dispersed core particle powder. Production of metal quasi-fine particles .
【請求項5】 被覆金属準微粒子が、 平均粒子径が10μmを越え20μm以下のときには分
散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上とする分散性能を有する準微粒子高分散処理
手段群の最終処理により気中に分散させる分散工程の一
部以上と前記被覆工程の一部以上とを、空間を一部以上
共有して行うことにより調製されることを特徴とする、
請求項1に記載の被覆金属準微粒子の製造法。
5. When the average particle size of the coated metal quasi-fine particles is more than 10 μm and less than 20 μm, the dispersity β is 80% or more, and when the average particle size is more than 20 μm and less than 50 μm, the dispersity β is 90.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
When it is 7% or more, and when it exceeds 800 μm, the dispersity β is 99% or more. Part of the dispersion step of dispersing in the air by the final treatment of the quasi-fine particle high dispersion treatment means group having the dispersion performance and the above coating step. Characterized in that it is prepared by carrying out a part or more with a part or more of a space,
The method for producing coated metal quasi-fine particles according to claim 1.
【請求項6】 被覆された金属準微粒子が、 平均粒子径が10μmを越え20μm以下のときには分
散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上とする空間領域の内の当該高分散芯粒子粉体
の粒子・気体混合物中の芯粒子粉体の粒子の全ての粒子
が通過する面を含む空間領域に、被覆空間の被覆開始領
域を位置せしめるか、又は平均粒子径が10μmを越え
20μm以下のときには分散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上とする空間領域の内の、回収手段の回収部に
回収する全ての粒子が通過する面を含む空間領域に、被
覆空間の被覆開始領域を位置せしめることによって調整
されることを特徴とする、請求項1、2又は3のいずれ
かに記載の被覆金属準微粒子の製造法。
6. The coated metal quasi-fine particles have a dispersity β of 80% or more when the average particle size exceeds 10 μm and 20 μm or less, and a dispersity β of 90 when the average particle size exceeds 20 μm and 50 μm or less.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
When the dispersity β is 99% or more when it is 7% or more and 800 μm or more, all particles of the highly dispersed core particle powder / particles of the core particle powder in the gas mixture pass through. The coating start region of the coating space is located in the space region including the surface to be covered, or the dispersity β is 80% or more when the average particle size is more than 10 μm and 20 μm or less, and the dispersity β is when the average particle size is more than 20 μm and 50 μm or less. 90
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
When the dispersity β is 99% or more when it is 7% or more and 800 μm or more, the coating of the coating space on the space area including the surface through which all the particles to be recovered by the recovery unit of the recovery means pass. The method for producing coated metal quasi-fine particles according to claim 1, 2 or 3, wherein the method is adjusted by positioning a starting region.
【請求項7】 使用する芯粒子粉体の粒子の粒度分布
が、平均粒子径をDMとしたとき、体積基準頻度分布で
(〔DM/5,5DM〕,≧90%)であることを特徴と
する、請求項1、4、5又は6のいずれかに記載の被覆
金属準微粒子の製造法。
7. The particle size distribution of the particles of the core particle powder to be used is ([D M / 5,5D M ], ≧ 90%) in terms of volume-based frequency distribution when the average particle size is D M. The method for producing coated metal quasi-fine particles according to claim 1, 4, 5, or 6.
【請求項8】 請求項1〜7のいずれかに記載の製造法
によって被覆された被覆金属準微粒子又は同粒子を含む
混合物を焼結することを特徴とする、被覆金属準微粒子
焼結体の製造法。
8., characterized in that the mixture is sintered, including the claims 1-7 coated metal semi fine particles or the particles are coated by a process according to any one of the coated metal quasi particle sintered body Manufacturing method.
【請求項9】 請求項8に記載の被覆金属微粒子焼結体
の製造法により製造することを特徴とする、被覆金属準
微粒子焼結体。
9. A coated metal quasi-fine particle sintered body produced by the method for producing a coated metal fine particle sintered body according to claim 8.
JP21928193A 1993-08-12 1993-08-12 Manufacturing method of coated metal quasi-fine particles Expired - Lifetime JP3533459B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21928193A JP3533459B2 (en) 1993-08-12 1993-08-12 Manufacturing method of coated metal quasi-fine particles
US08/949,901 US6024915A (en) 1993-08-12 1997-10-14 Coated metal particles, a metal-base sinter and a process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928193A JP3533459B2 (en) 1993-08-12 1993-08-12 Manufacturing method of coated metal quasi-fine particles

Publications (2)

Publication Number Publication Date
JPH0754008A JPH0754008A (en) 1995-02-28
JP3533459B2 true JP3533459B2 (en) 2004-05-31

Family

ID=16733059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928193A Expired - Lifetime JP3533459B2 (en) 1993-08-12 1993-08-12 Manufacturing method of coated metal quasi-fine particles

Country Status (1)

Country Link
JP (1) JP3533459B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754008B2 (en) * 1987-01-28 1995-06-07 松下電器産業株式会社 Sanitary washing equipment
JP4004675B2 (en) * 1999-01-29 2007-11-07 株式会社日清製粉グループ本社 Method for producing oxide-coated metal fine particles
JP4582365B2 (en) * 1999-05-20 2010-11-17 大阪冶金興業株式会社 Method for producing TiAl intermetallic compound heat-resistant material having high creep rupture strength, TiAl intermetallic compound powder and method for producing the same
JP4001438B2 (en) * 1999-05-31 2007-10-31 三井金属鉱業株式会社 Method for producing composite copper fine powder
JP3625415B2 (en) 2000-04-20 2005-03-02 株式会社日清製粉グループ本社 Method for producing oxide-encapsulated glass particles and oxide-encapsulated glass particles produced by this method
US9079246B2 (en) * 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8642139B2 (en) * 2009-06-09 2014-02-04 Toyota Motor Engineering & Manufacturing North America, Inc. Process to make structured particles
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
SE535381C2 (en) * 2010-02-24 2012-07-17 Plasmadvance Ab Plasma sputtering process to produce particles
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
JP5753304B1 (en) * 2014-08-29 2015-07-22 株式会社ジーエル・マテリアルズホールディングス Aluminum or aluminum alloy powder carrying ceramic nanoparticles, ceramic-aluminum composite material using the same, and method for producing the powder
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof

Also Published As

Publication number Publication date
JPH0754008A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JP3533459B2 (en) Manufacturing method of coated metal quasi-fine particles
US6024915A (en) Coated metal particles, a metal-base sinter and a process for producing same
US5536485A (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
EP0712941B1 (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JP2562442B2 (en) Composite powder particles, manufacturing method and manufacturing apparatus
US5352269A (en) Spray conversion process for the production of nanophase composite powders
US6024909A (en) Coated ceramic particles, a ceramic-base sinter and a process for producing the same
WO2007095376A2 (en) Method and apparatus for coating particulates utilizing physical vapor deposition
US20190194481A1 (en) Multimaterial powder with composite grains for additive synthesis
EP0663456B1 (en) Method of producing coated particles
JP3533458B2 (en) Manufacturing method of coated metal fine particles
JP3948631B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3948632B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
US5389585A (en) Fine non-oxide ceramic powders
JP4016091B2 (en) Coated ceramic particles, ceramic-based sintered body and method for producing the same
JPH0753272A (en) Coated ceramic semifine particles, ceramic-based sintered compact and its production
JP3545784B2 (en) Method for producing coated quasi-fine particles
JPH0753282A (en) Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof
JPH08199372A (en) Production of functionally gradient material and device therefor
JP3948634B2 (en) Coated diamond sintered body and manufacturing method thereof
JPH0753205A (en) Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production
JP3948633B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3960484B2 (en) Coated diamond sintered body and manufacturing method thereof
JP3948635B2 (en) Coated diamond sintered body and manufacturing method thereof
JP4635215B2 (en) Coated diamond quasi-fine particle sintered body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term