JPH0753272A - Coated ceramic semifine particles, ceramic-based sintered compact and its production - Google Patents

Coated ceramic semifine particles, ceramic-based sintered compact and its production

Info

Publication number
JPH0753272A
JPH0753272A JP5219280A JP21928093A JPH0753272A JP H0753272 A JPH0753272 A JP H0753272A JP 5219280 A JP5219280 A JP 5219280A JP 21928093 A JP21928093 A JP 21928093A JP H0753272 A JPH0753272 A JP H0753272A
Authority
JP
Japan
Prior art keywords
quasi
particles
dispersion
particle
particle powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219280A
Other languages
Japanese (ja)
Inventor
Haruo Yoshida
晴男 吉田
Masaichi Kume
正市 粂
Yukiyoshi Yamada
幸良 山田
Tadashi Fuyuki
正 冬木
Satoshi Akiyama
聡 秋山
Yoshiaki Hamada
美明 濱田
Eisuke Kuroda
英輔 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nisshin Seifun Group Inc filed Critical Agency of Industrial Science and Technology
Priority to JP5219280A priority Critical patent/JPH0753272A/en
Publication of JPH0753272A publication Critical patent/JPH0753272A/en
Priority to US08/949,902 priority patent/US6024909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high performance ceramic-based sintered compact having a uniform, dense, tightly sintered and highly controlled microstructure. CONSTITUTION:Core particles made of ceramic semifine particles having >10mum average particle diameter in the frequency distribution on volume basis are dispersed in gas at >=80%, >=90%, >=95%, >=97% or >=99% dispersity in accordance with the particle diameter and the dispersed core particles are collided against or brought into contact with a precursor of a coat forming material to coat the surfaces of the separate particles with the coat forming material. The resulting coated semifine ceramic particles are sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス準微粒子
表面に被覆形成物質を被覆した被覆セラミックス準微粒
子、この被覆セラミックス準微粒子又はこの被覆セラミ
ックス準微粒子を含む混合物を焼結するセラミックス基
焼結体の製造法、及びこの方法で得られるセラミックス
基焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to coated ceramic quasi-fine particles in which the surface of a ceramic quasi-fine particle is coated with a coating-forming substance, a ceramic-based sintered body for sintering the coated ceramic quasi-fine particle or a mixture containing the coated ceramic quasi-fine particle. And a ceramic-based sintered body obtained by this method.

【0002】[0002]

【従来の技術】近年、セラミックス基焼結体はその組織
の微細化や均質化を図った開発研究が精力的に進められ
てきているが、用途の明確な材料については、敢えて粒
子径が相対的に大きい、例えば平均粒子径が10μmを
越えるセラミックス準微粒子を使用することが大変効果
的となる。
2. Description of the Related Art In recent years, ceramic-based sintered bodies have been vigorously researched and developed with the aim of making their structures finer and homogenized. It is very effective to use quasi-fine ceramic particles having a relatively large average particle diameter of, for example, more than 10 μm.

【0003】例えば、硬質で耐摩耗性のセラミックス焼
結体は、高硬度セラミックス準微粒子を比較的多量に分
散させた準微粒子分散型のセラミックス準微粒子の焼結
で製造可能となるが、この場合原材料の高硬度セラミッ
クス準微粒子が重要である。また、高靭性セラミックス
基焼結体は、等軸状とは異なり、板状、棒状等のアスペ
クト比が多少大きいセラミックス準微粒子を比較的多量
に含有するセラミックス粒子の焼結で製造可能となる
が、この場合にもこのアスペクト比が多少大きいセラミ
ックス準微粒子が大変有用である。
For example, a hard and wear-resistant ceramic sintered body can be manufactured by sintering quasi-fine particle dispersion type ceramic quasi-fine particles in which a relatively large amount of high hardness ceramic quasi-fine particles are dispersed. High hardness ceramics quasi-fine particles as raw material are important. Further, a high toughness ceramic-based sintered body can be manufactured by sintering ceramic particles containing a relatively large amount of quasi-fine ceramic particles having a slightly large aspect ratio such as plate-like or rod-like, unlike the equiaxial shape. Also in this case, the ceramic quasi-fine particles having a slightly large aspect ratio are very useful.

【0004】これらのセラミックス準微粒子が分散した
セラミックス基焼結体は、このセラミックス準微粒子と
その周りの微組織との、欠陥や気孔のない緊密な焼結に
より絶大な準微粒子分散効果が発揮される。そのために
はこのセラミックス準微粒子とその周りの微組織との焼
結を促進する焼結助剤や結合剤、或はこの準微粒子の粒
子形状が保たれるような粒界制御物質等の存在が欠かせ
ない。
The ceramic-based sintered body in which these ceramic quasi-fine particles are dispersed exhibits a great effect of dispersing quasi-fine particles due to the close sintering of the ceramic quasi-fine particles and the microstructure around them without defects or pores. It To this end, the presence of a sintering aid or binder that promotes the sintering of the ceramic quasi-fine particles and the surrounding microstructure, or a grain boundary control substance that maintains the particle shape of the quasi-fine particles. necessary.

【0005】従来、このような焼結助剤や結合剤、或は
粒界制御物質等の添加物質の添加は専ら粉体混合法によ
り行なわれてきた。
Conventionally, such a sintering aid, a binder, or an additive substance such as a grain boundary control substance has been added exclusively by a powder mixing method.

【0006】しかし、粉体混合法では、混合時の不純物
の混入が避けられないのみならず、原理的に組織の均一
化に限度があり、添加物質の粒子が相対的に極めて微細
であっても理想的な均一な混合、即ちセラミックス準微
粒子にこの添加物質の粉体粒子がむらなく行き渡る均一
な分散は極めて困難である。仮にこの均一な分散が実現
されたとしても、この添加物質の粉体粒子が粒子単位で
混合されるために、均一の意味にも限界がある。特に相
対的にその量が少ない場合、分布むらが必然的にでき
る。
However, in the powder mixing method, not only the mixing of impurities at the time of mixing is unavoidable, but also there is a limit to the homogenization of the structure in principle, and the particles of the added substance are relatively extremely fine. However, it is extremely difficult to achieve ideal uniform mixing, that is, uniform dispersion in which the powder particles of the additive substance are evenly distributed in the ceramic quasi-fine particles. Even if this uniform dispersion is realized, there is a limit to the meaning of uniformity because the powder particles of the additive substance are mixed in particle units. Especially when the amount is relatively small, uneven distribution is inevitable.

【0007】現実には、多くの場合、セラミックス準微
粒子が集中し、又は添加物質の粉体粒子が凝集してセラ
ミックス基焼結体中に塊状に存在したり、或いは焼結体
中で偏在してセラミックス基焼結体の性能を著しく低下
させる。
In reality, in many cases, the ceramic quasi-fine particles are concentrated, or the powder particles of the additive substance are aggregated and exist in a lump in the ceramic-based sintered body, or are unevenly distributed in the sintered body. The performance of the ceramic-based sintered body is significantly reduced.

【0008】従って、セラミックス準微粒子一個一個に
確実に添加物質を分布させる必要がある。しかも、セラ
ミックス準微粒子と周りの微組織との緻密な焼結のため
に、セラミックス準微粒子表面への高度に制御された均
一な被覆、即ち個々のセラミックス準微粒子の表面に一
様な形態の被覆で、且つこの一様な被覆が個々の全ての
セラミックス準微粒子に漏れがなくなされた被覆が要求
される。しかもこの高度に制御された均一な被覆は、そ
の粒子径が大きくなければそれだけ未被覆部分が殆どな
い均一な被覆が求められる。
Therefore, it is necessary to surely distribute the additive substance in each of the ceramic quasi-fine particles. Moreover, due to the dense sintering of the ceramic quasi-fine particles and the surrounding microstructure, the surface of the ceramic quasi-fine particles is highly controlled and evenly coated, that is, the surface of each ceramic quasi-fine particle is uniformly coated. In addition, this uniform coating is required to be a coating in which all individual ceramic quasi-fine particles are leak-free. Moreover, this highly controlled and uniform coating is required to have a uniform coating with almost no uncoated portion unless the particle size is large.

【0009】このように高度に制御された均一な被覆を
施した被覆されたセラミックス準微粒子の製造、及びこ
の被覆されたセラミックス準微粒子を用いた高性能なセ
ラミックス基焼結体の製造が強く望まれている。
It is strongly desired to manufacture coated ceramic quasi-fine particles which are thus highly controlled and uniformly coated, and to manufacture a high-performance ceramic-based sintered body using the coated ceramic quasi-fine particles. It is rare.

【0010】このセラミックス準微粒子への被覆形成物
質の被覆法としては、気相法、湿式メッキ法など種々の
方法が考慮されうるが、中でも気相法は、原理的に、
(1)雰囲気の制御が容易である、(2)基本的に目的
のセラミックス基焼結体とする前記添加物質を被覆形成
物質とする被覆形成物質の選択に制限がなく、活性金属
を始めとする金属単体物質、窒化物、炭化物、硼素物、
酸化物など、いろいろな種類の物質を被覆できる、
(3)目的とする被覆形成物質を、不純物を混入するこ
となく被覆できる、(4)被覆量を任意に制御できるな
ど、他の被覆法では成し得ない大きな特徴がある。
Various methods such as a vapor phase method and a wet plating method can be considered as a method of coating the ceramic quasi-fine particles with a coating forming substance. Among them, the vapor phase method is, in principle,
(1) The atmosphere can be easily controlled. (2) Basically, there is no limitation on the selection of the coating forming substance having the above-mentioned additive substance as the target ceramic-based sintered body as the coating forming substance, and the active metal or the like can be selected. Simple substance, nitride, carbide, boron,
Can coat various kinds of substances such as oxides,
There are major features that cannot be achieved by other coating methods, such as (3) the target coating forming substance can be coated without mixing impurities, and (4) the coating amount can be arbitrarily controlled.

【0011】しかし、以下の理由により、公知の技術と
して提案されている種々の被覆装置や被覆方法では前記
高度に制御された均一な被覆が成し得なかった。
However, due to the following reasons, the highly controlled and uniform coating cannot be achieved by various coating apparatuses and coating methods proposed as known techniques.

【0012】即ち、セラミックス準微粒子は、微粒子程
は凝集力が強くないが、それでもこの準微粒子芯粒子粉
体の粒子又は主に準微粒子からなる芯粒子粉体の粒子で
あるセラミックス準微粒子を一個一個単位の単一粒子状
態とすることができなかった。このため、凝集して他の
セラミックス準微粒子により遮られたところではこのセ
ラミックス準微粒子表面に未被覆部分が残存した。前記
のように高度に制御された均一な被覆が求められている
にもかかわらず、セラミックス準微粒子ではこの程度の
凝集力とは言えこの凝集力による影響が甚大で、大変深
刻な問題となっていたというのが実状である。
That is, the ceramic quasi-fine particles are not as strong in cohesive force as the fine particles, but nevertheless, one quasi-fine particle of the quasi-fine particle core particle powder or one of the quasi-fine particle of the core particle powder mainly composed of quasi-fine particles is used. It was not possible to make a single particle state in units of one. For this reason, an uncoated portion remained on the surface of the ceramic quasi-fine particles where they aggregated and were blocked by other ceramic quasi-fine particles. Despite the demand for highly controlled and uniform coating as described above, even though the ceramic quasi-fine particles have this level of cohesive force, the effect of this cohesive force is enormous and has become a very serious problem. That is the actual situation.

【0013】例えば、特開昭58−31076号公報に
開示されている装置・方法によれば、PVD装置内に設
置された容器の中に芯粒子粉体の粒子を入れ、容器を電
磁気的な方法により振動させ、前記容器内の芯粒子を転
動させながらPVD法により被覆する。また、特開昭6
1−30663号公報に開示されている装置によれば、
PVD装置内に設置された容器の中に芯粒子粉体の粒子
を入れ、容器を機械的な方法により振動させ、前記容器
内の芯粒子を転動させなからPVD法により被覆するこ
とができるとされている。しかし、これらの容器の振動
によりセラミックス準微粒子である芯粒子粉体の粒子を
転動させながら被覆する装置或いは方法では、実際に
は、準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子は何層にも重なった状態で摺動する
のみで単一粒子状態で被覆できなかった。
For example, according to the apparatus and method disclosed in Japanese Patent Application Laid-Open No. 58-31076, particles of core particle powder are put in a container installed in a PVD apparatus and the container is electromagnetically charged. The core particles in the container are covered with the PVD method while rolling by vibrating according to the method. In addition, JP-A-6
According to the device disclosed in Japanese Patent Publication No. 1-30663,
Particles of the core particle powder are put into a container installed in the PVD apparatus, and the container is vibrated by a mechanical method so that the core particles in the container do not roll and can be coated by the PVD method. It is said that. However, in the apparatus or method for coating the particles of the core particle powder, which is the ceramic quasi-fine particles while rolling by the vibration of these containers, the particles of the quasi-fine particle core particle powder or mainly quasi-fine particles are actually used. The particles of the core particle powder were slid only in a state where they were stacked in many layers and could not be coated in a single particle state.

【0014】特開平3−153864号公報に開示され
ている装置及び方法は、内面に障壁及び/又は凹凸を備
えた回転容器内に粒子を入れ、この回転容器を回転しな
がら蒸着法により芯粒子表面に表面を行なうことを目的
とするものであるが、このような装置或いは方法におい
ては、セラミックス準微粒子である準微粒子芯粒子粉体
の粒子又は主に準微粒子からなる芯粒子粉体の粒子は、
何層にも重なった状態で多くの粒子が接触したまま軽く
撹拌されるだけで、単一粒子状態で被覆できなかった。
The apparatus and method disclosed in Japanese Patent Application Laid-Open No. 3-153864 is such that particles are placed in a rotary container having a barrier and / or unevenness on the inner surface, and the core particles are formed by vapor deposition while rotating the rotary container. Although the purpose is to perform a surface-to-surface, in such an apparatus or method, particles of quasi-fine particle core particle powder that is ceramic quasi-fine particles or particles of core particle powder mainly composed of quasi-fine particles Is
Many particles were simply agitated while being in contact with each other in a state where they were superposed on each other, and they could not be coated in a single particle state.

【0015】特開昭58−141375号公報には、反
応ガス雰囲気中におかれた粉体を反応ガスの流れと重力
の作用とによって浮遊させて、反応ガスの化学反応によ
り生成される析出物質によって粉体の表面を被覆する装
置が開示されている。又、特開平2−43377号公報
には、粒子を減圧下において流動化させながら、熱化学
反応処理を行い被覆を行なう方法が開示されている。
又、特開昭64−80437号公報には、低・高周波合
成音波により芯粒子粉体の凝集体を崩して流動化させ被
覆する方法が開示されている。しかし、これらの気流や
振動により準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子の流動層利用する方法又は装
置では、全ての芯粒子を同じ様に単一粒子状態で独立に
流動、浮遊させることは事実上不可能であり、セラミッ
クス準微粒子である粒子同士が陰になってできる各粒子
の被覆むらをなくすことができなかった。
Japanese Patent Laid-Open No. Sho 58-141375 discloses a deposit material produced by a chemical reaction of a reaction gas by suspending a powder placed in a reaction gas atmosphere by the flow of the reaction gas and the action of gravity. Discloses a device for coating the surface of powder. Further, Japanese Patent Application Laid-Open No. 2-43377 discloses a method of performing coating by performing thermochemical reaction treatment while fluidizing particles under reduced pressure.
Further, JP-A-64-80437 discloses a method in which agglomerates of core particle powder are broken down and fluidized by low and high frequency synthetic sound waves to cover the particles. However, in the method or apparatus utilizing the fluidized bed of the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles by these air flows and vibrations, all the core particles are the same as a single particle. It is practically impossible to independently flow and float in this state, and it was not possible to eliminate the uneven coating of each particle, which is a shadow of the ceramic quasi-fine particles.

【0016】特開昭54−153789号公報には、金
属の蒸気を発生させた真空容器内を粉末材料を落下させ
金属を被覆する装置が開示されている。又、特開昭60
−47004号公報には真空槽中の高周波プラズマ領域
にモノマーガスと粉体粒子を導入し、プラズマ重合によ
り有機物の被覆膜を形成させる方法が開示されている。
これらの装置或いは方法の如く、単に導入するだけでは
セラミックス準微粒子である芯粒子粉体の粒子又は主に
準微粒子からなる芯粒子粉体の粒子は、単一粒子状態で
ない凝集体を形成して落下するだけで、粒子の陰ができ
て被覆むらができたり、凝集体の内部の粒子は全く被覆
されなかったり、或いは互いに被覆量の違いが生じてし
まった。
Japanese Unexamined Patent Publication (Kokai) No. 54-153789 discloses a device for coating a metal by dropping a powder material in a vacuum container in which vapor of metal is generated. In addition, JP-A-60
-47004 discloses a method of introducing a monomer gas and powder particles into a high-frequency plasma region in a vacuum chamber and forming a coating film of an organic substance by plasma polymerization.
As in these devices or methods, the particles of the core particle powder which is the quasi-fine particles of ceramics or the particles of the core particle powder which mainly consist of quasi-fine particles are not formed into a single particle state when they are simply introduced. Only by falling, the shadows of the particles were formed and the coating was uneven, the particles inside the aggregate were not coated at all, or the coating amounts differ from each other.

【0017】特開昭62−250172号公報には、前
処理として、ジェットミル処理した粉体を、減圧加熱処
理室で滞留せしめ、ここで加熱処理を施した後、粉体フ
ィーダーでスパッタリング室に自然落下により導入せし
め、ターゲットを垂直に設けた円筒状のスパッタリング
室に自然落下させ被覆させる装置及び方法が開示されて
いる。又、特開平2−153068号公報には、前処理
として、ジェットミル処理した粉体を、減圧加熱処理室
で滞留させ、ここで加熱処理を施した後、粉体フィーダ
ーでスパッタリング室のスパッタリング源を納めた回転
容器に(単一粒子でない)粉体状で導入し、容器を回転
させた状態でスパッタリングする装置及び方法が開示さ
れている。これら装置及び方法では、被覆前の加熱工程
で、ジェットミル処理したセラミックス準微粒子の芯粒
子粉体を滞留させる工程があり、加熱工程でのこの粉体
の滞留のため再び単一粒子状態でない凝集体を形成し、
結局被覆工程ではこの凝集体は単一粒子状態にはならな
い。
In Japanese Patent Laid-Open No. 62-250172, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced pressure heat treatment chamber, and after heat treatment is performed therein, the powder is fed into a sputtering chamber by a powder feeder. An apparatus and a method are disclosed in which the target is introduced by natural falling and the target is naturally dropped into a vertically-arranged cylindrical sputtering chamber to cover the target. Further, in Japanese Patent Application Laid-Open No. 2-153068, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced pressure heat treatment chamber, where after heat treatment is performed, a powder feeder is used to sputter the sputtering source in the sputtering chamber. There is disclosed an apparatus and a method for introducing powder in the form of powder (not single particles) into a rotating container containing therein and sputtering the container while rotating the container. In these devices and methods, there is a step of retaining core particles of ceramic quasi-fine particles that have been jet-milled in the heating step before coating, and due to the retention of this powder in the heating step, coagulation that is not in a single particle state again occurs. Forming aggregates,
After all, in the coating process, the agglomerates do not become a single particle state.

【0018】以上のように、これまでのものでは、いず
れも準微粒子のセラミックス粒子である芯粒子粉体の粒
子又は主に準微粒子のセラミックス粒子からなる芯粒子
粉体の粒子に被覆する装置或いは方法としての問題解決
はなされておらず、準微粒子のセラミックス粒子である
芯粒子粉体の粒子又は主に準微粒子のセラミックス粒子
からなる芯粒子粉体の粒子は、現実には接触したままの
凝集体の状態で被覆処理に供され、そのために各粒子へ
の高度に制御された均一な被覆がなされることはなかっ
た。すなわち高度に制御された均一な被覆がなされる被
覆されたセラミックス準微粒子の製造方法もそのための
製造装置もなかった。それが為、セラミックス準微粒子
一個一個に結合材となる物質及び/又は焼結助剤となる
物質を被覆形成物質として、気相被覆法により高度に制
御された均一な被覆を施した被覆されたセラミックス準
微粒子作製できず、前記高性能なセラミックス基焼結体
も製造できなかった。
As described above, in the above-mentioned devices, the apparatus for coating the particles of the core particle powder, which are all quasi-fine ceramic particles, or the particles of the core particle powder, which are mainly quasi-fine ceramic particles, or No problem has been solved as a method, and particles of core particle powder that are quasi-fine particle ceramic particles or particles of core particle powder that mainly consist of quasi-fine particle ceramic particles are actually coagulated in contact with each other. It was subjected to the coating treatment in the aggregated state, which did not result in a highly controlled and uniform coating on each particle. That is, there has been neither a method for producing coated ceramics quasi-fine particles capable of achieving highly controlled and uniform coating, nor a production apparatus therefor. Therefore, each of the ceramic quasi-fine particles is coated with a substance that serves as a binder and / or a substance that serves as a sintering aid as a coating-forming substance and is subjected to a highly controlled uniform coating by a vapor-phase coating method. The ceramic quasi-fine particles could not be produced, and the high-performance ceramic-based sintered body could not be produced.

【0019】[0019]

【発明が解決しようとする課題】従って、現実に、被覆
されるべきセラミックス準微粒子であって、例えば10
μmを越える平均粒子径の粒子である準微粒子の芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
の単一粒子単位に、結合材となる物質及び/又は焼結助
剤となる物質を被覆形成物質として被覆を施した被覆さ
れたセラミックス準微粒子の提供と、この被覆されたセ
ラミックス準微粒子による高性能なセラミックス基焼結
体及びその製造方法が強く求められている。
Therefore, in reality, the ceramic quasi-fine particles to be coated, for example, 10
A substance serving as a binder and / or a sintering aid is added to a single particle unit of the particles of the quasi-fine particle core particle powder having an average particle size of more than μm or the particles of the core particle powder mainly consisting of quasi-fine particles. There is a strong demand for provision of coated ceramic quasi-fine particles coated with a substance serving as an agent as a coating-forming substance, and a high-performance ceramic-based sintered body using the coated ceramic quasi-fine particles and a method for producing the same.

【0020】本発明は、準微粒子のセラミックス粒子で
ある芯粒子粉体の粒子又は主に準微粒子のセラミックス
粒子からなる芯粒子粉体の粒子へ単一粒子単位に、結合
材となる物質及び/又は焼結助剤となる物質被覆形成物
質として被覆を施した被覆されたセラミックス準微粒
子、及びこの被覆されたセラミックス準微粒子による、
組織が微細でかつ均質であり、そして高性能なセラミッ
クス基焼結体及びその製造法を提供することを目的とす
る。
According to the present invention, particles of a core particle powder, which are quasi-fine ceramic particles, or particles of a core particle powder, which are mainly quasi-fine ceramic particles, are used as a binder in single particle units and / or Alternatively, a substance serving as a sintering aid, coated ceramic quasi-fine particles coated as a coating forming substance, and the coated ceramic quasi-fine particles,
It is an object of the present invention to provide a ceramic-based sintered body having a fine and uniform structure and high performance, and a method for producing the same.

【0021】[0021]

【課題を解決するための手段】前記課題を解決するため
に、本発明者が鋭意研究を重ねた結果、準微粒子のセラ
ミックス粒子である芯粒子粉体の粒子又は主に準微粒子
のセラミックス粒子からなる芯粒子粉体の粒子の単一粒
子単位に、目的のセラミックス基焼結体製造のための添
加物質を被覆形成物質として被覆させるためには、体積
基準頻度分布で平均粒子径が10μmを越えるセラミッ
クス粒子である芯粒子粉体の粒子が主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物中
のこの芯粒子粉体の準微粒子に、分散度βが準微粒子の
粒径に応じて80%以上、90%以上、95%以上、9
7%以上又は99%以上である高い分散状態の被覆空間
の被覆開始領域で、被覆を開始しなければならないこと
を見出した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of intensive studies by the present inventors, as a result, particles of core particles which are ceramic particles of quasi-fine particles or mainly ceramic particles of quasi-fine particles are selected. In order to coat a single particle unit of the particles of the core particle powder with the additive substance for producing the intended ceramic-based sintered body as the coating forming substance, the average particle size exceeds 10 μm in the volume standard frequency distribution. Particles of core particle powder, which are ceramic particles, are mainly present in the air in a single particle state. Particles of highly dispersed core particle powder-The quasi-fine particles of this core particle powder in the gas mixture have a dispersity β. 80% or more, 90% or more, 95% or more, 9 depending on the particle size of the quasi-fine particles
It has been found that the coating must start in the coating start region of the coating space in the highly dispersed state, which is 7% or more or 99% or more.

【0022】即ち、本発明の被覆されたセラミックス準
微粒子は、セラミックスの準微粒子からなる芯粒子粉体
を被覆空間に投入し、気相を経て生成する被覆形成物質
前駆体及び/又は気相状態の被覆形成物質前駆体を、こ
の芯粒子粉体の粒子に接触及び/又は衝突させて、芯粒
子粉体の粒子の表面を被覆形成物質で被覆して得られる
被覆されたセラミックス準微粒子であって、 (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) この芯粒子粉体の粒子を気中に分散させる分散
手段、及び(b) 芯粒子粉体の粒子を気中に分散させ
た芯粒子粉体の粒子と気体との混合物において低分散芯
粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒
子状態で気中に存在する高分散芯粒子粉体の粒子・気体
混合物を選択する高分散芯粒子粉体の粒子・気体混合物
選択手段とこの高分散芯粒子粉体の粒子・気体混合物選
択手段により選択分離された低分散芯粒子粉体部分を準
微粒子高分散処理手段群中の分散手段の内の最終分散手
段及び/又は最終分散手段以前の処理手段に搬送するフ
ィードバック手段とを備えた高分散芯粒子粉体の粒子・
気体混合物選択手段、から選ばれる準微粒子高分散処理
手段群により、体積基準頻度分布で平均粒子径が10μ
mを越える準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子を、気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とする分散工程、 (B) この分散工程で分散させた芯粒子粉体の粒子
を、その平均粒子径が10μmを越え20μm以下のと
きには分散度βが80%以上、20μmを越え50μm
以下のときには分散度βが90%以上、50μmを越え
300μm以下のときには分散度βが95%以上、30
0μmを越え800μm以下のときには分散度が97%
以上、800μmを越えるときには分散度が99%以上
の分散状態で、被覆空間の被覆開始領域において被覆形
成物質前駆体と接触及び/又は衝突させて被覆を開始す
る被覆工程、からなる被覆手段によって調製された被覆
セラミックス準微粒子に関する。
That is, the coated ceramic quasi-fine particles of the present invention are obtained by introducing a core particle powder made of ceramic quasi-fine particles into a coating space and producing a coating-forming substance precursor and / or a gas phase state through a gas phase. The coated ceramic quasi-fine particles obtained by contacting and / or colliding with the particles of the core particle powder, the precursor of the coating particle of the above, and coating the surfaces of the particles of the core particle powder with the coating material. (A) The final processing means of the semi-fine particle high dispersion processing means group is
(A) Dispersing means for dispersing the particles of the core particle powder in the air, and (b) Low dispersion in a mixture of the particles of the core particle powder and the gas in which the particles of the core particle powder are dispersed in the air. Highly dispersed core particle powder particles that separate the core particle powder part and select the particle / gas mixture of highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. The gas dispersion selection means and the particles of the highly dispersed core particle powder, and the low dispersion core particle powder portion selectively separated by the gas mixture selection means are the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group. And / or feedback means for conveying to the processing means before the final dispersing means, particles of highly dispersed core particle powder,
The average particle diameter is 10 μm in the volume-based frequency distribution by means of the quasi-fine particle high dispersion treatment means group selected from the gas mixture selecting means.
a dispersion step of dispersing particles of the quasi-fine particle core particle powder exceeding m or particles of the core particle powder mainly consisting of quasi-fine particles into the air to form a particle / gas mixture of the highly dispersed core particle powder; ) When the average particle diameter of the particles of the core particle powder dispersed in this dispersion step is more than 10 μm and less than 20 μm, the dispersity β is 80% or more and more than 20 μm and 50 μm.
When the dispersity β is 90% or more, and when the dispersity β exceeds 50 μm and is 300 μm or less, the dispersity β is 95% or more and 30
When it exceeds 0 μm and 800 μm or less, the dispersity is 97%.
As described above, when the particle size exceeds 800 μm, in a dispersion state of 99% or more in dispersion state, a coating step of contacting and / or colliding with the coating material precursor in the coating start region of the coating space to start coating, is prepared by a coating means. Coated ceramic quasi-fine particles.

【0023】更に本発明は、前記被覆されたセラミック
ス準微粒子が、被覆されたセラミックス準微粒子の被覆
形成物質を介して接触状態で集合塊を形成した被覆され
たセラミックス準微粒子の集合塊を、解砕及び/又は破
砕する被覆されたセラミックス準微粒子集合塊の解砕・
破砕工程、及び/又はこの被覆されたセラミック準微粒
子集合塊と一次粒子単位の被覆されたセラミックス準微
粒子とを選択分離する選択分離工程を更に経て調製され
たものであることを特徴とする被覆セラミックス準微粒
子にも関するものである。
Further, according to the present invention, the coated agglomerates of coated ceramic quasi-fine particles, in which the agglomerated agglomerates of coated ceramic quasi-fine particles are formed in contact with each other through the coating forming substance of the coated ceramic quasi-fine particles, Crushing and / or crushing of coated ceramic quasi-fine particle aggregates
A coated ceramic prepared by further undergoing a crushing step and / or a selective separation step of selectively separating the coated ceramic quasi-fine particle aggregate and the ceramic quasi-fine particles coated with primary particle units. It also relates to quasi-fine particles.

【0024】更に本発明は、前記セラミックスの準微粒
子からなる芯粒子粉体の粒子を構成する物質のビッカー
ス硬度が4000を越えないものである被覆セラミック
ス準微粒子にも関するものである。
The present invention also relates to coated ceramic quasi-fine particles in which the Vickers hardness of the substance constituting the particles of the core particle powder made of the quasi-fine particles of the ceramic does not exceed 4000.

【0025】更に本発明は、被覆されたセラミックス準
微粒子が、体積基準頻度分布で平均粒子径が10μmを
越え20μm以下の芯粒子粉体を、準微粒子高分散処理
手段群の最終処理により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の
分散度βを80%以上とする分散性能を有する準微粒子
高分散処理手段群、又は体積基準頻度分布で平均粒子径
が20μmを越え50μm以下の芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを90%以上とする分散性能を有
する準微粒子高分散処理手段群、又は体積基準頻度分布
で平均粒子径が50μmを越え300μm以下の芯粒子
粉体を、準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを95%以上とす
る分散性能を有する準微粒子高分散処理手段群、又は体
積基準頻度分布で平均粒子径が300μmを越え800
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を97%以上とする分散性能を有する準微粒子高分散処
理手段群、又は
Further, according to the present invention, the coated ceramic quasi-fine particles are obtained by subjecting a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 10 μm and 20 μm or less to the final treatment in the quasi-fine particle high dispersion treatment means group. To form a particle / gas mixture of highly dispersed core particle powder, and the dispersion degree β of the particles of the core particle powder is 80% or more. A core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. A group of quasi-fine particle high-dispersion treatment means having a dispersibility of 90% or more of the degree of dispersion β of particles of the particle powder, or a core particle powder having an average particle size of more than 50 μm and 300 μm or less in a volume standard frequency distribution, High dispersion of fine particles By the final treatment of the treatment means group, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more. The average particle diameter exceeds 800 μm in the dispersion treatment means group or volume standard frequency distribution of 800
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Of high-dispersion quasi-fine particles having a dispersion performance of 97% or more, or

【0026】体積基準頻度分布で平均粒子径が800μ
mを越える芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を99%以上とする分散性能を有する準微粒子高分散処
理手段群による分散工程を設け、準微粒子高分散処理手
段群により分散させた高分散芯粒子粉体の粒子・気体混
合物を被覆工程に直接放出するか、又は分散工程と被覆
工程の間に、準微粒子高分散処理手段群に分散させた高
分散芯粒子粉体の粒子・気体混合物を放出する放出部か
ら、搬送に不可避の、中空部材、中空を形成する部材か
らなる中間部材、及びパイプから選択される一種類又は
それ以上の部材を介して搬送するか、及び/又は、前記
分散性能で気中に分散させた高分散芯粒子粉体の粒子・
気体混合物中の粒子の気中分散状態を維持する気中分散
維持手段、前記分散性能で気中に分散させた高分散芯粒
子粉体の粒子・気体混合物中の粒子の気中分散状態を高
める気中分散促進手段、芯粒子粉体の粒子と気体との混
合物の内の、低分散芯粒子粉体部分を分離し、芯粒子粉
体の粒子が主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉
体の粒子・気体混合物選択手段の一種類又はそれ以上を
介して搬送して調製されたものであることを特徴とする
被覆セラミックス準微粒子にも関するものである。
The volume-based frequency distribution has an average particle diameter of 800 μm.
The core particle powder exceeding m is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder
A dispersion process using a group of quasi-particulate high-dispersion treatment means having a dispersion performance of 99% or more is provided, and the particle-gas mixture of highly dispersed core particle powder dispersed by the quasi-fine particle high-dispersion treatment means group is directly applied to the coating step A hollow member unavoidable for transportation from a discharge part that discharges or discharges a particle / gas mixture of highly dispersed core particle powder dispersed in a quasi-fine particle high dispersion treatment means group between the dispersion step and the coating step. , A high-dispersion core particle powder that is conveyed through one or more members selected from an intermediate member consisting of a member forming a hollow and a pipe, and / or dispersed in the air with the above-mentioned dispersion performance. Body particles
In-air dispersion maintaining means for maintaining the air-dispersed state of particles in a gas mixture, the particles of highly dispersed core particle powder dispersed in air with the above-mentioned dispersion performance, and enhancing the air-dispersed state of particles in a gas mixture Air dispersion promoting means, separating low-dispersion core particle powder portion of a mixture of core particle powder particles and gas, and the core particle powder particles mainly exist in the air in a single particle state. Characterized in that it is prepared by transporting the particles / gas mixture of the highly dispersed core particle powder through one or more means for selecting the particles / gas mixture of the highly dispersed core particle powder. It also relates to the coated ceramic quasi-fine particles.

【0027】更に本発明は、被覆されたセラミックス準
微粒子が、体積基準頻度分布で平均粒子径が10μmを
越え20μm以下の芯粒子粉体を、準微粒子高分散処理
手段群の最終処理により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の
分散度βを80%以上とする分散性能を有する準微粒子
高分散処理手段群、又は体積基準頻度分布で平均粒子径
が20μmを越え50μm以下の芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを90%以上とする分散性能を有
する準微粒子高分散処理手段群、又は体積基準頻度分布
で平均粒子径が50μmを越え300μm以下の芯粒子
粉体を、準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを95%以上とす
る分散性能を有する準微粒子分散処理手段群、又は体積
基準頻度分布で平均粒子径が300μmを越え800μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
97%以上とする分散性能を有する準微粒子高分散処理
手段群、又は体積基準頻度分布で平均粒子径が800μ
mを越える芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を99%以上とする分散性能を有する準微粒子高分散処
理手段群による分散工程の一部以上と前記被覆工程の一
部以上とを、空間を一部以上共有して行うことにより調
製されたものであることを特徴とする、被覆セラミック
ス準微粒子にも関する。
Further, according to the present invention, the coated ceramic quasi-fine particles are subjected to the final treatment by the quasi-fine particle high-dispersion treatment means group to the core particles powder having an average particle diameter of more than 10 μm and 20 μm or less in the volume-based frequency distribution in the air. To form a particle / gas mixture of highly dispersed core particle powder, and the dispersion degree β of the particles of the core particle powder is 80% or more. A core particle powder having an average particle size of more than 20 μm and 50 μm or less in distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the core thereof A group of quasi-fine particle high-dispersion treatment means having a dispersibility of 90% or more of the degree of dispersion β of particles of the particle powder, or a core particle powder having an average particle size of more than 50 μm and 300 μm or less in a volume standard frequency distribution, High dispersion of fine particles A quasi-fine particle dispersion having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment of the processing means group and the degree of dispersion β of the core particle powder is 95% or more. Average particle size exceeds 300 μm and 800 μm according to treatment means group or volume-based frequency distribution
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of high-dispersion quasi-fine particles having a dispersibility of 97% or more, or an average particle size of 800μ in a volume-based frequency distribution.
The core particle powder exceeding m is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder
Prepared by performing a part or more of the dispersion step and a part or more of the coating step by the quasi-fine particle high dispersion treatment means group having a dispersion performance of 99% or more with a part or more of the space shared. The present invention also relates to coated ceramic quasi-fine particles, characterized in that

【0028】更に本発明は、被覆されたセラミックス準
微粒子が、体積基準頻度分布で平均粒子径が10μmを
越え20μm以下の芯粒子粉体を、準微粒子高分散処理
手段群の最終処理により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の
分散度βを80%以上とする空間領域、又は体積基準頻
度分布で平均粒子径が、20μmを越え50μm以下の
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを90%以
上とする空間領域、又は体積基準頻度分布で平均粒子径
が、50μmを越え300μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを95%以上とする空間領
域、又は体積基準頻度分布で平均粒子径が、300μm
を越え800μm以下の芯粒子粉体を、準微粒子高分散
処理手段群の最終処理により気中に分散させて高分散芯
粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒
子の分散度βを97%以上とする空間領域、又は体積基
準頻度分布で平均粒子径が、800μmを越える芯粒子
粉体を、準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを99%以上とす
る空間領域の内の当該高分散芯粒子粉体の粒子・気体混
合物中の芯粒子粉体の粒子の全ての粒子が通過する面を
含む空間領域に、被覆空間の被覆開始領域を位置せしめ
るか、又は体積基準頻度分布で平均粒子径が、10μm
を越え20μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを80%以上とする空間領域、又は
Further, in the present invention, the coated ceramic quasi-fine particles are obtained by subjecting a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 10 μm and 20 μm or less to the final treatment in the quasi-fine particle high dispersion treatment means group. To form a particle / gas mixture of highly dispersed core particle powder, and the average particle size is 20 μm in the spatial region where the degree of dispersion β of the particles of the core particle powder is 80% or more, or in the volume standard frequency distribution. The core particle powder having a diameter of more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion of the particles of the core particle powder. Core particles having an average particle size of 50 μm or more and 300 μm or less in a spatial region where β is 90% or more or in a volume-based frequency distribution are dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. Highly dispersed core particle powder As a particle / gas mixture, the average particle size is 300 μm in the spatial region where the degree of particle dispersion β of the core particle powder is 95% or more, or in the volume standard frequency distribution.
The core particle powder having a diameter of more than 800 μm and not more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Core particles having an average particle size of more than 800 μm in a spatial region where the degree β is 97% or more, or a volume-based frequency distribution, are dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to achieve high dispersion. A particle / gas mixture of the core particle powder, and a core particle powder in the particle / gas mixture of the highly dispersed core particle powder in a space region in which the degree of dispersion β of the particle of the core particle powder is 99% or more. The coating start region of the coating space is located in the space region including the surface through which all the particles of the body pass, or the average particle diameter is 10 μm in the volume-based frequency distribution.
The core particle powder having a diameter of more than 20 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Spatial area where the degree β is 80% or more, or

【0029】体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、芯粒子粉体の粒子の分
散度βを90%以上とする空間領域、又は体積基準頻度
分布で平均粒子径が、50μmを越え300μm以下の
芯粒子粉体を準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを95%とす
る空間領域、又は体積基準頻度分布で平均粒子径が30
0μmを越え800μm以下の芯粒子粉体を、準微粒子
高分散処理手段群の最終処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、芯粒子粉体の
粒子の分散度βを97%以上とする空間領域、又は体積
基準頻度分布で平均粒子径が、800μmを越える芯粒
子粉体を準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを99%以上とす
る空間領域の内の、回収手段の回収部に回収する全ての
粒子が通過する面を含む空間領域に、被覆空間の被覆開
始領域を位置せしめることにより調製されたものである
ことを特徴とする被覆セラミックス準微粒子にも関す
る。
Volume-based frequency distribution with an average particle size of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion of the particles of the core particle powder. The core particle powder having a spatial region of β of 90% or more, or a volume-based frequency distribution and an average particle size of more than 50 μm and 300 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a high A particle / gas mixture of dispersed core particle powder is used, and the average particle size is 30 in a spatial region where the degree of dispersion β of the particles of the core particle powder is 95%, or in a volume-based frequency distribution.
The core particle powder having a particle size of more than 0 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. A core particle powder having an average particle size of more than 800 μm in a spatial region where the degree β is 97% or more, or a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a highly dispersed core. A particle-gas mixture of particle powder, including a surface through which all particles to be recovered by the recovery unit of the recovery means pass within the spatial region where the degree of dispersion β of particles of the core particle powder is 99% or more. The present invention also relates to coated ceramic quasi-fine particles prepared by positioning a coating start region of a coating space in a space region.

【0030】更に本発明は、使用する、芯粒子粉体の準
微粒子の粒度分布が、平均粒子径をDMとしたとき、体
積基準頻度分布で(〔DM/5,5DM〕,≧90%)で
あることを特徴とする被覆セラミックス準微粒子にも関
するものである。
[0030] The present invention uses the particle size distribution of the quasi-particles in a powder of core particles is, when the average particle diameter is D M, by volume frequency distribution ([D M / 5,5D M], ≧ 90%), and also relates to coated ceramic quasi-fine particles.

【0031】そして本発明は、上記した被覆されたセラ
ミックス準微粒子又は被覆されたセラミックス準微粒子
を含む混合物を焼結することを特徴とするセラミックス
基焼結体の製造法にも関する。そして本発明はまた上記
したセラミックス基焼結体の製造法により製造したセラ
ミックス基焼結体にも関する。
The present invention also relates to a method for producing a ceramic-based sintered body, which comprises sintering the above-mentioned coated ceramic quasi-fine particles or a mixture containing the coated ceramic quasi-fine particles. The present invention also relates to a ceramic-based sintered body produced by the above-described method for producing a ceramic-based sintered body.

【0032】而して、本発明によれば、セラミックスの
準微粒子からなる芯粒子粉体の準微粒子又は主に同準微
粒子からなる芯粒子粉体の準微粒子であって、その表面
が被覆形成物質で被覆されたものを、焼結してセラミッ
クス基焼結体を製造するに際して、上記した表面が被覆
形成物質で被覆されたセラミックス準微粒子として、気
相法により気相を経て生成する被覆形成物質前駆体及び
/又は気相状態の被覆形成物質前駆体と、準微粒子高分
散処理手段群の最終処理手段により気中に分散させた1
0μmを越える準微粒子からなる高分散芯粒子粉体の粒
子・気体混合物とを、被覆空間の被覆開始領域で、高分
散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子
の分散度を準微粒子の粒径に応じて上記の値とした分散
状態で合流させ、接触及び/又は衝突させてセラミック
ス準微粒子の表面を被覆形成物質で被覆したものを用い
ることにより、これまでに得られなかった組織が微細で
均質でありそして高性能なセラミックス基焼結体を得る
ことができた。そして、上記した被覆芯粒子の調製に際
して、被覆形成物質前駆体は、原子、分子、イオン、ク
ラスター、原子クラスター、分子クラスター、クラスタ
ーイオン等からなる気相を経て生成したばかりのもの
で、高分散状態のセラミックス準微粒子と接触及び/又
は衝突を始めることにより、一次粒子状態の個々の芯粒
子の表面に被覆形成物質は強固に結合し、その結果、当
該芯粒子の表面を被覆形成物質により単一粒子単位で被
覆を施した被覆されたセラミックス準微粒子が製造でき
るのである。
Thus, according to the present invention, the quasi-fine particles of the core particle powder consisting of the quasi-fine particles of ceramics or the quasi-fine particles of the core particle powder consisting mainly of the same quasi-fine particles, the surface of which is coated and formed. When a material-coated material is sintered to produce a ceramic-based sintered body, the above-mentioned surface is formed as a ceramic quasi-fine particle whose surface is coated with a material for forming a coating through a gas phase by a gas phase method. The substance precursor and / or the coating-forming substance precursor in the vapor phase were dispersed in the air by the final treatment means of the quasi-fine particle high dispersion treatment means group 1
Particles / gas mixture of highly dispersed core particle powder consisting of quasi-fine particles exceeding 0 μm are dispersed in the coating start region of the coating space, particles of highly dispersed core particle powder / particles of core particle powder in the gas mixture. The degree of quasi-fine particles is adjusted according to the particle size of the quasi-fine particles as described above, and they are brought together by contact and / or collision to coat the surfaces of the ceramic quasi-fine particles with a coating-forming substance. It was possible to obtain a ceramic-based sintered body having a fine and homogeneous structure which was not formed and having high performance. Then, in the preparation of the above-mentioned coated core particles, the coating-forming substance precursor is a substance that has just been produced through a gas phase composed of atoms, molecules, ions, clusters, atomic clusters, molecular clusters, cluster ions, etc., and has high dispersion. By initiating contact and / or collision with the ceramic quasi-fine particles in the state, the coating forming substance is firmly bound to the surface of each core particle in the primary particle state, and as a result, the surface of the core particle is simply separated by the coating forming substance. It is possible to produce coated ceramic quasi-fine particles which are coated on a particle-by-particle basis.

【0033】以下に本発明を詳細に説明する前に、本明
細書中に使用する用語をはじめに定義することにし、そ
して必要によってその用語の具体的内容を説明し、次い
で被覆形成物質で被覆されたセラミックス準微粒子の調
製がどのような技術的手段によって行なわれるものであ
るのかの説明を行うことにする。
Before describing the present invention in detail below, the terms used in the present specification will first be defined, and if necessary, the specific contents of the terms will be explained, followed by coating with a coating-forming substance. The technical means for preparing the ceramic quasi-fine particles will be described below.

【0034】被覆されたセラミックス粒子 被覆されたセラミックス粒子とは、被覆が施された下記
するセラミックス粒子をいう。例えば、具体的には、被
覆形成物質が、超微粒子状、島状、連続質状、一様な膜
状、突起物状等の内の一種以上の形態で芯粒子としてセ
ラミックス粒子に被覆された粒子をいう。
Coated Ceramic Particles The coated ceramic particles refer to the coated ceramic particles described below. For example, specifically, the coating forming substance is coated on the ceramic particles as core particles in one or more forms of ultrafine particles, islands, continuous substances, uniform films, protrusions, etc. Refers to particles.

【0035】セラミックス準微粒子用原料粉体粒子 本発明に係る、セラミックス粉体粒子が準微粒子芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
のセラミックス準微粒子の表面に、被覆形成物質で被覆
を施した、被覆されたセラミックス準微粒子用のセラミ
ックス粒子の原料粉体粒子には、セラミックス準微粒子
を構成する物質のビッカース硬度が4000を越えない
セラミックス準微粒子が選択される。セラミックス準微
粒子を構成する物質のビッカース硬度が4000を越え
ないセラミックス準微粒子とは、ダイヤモンド準微粒子
及び高圧型窒化硼素準微粒子を除くセラミックス準微粒
子のことである。この理由は以下の通りである。ダイヤ
モンド、及び高圧型窒化硼素は、何れも高圧安定相で超
高硬度物質である。これらは、常圧下では何れも準安定
に存在し、高温下では、それぞれ極めて硬質のグラファ
イト、及びグラファイト型相に相転移する。しかも何れ
も超難焼結性である。従って、ダイヤモンドや高圧型窒
化硼素の優れた特性を生かした焼結体を作製するために
は、これらが熱力学的に安定な超高圧力を印加しなけれ
ばならない等、これらの焼結は特別厳しい。
Raw material powder particles for ceramic quasi-fine particles According to the present invention, the ceramic powder particles are particles of quasi-fine particle core particle powder or particles of core particle powder mainly composed of quasi-fine particles on the surface of ceramic quasi-fine particles, As the raw material powder particles of the ceramic particles for the coated ceramic quasi-fine particles coated with the coating-forming substance, ceramic quasi-fine particles in which the Vickers hardness of the substance constituting the ceramic quasi-fine particles does not exceed 4000 are selected. The ceramic quasi-fine particles whose Vickers hardness of the substance constituting the ceramic quasi-fine particles does not exceed 4000 are ceramic quasi-fine particles excluding diamond quasi-fine particles and high pressure type boron nitride quasi-fine particles. The reason for this is as follows. Both diamond and high-pressure boron nitride are high-pressure stable phases and ultra-hard materials. All of them exist metastable under normal pressure, and undergo phase transition to extremely hard graphite and graphite type phase, respectively, at high temperature. Moreover, all of them are extremely difficult to sinter. Therefore, in order to produce a sintered body that takes advantage of the excellent characteristics of diamond and high-pressure boron nitride, it is necessary to apply an ultrahigh pressure that is thermodynamically stable. Strict.

【0036】このことに比べ、ダイヤモンドや高圧型窒
化硼素を除くセラミックスは、例えば、上記の如く相転
移によって突出した優れた特性を著しく失うということ
はなく、しかも、ダイヤモンドや高圧型窒化硼素以上に
難焼結性のものはないので焼結が特別厳しいということ
はない。従って、セラミックス粒子を構成する物質のビ
ッカース硬度が4000を越えないセラミックス準微粒
子とは、ダイヤモンド準微粒子及び高圧型窒化硼素準微
粒子を除くセラミックス準微粒子を言う。このセラミッ
クス準微粒子は、被覆形成物質と反応及び/又は固溶等
をしないセラミックス準微粒子を始め、一種類以上の被
覆形成物質と反応及び/又は固溶して目的とする無機化
合物、合金、金属間化合物等の一種類以上を生成するセ
ラミックスが選択できる。
On the other hand, ceramics other than diamond and high-pressure type boron nitride do not significantly lose their outstanding properties due to the phase transition as described above, and are more excellent than diamond and high-pressure type boron nitride. There is no hard-to-sinter material, so sintering is not particularly difficult. Therefore, the ceramic quasi-fine particles in which the Vickers hardness of the substance constituting the ceramic particles does not exceed 4000 are ceramic quasi-fine particles excluding diamond quasi-fine particles and high pressure type boron nitride quasi-fine particles. The ceramic quasi-fine particles include ceramic quasi-fine particles that do not react with and / or form a solid solution with a coating forming substance, as well as target inorganic compounds, alloys, metals that react with and / or form a solid solution with one or more types of coating forming substances. Ceramics that produce one or more types of intermetallic compounds can be selected.

【0037】気相被覆法 気相被覆法とは、被覆形成物質の原料が、分子流、イオ
ン流、プラズマ、ガス、蒸気、エアロゾルの一種以上か
らなる気相状態を少なくとも一度は経て被覆する方法、
又は気相状態の被覆形成物質の原料により被覆する方法
をいう。
Vapor Phase Coating Method The vapor phase coating method is a method in which the raw material of the coating forming material is at least once in a gas phase state composed of one or more of molecular flow, ionic flow, plasma, gas, vapor and aerosol. ,
Alternatively, it refers to a method of coating with a raw material of a coating forming substance in a gas phase.

【0038】芯粒子 芯粒子とは、被覆を施す対象物となるセラミックス準微
粒子をいう。これはまた、母材粒子、種粒子或いは被覆
される準微粒子ともいう。この芯粒子を構成する物質
は、周期律表第1a、2a、3a、4a、5a、6a、
7a、1b、2b、3b、4b、5b、6b、7b、8
族の金属、半導体、半金属、希土類金属、非金属の元素
の一種類または二種類以上を構成成分とする無機化合物
からなるもので、その具体例にはTiC、ZrC、Hf
C、WC、SiC、B4C、TaC、NbC、Si
34、TiN、ZrN、AlN、HfN、TaN、Ti
B、TiB2、ZrB2、HfB、HfB2、BP、Al2
3、Al2SiO5(ムライト)、ZrO2(Y23、M
gO又はCaO安定剤を添加したジルコニア:PSZ又
は正方晶ジルコニア多結晶体:TZP)、MgAl24
(スピネル)、グラファイト、無定形炭素、アモルファ
ス炭素などが挙げられる。
Core Particles The core particles are ceramic quasi-fine particles to be coated. This is also referred to as matrix particles, seed particles or coated quasi-fine particles. The substances that make up the core particles are 1a, 2a, 3a, 4a, 5a, 6a
7a, 1b, 2b, 3b, 4b, 5b, 6b, 7b, 8
It is composed of an inorganic compound having one or more elements of group metals, semiconductors, semi-metals, rare earth metals and non-metals as constituent components, and specific examples thereof are TiC, ZrC and Hf.
C, WC, SiC, B 4 C, TaC, NbC, Si
3 N 4 , TiN, ZrN, AlN, HfN, TaN, Ti
B, TiB 2 , ZrB 2 , HfB, HfB 2 , BP, Al 2
O 3 , Al 2 SiO 5 (mullite), ZrO 2 (Y 2 O 3 , M
Zirconia added with gO or CaO stabilizer: PSZ or tetragonal zirconia polycrystal: TZP), MgAl 2 O 4
(Spinel), graphite, amorphous carbon, amorphous carbon and the like.

【0039】そしてこれらのセラミックス粒子を構成す
る物質のビッカース硬度は40000を越えないものと
する。
The Vickers hardness of the substance forming these ceramic particles should not exceed 40,000.

【0040】芯粒子粉体 芯粒子粉体とは、芯粒子からなる粉体をいう。芯粒子粉
体の粒子とは、芯粒子粉体を構成する粒子をいう。本発
明において被覆に供する準微粒子である芯粒子粉体の粒
子又は主に準微粒子からなる芯粒子粉体の粒子は、平均
粒子径が体積基準頻度分布で10μmを越えるものであ
る。
Core particle powder The core particle powder is a powder composed of core particles. The particles of the core particle powder refer to particles constituting the core particle powder. In the present invention, the particles of the core particle powder, which are the quasi-fine particles to be coated, or the particles of the core particle powder, which are mainly quasi-fine particles, have an average particle size of more than 10 μm in volume-based frequency distribution.

【0041】好ましくは、平均粒子径をDMとしたと
き、粒度分布が体積基準頻度分布で(〔DM/5,5
M〕,≧90%)のものである。このような比較的分
布の幅の狭い粉体では、平均粒子径で粉体の分散特性又
は凝集特性が特徴付けられ、DMの値に適した条件で準
微粒子高分散処理手段群を作動させれば分散できる。
Preferably, when the average particle size is D M , the particle size distribution is a volume-based frequency distribution ([D M / 5,5
D M ], ≧ 90%). In such a powder having a relatively narrow distribution, the dispersion characteristics or agglomeration characteristics of the powder are characterized by the average particle diameter, and the quasi-fine particle high dispersion treatment means group is operated under the condition suitable for the value of D M. If it can be dispersed.

【0042】平均粒子径が10μmを越える芯粒子粉体
の粒子の粒度分布が、幅広い分布又は互いに離れた複数
のピークを持つ分布の粉体では、好適には適当な選択分
離処理、例えば分級処理を行ってそれぞれ分級された粉
体ごとに、被覆処理を施す。これにより、それぞれ分級
された粉体ごとに上記条件の下で、被覆空間の被覆開始
領域で分散度βが80%以上、90%以上、95%以
上、97%以上又は99%以上の状態の被覆が開始さ
れ、芯粒子粉体の粒子一つ一つの準微粒子に被覆が可能
となる。
Core particles having an average particle size of more than 10 μm have a broad particle size distribution or a distribution having a plurality of peaks separated from each other, and preferably a suitable selective separation treatment, for example, classification treatment. The coating treatment is applied to each of the classified powders. As a result, under the above conditions for each classified powder, the degree of dispersion β in the coating start region of the coating space is 80% or more, 90% or more, 95% or more, 97% or more or 99% or more. The coating is started, and it becomes possible to coat the quasi-fine particles of each particle of the core particle powder.

【0043】被覆形成物質 被覆形成物質とは、被覆を施す対象物に被覆を形成する
物質をいう。例えば、具体的には、超微粒子状、島状、
連続質状、一様な膜状、突起物状等の内の一種以上から
なる形態で芯粒子粉体の粒子に被覆を形成する物質をい
う。
Coating-forming substance The coating-forming substance is a substance that forms a coating on an object to be coated. For example, specifically, ultrafine particles, islands,
It refers to a substance that forms a coating on the particles of the core particle powder in the form of one or more of a continuous substance, a uniform film, and protrusions.

【0044】特に、被覆形成物質の形態が超微粒子状の
場合、この超微粒子の粒子径は、例えば0.005μm
〜0.5μmの範囲のものをいう。
Particularly, when the form of the coating forming material is ultrafine particles, the particle size of the ultrafine particles is, for example, 0.005 μm.
To 0.5 μm.

【0045】この被覆形成物質は、被覆形成物質自体が
そのままで被覆を形成するか、又は被覆形成物質と芯粒
子のセラミックスとが反応して及び/又はセラミックス
粒子に固溶して及び/又は二種類以上の被覆形成物質同
志が反応して及び/又は固溶して被覆を形成するための
目的とする無機化合物、合金、金属間化合物等の一種類
又はそれ以上を生成し、被覆されたセラミックス準微粒
子の焼結を促進する焼結助剤及び/又は結合材となる単
体物質及び/又は化合物及び/又はセラミックス準微粒
子の表面改質剤となる単体物質及び/又は化合物から選
択される。セラミックス粒子の粒界を制御させる表面改
質剤を被覆形成物質としても選択可能である。必要に応
じて、例えば、セラミックス準微粒子と焼結助剤及び/
又は結合材との化学結合性を高めたり、又は個々のセラ
ミックス準微粒子を任意の物質から隔離させ、これによ
り、セラミックス準微粒子と任意の物質との反応を抑止
させることができる。何れも、焼結助剤及び/又は結合
材としての被覆形成物質の選択の幅が飛躍的に大きく広
がり好適である。
This coating-forming substance forms a coating as it is, or the coating-forming substance reacts with the ceramics of the core particles and / or forms a solid solution with the ceramics particles and / or the two. Ceramics coated by producing one or more kinds of target inorganic compounds, alloys, intermetallic compounds, etc. for forming coating by reacting and / or forming solid solution with each other It is selected from a simple substance and / or a compound that serves as a sintering aid and / or a binder that promotes the sintering of the quasi-fine particles, and / or a simple substance and / or a compound that serves as a surface modifier of the ceramic quasi-fine particles. A surface modifier that controls the grain boundaries of the ceramic particles can also be selected as the coating forming substance. If necessary, for example, ceramic quasi-fine particles and a sintering aid and / or
Alternatively, the chemical bondability with the binder can be enhanced, or individual ceramic quasi-fine particles can be isolated from an arbitrary substance, whereby the reaction between the ceramic quasi-fine particles and the arbitrary substance can be suppressed. In either case, the range of selection of the coating forming substance as the sintering aid and / or the binder is greatly expanded, which is preferable.

【0046】これらの被覆形成物質は、周期律表1a、
2a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、5b、6b、7b、8族の金属、半導体、半
金属、希土類金属、非金属及びその酸化物、窒化物、炭
化物、酸窒化物、酸炭化物、炭窒化物、酸炭窒化物、硼
化物、珪化物の一種類又はそれ以上、例えばAl、B、
Si、Fe、Ni、Co、Ti、Nb、V、Zr、H
f、Ta、W、Re、Cr、Cu、Mo、Y、La、T
iAl、Ti3Al、TiAl3、TiNi、NiAl、
Ni3Al、SiC、TiC、ZrC、B4C、WC、W
2C、HfC、VC、TaC、Ta2C、NbC、Mo2
C、Cr32、Si24、TiN、ZrN、Si2
2O、AlN、HfN、VxN(x=1〜3)、NbN、
TaN、Ta2N、TiB、TiB2、ZrB2、VB、
32、VB2、NbB、NbB2、TaB、TaB2
MoB、MoB2、MoB4、Mo2B、WB、W2B、W
25、LaB6、B132、MoSi2、BP、Al
23、ZrO2、MgAl24(スピネル)、Al2Si
5(ムライト)の一種類又はそれ以上であることがで
きる。この被覆されたセラミックス準微粒子表面を被覆
する被覆形成物質の被覆による添加量は、何れの焼結法
を選択しても特に制限はなく、微量から多量までの任意
の量を選択できる。
These coating-forming substances are available in the periodic table 1a,
2a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
b, 4b, 5b, 6b, 7b, group 8 metals, semiconductors, semimetals, rare earth metals, nonmetals and their oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides , One or more of borides, silicides, eg Al, B,
Si, Fe, Ni, Co, Ti, Nb, V, Zr, H
f, Ta, W, Re, Cr, Cu, Mo, Y, La, T
iAl, Ti 3 Al, TiAl 3 , TiNi, NiAl,
Ni 3 Al, SiC, TiC, ZrC, B 4 C, WC, W
2 C, HfC, VC, TaC, Ta 2 C, NbC, Mo 2
C, Cr 3 C 2 , Si 2 N 4 , TiN, ZrN, Si 2 N
2 O, AlN, HfN, V x N (x = 1 to 3), NbN,
TaN, Ta 2 N, TiB, TiB 2 , ZrB 2 , VB,
V 3 B 2 , VB 2 , NbB, NbB 2 , TaB, TaB 2 ,
MoB, MoB 2 , MoB 4 , Mo 2 B, WB, W 2 B, W
2 B 5 , LaB 6 , B 13 P 2 , MoSi 2 , BP, Al
2 O 3 , ZrO 2 , MgAl 2 O 4 (spinel), Al 2 Si
It can be one or more of O 5 (mullite). The addition amount of the coating forming substance for coating the surface of the coated ceramics quasi-fine particles by coating is not particularly limited regardless of which sintering method is selected, and an arbitrary amount from a trace amount to a large amount can be selected.

【0047】均一な被覆 一様な膜状の被覆形成物質の場合には、単一粒子におい
て被覆膜の厚さがいたるところで均一であることをい
う。被覆形成物質が超微粒子状、島状又は突起物状の場
合には、超微粒子状、島状又は突起物状の被覆形成物質
が均一な分布で被覆することをいう。被覆形成物質の生
成過程で、避けられない不均一さは、均一の範疇に含ま
れるものである。
Uniform coating In the case of a uniform film-forming coating material, it means that the thickness of the coating film is uniform every single particle. When the coating forming substance is in the form of ultrafine particles, islands or protrusions, it means that the coating forming substance in the form of ultrafine particles, islands or protrusions is coated in a uniform distribution. Inevitable inhomogeneities in the process of producing coating-forming substances are included in the category of uniformity.

【0048】被覆空間に投入の定義 被覆空間に投入とは、例えば、自由落下等の落下によっ
て芯粒子粉体を被覆空間に導入することをいう。搬送ガ
スにより投入する場合には、芯粒子粉体を芯粒子粉体の
準微粒子・気体混合物の流れの方向に乗せて導入した
り、気体に乗せて流れの方向へ、或いは気体に乗り方向
が変えられて導入することをいう。または、搬送ガスの
作用を受けて導入することをもいう。例えば、搬送ガス
の波動現象、具体的には非線系波動によって導入するこ
とをもいう。或いは、ガス中の音波、超音波、磁場、電
子線等によって被覆空間に導入することをもいう。ま
た、外場、例えば電場、磁場、電子線等により導入する
ことをもいう。具体的には、電場、磁場、電子線等によ
り粉体粒子を帯電させ、又は帯磁させ引力又は斥力によ
り被覆空間に導入することをもいう。また、ガスの背圧
や減圧によって吸い込まれ、導入することも含む。
Definition of charging into the coating space The charging into the coating space means, for example, introducing the core particle powder into the coating space by falling such as free fall. In the case of charging with a carrier gas, the core particle powder is introduced while being carried in the flow direction of the quasi-fine particle / gas mixture of the core particle powder, or is carried in the gas in the flow direction or in the gas carrying direction. It means changing and introducing. Alternatively, it also means that the gas is introduced under the action of the carrier gas. For example, it also refers to introduction by a wave phenomenon of carrier gas, specifically, a non-linear wave. Alternatively, it also means introducing into the coating space by a sound wave in a gas, an ultrasonic wave, a magnetic field, an electron beam, or the like. It also means introduction by an external field such as an electric field, a magnetic field, or an electron beam. Specifically, it also means that the powder particles are charged or magnetized by an electric field, a magnetic field, an electron beam or the like and introduced into the coating space by an attractive force or a repulsive force. It also includes the introduction and introduction of gas by back pressure or pressure reduction.

【0049】被覆空間 被覆空間とは、被覆形成物質の原料から気相を経て生成
する被覆形成物質前駆体及び/又は気相状態の被覆形成
物質前駆体と芯粒子粉体の粒子が接触及び/又は衝突す
る空間をいう。或いは、芯粒子粉体の粒子の表面を被覆
形成物質で被覆する空間領域をいう。
Coating Space The coating space is a precursor of a coating forming substance which is produced from a raw material of a coating forming substance through a gas phase and / or a precursor of the coating forming substance in a gas phase and particles of the core particle powder contact and / or Or, it means the space where it collides. Alternatively, it refers to a space region in which the surface of the particles of the core particle powder is coated with the coating forming substance.

【0050】被覆室 被覆室とは、被覆空間を一部以上有する室をいう。より
具体的には、被覆室とは、被覆空間を含む仕切られた、
又は略仕切られた(略閉じた、半閉じた)室であって、
被覆空間を一部以上含む室である。
Coating Chamber The coating chamber is a chamber having a coating space or more. More specifically, the coating chamber is a partition including a coating space,
Or it is a room that is partitioned (generally closed, semi-closed),
This is a room that contains a part or more of the coated space.

【0051】気中 気中とは、真空又は気相状態の空間内をいう。ここで、
本発明において、気相状態とは、分子流、イオン流、プ
ラズマ、ガス、蒸気等の状態をいう。真空とは、技術的
には、減圧状態をさす。どんな減圧下でも、厳密にはガ
ス、分子、原子、イオン等が含まれる。
In the air, the air refers to the inside of a vacuum or a gas phase space. here,
In the present invention, the gas phase state means a state of molecular flow, ion flow, plasma, gas, vapor or the like. The vacuum is technically a reduced pressure state. Strictly speaking, gas, molecule, atom, ion, etc. are contained under any reduced pressure.

【0052】被覆形成物質前駆体 被覆形成物質前駆体とは、被覆形成物質の前駆体であ
る。より詳しくは、気相状態の被覆形成物質の原料がそ
のまま、又は被覆形成物質の原料から気相を経て形成及
び/又は合成され、被覆を施す対象物となる準微粒子で
ある芯粒子に被覆を形成する直前までの物質をいう。被
覆形成物質前駆体は、被覆形成物質の原料から、気相を
経て形成及び/又は合成する限り、状態の制限はない。
被覆形成物質の原料が気相の場合、この原料が被覆形成
物質前駆体にもなりうる。被覆形成物質前駆体そのもの
が気相であってもよい。また、被覆形成物質前駆体が反
応性物質の場合は、反応前でもよく、反応中でもよく、
反応後でもよい。被覆形成物質前駆体の具体例として
は、イオン、原子、分子、クラスター、原子クラスタ
ー、分子クラスター、クラスターイオン、超微粒子、ガ
ス、蒸気、エアロゾル等が挙げられる。
Coating Forming Substance Precursor A coating forming substance precursor is a precursor of a coating forming substance. More specifically, the core particles that are quasi-fine particles to be coated are formed by coating and / or synthesizing the raw material of the coating-forming substance in the vapor phase as it is, or from the raw material of the coating-forming substance through the vapor phase. It refers to the substance until just before it is formed. The coating substance precursor is not limited in its state as long as it is formed and / or synthesized from the raw material of the coating substance via the gas phase.
When the raw material of the coating forming substance is in the gas phase, this raw material can also be a coating forming substance precursor. The coating forming material precursor itself may be in the gas phase. When the coating-forming substance precursor is a reactive substance, it may be before the reaction or during the reaction,
It may be after the reaction. Specific examples of the coating material precursor include ions, atoms, molecules, clusters, atomic clusters, molecular clusters, cluster ions, ultrafine particles, gas, vapor and aerosols.

【0053】被覆形成物質の原料 被覆形成物質の原料とは、気相を経て被覆を形成する物
質となる原料物質をいう。被覆形成物質の原料の形態の
具体例として、塊状の固体、粉体粒子、気体、液体等が
挙げられる。
Raw Material of Coating Forming Material The raw material of the coating forming material means a raw material which becomes a material which forms a coating through a gas phase. Specific examples of the form of the raw material of the coating forming substance include lumpy solids, powder particles, gas and liquid.

【0054】分散度β 分散度βとは、粉体分散装置の分散性能を評価する指数
として増田、後藤氏らが提案(化学工学、第22回、秋
季大会研究発表講演要旨集、P349(1989)参
照)したように、全粒子の重量に対する、見かけの一次
粒子状態の粒子の重量の割合と定義する。ここで、見か
けの一次粒子状態の粒子とは、任意の分散状態の粉体粒
子の質量基準の頻度分布fm2と完全分散されている粉体
粒子の質量基準の頻度分布fm1のオーバーラップしてい
る部分の割合を示し、次の式のβで表される。
Dispersity β Dispersity β is an index for evaluating the dispersion performance of a powder disperser, proposed by Masuda, Goto et al. (Chemical Engineering, 22nd Autumn Meeting, Abstracts of Research Presentations, P349 (1989) )), The ratio of the weight of particles in the apparent primary particle state to the weight of all particles is defined. Here, the particles in the apparent primary particle state are the overlap of the mass-based frequency distribution f m2 of the powder particles in an arbitrary dispersed state and the mass-based frequency distribution f m1 of the completely dispersed powder particles. The ratio of the part that is shown is represented by β in the following equation.

【0055】[0055]

【数1】 上式において、粒子径の単位(μm)は規定されるもの
ではない。
[Equation 1] In the above equation, the unit of particle diameter (μm) is not specified.

【0056】上式は質量基準で表した粒度分布を基にし
て分散度を評価しているが、本来分散度は体積基準で表
した粒度分布を基にして評価されるべきものである。し
かし粒体粒子密度が同じである場合には質量基準で表し
た粒度分布と体積基準で表した粒度分布は同じになる。
そこで実用上測定が容易な質量基準の粒度分布を測定
し、それを体積基準の粒度分布として用いている。従っ
て本来の分散度βは次の式及び図1(a)の斜線部分の
面積で表される。
In the above formula, the dispersity is evaluated based on the particle size distribution expressed on the mass basis, but the dispersity should be evaluated based on the particle size distribution expressed on the volume basis. However, when the particle densities of particles are the same, the particle size distribution expressed by mass and the particle size distribution expressed by volume are the same.
Therefore, the mass-based particle size distribution, which is practically easy to measure, is measured and used as the volume-based particle size distribution. Therefore, the original dispersion degree β is expressed by the following equation and the area of the shaded portion in FIG.

【0057】[0057]

【数2】 上式において、粒子径の単位(μm)は規定されるもの
ではない。そして芯粒子粉体の分布及び平均粒子径は、
特に断らない限り基本的には体積基準を用いることとす
る。
[Equation 2] In the above equation, the unit of particle diameter (μm) is not specified. And the distribution and average particle size of the core particle powder are
Unless otherwise specified, the volume standard is basically used.

【0058】体積基準頻度分布 体積基準頻度分布とは、粒子径の分布をある粒子径に含
まれる体積割合をもって表したものをいう。
Volume-Based Frequency Distribution The volume-based frequency distribution refers to the distribution of particle diameters expressed by the volume ratio contained in a certain particle diameter.

【0059】(〔D1,D2〕,≧90%)の定義 (〔D1,D2〕,≧90%)分布とは、D1、D2を粒子
径、但しD1<D2とするとき、D1以上でD2以下の粒子
が体積で90%以上含まれる分布を表し、図1(b)の
ように斜線の部分の割合が90%以上である粒子からな
る粉体を表す。
[0059] ([D 1, D 2], ≧ 90%) Definition of ([D 1, D 2], ≧ 90%) and the distribution, D 1, the particle diameter D 2, where D 1 <D 2 , A distribution in which 90% or more by volume of particles of D 1 or more and D 2 or less is contained, and a powder composed of particles having a shaded portion ratio of 90% or more as shown in FIG. Represent

【0060】体積基準頻度分布(〔DM/5,5DM〕,
≧90%)の定義 粒度分布が、体積基準頻度分布で(〔DM/5,5
M〕,≧90%)分布とは、DMを体積基準の平均粒子
径とするとき、DMの1/5倍の粒子径以上、DMの5倍
の粒子径以下の粒子を体積で90%以上含む分布を表
す。例えば、平均粒子径DMが20μmで体積基準頻度
分布が(〔DM/5,5DM〕,≧90%)とは、体積基
準の平均粒子径が20μmで、4μm以上且つ100μ
m以下の粒子径の粒子が体積で90%以上含まれるよう
な分布を表す。ここで、体積基準の平均粒子径DMは、
Volume-based frequency distribution ([D M / 5,5D M ],
≧ 90%) The particle size distribution is a volume-based frequency distribution ([D M / 5,5
D M], and is ≧ 90%) distribution, when the average particle diameter on a volume basis of D M, 1/5 times the particle size or less on the D M, volume 5 times under particle size or less particles of D M Represents a distribution containing 90% or more. For example, when the average particle size D M is 20 μm and the volume-based frequency distribution is ([D M / 5,5D M ], ≧ 90%), the volume-based average particle size is 20 μm, 4 μm or more and 100 μm or more.
The distribution is such that particles having a particle diameter of m or less are contained in an amount of 90% or more by volume. Here, the volume-based average particle diameter D M is

【数3】 f(D):体積基準頻度分布 又は技術的には、ある粒子径間隔をDi±△Di/2(△
iは区分の幅)内にある粒子群の体積をviとすると、 DM=Σ(vii)/Σvi と表される。
[Equation 3] f (D): Volume-based frequency distribution, or technically, a certain particle size interval is D i ± ΔD i / 2 (Δ
D i is the volume of the particles within the width) of the segment and v i, is expressed by D M = Σ (v i D i) / Σv i.

【0061】被覆開始領域 微粒子高分散処理手段群の最終処理後、初めて被覆が開
始される領域を被覆開始領域という。従って、準微粒子
高分散処理手段群の最終処理以前では、初めて被覆が開
始される領域でも、ここでいう被覆開始領域ではない。
Coating start area The area where the coating is started for the first time after the final treatment of the high-dispersion fine particle processing means group is called the coating start area. Therefore, even before the final treatment of the quasi-fine particle high dispersion treatment means group, the region where the coating is first started is not the coating start region here.

【0062】被覆開始領域での分散度β 本発明では、体積基準頻度分布で平均粒子径が10μm
を越える芯粒子粉体を、微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βをこ
の準微粒子の平均粒径に応じて80%以上、90%以
上、95%以上、97%以上又は99%以上とした領域
に被覆空間の被覆開始領域を位置せしめる被覆室を設け
る。この被覆空間の被覆開始領域における分散度であれ
ば、体積基準頻度分布で平均粒子径が10μmを越える
準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯
粒子粉体の粒子を、実質的に粒子一個一個の単位に気中
に分散して被覆に供することができ、被覆空間の被覆開
始領域を通過する全ての芯粒子粉体の粒子の表面と、被
覆形成物質前駆体とは接触及び/又は衝突するため、必
ず準微粒子一個の単位に被覆形成物質を均一に付けるこ
とができる。平均粒子径が10μmを越える準微粒子に
おいて、上記分散度βは、芯粒子粉体の平均粒子径と共
に連続的に変化するが、表現困難なため便宜的に段階的
な表現とした。
Dispersion β in the coating start region In the present invention, the average particle size is 10 μm in the volume standard frequency distribution.
The core particle powder exceeding the above is dispersed in the air by the final treatment of the fine particle high dispersion treatment means group, and the particles of the high dispersion core particle powder
As a gas mixture, the particles of the core particle powder are coated with the degree of dispersion β of 80% or more, 90% or more, 95% or more, 97% or more or 99% or more according to the average particle size of the quasi-fine particles. A coating chamber is provided to position the coating start region of the space. If the degree of dispersion is in the coating start region of the coating space, the particles of the quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in the volume-based frequency distribution or the particles of the core particle powder mainly composed of quasi-fine particles are Each particle can be dispersed in the air in the unit and provided for coating, and the surface of all particles of the core particle powder that passes through the coating start region of the coating space comes into contact with the precursor for forming the coating material. Because of collision and / or collision, the coating forming substance can be uniformly applied to one unit of the quasi-fine particles. In the quasi-fine particles having an average particle size of more than 10 μm, the dispersity β changes continuously with the average particle size of the core particle powder, but since it is difficult to express, it is expressed stepwise for convenience.

【0063】好適には、被覆空間の被覆開始領域におい
て、体積基準頻度分布で平均粒子径が10μmを越え2
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終の分散処理により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の
分散度βを90%以上とするか、体積基準頻度分布で平
均粒子径が20μmを越え50μm以下の芯粒子粉体
を、準微粒子高分散処理手段群の最終の分散処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを95%以上と
するか、体積基準頻度分布で平均粒子径が50μmを越
え300μm以下の芯粒子粉体を、準微粒子高分散処理
手段群の最終の分散処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを97%以上とするか、又は体積基準頻
度分布で平均粒子径が300μmを越える芯粒子粉体を
準微粒子高分散処理手段群の最終の分散処理により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを99%以上とす
る。
Preferably, in the coating start region of the coating space, the average particle diameter exceeds 2 μm in a volume-based frequency distribution and exceeds 2 μm.
The core particle powder of 0 μm or less is dispersed in the air by the final dispersion treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β is set to 90% or more, or the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume standard frequency distribution is dispersed in the air by the final dispersion treatment of the quasi-fine particle high dispersion treatment means group. A particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more, or the core particle powder having an average particle size of more than 50 μm and 300 μm or less in a volume-based frequency distribution. The body is dispersed in the air by the final dispersion treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 97% or more. Or the volume-based frequency distribution has an average particle size of 30 The core particle powder exceeding 0 μm is dispersed in the air by the final dispersion treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion of the particles of the core particle powder. β is 99% or more.

【0064】この被覆空間の被覆開始領域での分散度で
あれば、芯粒子粉体の準微粒子が体積基準頻度分布で平
均粒子径が10μmを越える準微粒子芯粒子粉体の粒子
又は主に準微粒子からなる芯粒子粉体の粒子に対して事
実上芯粒子同士による閉ざされた部分がなく、一個一個
の粒子の表面へいたるところから被覆形成物質前駆体を
接触及び/又は衝突させることが可能であり、一様に被
覆できる。
As far as the degree of dispersion in the coating start region of this coating space is concerned, the quasi-fine particles of the core particle powder have a volume-based frequency distribution and the average particle diameter exceeds 10 μm. Core particles consisting of fine particles There is virtually no closed part due to the core particles with respect to the particles of the powder, and it is possible to make the coating material precursor contact and / or collide with each other from the surface to the surface of each particle. And can be uniformly coated.

【0065】体積基準頻度分布で平均粒子径が10μm
を越える準微粒子の芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子は気中に於いては凝集作用が
働き、粒子同士で接触及び/又は衝突しあい高分散芯粒
子粉体の粒子・気体混合物中の芯粒子粉体の粒子の分布
が不均一になる。しかし、上記分散度のごとき分散状態
で被覆を開始すれば、準微粒子芯粒子粉体の粒子又は主
に準微粒子からなる芯粒子粉体の粒子一個一個単位によ
り均一に、被覆形成物質を被覆でき、且つ各粒子ごとに
より均一な量に被覆形成物質を被覆できる。
Volume-based frequency distribution with an average particle size of 10 μm
Particles of core particles of quasi-fine particles that exceed the above or particles of core particles of mainly quasi-fine particles have an aggregating action in the air, and the particles come into contact with each other and / or collide with each other to obtain highly dispersed core particles. Non-uniform distribution of particles in the core particle powder in the body particle / gas mixture. However, if coating is started in a dispersed state such as the above-mentioned dispersity, it is possible to uniformly coat the coating-forming substance with the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles. In addition, the coating forming substance can be coated in a more uniform amount for each particle.

【0066】準微粒子高分散処理手段群 準微粒子高分散処理手段群とは、 (A) 少なくとも分散手段を1以上有し、 (B) 最終の処理手段として、(a) 芯粒子粉体の
準微粒子を気中に分散させる分散手段、又は(b) 芯
粒子粉体の準微粒子を気中に分散させた芯粒子粉体の粒
子と気体との混合物において低分散芯粒子粉体部分を分
離し、芯粒子粉体の粒子が主に単一粒子状態で気中に存
在する高分散芯粒子粉体の粒子・気体混合物を選択する
高分散芯粒子粉体の粒子・気体混合物選択手段とこの高
分散芯粒子粉体の粒子・気体混合物選択手段により分離
された低分散芯粒子粉体部分をこの準微粒子高分散処理
手段群中の分散手段の内の最終分散手段及び/又は最終
分散手段以前の処理手段に搬送するフィードバック手段
とを備えた高分散芯粒子粉体の粒子・気体混合物選択手
段、を有するものである。
Semi-fine particle high-dispersion processing means group The semi-fine particle high-dispersion processing means group includes (A) at least one dispersion means, and (B) as a final processing means, (a) semi-fine particles Dispersing means for dispersing fine particles in air, or (b) separating low-dispersion core particle powder portion in a mixture of particles and gas of core particle powder in which quasi-fine particles of core particle powder are dispersed in air , The particles of the core particle powder are mainly present in the air in the form of a single particle. The particle / gas mixture of the highly dispersed core particle powder for selecting the particle / gas mixture of the highly dispersed core particle powder and this high The low dispersion core particle powder portion separated by the particle / gas mixture selecting means of the dispersion core particle powder is used as the final dispersion means and / or before the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group. A high-performance device equipped with feedback means for conveying to the processing means It has a means for selecting a particle / gas mixture of core particle powder.

【0067】好適には、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体を準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを80%以上とするか、又は
(2)体積基準頻度分布で平均粒子径が20μmを越え
50μm以下の芯粒子粉体を準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを90%以上とするか、又は(3)体積基準頻度分布
で平均粒子径が50μmを越え300μm以下の芯粒子
粉体を準微粒子高分散処理手段群の最終処理により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを95%以上とす
るか、又は(4)体積基準頻度分布で平均粒子径が30
0μmを越え800μm以下の芯粒子粉体を準微粒子高
分散処理手段群の最終処理により気中に分散させて高分
散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体
の粒子の分散度βを97%以上とするか、又は(5)体
積基準頻度分布で平均粒子径が800μmを越える芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを99%以上と
する分散性能を有するものである。
Preferably, (1) a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 10 μm and 20 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core. A particle / gas mixture of particle powder, and the particle dispersity β of the core particle powder is 80% or more, or (2) core particles having an average particle size of more than 20 μm and not more than 50 μm in a volume-based frequency distribution. The powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 90% or more. Alternatively, (3) a core particle powder having an average particle size of more than 50 μm and 300 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. Particle / gas mixture, core particle powder particles Dispersion degree β of 95% or more, or (4) the volume-based frequency distribution has an average particle size of 30
A core particle powder having a particle size of more than 0 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β is set to 97% or more, or (5) core particle powder having an average particle diameter of more than 800 μm in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a high This is a particle-gas mixture of dispersed core particle powder, and has a dispersion performance such that the degree of dispersion β of the particles of the core particle powder is 99% or more.

【0068】前記被覆開始領域における種々の分散度に
対応してそれらと同等以上の分散性能の準微粒子高分散
処理手段群を設けることにより、被覆開始領域におい
て、各分散度に応じた高品位な被覆を施すことができ
る。 最終処理手段 準微粒子高分散処理手段群の最終の処理手段が分散手段
の場合、分散処理手段を準微粒子高分散処理手段群の最
終処理手段という。又、準微粒子高分散処理手段群の最
終の処理手段が、準微粒子高分散処理手段の最終の分散
手段へ、高分散芯粒子粉体の粒子・気体混合物選択処理
工程時に於いて低分散状態であったために選択分離され
た部分を搬送するフィードバック手段を備えた高分散芯
粒子粉体の粒子・気体混合物選択手段、又は最終の分散
手段より前の処理手段に、高分散芯粒子粉体の粒子・気
体混合物選択処理工程時に於いて低分散状態であったた
めに選択分離された部分を搬送するフィードバック手段
を備えた高分散芯粒子粉体の粒子・気体混合物選択手段
の場合、この高分散芯粒子粉体の粒子・気体混合物選択
手段を準微粒子高分散処理手段群の最終処理手段とい
う。
By providing a group of quasi-fine particle high dispersion treatment means having a dispersion performance equivalent to or higher than those corresponding to various dispersities in the coating start region, a high quality corresponding to each dispersity is obtained in the coating start region. A coating can be applied. Final Treatment Means When the final treatment means of the quasi-fine particle high dispersion treatment means group is a dispersion means, the dispersion treatment means is referred to as a final treatment means of the quasi-fine particle high dispersion treatment means group. Also, the final processing means of the quasi-fine particle high dispersion processing means group is added to the final dispersion means of the quasi-fine particle high dispersion processing means in a low dispersion state at the time of the particle / gas mixture selective processing step of the highly dispersed core particle powder. The particles / gas mixture selection means of the highly dispersed core particle powder provided with the feedback means for conveying the selected and separated portion, or the treatment means before the final dispersion means, the particles of the highly dispersed core particle powder. Particles of highly dispersed core particles powder provided with feedback means for conveying the selectively separated portion because it was in a low dispersion state during the gas mixture selection treatment step. The means for selecting the powder particle / gas mixture is referred to as the final treatment means of the quasi-fine particle high dispersion treatment means group.

【0069】尚、この準微粒子高分散処理手段群の最終
処理手段であるフィードバック手段を備えた高分散芯粒
子粉体の粒子・気体混合物選択手段より前に設ける(例
えば、このフィードバック手段を備えた高分散芯粒子粉
体の粒子・気体混合物選択手段と最終分散手段の間、或
いは最終分散手段より前)高分散芯粒子粉体の粒子・気
体混合物選択手段は、フィードバック手段の有無にかか
わらず準微粒子高分散処理手段群の構成要素である。
It should be noted that it is provided before the particle / gas mixture selecting means of the highly dispersed core particle powder, which is provided with the feedback means which is the final processing means of the quasi-fine particle high dispersion processing means group (for example, this feedback means is provided. Between the particle / gas mixture selection means of the highly dispersed core particle powder and the final dispersion means, or before the final dispersion means) The particle / gas mixture selection means of the highly dispersed core particle powder is quasi regardless of the presence or absence of the feedback means. It is a constituent element of a group of means for highly dispersing fine particles.

【0070】分散手段 準微粒子を分散するために用いる手段を分散手段とい
う。この分散手段は少しでも或いは僅かでも分散効果を
有するものは分散手段として使用可能であり、これを分
散手段とする。例えば、一般に供給手段として用いる空
気輸送用のロータリーフィーダーやインジェクションフ
ィーダー(粉体工学会編:“粉体工学便覧”、日刊工業
新聞社(1986)P568、P571)は、分散効果
も有するので、分散目的の手段として使用する場合は分
散手段である。後述の分散維持・促進手段も分散目的で
(βを高める目的で)使用する場合は分散手段となる。
そしてこの分散手段は単一の装置、機器である場合も、
複合された装置、機器である場合もあり、これらを総称
して準微粒子高分散処理手段群と呼ぶ。
Dispersing Means The means used to disperse the quasi-fine particles is called a dispersing means. This dispersing means can be used as a dispersing means if it has a dispersing effect even if only a little or slightly. For example, a rotary feeder for air transportation and an injection feeder (edited by Japan Society of Powder Engineering: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P568, P571), which are generally used as a supply means, have a dispersing effect, and thus are dispersed. When used as a target means, it is a dispersion means. When the dispersion maintaining / promoting means described later is also used for the purpose of dispersion (to increase β), it becomes a dispersion means.
And even if this dispersion means is a single device or device,
It may be a combined device or device, and these are collectively referred to as a quasi-fine particle high dispersion treatment means group.

【0071】この準微粒子高分散処理手段群は、芯粒子
粉体の粒子の加速及び/又は速度勾配に置く気流による
分散、芯粒子粉体の粒子の制止障害物及び/又は回転体
である障害物への衝突による分散、芯粒子粉体の粒子の
流動層及び/又は脈流及び/又は回転ドラム及び/又は
振動及び/又は掻取りからなる機械的解砕による分散等
の選択された一種類以上の分散の機構を備えたものをい
う。
This group of quasi-fine particle high-dispersion treatment means comprises particles of the core particle powder which are accelerated and / or dispersed by an air flow placed in a velocity gradient, obstacles for the particles of the core particle powder and / or obstacles which are rotating bodies. Selected one kind such as dispersion by collision with an object, fluidized bed of particles of core particle powder and / or pulsating flow and / or rotating drum and / or mechanical disintegration consisting of vibration and / or scraping It means a device provided with the above-mentioned dispersion mechanism.

【0072】具体的には、準微粒子高分散処理手段群
は、エジェクタ型分散機、ベンチュリ型分散機、細管、
撹拌機、気流中の障害物を利用した分散機、ジェットの
吹付けを利用した分散機、螺旋管、回転羽根を利用した
分散機、回転するピンを利用した分散機(ケージミ
ル)、流動層型分散機、脈流を利用した分散機、回転ド
ラムを利用した分散機、振動を利用した分散機、振動ふ
るい、スクレーパによる掻取りを利用した分散機、SA
EI、Gonell式分散機、中条式分散機、Roller式分散
機、オリフィス型分散機、B.M式分散機、Timbnell式分
散機、Wright式分散機等の選択された一種以上からなる
分散手段を備えたものである(粉体工学会編:“粉体工
学便覧”、日刊工業新聞社(1986)P430)。
Specifically, the quasi-fine particle high dispersion treatment means group includes an ejector type disperser, a Venturi type disperser, a narrow tube,
Stirrer, Disperser that uses obstacles in the air flow, Disperser that uses jet spraying, Spiral tube, Disperser that uses rotating blades, Disperser that uses rotating pins (cage mill), fluidized bed type Disperser, Disperser using pulsating flow, Disperser using rotating drum, Disperser using vibration, Vibrating sieve, Disperser using scraping by scraper, SA
EI, Gonell type disperser, Nakajo type disperser, Roller type disperser, Orifice type disperser, BM type disperser, Timbnell type disperser, Wright type disperser, etc. (Handbook of Powder Engineering: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P430).

【0073】又、特開昭56−1336号に記載の撹拌
羽根を利用した分散機、特開昭58−163454号に
記載の高速気流と分散ノズルを利用した分散機、特開昭
59−199027号に記載の回転羽根による分散作用
とプラズマイオンによる分散作用を利用した分散機、特
開昭59−207319号に記載のプラズマイオンによ
る分散作用を利用した分散機、特開昭59−21661
6号に記載のエジェクタとプラズマイオンによる分散作
用を利用した分散機、特開昭59−225728号に記
載のエジェクタとイオン流の分散作用を利用した分散
機、特開昭59−183845号に記載のプラズマイオ
ンの分散作用を利用した分散機、特開昭63−1664
21号に記載の分散羽根と圧力気体による分散作用を利
用した分散機、特開昭62−176527号に記載のラ
イン状又はリング状スリット型噴出口を用いた分散機、
特開昭63−221829号に記載の網状羽根を利用し
た分散機、特開昭63−1629号に記載の噴射ノズル
からの高速気流による分散作用を利用した分散機、実開
昭63−9218号に記載の多数の細孔を利用した分散
機、実開昭62−156854号に記載のエジェクタ型
分散機、実開昭63−6034号に記載の細孔とオリフ
ィスを利用した分散機等の公報に記載のものも使用可能
である。
Further, a disperser using a stirring blade described in JP-A-56-1336, a disperser using a high-speed air stream and a dispersion nozzle described in JP-A-58-163454, and JP-A-59-199027. No. 59-21661, a dispersing machine utilizing the dispersing action by the rotating blades and the dispersing action by the plasma ions described in JP-A-59-207319.
No. 6, a disperser utilizing the dispersing action of an ejector and plasma ions, No. 59-225728, a disperser utilizing the dispersing action of an ejector and an ion flow, and No. 59-183845. Disperser utilizing the dispersing action of plasma ions of JP-A-63-1664
No. 21, a disperser utilizing a dispersing action by a dispersion blade and a pressure gas, a disperser using a line-shaped or ring-shaped slit type jet outlet described in JP-A-62-176527,
A disperser using a mesh blade described in JP-A No. 63-221829, a disperser using a dispersing action by a high-speed air stream from an injection nozzle described in JP-A No. 63-1629, No. Shokai 63-9218. And the ejector type disperser described in Japanese Utility Model Publication No. 62-156854, and the disperser using the micropores and orifices described in Japanese Utility Model Publication No. 63-6034. Those described in can also be used.

【0074】準微粒子高分散処理手段群に好適な分散手
段として、特願昭63−311358号、特願平1−7
1071号、特願平2−218537号等に記載の装置
が挙げられる。
Dispersing means suitable for the group of means for high-dispersion quasi-fine particles include Japanese Patent Application Nos. 63-311358 and 1-7.
The apparatus described in Japanese Patent Application No. 1071 and Japanese Patent Application No. 2-218537 can be used.

【0075】高分散芯粒子粉体の粒子・気体混合物選択
手段 高分散芯粒子粉体の粒子・気体混合物選択手段とは、芯
粒子粉体の粒子・気体混合物から、低分散芯粒子粉体の
粒子・気体混合物を分離し、主に単一粒子状態の準微粒
子を含む高分散芯粒子粉体の粒子・気体混合物を選択す
る手段をいう。一次粒子の集合体である凝集粒子は、見
かけの粒子径が一次粒子の粒子径に比べ大きくなること
から、例えば乾式分級手段により分離が可能である。こ
の高分散芯粒子粉体の粒子・気体混合物選択手段には重
力を利用した分級手段、慣性力を利用した分級手段、遠
心力を利用した分級手段、静電気を利用した分級手段、
流動層を利用した分級手段等から一種以上選択された乾
式分級手段が挙げられる。
Highly-dispersed core particle powder particle / gas mixture selection means Highly dispersed core particle powder particle / gas mixture selection means means a low-dispersion core particle powder from a core particle powder particle / gas mixture. A means for separating a particle / gas mixture and selecting a particle / gas mixture of highly dispersed core particle powder mainly containing quasi-fine particles in a single particle state. Aggregated particles, which are aggregates of primary particles, have an apparent particle diameter larger than the particle diameter of primary particles, and therefore can be separated by, for example, a dry classification means. As the particle / gas mixture selecting means of the highly dispersed core particle powder, a classification means using gravity, a classification means using inertial force, a classification means using centrifugal force, a classification means using static electricity,
Examples include dry classification means selected from one or more kinds of classification means using a fluidized bed.

【0076】この高分散芯粒子粉体の粒子・気体混合物
選択手段の例としては、重力分級機、慣性分級機、遠心
分級機、サイクロン、エアセパレータ、ミクロンセパレ
ータ、ミクロプレックス、ムルチプレックス、ジグザク
分級機、アキュカット、コニカルセパレータ、ターボク
ラシファイア、スーパセパレータ、ディスパージョンセ
パレータ、エルボジェット、流動層分級機、バーチュア
ルインパクタ、O−Sepa、ふるい、バイブレーティ
ングスクリーン、シフタ(粉体工学会編:“粉体工学便
覧”日刊工業新聞社、P514(1986))等が挙げ
られる。
Examples of means for selecting the particle / gas mixture of the highly dispersed core particle powder include a gravity classifier, an inertia classifier, a centrifugal classifier, a cyclone, an air separator, a micron separator, a microplex, a multiplex, and a zigzag classification. Machine, accu-cut, conical separator, turbo classifier, super separator, dispersion separator, elbow jet, fluidized bed classifier, virtual impactor, O-Sepa, sieve, vibrating screen, shifter (Powder Engineering Society: “Powder Engineering Society” Engineering Handbook "Nikkan Kogyo Shimbun, P514 (1986)) and the like.

【0077】芯粒子粉体の粒子・気体混合物 芯粒子粉体の粒子・気体混合物とは、(a)芯粒子粉体
の粒子が気中に一様に浮遊した均質流れ(一様な浮遊流
れ)、(b)芯粒子粉体の粒子が気中のある領域で非一
様な分布を示す不均質流れ(非均質浮遊流れ)、(c)
芯粒子粉体の粒子の摺動層を伴う流れ(摺動流れ)、又
は(d)芯粒子粉体の粒子の静止層を伴う流れをいう。
Particle / gas mixture of core particle powder The particle / gas mixture of core particle powder is (a) a homogeneous flow in which particles of the core particle powder are uniformly suspended in air (a uniform floating flow). ), (B) Heterogeneous flow (inhomogeneous suspended flow) in which particles of the core particle powder show a non-uniform distribution in a certain region in the air, (c)
A flow accompanied by a sliding layer of particles of the core particle powder (sliding flow), or (d) a flow accompanied by a stationary layer of particles of the core particle powder.

【0078】低分散芯粒子粉体の粒子・気体混合物 低分散芯粒子粉体の粒子・気体混合物とは、芯粒子粉体
の粒子・気体混合物の内、芯粒子粉体の粒子が主に単一
粒子状態以外の状態で気中に存在する芯粒子粉体の粒子
・気体混合物をいう。
Particles / gas mixture of low-dispersion core particle powder The particles / gas mixture of low-dispersion core particle powder means that particles of the core particle powder are mainly composed of particles of the core particle powder / gas mixture. A particle-gas mixture of core particle powder that exists in the air in a state other than a single particle state.

【0079】高分散芯粒子粉体の粒子・気体混合物 高分散芯粒子粉体の粒子・気体混合物とは、芯粒子粉体
の粒子が主に単一粒子状態で気中に存在する芯粒子粉体
の粒子・気体混合物をいう。高分散芯粒子粉体の粒子・
気体混合物は、極めて高分散であっても、実際には凝集
粒子を含む。低分散芯粒子粉体の粒子・気体混合物は、
実際には、凝集していない単粒子を含み、選択分離して
低分散芯粒子粉体の粒子・気体混合物と高分散芯粒子粉
体の粒子・気体混合物に分けられる。低分散芯粒子粉体
の粒子・気体混合物は、凝集粒子の選択分離及び/又は
再分散により、高分散芯粒子粉体の粒子・気体混合物と
なる。
Particle / gas mixture of highly dispersed core particle powder A particle / gas mixture of highly dispersed core particle powder is a core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. A particle / gas mixture of the body. Highly dispersed core particles Powder particles
The gas mixture, even with a very high dispersion, actually contains agglomerated particles. The particle / gas mixture of low-dispersion core particle powder is
Actually, it contains unaggregated single particles, and is selectively separated into a particle / gas mixture of low-dispersion core particle powder and a particle / gas mixture of high-dispersion core particle powder. The particle / gas mixture of the low-dispersion core particle powder becomes a particle / gas mixture of the high-dispersion core particle powder by selectively separating and / or re-dispersing the agglomerated particles.

【0080】回収手段 被覆空間で被覆した被覆された準微粒子を取り出す手段
を回収手段という。回収手段の内で回収処理の行われる
部分を回収部という。被覆空間の被覆開始領域を通過し
て被覆した被覆された準微粒子は、気中から直接取り出
して回収するか、又は気中から取り出して一時的に蓄え
てから回収するか、又は、気体と共に回収される。
Collecting Means The means for taking out the coated quasi-fine particles coated in the coating space is called collecting means. The part of the recovery means that performs the recovery process is called the recovery part. The coated quasi-fine particles coated by passing through the coating start region of the coating space are directly taken out from the air and collected, or taken out from the air and temporarily stored and then collected, or collected together with the gas. To be done.

【0081】回収手段の回収部としては、隔壁(障害
物)を利用した回収手段の回収部、重力を利用した回収
手段の回収部、慣性力を利用した回収手段の回収部、遠
心力を利用した回収手段の回収部、帯電による引力を利
用した回収手段の回収部、熱泳動力を利用した回収手段
の回収部、ブラウン拡散を利用した回収手段の回収部、
ガスの背圧や減圧等による吸引力を利用した回収手段の
回収部等が利用可能である。
As the collecting part of the collecting means, a collecting part of the collecting means using a partition wall (obstacle), a collecting part of the collecting means using gravity, a collecting part of the collecting means using inertial force, and a centrifugal force are used. Collecting unit of the collecting unit, the collecting unit of the collecting unit using the attractive force due to charging, the collecting unit of the collecting unit using the thermophoretic force, the collecting unit of the collecting unit using Brownian diffusion,
It is possible to use a recovery unit or the like of a recovery unit that uses suction force due to back pressure or pressure reduction of gas.

【0082】この回収手段の回収部の好適な例として
は、重力集塵機、慣性集塵機、遠心力集塵機、濾過集塵
機、電気集塵機、洗浄集塵機、粒子充填層、サイクロ
ン、バグフィルター、セラミックスフィルター、スクラ
バー等が挙げられる。
Suitable examples of the collecting section of the collecting means include a gravity dust collector, an inertial dust collector, a centrifugal dust collector, a filter dust collector, an electric dust collector, a washing dust collector, a particle packing layer, a cyclone, a bag filter, a ceramics filter, a scrubber, and the like. Can be mentioned.

【0083】次に、本発明で用いる被覆セラミックス準
微粒子を調製する場合に採用される準微粒子高分散処理
手段群を添付の図面に基づいて説明することにする。
Next, a group of means for high dispersion treatment of quasi-fine particles used when preparing the coated ceramic quasi-fine particles used in the present invention will be described with reference to the accompanying drawings.

【0084】準微粒子高分散処理手段群の図の説明 図2(a)は被覆されたセラミックス準微粒子を調製す
る際の準微粒子高分散処理手段群の基本的な構成の一例
を表すブロック図である。芯粒子粉体の準微粒子を分散
させる最終の分散手段A、最終の分散手段以前の分散処
理手段群の構成要素dで構成されている。εは、芯粒子
粉体の準微粒子の内、主に単一粒子状態で気中に存在す
る高分散芯粒子粉体の粒子・気体混合物である。構成要
素dとしては、分散手段、供給手段、高分散芯粒子粉体
の粒子・気体混合物選択手段等任意の処理手段を単独又
は組み合わせて使用できる。構成要素dは、必ずしも設
けなくとも良い。準微粒子高分散処理手段群は、好適に
は最終の処理手段である分散手段Aの処理後、(1)体
積基準頻度分布で平均粒子径が10μmを越え20μm
以下の芯粒子粉体に対し、分散度βが80%以上、又は
(2)体積基準頻度分布で平均粒子径が20μmを越え
50μm以下の芯粒子粉体に対し、分散度βが90%以
上、又は(3)体積基準頻度分布で平均粒子径が50μ
mを越え300μm以下の芯粒子粉体に対し、分散度β
が95%以上、又は(4)体積基準頻度分布で平均粒子
径が300μmを越え800μm以下の芯粒子粉体に対
し、分散度βが97%以上、又は(5)体積基準頻度分
布で平均粒子径が800μmを越える芯粒子粉体に対
し、分散度βが99%以上を実現できる構成のものであ
る。
FIG. 2A is a block diagram showing an example of the basic structure of the quasi-particulate high-dispersion processing means group when preparing coated ceramic quasi-fine particles. is there. It is composed of the final dispersion means A for dispersing the quasi-fine particles of the core particle powder and the constituent element d of the dispersion processing means group before the final dispersion means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the quasi-fine particles of core particle powder. As the constituent element d, any treatment means such as a dispersion means, a supply means, a particle / gas mixture selection means of highly dispersed core particle powder can be used alone or in combination. The component d does not necessarily have to be provided. The quasi-fine particle high-dispersion treatment means group preferably has (1) an average particle diameter of more than 10 μm and 20 μm in the volume standard frequency distribution after the treatment of the dispersion means A which is the final treatment means.
The dispersity β is 80% or more with respect to the following core particle powder, or (2) the dispersity β is 90% or more with respect to the core particle powder having an average particle size exceeding 20 μm and 50 μm or less in the volume standard frequency distribution. Or (3) the volume-based frequency distribution has an average particle size of 50μ
Dispersion degree β for core particle powders exceeding m and less than 300 μm
Is 95% or more, or (4) the core particle powder has an average particle size of more than 300 μm and 800 μm or less in the volume standard frequency distribution, the dispersity β is 97% or more, or (5) the average particle in the volume standard frequency distribution. The core particle powder having a diameter of more than 800 μm can achieve a dispersity β of 99% or more.

【0085】図2(b)は被覆されたセラミックス準微
粒子を調製する際の準微粒子高分散処理手段群の基本的
な構成の第2の例を表すブロック図である。芯粒子粉体
の粒子を分散させる最終の分散手段A、最終の分散手段
Aへ芯粒子粉体の粒子が、主に単一粒子状態で気中に存
在する高分散芯粒子粉体の粒子・気体混合物、以外の低
分散芯粒子粉体の粒子・気体混合物ηをフィードバック
させるフィードバック手段Cを備えた最終の高分散芯粒
子粉体の粒子・気体混合物選択手段B、最終の分散手段
以前の分散処理手段群の構成要素d、最終分散手段と最
終選択手段の間の準微粒子高分散処理手段群の構成要素
eで構成されている。εは、芯粒子粉体の粒子の内、主
に単一粒子状態で気中に存在する高分散芯粒子粉体の粒
子・気体混合物である。構成要素dとしては、分散手
段、供給手段、選択手段等任意の処理手段を単独又は組
み合わせて使用できる。構成要素eとしては、分散手段
以外の処理手段、例えば供給手段、選択手段等任意の処
理手段を単独又は組み合わせて使用できる。構成要素d
及びeは、必ずしも設けなくとも良い。準微粒子高分散
処理手段群は、好適には、最終の処理手段である選択手
段Bによる処理後、前記平均粒子径の芯粒子粉体に対し
前記分散度を実現できる構成である。
FIG. 2 (b) is a block diagram showing a second example of the basic constitution of the quasi-fine particle high dispersion treatment means group when preparing coated ceramic quasi-fine particles. The final dispersion means A for dispersing the particles of the core particle powder, and the particles of the core particle powder to the final dispersion means A are particles of the highly dispersed core particle powder in the air mainly in the form of a single particle. Other than the gas mixture, the particles / gas mixture selecting means B of the final high-dispersion core particle powder having the feedback means C for feeding back the particles / gas mixture η of the low-dispersion core particle powder, the dispersion before the final dispersion means It is composed of a constituent element d of the processing means group and a constituent element e of the quasi-fine particle high dispersion processing means group between the final dispersion means and the final selection means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the component e, a processing means other than the dispersion means, for example, an arbitrary processing means such as a supply means and a selection means can be used alone or in combination. Component d
And e do not necessarily need to be provided. The quasi-fine particle high-dispersion treatment means group is preferably configured so that the degree of dispersion can be realized with respect to the core particle powder having the average particle diameter after the treatment by the selection means B which is the final treatment means.

【0086】図2(c)は、被覆されたセラミックス準
微粒子を調製する際の準微粒子高分散処理手段群の基本
的な構成の第3の例を表すブロック図である。芯粒子粉
体の粒子を分散させる最終の分散手段A、最終の分散手
段Aより前の処理手段へ芯粒子粉体の準微粒子が、主に
単一粒子状態で気中に存在する高分散芯粒子粉体の粒子
・気体混合物、以外の低分散芯粒子粉体の粒子・気体混
合物ηをフィードバックさせるフィードバック手段Cを
備えた高分散芯粒子粉体の粒子・気体混合物選択手段
B、最終の分散手段以前の準微粒子高分散処理手段群の
構成要素d、最終の分散手段と最後の選択手段の間の準
微粒子高分散処理手段群の構成要素eで構成されてい
る。εは、芯粒子粉体の粒子の内、主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物で
ある。構成要素dとしては、分散手段、供給手段、選択
手段等任意の処理手段を単独又は組み合わせて使用でき
る。構成要素dとしては、分散手段以外の処理手段、例
えば供給手段、選択手段等任意の処理手段を単独又は組
み合わせて使用できる。構成要素d及びeは、必ずしも
設けなくともよい。準微粒子高分散処理手段群は、好適
には、最終の処理手段である選択手段Bによる処理後、
前記平均粒子径の芯粒子粉体に対し前記分散度を実現で
きる構成である。
FIG. 2 (c) is a block diagram showing a third example of the basic constitution of the group of means for high dispersion treatment of quasi-particulates when preparing coated ceramics quasi-particulates. Highly dispersed core in which quasi-fine particles of the core particle powder are mainly present in the air in a single particle state Particle / gas mixture of high-dispersion core particle powder, which is provided with feedback means C for feeding back particle / gas mixture η of low-dispersion core particle powder other than particles / gas mixture of particle powder, final dispersion It is composed of the constituent element d of the quasi-fine particle high dispersion processing means group before the means and the constituent element e of the quasi-fine particle high dispersion processing means group between the final dispersing means and the final selecting means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the constituent element d, any processing means other than the dispersion means, for example, an arbitrary processing means such as a supply means and a selection means can be used alone or in combination. The components d and e do not necessarily have to be provided. The quasi-fine particle high-dispersion treatment means group is preferably, after the treatment by the selection means B which is the final treatment means,
The dispersity can be realized with respect to the core particle powder having the average particle diameter.

【0087】なお、以上のような構成であるから、供給
槽、芯粒子生成手段等の粉体の供給源も本準微粒子高分
散処理手段群の構成に含めてもよい。例えば図2(c)
の場合、フィードバック手段Cのフィードバック先を供
給槽とする構成も高分散処理手段群の構成としてよいこ
とは言うまでもない。又、準微粒子高分散処理手段群の
分散工程の前に、芯粒子粉体の準微粒子を解砕及び/又
は粉砕する解砕工程を入れても良いことは言うまでもな
い。
Because of the above-mentioned structure, the powder supply sources such as the supply tank and the core particle generating means may be included in the structure of the quasi-fine particle high dispersion processing means group. For example, FIG. 2 (c)
In this case, it goes without saying that the configuration in which the feedback destination of the feedback means C is the supply tank may be the configuration of the high dispersion processing means group. Further, it goes without saying that a crushing step of crushing and / or crushing the quasi-fine particles of the core particle powder may be added before the dispersing step of the quasi-fine particle high dispersion treatment means group.

【0088】上記した準微粒子高分散処理手段群の基本
的な構成の具体的な代表例をより詳細にしたブロック図
に基づいて更に詳しく説明することにする。
A more concrete example of the basic constitution of the above-mentioned quasi-fine particle high dispersion treatment means group will be described in more detail with reference to a more detailed block diagram.

【0089】構成1 図3(a)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第1の構成を説明
するブロック図であって図2(a)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる最終分散手段
Aから構成されている。εは、芯粒子粉体の粒子の内、
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物である。
Structure 1 FIG. 3 (a) is a block diagram for explaining the first structure of the quasi-fine particle high dispersion treatment means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (a). To do. This example is a supply tank 1 for supplying core particle powder to be coated.
00, the final dispersing means A for dispersing the core particle powder to be coated. ε is the particle of the core particle powder,
It is a particle-gas mixture of highly dispersed core particle powder that exists mainly in the air in the form of single particles.

【0090】構成2 図3(b)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第2の構成を説明
するブロック図であって図2(a)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
被覆される芯粒子粉体を分散させる最終分散手段Aから
構成されている。εは、芯粒子粉体の粒子の内、主に単
一粒子状態で気中に存在する高分散芯粒子粉体の粒子・
気体混合物である。
Structure 2 FIG. 3 (b) is a block diagram for explaining the second structure of the quasi-particulate high dispersion processing means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (a). To do. This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
It comprises a final dispersion means A for dispersing the core particle powder to be coated. ε is the particle of the highly dispersed core particle powder that exists mainly in the air in the form of a single particle among the particles of the core particle powder.
It is a gas mixture.

【0091】構成3 図3(c)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第3の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給10
0、被覆される芯粒子粉体を分散させる分散手段a、分
散手段aで分散させた芯粒子粉体の粒子・気体混合物の
うちから主に単一粒子状態で気中に存在する高分散芯粒
子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の
粒子・気体混合物ηを分散手段aへフィードバックさせ
るフィードバック手段C、主に高分散芯粒子粉体の粒子
・気体混合物を最終の分散手段Aへ導入する高分散芯粒
子粉体の粒子・気体混合物選択手段b、被覆される芯粒
子粉体を分散させる最終分散手段A、から構成されてい
る。εは、芯粒子粉体の粒子の内、主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物で
ある。
Structure 3 FIG. 3 (c) is a block diagram for explaining the third structure of the quasi-particulate high dispersion treatment means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (b). To do. In this example, a supply 10 for supplying core particle powder to be coated
0, a high-dispersion core which exists mainly in the air in the form of a single particle from a dispersion means a for dispersing the core particle powder to be coated and a particle / gas mixture of the core particle powder dispersed by the dispersion means a. The particle / gas mixture of the particle powder, the feedback means C for feeding back the particle / gas mixture η of the low-dispersion core particle powder to the dispersing means a, mainly the particle / gas mixture of the high-dispersion core particle powder It comprises a particle / gas mixture selecting means b for a highly dispersed core particle powder to be introduced into the dispersing means A, and a final dispersing means A for dispersing the core particle powder to be coated. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0092】構成4 図3(d)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第4の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる最終分散手段
A、最終分散手段Aで分散させた芯粒子粉体の準微粒子
・気体混合物のうちから主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物、以外の低分
散芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィ
ードバックするフィードバック手段C、高分散芯粒子粉
体の粒子・気体混合物を放出する最終の高分散芯粒子粉
体の粒子・気体混合物選択手段Bから構成されている。
εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中
に存在する高分散芯粒子粉体の粒子・気体混合物であ
る。
Structure 4 FIG. 3 (d) is a block diagram for explaining a fourth structure of the quasi-particulate high dispersion treatment means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (b). To do. This example is a supply tank 1 for supplying core particle powder to be coated.
00, a final dispersion means A for dispersing the core particle powder to be coated, and a quasi-fine particle / gas mixture of the core particle powder dispersed by the final dispersion means A, which is mainly present in the air in a single particle state. Feedback means C for feeding back particles / gas mixture η of low-dispersion core particle powder other than the particles / gas mixture of high-dispersion core particle powder, and discharging particle / gas mixture of high-dispersion core particle powder. The final high-dispersion core particle powder particle / gas mixture selecting means B is used.
[epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0093】構成5 図3(e)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第5の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
被覆される芯粒子粉体を分散させる最終分散手段A、最
終分散手段Aで分散させた芯粒子粉体の粒子・気体混合
物のうちから主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉
体の粒子・気体混合物ηを分散手段Aへフィードバック
するフィードバック手段C、高分散芯粒子粉体の粒子・
気体混合物を放出する最終の高分散芯粒子粉体の粒子・
気体混合物選択手段Bから構成されている。εは、芯粒
子粉体の粒子の内、主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物である。
Structure 5 FIG. 3 (e) is a block diagram for explaining the fifth structure of the quasi-particulate high dispersion treatment means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (b). To do. This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
A high-dispersion core which exists mainly in the air in the form of a single particle from the final dispersion means A for dispersing the core particle powder to be coated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Particles of particle powder / gas mixture, other than low-dispersion core particle powder / feedback means C for feeding back gas mixture η to dispersing means A, particles of high-dispersion core particle powder
Particles of the final highly dispersed core particle powder that emits a gas mixture
It is composed of a gas mixture selecting means B. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0094】構成6 図3(f)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第6の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、芯粒子粉体の粒子・気体混合物のうちから主に低
分散芯粒子粉体の粒子・気体混合物を取り除き、主に高
分散芯粒子粉体の粒子・気体混合物を分散手段Aへ導入
する高分散芯粒子粉体の粒子・気体混合物選択手段b、
選択分離された芯粒子粉体の粒子を分散させる最終分散
手段A、最終分散手段Aで分散させた芯粒子粉体の粒子
・気体混合物のうちから主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物、以外の低分
散芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィ
ードバックさせるフィードバック手段C、高分散芯粒子
粉体の粒子・気体混合物を放出する最終の高分散芯粒子
粉体の粒子・気体混合物選択手段Bから構成されてい
る。εは、芯粒子粉体の粒子の内、主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物で
ある。
Structure 6 FIG. 3 (f) is a block diagram for explaining the sixth structure of the quasi-fine particle high dispersion treatment means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (b). To do. This example is a supply tank 1 for supplying core particle powder to be coated.
00, particles / gas mixture of low-dispersion core particle powder are mainly removed from particles / gas mixture of core particle powder, and particles / gas mixture of high-dispersion core particle powder are mainly introduced into dispersing means A. High-dispersion core particle powder particle / gas mixture selecting means b,
It exists mainly in the air in the form of a single particle from the final dispersion means A for dispersing the particles of the core particle powder selectively separated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Feedback means C for feeding back particles / gas mixture η of low-dispersion core particle powder other than particles / gas mixture of high-dispersion core particle powder, releasing particle / gas mixture of high-dispersion core particle powder The final high-dispersion core particle powder particle / gas mixture selecting means B is used. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0095】構成7 図3(g)は、被覆されたセラミックス準微粒子を調製
する際の準微粒子高分散処理手段群の第7の構成を説明
するブロック図であって図2(c)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
被覆される芯粒子粉体を分散させる最終分散手段A、最
終分散手段Aで分散させた芯粒子粉体の粒子・気体混合
物のうちから主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉
体の粒子・気体混合物ηを分散手段aへフィードバック
するフィードバック手段C、高分散芯粒子粉体の粒子・
気体混合物を放出する最終の高分散芯粒子粉体の粒子・
気体混合物選択手段Bから構成されている。εは、芯粒
子粉体の粒子の内、主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物である。
Structure 7 FIG. 3 (g) is a block diagram for explaining the seventh structure of the quasi-fine particle high dispersion treatment means group when preparing coated ceramic quasi-fine particles, and corresponds to FIG. 2 (c). To do. This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
A high-dispersion core mainly present in the air in a single particle state from the final dispersion means A for dispersing the core particle powder to be coated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Particles of particle powder / gas mixture, other than low-dispersion core particle powder / feedback means C for feeding back gas mixture η to dispersing means a, particles of high-dispersion core particle powder
Particles of the final highly dispersed core particle powder that emits a gas mixture
It is composed of a gas mixture selecting means B. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0096】このようにして達成された準微粒子の高分
散状態を維持するために、気中分散維持手段を準微粒子
高分散処理手段群と被覆室の間に付加することもでき
る。ここでいう気中分散維持手段とは、気中に分散担持
された芯粒子粉体の粒子の再凝集を防止して分散度βを
維持する手段をいう。又、このようにして達成された芯
粒子の高分散状態を促進するために、気中分散促進手段
を微粒子高分散処理手段群と被覆室の間に付加すること
もできる。ここでいう気中分散促進手段とは、気中に分
散担持された芯粒子粉体の粒子のうち主に再凝集した粒
子の再分散を促進し、分散状態を低下を鈍らせたり、一
旦低下した分散状態を元の高分散の状態まで回復するよ
うに再分散を促す手段をいう。
In order to maintain the high dispersion state of the quasi-fine particles thus achieved, an air dispersion maintaining means may be added between the quasi-fine particle high dispersion treatment means group and the coating chamber. The term "in-air dispersion maintaining means" as used herein means means for preventing re-aggregation of particles of the core particle powder dispersed and carried in air to maintain the degree of dispersion β. Further, in order to promote the highly dispersed state of the core particles thus achieved, an air dispersion promoting means can be added between the fine particle high dispersion treatment means group and the coating chamber. The air dispersion promoting means here promotes redispersion of mainly reaggregated particles among particles of the core particle powder that are dispersed and carried in the air, and slows down the dispersion state, or once reduces it. It means a means for promoting re-dispersion so as to recover the dispersed state to the original highly dispersed state.

【0097】この気中分散維持手段又は気中分散促進手
段の好適な例としては、パイプ振動装置、パイプ加熱装
置、プラズマ発生装置、荷電装置等が挙げられる。
Suitable examples of the air dispersion maintaining means or the air dispersion promoting means include a pipe vibrating device, a pipe heating device, a plasma generating device, a charging device and the like.

【0098】パイプ振動装置は、発振器を設置したパイ
プの振動により、気中に分散している粒子に分散機とは
言えない振動を与えることで、再凝集を抑制し高分散状
態を維持する手段又は再凝集した粒子の分散を促進する
手段である。
The pipe vibrating device is a means for suppressing re-aggregation and maintaining a high dispersion state by vibrating the particles, which are dispersed in the air, by the vibration of the pipe in which the oscillator is installed, which is not a dispersion machine. Alternatively, it is a means for promoting the dispersion of reaggregated particles.

【0099】パイプ加熱装置は、加熱したパイプにより
搬送気体の外側から熱を加えて搬送気体を膨張させ、分
散機とは言えないほどに流速を加速して再凝集を抑制
し、再凝集した粒子の分散を促進する手段である。
The pipe heating apparatus applies heat from the outside of the carrier gas by the heated pipe to expand the carrier gas, accelerates the flow velocity so that it cannot be called a disperser, suppresses reaggregation, and reaggregates particles. Is a means of promoting the dispersion of

【0100】プラズマ発生装置は、芯粒子粉体を分散担
持している気中にプラズマを発生させ、そのプラズマイ
オンと芯粒子との衝突により、再凝集を抑制し高分散状
態を維持する手段又は再凝集した粒子の分散を促進する
手段である。
The plasma generator is a means for generating plasma in the air carrying the core particle powder in a dispersed state, and suppressing re-aggregation by the collision of the plasma ions with the core particles to maintain a high dispersion state. It is a means of promoting the dispersion of reaggregated particles.

【0101】荷電装置は、芯粒子粉体を分散担持してい
る気中に、コロナ放電、電子ビーム、放射線等の方法で
単極イオンを発生させ、単極イオン雰囲気中を通過させ
ることで粒子を単極に帯電させ、静電気の斥力により再
凝集を抑制し高分散状態を維持する手段又は再凝集した
準微粒子の分散を促進する手段である。
The charging device generates monopolar ions by a method such as corona discharge, electron beam, or radiation in the air carrying the core particle powder in a dispersed manner, and passes the particles in a monopolar ion atmosphere. Is charged monopolarly, and means for suppressing re-aggregation by repulsive force of static electricity to maintain a high dispersion state or means for promoting dispersion of re-aggregated quasi-fine particles.

【0102】このようにして形成された準微粒子の高分
散状態の芯粒子粉体の準微粒子の表面を被覆形成物質で
被覆するために被覆室に送られる。この被覆室には被覆
開始領域を含む被覆空間が設けられている。
The quasi-fine particles of the thus-formed quasi-fine particles of highly dispersed core particles are sent to the coating chamber for coating the surface of the quasi-fine particles with the coating forming substance. A coating space including a coating start area is provided in the coating chamber.

【0103】準微粒子高分散処理手段群と被覆室とは直
結することが望ましいが、搬送に不可避の中空部材及び
/又はパイプを使って接続しても良い。この場合にも、
被覆開始領域での分散度βを上記した範囲の値とするこ
とが不可欠である。
Although it is desirable that the quasi-fine particle high-dispersion processing means group and the coating chamber are directly connected, they may be connected using a hollow member and / or a pipe inevitable for transportation. Also in this case,
It is indispensable to set the dispersion degree β in the coating start region to a value within the above range.

【0104】準微粒子高分散処理手段群と被覆室を別々
に置いてその間を連結する場合は、芯粒子粉体をその分
散状態のまま被覆室へ導入してやれば良い。そのために
は、この間に芯粒子粉体の分散状態を維持するための装
置である気中分散維持手段及び/又は分散状態を高める
ための装置である気中分散促進手段及び/又は芯粒子粉
体の粒子・気体混合物から、低分散芯粒子粉体部分を分
離し、主に単一粒子状態の粒子を含む高分散芯粒子粉体
の粒子・気体混合物を選択する高分散芯粒子粉体の粒子
・気体混合物選択手段を設けることもできる。
When the quasi-fine particle high dispersion treatment means group and the coating chamber are separately placed and connected to each other, the core particle powder may be introduced into the coating chamber in the dispersed state. For that purpose, the air dispersion maintaining means and / or the air dispersion promoting means and / or the core particle powder which is an apparatus for maintaining the dispersed state of the core particle powder during this period. High-dispersion core particle powder particles that separate the low-dispersion core particle powder part from the particle-gas mixture and select the high-dispersion core particle powder particle / gas mixture that mainly contains particles in a single particle state -Gas mixture selection means can also be provided.

【0105】又、被覆されたセラミックス準微粒子を調
製するに際して、準微粒子高分散処理手段群が、(1)
被覆室、又は(2)被覆空間、又は(3)被覆開始領域
と一部以上空間を共有することもできる。
In preparing the coated ceramics quasi-fine particles, the group of quasi-fine particles high dispersion treatment means (1)
It is also possible to share a part or more of the space with the coating chamber, (2) coating space, or (3) coating start region.

【0106】たとえば、準微粒子高分散処理手段群中の
分散空間と被覆室とを、又は準微粒子高分散処理手段群
中の分散空間と被覆開始領域を有する被覆空間とを、又
は準微粒子高分散処理手段群中の分散空間と被覆開始領
域とを、空間的に共有することもできる。
For example, the dispersion space and the coating chamber in the quasi-fine particle high dispersion treatment means group, the dispersion space in the quasi-fine particle high dispersion treatment means group and the coating space having the coating start region, or the quasi-fine particle high dispersion treatment. It is also possible to spatially share the dispersed space and the coating start region in the processing means group.

【0107】ここで被覆開始領域とは、芯粒子の平均粒
子径に応じて、前記分散度の分散状態で搬送された高分
散状態の芯粒子粉体に気相を経て生成する被覆形成物質
前駆体及び/又は気相状態の被覆形成物質前駆体が接触
及び/又は衝突し、被覆を開始する領域を指し、次の図
4(a)〜(e)で示される態様が考慮される。
The term "coating start region" as used herein means a precursor of a coating-forming substance which is produced through a gas phase in highly dispersed core particle powder conveyed in a dispersed state having the above-mentioned dispersity, depending on the average particle diameter of the core particles. The region where the coating-forming substance precursor in the body and / or the gas phase contacts and / or collides with and starts coating, and the following embodiments shown in FIGS. 4 (a) to 4 (e) are considered.

【0108】すなわち、図4(a)〜(e)において被
覆開始領域は2で示される領域である。
That is, the coating start region is the region indicated by 2 in FIGS. 4 (a) to 4 (e).

【0109】図4(a)において芯粒子の平均粒子径に
応じて、前記分散度の分散状態で被覆を始める被覆空間
の被覆開始領域2を準微粒子高分散処理手段群又は準微
粒子高分散処理手段群の放出部1を覆って設ける。
In FIG. 4 (a), the coating start region 2 of the coating space where coating is started in the dispersion state of the degree of dispersion is treated with a group of quasi-fine particle high dispersion treatment means or quasi-fine particle high dispersion treatment according to the average particle diameter of the core particles. The discharge part 1 of the means group is provided so as to cover the discharge part 1.

【0110】図4(b)において準微粒子高分散処理手
段群又は準微粒子高分散処理手段群の放出部1から放出
される芯粒子粉体の粒子4が全て通る前記被覆空間の被
覆開始領域2を設ける。上記の構成により、全ての芯粒
子粉体の粒子は上記した分散度βの分散状態で被覆が始
められる。
In FIG. 4B, the coating start region 2 of the coating space through which all the particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion treatment means group or the quasi-fine particle high dispersion treatment means group pass. To provide. With the above configuration, all the particles of the core particle powder can be coated in the dispersed state of the above-described dispersity β.

【0111】図4(c)において準微粒子高分散処理手
段群又は準微粒子高分散処理手段群の放出部1から放出
される芯粒子粉体の粒子4の内、回収部5に入る準微粒
子が必ず通過する前記被覆空間の被覆開始領域2を設け
る。
In FIG. 4C, among the particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion treatment means group or the quasi-fine particle high dispersion treatment means group, the quasi-fine particles entering the recovery part 5 are A coating start region 2 of the coating space that always passes is provided.

【0112】図4(d)において回収部5を囲む前記被
覆空間の被覆開始領域2を設ける。図4(e)において
高分散芯粒子粉体の粒子・気体混合物の粒子のみが到達
可能な位置に回収部5を設ける。従って、ここでの領域
6は重力を利用した選択手段となる。回収部に入る高分
散芯粒子粉体の粒子・気体混合物の粒子が、必ず通過す
る前記被覆空間の被覆開始領域2を図の斜線部のように
設ける。
In FIG. 4 (d), the coating start region 2 of the coating space surrounding the recovery section 5 is provided. In FIG. 4 (e), the recovery unit 5 is provided at a position where only the particles of the highly dispersed core particle powder and the particles of the gas mixture can reach. Therefore, the area 6 here is a selecting means utilizing gravity. The coating start region 2 of the coating space through which the particles of the highly dispersed core particle powder / particles of the gas mixture that enter the recovery section must pass is provided as shown by the hatched portion in the figure.

【0113】前記分散度βの分散状態で被覆始めた芯粒
子のみ回収でき、被覆開始領域を通っていない芯粒子と
被覆開始領域を通過した被覆準微粒子とは混ざることは
ない。
Only core particles that have begun to be coated in the dispersed state of the degree of dispersion β can be collected, and core particles that have not passed through the coating start region and coated quasi-fine particles that have passed through the coating start region do not mix.

【0114】上記したところから、被覆されたセラミッ
クス準微粒子を製造するための装置は、準微粒子高分散
処理手段群と被覆室、又は準微粒子高分散処理手段群と
被覆室と回収手段から構成されるものであるが、これら
の装置の構成要素は、種々の組み合わせ方をすることが
可能で、これらの装置の構成例を図面に基づいて説明す
ると次のとおりである。
From the above, the apparatus for producing coated ceramics quasi-fine particles is composed of a quasi-fine particle high dispersion treatment means group and a coating chamber, or a quasi-fine particle high dispersion treatment means group, a coating chamber and a recovery means. However, the constituent elements of these devices can be combined in various ways, and a structural example of these devices will be described below with reference to the drawings.

【0115】装置の構成1 図5(a)は、被覆されたセラミックス準微粒子を製造
するための第一の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1に直結してある。
Apparatus Configuration 1 FIG. 5 (a) is a block diagram illustrating the configuration of a first apparatus for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is directly connected to the coating chamber 2-B1.

【0116】装置の構成2 図5(b)は、被覆されたセラミックス準微粒子を製造
するための第二の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、不可避
の中空部材2−C2、回収手段2−Dから構成されてい
る。準微粒子高分散処理手段群2−C1は、被覆室2−
B1に不可避の中空部材2−C2を介して接続してあ
る。
Apparatus Configuration 2 FIG. 5B is a block diagram illustrating the configuration of a second apparatus for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, unavoidable hollow member 2-C2, and recovery means 2-D. . The quasi-fine particle high-dispersion processing means group 2-C1 includes a coating chamber 2-
It is connected to B1 via an unavoidable hollow member 2-C2.

【0117】装置の構成3 図5(c)は、被覆されたセラミックス準微粒子を製造
するための第三の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、気中分
散維持手段2−C3、回収手段2−Dから構成されてい
る。準微粒子高分散処理手段群2−C1は、被覆室2−
B1に気中分散維持手段2−C3を介して接続してあ
る。
Apparatus Configuration 3 FIG. 5C is a block diagram illustrating the configuration of a third apparatus for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, air dispersion maintaining means 2-C3, and recovery means 2-D. There is. The quasi-fine particle high-dispersion processing means group 2-C1 includes a coating chamber 2-
It is connected to B1 via the air dispersion maintaining means 2-C3.

【0118】装置の構成4 図5(d)は、被覆されたセラミックス準微粒子を製造
するための第四の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1と空間を共有している。
Apparatus Configuration 4 FIG. 5 (d) is a block diagram illustrating the configuration of a fourth apparatus for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 shares a space with the coating chamber 2-B1.

【0119】装置の構成5 図5(e)は、被覆されたセラミックス準微粒子を製造
するための第五の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1中に設けている。
Apparatus Configuration 5 FIG. 5 (e) is a block diagram illustrating the configuration of a fifth apparatus for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is provided in the coating chamber 2-B1.

【0120】装置の構成6 図5(f)は、被覆されたセラミックス準微粒子を製造
するための第六の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1の分散空間中に、被覆室2−B1を設けてい
る。
Device Configuration 6 FIG. 5 (f) is a block diagram illustrating the configuration of a sixth device for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. A coating chamber 2-B1 is provided in the dispersion space of the quasi-fine particle high dispersion treatment means group 2-C1.

【0121】装置の構成7 図5(g)は、被覆されたセラミックス準微粒子を製造
するための第七の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−D、再被覆供給手段2−Eから構成されている。
回収手段2−Dから被覆後の被覆準微粒子を高分散処理
手段群2−C1の再被覆供給手段2−Eにより搬送し
て、繰り返して被覆処理が行える。かかる構成の装置の
いずれかにより、被覆されたセラミックス準微粒子が製
造されるものである。
Apparatus Configuration 7 FIG. 5 (g) is a block diagram illustrating the configuration of a seventh apparatus for producing coated ceramic quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, recovery means 2-D, re-coating supply means 2-E. .
The coated quasi-fine particles after coating are conveyed from the recovery means 2-D by the re-coating supply means 2-E of the high dispersion treatment means group 2-C1 and the coating treatment can be repeated. The coated ceramic quasi-fine particles are produced by any of the apparatuses having such a configuration.

【0122】上記のようにしてセラミックス準微粒子で
芯粒子粉体を被覆形成物質で被覆した被覆準微粒子につ
いて、再び被覆形成物質で被覆すること、又はこの再被
覆を反復することもできる。この場合、被覆準微粒子は
再被覆供給手段に送られる。ここで再被覆供給手段と
は、再被覆を行うために被覆後の被覆準微粒子を準微粒
子高分散処理手段群へ搬送する手段をいう。具体的に
は、(a)被覆準微粒子の回収する回収手段、及び
(b)回収手段から準微粒子高分散処理手段群にこの被
覆準微粒子を搬送する被覆粒子搬送手段を備えた手段で
ある。又は、(a)被覆準微粒子を回収する回収手段、
(b)この回収手段から準微粒子高分散処理手段群に被
覆準微粒子を搬送する被覆粒子搬送手段、(c)及び被
覆後の被覆準微粒子を分級する被覆粒子分級手段を備え
た手段である。被覆量が多い場合、被覆前の芯粒子粉体
の粒子の粒度分布と被覆後の被覆準微粒子の粒度分布は
変わってしまう。そこで、被覆後の被覆準微粒子の粒度
分布を被覆粒子分級手段により調整し、再被覆処理を行
えば効果的である。
The coated quasi-fine particles obtained by coating the core particle powder with the ceramic quasi-fine particles as described above with the coating-forming substance can be coated with the coating-forming substance again, or this re-coating can be repeated. In this case, the coated quasi-fine particles are sent to the recoating supply means. Here, the re-coating supply means means for conveying the coated quasi-fine particles after coating to the quasi-fine particle high dispersion treatment means group in order to perform the re-coating. Specifically, it is a means provided with (a) a collecting means for collecting the coated quasi-fine particles and (b) a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion treatment means group. Or (a) a collecting means for collecting the coated quasi-fine particles,
(B) Coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion treatment means group, (c) and means for providing the coated quasi-fine particles for classifying the coated quasi-fine particles after coating. When the coating amount is large, the particle size distribution of the core particle powder before coating and the particle size distribution of the coated quasi-fine particles after coating change. Therefore, it is effective to adjust the particle size distribution of the coated quasi-fine particles after coating by the coated particle classification means and perform the recoating treatment.

【0123】この再被覆処理は、必要によって繰り返す
ことができ、そして被覆形成物質の被覆量を所望のもの
に設定することができる。更に、この被覆形成物質の種
類を変えてこの被覆処理を繰り返すことができ、このよ
うにして複数成分の物質を被覆形成物質として多重被覆
することもできる。
This recoating process can be repeated if necessary, and the coating amount of the coating forming substance can be set to a desired value. Further, this coating treatment can be repeated by changing the type of the coating forming substance, and in this way, it is also possible to multiply coat a substance of a plurality of components as a coating forming substance.

【0124】本発明で用いる被覆準微粒子の製造装置
は、被覆形成物質が、気相を経る気相法によって、芯粒
子粉体の粒子表面に被覆される被覆準微粒子の製造装置
であれば制限はない。例えば、化学蒸着(CVD)装置
としては、熱CVD装置、プラズマCVD装置、電磁波
を利用したCVD(可視光線CVD、レーザCVD、紫
外線CVD、赤外線CVD、遠赤外線CVD)装置、M
OCVD装置等、或いは、物理蒸着(PVD)装置とし
ては、真空蒸着装置、イオンスパッタリング装置、イオ
ンプーティング装置等が適用可能である。より具体的に
は、例えば特開平3−75302号公報の超微粒子で表
面が被覆された粒子及びその製造方法に記載の被覆粒子
製造装置が好適である。
The apparatus for producing coated quasi-fine particles used in the present invention is limited as long as the coating forming substance is an apparatus for producing coated quasi-fine particles in which the particle surface of the core particle powder is coated by a gas phase method involving a gas phase. There is no. For example, as a chemical vapor deposition (CVD) apparatus, a thermal CVD apparatus, a plasma CVD apparatus, a CVD (visible light CVD, laser CVD, ultraviolet CVD, infrared CVD, far infrared CVD) apparatus using electromagnetic waves, M
As an OCVD device or the like or a physical vapor deposition (PVD) device, a vacuum vapor deposition device, an ion sputtering device, an ion porting device, or the like can be applied. More specifically, for example, a particle whose surface is coated with ultrafine particles disclosed in JP-A-3-75302 and a coated particle manufacturing apparatus described in the manufacturing method thereof are suitable.

【0125】以上述べたとおり、本発明ではセラミック
スの準微粒子である芯粒子粉体、又は主に準微粒子から
なる芯粒子粉体の粒子を被覆空間に投入し、気相を経て
生成する被覆形成物質前駆体及び/又は気相状態の被覆
形成物質前駆体をこの芯粒子粉体の粒子に接触及び/又
は衝突させてこの芯粒子粉体の粒子の表面を被覆形成物
質で被覆して被覆されたセラミックス準微粒子が製造さ
れるが、この準微粒子からなる芯粒子を被覆するための
基本的な工程を要約するとつぎの通りである。
As described above, according to the present invention, the core particles powder which is the quasi-fine particles of ceramics, or the particles of the core particles powder which mainly consists of the quasi-fine particles are introduced into the coating space and the coating is formed through the gas phase. A substance precursor and / or a coating substance precursor in a gas phase state is contacted and / or collided with the particles of the core particle powder to coat the surface of the particles of the core particle powder with the coating substance. Ceramics quasi-fine particles are produced, and the basic process for coating the core particles made of the quasi-fine particles is summarized as follows.

【0126】I (A) 準微粒子高分散処理手段群により、体積基準頻
度分布で平均粒子径が10μmを越える準微粒子芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とする分散工程、(B) この分
散工程で分散させた高分散芯粒子粉体の粒子・気体混合
物の芯粒子粉体の粒子を、分散度βを上記した範囲の値
とする分散状態で、被覆空間の被覆開始領域において被
覆形成物質前駆体と接触及び/又は衝突させて被覆を開
始する被覆工程、を設けた被覆法。
I (A) Particles of a quasi-fine particle core particle powder having an average particle size of more than 10 μm in a volume-based frequency distribution or a core particle of a quasi-fine particle core particle powder mainly composed of quasi-fine particles by means of a group of means for highly dispersing quasi-fine particles Dispersing step of dispersing particles of particle powder in air to obtain a particle / gas mixture of highly dispersed core particle powder, (B) Particle / gas mixture of highly dispersed core particle powder dispersed in this dispersing step A coating step of contacting and / or colliding the particles of the core particle powder with the coating forming material precursor in the coating start region of the coating space in a dispersed state in which the degree of dispersion β is a value in the above range. , The coating method provided.

【0127】II (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを粒子径に
応じて上記した範囲の値とすることを実現する準微粒子
高分散処理手段群により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とする分散工程、(B) この
分散工程で分散させた高分散芯粒子粉体の粒子・気体混
合物の芯粒子粉体の粒子を、分散度βを上記した範囲の
値とする分散状態で、被覆空間の被覆開始領域において
被覆形成物質前駆体と接触及び/又は衝突させて被覆を
開始する被覆工程、を設けた被覆法。
II (A) Particles of quasi-fine particle core particle powder having an average particle size of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles Quasi-fine particles that realize the degree of dispersion β of the particles of the highly dispersed core particle powder / gas mixture core particle powder dispersed by the high dispersion treatment means group in the range described above according to the particle diameter. A dispersion step of dispersing in air by a high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, (B) a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step A coating step of starting the coating by contacting and / or colliding with the particles of the core particle powder in a dispersion state in which the degree of dispersion β is a value in the above range, in the coating start region of the coating space, and / or colliding with the coating material precursor. The coating method provided with.

【0128】III (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、被覆工程に直接搬送する搬送工程、(C)
この搬送工程で搬送した高分散芯粒子粉体の粒子・気
体混合物の芯粒子粉体の粒子を、分散度βを上記した範
囲の値とする分散状態で、被覆空間の被覆開始領域にお
いて被覆形成物質前駆体と接触及び/又は衝突させて被
覆を開始する被覆工程、を設けた被覆法。
III (A) Particles of quasi-fine particle core particle powder having an average particle size of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step A carrying step for carrying the particles directly to the coating step, (C)
Forming coating in the coating start region of the coating space in a dispersed state in which the degree of dispersion β is in the above range of values, the particles of the highly dispersed core particle powder and the particles of the core particle powder of the gas mixture transported in this transportation step A coating method including a coating step of contacting and / or colliding with a substance precursor to start coating.

【0129】IV (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) 分散工程で分散させ
た高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の
粒子を、搬送に不可避の、中空部材、中空を形成する部
材からなる中空部材、及びパイプから選択される1種類
又はそれ以上の部材を介して搬送する搬送工程、(C)
搬送工程で搬送した高分散芯粒子粉体の粒子・気体混
合物の芯粒子粉体の粒子を、分散度βを上記した範囲の
値とする分散状態で、被覆空間の被覆開始領域において
被覆形成物質前駆体と接触及び/又は衝突させて被覆を
開始する被覆工程、を設けた被覆法。
IV (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of a highly dispersed core particle powder, (B) particles of a highly dispersed core particle powder / a particle of a gas mixture core particle powder dispersed in the dispersion step (C) a transporting step of transporting the resin through one or more members selected from a hollow member, a hollow member formed of a member forming a hollow, and a pipe, which is unavoidable for transportation.
The coating forming material in the coating start region of the coating space in a dispersed state in which the particles of the highly dispersed core particle powder and the particles of the gas mixture core particle powder that have been transported in the transportation step have a dispersion degree β within the above range. A coating step of contacting and / or colliding with the precursor to start coating.

【0130】V (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、この分散性能で気中に分散させた高分散芯
粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の気中
分散状態を維持する気中分散維持手段、高分散芯粒子粉
体の粒子・気体混合物の芯粒子粉体の粒子の気中分散状
態を高める気中分散促進手段、芯粒子粉体の粒子と気体
との混合物において低分散芯粒子粉体の粒子・気体混合
物を分離し、芯粒子粉体の粒子が主に単一粒子状態で気
中に存在する高分散芯粒子粉体の粒子・気体混合物を選
択する高分散芯粒子粉体の粒子・気体混合物選択手段の
1種類又はそれ以上を介して被覆工程に搬送する搬送工
程、(C) この搬送工程で搬送した高分散芯粒子粉体
の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを
上記した範囲の値とする分散状態で、被覆空間の被覆開
始領域において被覆形成物質前駆体と接触及び/又は衝
突させて被覆を開始する被覆工程、を設けた被覆法。
V (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step High-dispersion core particle powder, which is an air-dispersion maintaining means for maintaining the air-dispersed state of particles of highly dispersed core particle powder / gas mixture core particle powder in which particles are dispersed in the air with this dispersion performance. Core particles of body particles / gas mixture In the air dispersion promoting means, the low-dispersion core-particle powder particles / gas mixture is separated in the mixture of the core-particle powder particles and the gas, and the core-particle powder particles are mainly dispersed in a single-particle state. A conveying step of conveying the particles / gas mixture of the highly dispersed core particle powder present therein to the coating step via one or more particles / gas mixture selecting means of the highly dispersed core particle powder, (C ) Coating the particles of the highly dispersed core particle powder / particles of the gas mixture core particle powder transported in this transportation step in the coating start region of the coating space in a dispersed state with the degree of dispersion β within the above range. A coating method, which comprises a coating step of contacting and / or colliding with a forming substance precursor to start coating.

【0131】以上、I〜Vの全てにおいて、好適には、
体積基準頻度分布で平均粒子径が10μmを越える準微
粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子
粉体の粒子を、準微粒子高分散処理手段群により分散さ
せた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体
の粒子の分散度βを上記した範囲の値とすることを実現
する空間領域の内の、高分散芯粒子粉体の粒子・気体混
合物中の芯粒子粉体の粒子の全ての粒子が通過する面を
含む空間領域に、被覆空間の被覆開始領域を位置させる
か、又は、体積基準頻度分布で平均粒子径が10μmを
越える準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子を、準微粒子高分散処理手段群に
より分散させた高分散芯粒子粉体の粒子・気体混合物の
芯粒子粉体の粒子の分散度βを上記した範囲の値とする
ことを実現する空間領域の内の、回収手段の回収部に回
収する全ての粒子が通過する面を含む空間領域に、被覆
空間の被覆開始領域を位置させるか、又は、前記I及び
IIにおいて、体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子を、準微粒子高分散処理手段群
により分散させた高分散芯粒子粉体の粒子・気体混合物
の芯粒子粉体の粒子の分散度βを上記した範囲の値とす
ることを実現する準微粒子高分散処理手段群により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物とす
る分散工程の一部以上と前記被覆工程の一部以上とを、
空間を一部以上共有して行うものである。
In all of the above I to V, it is preferable that
Highly dispersed core particles obtained by dispersing particles of quasi-fine particle core particle powder having a volume-based frequency distribution of more than 10 μm or particles of core particle powder mainly composed of quasi-fine particles by a quasi-fine particle high dispersion treatment means group. Core particles of powder particles / gas mixture Core particles of highly dispersed core particles powder / gas mixture in the space region that realizes the degree of dispersion β of powder particles within the above range. The coating start region of the coating space is located in the space region including the surface through which all the particles of the particle powder pass, or the quasi-fine particle core particle powder whose average particle size exceeds 10 μm in the volume-based frequency distribution Particles or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by means of a quasi-fine particle high dispersion treatment means group. A space that realizes that Of the band, in the space region including a surface all particles passing through the recovery in the recovery of the recovery means, or to position the coating start region of the coating space, or the I and
In II, the volume-based frequency distribution has an average particle size of 10 μm
Particles of a highly dispersed core particle powder in which particles of a quasi-fine particle core particle powder or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by a quasi-fine particle high dispersion treatment means group In the dispersion step of dispersing the particles in the air into a particle / gas mixture of highly dispersed core particles powder by a quasi-fine particle high-dispersion treatment means group that realizes the degree of dispersion β of the particles of the powder within the range described above. Part or more and part or more of the coating step,
This is done by sharing a part or more of the space.

【0132】前記、被覆されたセラミックス準微粒子
は、被覆された準微粒子の被覆形成物質を介して、接触
状態で集合塊を形成する場合がある。この被覆されたセ
ラミックス準微粒子からなる粉体は、単一粒子状態の被
覆された準微粒子と、この単一粒子状態の被覆された準
微粒子が数個から数十個接触した集合塊、更に多数個の
単一粒子状態の被覆された準微粒子が接触した集合塊か
ら構成され、その形状及び大きさが不均一で不規則にな
る。この単一粒子状態の被覆された準微粒子からなる集
合塊は、解砕及び/又は破砕してから成形又は焼結処理
に供するのが好ましい。この被覆されたセラミックス準
微粒子の集合塊の解砕及び/又は破砕には、種々の解砕
手段、例えば、ボールミル、振動ボールミル、乳鉢、ジ
ェットミル等が利用可能である。また、単一粒子状態の
被覆された準微粒子と、この単一粒子状態の被覆された
準微粒子の集合塊とを選択分離して、単一粒子状態の被
覆された準微粒子のみを成形又は焼結処理に供してもよ
い。
The coated ceramic quasi-fine particles may form an agglomerate in a contact state via the coating forming substance of the coated quasi-fine particles. The powder consisting of the coated quasi-fine particles of the coated ceramic is composed of the coated quasi-fine particles in the state of a single particle and the agglomerates in which the coated quasi-fine particles in the state of a single particle are in contact with each other from several to several tens. It is composed of agglomerates in which individual coated quasi-fine particles in contact with each other are in a nonuniform and irregular shape and size. It is preferable that the aggregated mass of the coated quasi-fine particles in a single particle state is crushed and / or crushed before being subjected to molding or sintering treatment. Various crushing means such as a ball mill, a vibrating ball mill, a mortar, and a jet mill can be used for crushing and / or crushing the coated aggregate of the ceramic quasi-fine particles. Further, the coated quasi-fine particles in the single particle state and the aggregate of the coated quasi-fine particles in the single particle state are selectively separated to form or burn only the coated quasi-fine particles in the single particle state. It may be subjected to a binding treatment.

【0133】本発明によれば、上記のようにして得られ
た被覆されたセラミックス準微粒子はセラミックス粒子
焼結のための慣用の圧力および温度で焼結されてセラミ
ックス基の焼結体とされる。
According to the present invention, the coated ceramic quasi-fine particles obtained as described above are sintered at a pressure and temperature conventionally used for sintering ceramic particles to obtain a ceramic-based sintered body. .

【0134】本発明で用いる被覆されたセラミックス準
微粒子は、上記したように気相法によりその表面を被覆
するので基本的に被覆形成物質に制限はない。セラミッ
クス基焼結体を、用途に応じて任意に材料設計する上で
必要に応じて、当該被覆を施す前に、セラミックス準微
粒子表面に事前に、同種及び/又は異種の被覆形成物質
を同種及び/又は異種の被覆方法により被覆を施しても
よい。
Since the coated ceramic quasi-fine particles used in the present invention coat the surface thereof by the vapor phase method as described above, there is basically no limitation on the coating forming substance. If necessary in designing the material of the ceramic-based sintered body as desired, before applying the coating, the same kind and / or different kinds of coating forming substances may be formed in advance on the surface of the ceramic quasi-fine particles. The coating may be applied by a different coating method.

【0135】例えば、セラミックス準微粒子表面に、目
的とする金属の炭化物からなる被覆を形成する場合、事
前に炭素で被覆を施した被覆されたセラミックス準微粒
子を使用すればよい。事前に物質を被覆する方法は、特
に制限するものではないが、例えば、特開平2−252
660号公報に記載の溶融塩浸漬法を始め、電気メッキ
法、無電解メッキ法、クラッド法、物理蒸着法(スパッ
タリング法、イオンブレーティング法等)や化学蒸着法
が好適である。目的とする金属化合物の金属の種類は、
本発明の結合材となる物質及び/又は焼結助剤となる物
質として適用可能の範囲であれば特に制限されない。
For example, when forming a coating made of a carbide of a target metal on the surface of ceramic quasi-fine particles, coated ceramic quasi-fine particles coated with carbon in advance may be used. The method of coating the substance in advance is not particularly limited, but is, for example, JP-A-2-252.
In addition to the molten salt dipping method described in Japanese Patent No. 660, electroplating, electroless plating, cladding, physical vapor deposition (sputtering, ion plating, etc.), and chemical vapor deposition are suitable. The type of metal of the target metal compound is
There is no particular limitation as long as it is applicable as a substance that serves as a binder and / or a substance that serves as a sintering aid of the present invention.

【0136】セラミックス基焼結体 本発明に係る、セラミックス基焼結体は、被覆されたセ
ラミックス準微粒子又は被覆されたセラミックス準微粒
子を含む混合物を焼結することにより製造される。この
セラミックス基焼結体は、被覆されたセラミックス準微
粒子又は被覆されたセラミックス準微粒子を含む混合物
を、好ましくは、射出成形、型押し、泥漿鋳込み等の選
択される一種以上で成形される。必要により、予備焼結
を施して仮焼結体とし、これを更に加工した後、本焼結
に共することもできる。この成形処理を施した被覆され
たセラミックス準微粒子又は被覆されたセラミックス準
微粒子を含む混合物は、従来公知の焼結法により焼結す
る。具体的には、真空焼結法又は雰囲気焼結法、大気中
常圧焼結法又は、ホットプレス法、カプセルHIP法、
擬HIP法、カプセル・フリーHIP法、カプセル超高
圧HIP法、カプセル・フリー超高圧HIP法、超高圧
焼結法等の一種類以上で焼結される。
Ceramic-Based Sintered Body The ceramic-based sintered body according to the present invention is produced by sintering coated ceramic quasi-fine particles or a mixture containing the coated ceramic quasi-fine particles. The ceramic-based sintered body is formed by coating the coated ceramic quasi-fine particles or a mixture containing the coated ceramic quasi-fine particles, preferably by one or more selected from injection molding, embossing, slurry casting and the like. If necessary, pre-sintering can be performed to obtain a temporary sintered body, which can be further processed and then subjected to main sintering. The coated ceramic quasi-fine particles subjected to this molding treatment or the mixture containing the coated ceramic quasi-fine particles are sintered by a conventionally known sintering method. Specifically, a vacuum sintering method or an atmosphere sintering method, an atmospheric pressure sintering method, a hot pressing method, a capsule HIP method,
It is sintered by one or more of pseudo HIP method, capsule-free HIP method, capsule ultra-high pressure HIP method, capsule-free ultra-high pressure HIP method, ultra-high pressure sintering method and the like.

【0137】一例として、ガラスカプセルを用いたカプ
セルHIP法について更に詳しく述べる。先ず、セラミ
ックス準微粒子表面に被覆形成物質の被覆を施した被覆
されたセラミックス粒子を型押し成形し、この成形体
を、h−BN粉体を充填したパイレックスガラス製のカ
プセルに配置し、脱気後封入する。このカプセルを、H
IP装置に配置し、カプセルが軟化する温度まで昇温
し、その後加圧しながら所望の焼結温度まで加熱し、所
定時間、圧力、温度を保持して焼結する。しかる後、炉
冷し、圧力を開放して、焼結体を取り出す。このように
して、セラミックスの粒子サイズが制御され或は更に結
合材及び/又は焼結助剤及び/又は表面改質剤の分布が
制御された均一で緻密で、高度に制御された微組織を有
する。特徴的なセラミックス基焼結体を得る。
As an example, the capsule HIP method using a glass capsule will be described in more detail. First, the coated ceramic particles, in which the surface of the ceramic quasi-fine particles is coated with a coating forming substance, are embossed and molded, and the molded body is placed in a capsule made of Pyrex glass filled with h-BN powder and degassed. Enclose later. This capsule, H
The capsule is placed in an IP device, heated to a temperature at which the capsule is softened, and then heated to a desired sintering temperature while being pressurized, and sintered while maintaining the pressure and temperature for a predetermined time. Then, the furnace is cooled, the pressure is released, and the sintered body is taken out. In this way, a uniform, dense, highly controlled microstructure in which the particle size of the ceramic is controlled or the distribution of the binder and / or the sintering aid and / or the surface modifier is further controlled is obtained. Have. A characteristic ceramic-based sintered body is obtained.

【0138】焼結温度は使用する個々のセラミックスに
よって異なり、例えばほうろうの650°程度の温度か
らアルミナセラミックスの1700℃又はそれ以上に至
る温度が使用される。被覆形成物質による粒界制御で、
高めの温度でも粒成長なしに強固に焼結できるので、焼
結温度を高めに設定可能である。
The sintering temperature differs depending on the individual ceramics used, and for example, a temperature of about 650 ° for enamel to 1700 ° C or higher for alumina ceramics is used. Grain boundary control by coating material,
The sintering temperature can be set high because it can be strongly sintered without grain growth even at a high temperature.

【0139】或いはまた上記した成形を行うことなく、
ホットプレスを用いて焼結と成形を同時に行うこともで
きる。
Alternatively, without performing the above-mentioned molding,
It is also possible to perform sintering and molding simultaneously using a hot press.

【0140】[0140]

【実施例】以下、本発明を実施例によって更に詳細に説
明する。 実施例1 平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の硼化ジルコニウム
(ZrB2)準微粒子をチタン金属の炭化物である炭化
チタン(TiC)で被覆した。使用した装置は、図6及
びその部分拡大図である図7に示したものである、図5
(a)に示した構成の具体例である。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 Zirconium boride (ZrB 2 ) quasi-fine particles having an average particle size D M of 20 μm and a volume-based frequency distribution of ([D M / 5,5D M ], ≧ 90%) were carbonized as a titanium metal carbide. Coated with titanium (TiC). The apparatus used is that shown in FIG. 6 and FIG. 7 which is a partially enlarged view thereof.
It is a specific example of the configuration shown in FIG.

【0141】本例の装置は、プラズマトーチ3−A、プ
ラズマ室3−a、被覆形成物質前駆体生成室の冷却槽3
−B、被覆形成物質前駆体生成室3−b、狭義の被覆室
冷却室3−C、狭義の被覆室3−c、被覆準微粒子冷却
室の冷却槽3−D、被覆準微粒子冷却室3−d、被覆形
成物質の原料の供給側に、供給装置3−E1、芯粒子粉
体の供給側に、撹拌式分散機3−F1とエジェクター式
分散機3−H1、細管分散機107及び被覆準微粒子回
収部3−Gより成る。供給装置3−E1は被覆形成物質
の原料粉体の供給槽112に、撹拌式分散機3−F1は
芯粒子粉体の供給槽を備えた供給機111にそれぞれ結
合される。本例における被覆室は、定義ではプラズマ室
3−a、被覆形成物質前駆体生成室3−b、狭義の被覆
室3−c、被覆粒子冷却室3−dから構成されており、
ここではこれらを広義の被覆室と称する。この広義の被
覆室の内、主に被覆処理の行われる室3−cを広義の被
覆室と称する。
The apparatus of this example comprises a plasma torch 3-A, a plasma chamber 3-a, and a cooling tank 3 for the coating-formation-material precursor producing chamber.
-B, coating forming substance precursor generation chamber 3-b, narrowly-defined coating chamber cooling chamber 3-C, narrowly-defined coating chamber 3-c, coating quasi-fine particle cooling chamber cooling tank 3-D, coating quasi-fine particle cooling chamber 3 -D, a supply device 3-E1 on the supply side of the raw material of the coating forming material, a stirring type dispersion machine 3-F1 and an ejector type dispersion machine 3-H1, a capillary tube dispersion machine 107 and a coating on the supply side of the core particle powder. The quasi-fine particle recovery unit 3-G. The supply device 3-E1 is connected to the supply tank 112 for the raw material powder of the coating-forming substance, and the stirring-type disperser 3-F1 is connected to the supply device 111 equipped with the supply tank for the core particle powder. By definition, the coating chamber in this example is composed of a plasma chamber 3-a, a coating-forming substance precursor generation chamber 3-b, a coating chamber 3-c in a narrow sense, and a coating particle cooling chamber 3-d.
Here, these are called the coating chamber in a broad sense. Of the coating chambers in this broad sense, the chamber 3-c in which the coating process is mainly performed is called the coating chamber in a broad sense.

【0142】本例における準微粒子高分散処理手段群α
は、供給槽を備えた供給機111、撹拌式分散機3−F
1とエジェクター式分散機3−H1及び内径4mmのステ
ンレス製細管分散機107で構成されており、図2
(a)に示したものであり、図3(b)に示した構成に
属する準微粒子高分散処理手段群の具体例である。準微
粒子高分散処理手段群は、DM=20μmの(〔DM
5,5DM〕,≧90%)のセラミックス粒子の芯粒子
粉体に対して出力時β≧80%を実現できるように構成
されている。準微粒子高分散処理手段群の最終処理手段
である細管107は被覆室3−Cに直結してあり、被覆
空間の3−L2の被覆開始領域3−L1においてβ≧8
0%を実現できるように構成されている。
Semi-fine particle high dispersion treatment means group α in this example
Is a feeder 111 having a feed tank, a stirring type dispersing machine 3-F
1 and an ejector type disperser 3-H1 and a stainless steel capillary disperser 107 having an inner diameter of 4 mm.
FIG. 3A is a specific example of the quasi-fine particle high dispersion processing means group belonging to the configuration shown in FIG. 3B. The quasi-fine particle high dispersion treatment means group has a D M = 20 μm ([D M /
5,5D M ], ≧ 90%), and β ≧ 80% at the time of output can be realized for the core particle powder of ceramic particles. The thin tube 107 which is the final processing means of the quasi-fine particle high dispersion processing means group is directly connected to the coating chamber 3-C, and β ≧ 8 in the coating start region 3-L1 of 3-L2 of the coating space.
It is configured to achieve 0%.

【0143】プラズマトーチ3−Aの上部に設けられた
ガス噴出口101に供給源102からアルゴンガスを2
0リットル/分の割合で供給する。このアルゴンガスは
印加された高周波によってプラズマ化され、プラズマト
ーチ3−A内プラズマ室3−aでプラズマ焔を形成す
る。
Argon gas is supplied from the supply source 102 to the gas jet port 101 provided on the upper part of the plasma torch 3-A.
Supply at a rate of 0 liters / minute. The argon gas is turned into plasma by the applied high frequency, and forms a plasma flame in the plasma chamber 3-a in the plasma torch 3-A.

【0144】被覆形成物質の原料の供給槽を備えた供給
機112から供給した被覆形成物質の原料である平均粒
子径2μmの炭化チタンの粉末は、5リットル/分のキ
ャリアガス103に担持されて、プラズマトーチ3−A
の下部に設けられた被覆形成物質の原料の投入口104
から、プラズマ焔中に0.6g/分の割合で導入され、
プラズマ焔の熱により蒸発して気相を経て、被覆形成物
質前駆体生成室3−bで被覆形成物質前駆体となる。
Titanium carbide powder having an average particle diameter of 2 μm, which is a raw material of the coating forming substance, was supplied from a feeder 112 having a supply tank of the raw material of the coating forming substance, and was carried by 5 liters / min of carrier gas 103. , Plasma torch 3-A
Feeding port 104 for the raw material of the coating forming material provided in the lower part of the
Therefore, it was introduced into the plasma flame at a rate of 0.6 g / min,
It evaporates due to the heat of the plasma flame, passes through the gas phase, and becomes a coating material precursor in the coating material precursor production chamber 3-b.

【0145】芯粒子粉体の供給槽を備えた供給機111
から2.5g/分で供給される平均粒子径20μmの硼
化ジルコニウムの芯粒子を、撹拌式分散機3−F1によ
り分散させ、5リットル/分の割合で供給されるキャリ
アガス105により担持され、10リットル/分の流量
の分散ガス106によるエジェクター式分散機3−H1
及び細管分散機107により分散度β=89%の分散状
態に分散させ、被覆室に導入する。
Feeder 111 equipped with a supply tank for core particle powder
To 2.5 g / min of zirconium boride core particles having an average particle size of 20 μm are dispersed by a stirring disperser 3-F1 and carried by a carrier gas 105 supplied at a rate of 5 liters / min. Ejector type disperser 3-H1 using the dispersion gas 106 at a flow rate of 10 liters / minute
And, it is dispersed into a dispersed state with a degree of dispersion β = 89% by the narrow tube disperser 107 and introduced into the coating chamber.

【0146】高分散状態の硼化ジルコニウム準微粒子
は、被覆空間の3−L2の被覆開始領域3−L1におい
て被覆形成物質前駆体とβ=82%の分散状態で接触及
び/又は衝突し始める。
The highly dispersed zirconium boride quasi-fine particles start to contact and / or collide with the coating material precursor in the coating start region 3-L1 of the coating space 3-L2 in a dispersed state of β = 82%.

【0147】このようにして生成した。前記被覆形成物
質で表面に被覆を施した被覆準微粒子は、気体と共に被
覆準微粒子冷却室3−dを降下し、被覆準微粒子回収部
3−Gに至る。この被覆準微粒子からなる製品は、フィ
ルター110により気体と分離し、集められ取り出され
る。
It was generated in this way. The coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 3-d and reaches the coated quasi-fine particle recovery unit 3-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 110, collected, and taken out.

【0148】得られた被覆準微粒子である、炭化チタン
で表面に被覆を施した硼化ジルコニウム準微粒子を走査
型電子顕微鏡で観察したところ、図8に示す通り、個々
の粒子は、いずれも、一様に0.005μm程度の炭化
チタンが超微粒子状に被覆したものであった。炭化チタ
ンの被覆量は、体積で20%であった。
The obtained coated quasi-fine particles, zirconium boride quasi-fine particles whose surface was coated with titanium carbide, were observed with a scanning electron microscope. As a result, as shown in FIG. The titanium carbide was uniformly coated with ultrafine particles of about 0.005 μm. The coating amount of titanium carbide was 20% by volume.

【0149】実施例2 平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の硼化ジルコニウム
(ZrB2)準微粒子を硼化チタン(TiB2)で被覆し
た。
Example 2 Zirconium boride (ZrB 2 ) quasi fine particles having an average particle diameter D M of 20 μm and a volume-based frequency distribution of ([D M / 5,5D M ], ≧ 90%) were replaced with titanium boride ( TiB 2 ).

【0150】使用した装置は、図9及びその部分拡大図
を図10に示したものであり、図5(d)に示した構成
の具体例である。本例の被覆形成物質前駆体を生成する
装置の構成は実施例1と同一である。準微粒子高分散処
理手段群αは、供給槽を備えた供給機214、撹拌式分
散機5−F1、細管分散機211及び衝突板を利用した
分散機5−H2で構成されており、図2(a)に示した
ものであり、図3(a)に示した構成に属する準微粒子
高分散処理手段群の具体例である。細管分散機211
は、内径4mmのステンレス製である。準微粒子高分散処
理手段群αの最終分散手段である衝突板を利用した分散
機5−H2は、SiC製の衝突板213がステンレス製
のホルダー212により設置された構成である。この衝
突板を利用した分散機5−H2の狭義の被覆室5−cの
中に設けられており、準微粒子高分散処理手段群αと狭
義の被覆室5−cは共有の空間を有している。また、被
覆空間5−L1及び被覆空間の被覆開始領域5−L2
は、狭義の被覆室5−c内に設けてある。本装置の準微
粒子高分散処理手段群は、平均粒子径DMが20μm
で、体積基準頻度分布が(〔DM/5,5DM〕,≧90
%)の芯粒子粉体の粒子を、最終の分散処理である衝突
板を利用した分散機5−H2の衝突板215を衝突直
後、分散度β≧80%に分散できる。従って、分散度β
≧80%の状態で被覆が開始される。
The apparatus used is shown in FIG. 9 and its partially enlarged view in FIG. 10, which is a specific example of the configuration shown in FIG. 5 (d). The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high dispersion treatment means group α is composed of a feeder 214 having a feed tank, a stirring type dispersing machine 5-F1, a narrow tube dispersing machine 211, and a dispersing machine 5-H2 using a collision plate. FIG. 3A is a specific example of the quasi-fine particle high dispersion processing means group belonging to the configuration shown in FIG. 3A. Capillary disperser 211
Is made of stainless steel with an inner diameter of 4 mm. The disperser 5-H2 using a collision plate, which is the final dispersion means of the quasi-fine particle high dispersion treatment means group α, has a structure in which a collision plate 213 made of SiC is installed by a holder 212 made of stainless steel. It is provided in the narrow coating chamber 5-c of the disperser 5-H2 using this collision plate, and the quasi-fine particle high dispersion treatment means group α and the narrow coating chamber 5-c have a common space. ing. In addition, the coating space 5-L1 and the coating start region 5-L2 of the coating space
Is provided in the narrowly-defined coating chamber 5-c. The quasi-fine particle high dispersion treatment means group of this apparatus has an average particle diameter D M of 20 μm.
And the volume-based frequency distribution is ([D M / 5,5D M ], ≧ 90
%) Of the core particle powder can be dispersed to the dispersity β ≧ 80% immediately after the collision with the collision plate 215 of the disperser 5-H2 using the collision plate which is the final dispersion treatment. Therefore, the degree of dispersion β
The coating is started in the state of ≧ 80%.

【0151】プラズマトーチ5−Aの上部に設けられた
ガス噴出口201に供給源202から20リットル/分
のアルゴンガスを供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ5
−A内プラズマ室5−aでプラズマ焔を形成する。
20 l / min of argon gas is supplied from a supply source 202 to a gas ejection port 201 provided on the upper part of the plasma torch 5-A. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 5
-A plasma flame is formed in the plasma chamber 5-a in A.

【0152】被覆形成物質の原料の供給槽を備えた供給
機215から0.5g/分で供給した被覆形成物質の原
料である平均粒子径2μmの硼化チタンの粉末は、5リ
ットル/分のキャリアガス203に担持されて、プラズ
マトーチ5−Aの下部に設けられた被覆形成物質の原料
の投入口204から、プラズマ焔中に導入され、プラズ
マ焔の熱により蒸発して気相を経て、被覆形成物質前駆
体生成室5−bで被覆形成物質前駆体となる。
The powder of titanium boride having an average particle diameter of 2 μm, which is the raw material of the coating forming substance, was supplied at 0.5 g / min from a feeder 215 equipped with a feed tank of the raw material of the coating forming substance, and the amount was 5 liters / min. The carrier gas 203 is carried, and is introduced into the plasma flame from the feed port 204 of the raw material of the coating forming substance provided in the lower portion of the plasma torch 5-A, and is evaporated by the heat of the plasma flame to pass through the gas phase, It becomes a coating material precursor in the coating material precursor production chamber 5-b.

【0153】芯粒子粉体の供給槽を備えた供給機214
から2.5g/分で供給される硼化ジルコニウムの芯粒
子は、撹拌式分散機5−F1により分散させ、20リッ
トル/分の割合で供給されるキャリアガス205により
担持され、細管分散機211を経て、被覆室中に設けた
衝突板を利用した分散機5−H2によって、分散度β=
89%に気中に分散させる。
Feeder 214 equipped with a supply tank for core particle powder
The core particles of zirconium boride supplied at a rate of 2.5 g / min from the above are dispersed by the stirring type disperser 5-F1 and carried by the carrier gas 205 supplied at a rate of 20 liters / min. After that, by the disperser 5-H2 using the collision plate provided in the coating chamber, the dispersion degree β =
Disperse in air to 89%.

【0154】高分散状態の硼化ジルコニウムの芯粒子
は、被覆空間5−L2の被覆開始領域5−L1において
被覆形成物質前駆体とβ=89%の分散状態で接触及び
/又は衝突し始める。
The highly dispersed zirconium boride core particles start to contact and / or collide with the coating material precursor in the coating start region 5-L1 in the coating space 5-L2 in a dispersed state of β = 89%.

【0155】このようにして生成した。被覆形成物質で
表面に被覆が施した被覆された準微粒子は気体と共に被
覆準微粒子冷却室5−dを降下し、被覆準微粒子回収部
5−Gに至る。この被覆準微粒子からなる製品は、フィ
ルター210により気体と分離し、集められ取り出され
る。
It was generated in this way. The coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 5-d and reaches the coated quasi-fine particle recovery unit 5-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 210 and collected and taken out.

【0156】得られた被覆された準微粒子である、硼化
チタンで表面に被覆を施した硼化ジルコニウム準微粒子
を、走査型電子顕微鏡で観察したところ、個々の粒子
は、いずれも一様に0.005μm程度の硼化チタンが
超微粒子状に被覆したものであった。硼化チタンの被覆
量は、体積で20%であった。
The obtained coated quasi-fine particles, zirconium boride quasi-fine particles whose surface was coated with titanium boride, were observed by a scanning electron microscope. As a result, all the individual particles were found to be uniform. The titanium boride having a thickness of about 0.005 μm was coated in the form of ultrafine particles. The coverage of titanium boride was 20% by volume.

【0157】実施例3 平均粒子径DMが40μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の炭化ジルコニウム
(ZrC)準微粒子を炭化チタン(TiC)で被覆し
た。
Example 3 Zirconium carbide (ZrC) quasi fine particles having an average particle diameter D M of 40 μm and a volume-based frequency distribution of ([D M / 5,5D M ], ≧ 90%) were made of titanium carbide (TiC). Coated.

【0158】使用した装置は、図11及び、その部分拡
大図である図12に示したものであり、図5(b)に示
した構成の具体例である。本例の被覆形成物質前駆体を
生成する装置の構成は実施例1と同一である。準微粒子
高分散処理手段群αは、供給槽を備えた供給機313、
分散手段である撹拌式分散機6−F1、高分散芯粒子粉
体の粒子・気体混合物選択手段であるサイクロン6−I
で構成されており、図2(b)に示したものであり、図
3(d)に示した構成の具体例である。サイクロン6−
Iの高分散芯粒子粉体の粒子・気体混合物の放出部は、
搬送に不可避のパイプ307で狭義の被覆室6−cへ接
続してあり、低分散芯粒子粉体部分の放出部は、ホッパ
ー6−J、ロータリーバルブ6−Kを介して搬送管31
0で撹拌式分散機6−F1へ接続してある。本装置の準
微粒子高分散処理手段群によれば、体積基準の粒度分布
として、平均粒子径DMが40μmで、体積基準頻度分
布が(〔DM/5,5DM),≧90%)の芯粒子粉体の
粒子を、最終の処理手段であるサイクロン6−Iの高分
散芯粒子粉体流の放出部で、分散度β≧95%に分散で
きる。狭義の被覆室6−cに図11及び図12のごとく
被覆空間6−L2及び被覆空間の被覆開始領域6−L1
が設けてある。6−Cと6−Dを結合するフランジ部の
制約による搬送に不可避のパイプ307による分散度β
の低下は少なくとどめられる。従って、被覆開始領域に
おいて、分散度β≧90%で被覆が開始される。
The apparatus used is shown in FIG. 11 and its partially enlarged view in FIG. 12, and is a specific example of the configuration shown in FIG. 5 (b). The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high-dispersion processing means group α includes a feeder 313 equipped with a feeding tank,
A stirring type disperser 6-F1 as a dispersing means, and a cyclone 6-I as a means for selecting a particle / gas mixture of highly dispersed core particle powder.
2 (b), which is a specific example of the configuration shown in FIG. 3 (d). Cyclone 6-
The discharge part of the particle / gas mixture of the highly dispersed core particle powder of I is
It is connected to the coating chamber 6-c in a narrow sense by a pipe 307 which is inevitable for conveyance, and the discharging portion of the low-dispersion core particle powder portion is conveyed through the hopper 6-J and the rotary valve 6-K to the conveyance pipe 31.
It is connected to the stirring type dispersing machine 6-F1 at 0. According to the quasi-fine particle high dispersion treatment means group of the present apparatus, the volume-based particle size distribution has an average particle diameter D M of 40 μm and a volume-based frequency distribution of ([D M / 5,5D M ), ≧ 90%). The particles of the core particle powder can be dispersed with a degree of dispersion β ≧ 95% at the discharge part of the cyclone 6-I high-dispersion core particle powder flow which is the final processing means. In the narrowly-defined coating chamber 6-c, as shown in FIGS. 11 and 12, the coating space 6-L2 and the coating start region 6-L1 of the coating space.
Is provided. Dispersion degree β due to the pipe 307 inevitable for transportation due to the restriction of the flange portion connecting 6-C and 6-D
The decrease in power consumption is small. Therefore, in the coating start region, the coating starts with the dispersity β ≧ 90%.

【0159】プラズマトーチ6−Aの上部に設けられた
ガス噴出口301に供給源302からアルゴンガスを2
0リットル/分で供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ6
−A内プラズマ室6−aでプラズマ焔を形成する。
Argon gas was supplied from the supply source 302 to the gas jet port 301 provided on the upper part of the plasma torch 6-A.
Supply at 0 l / min. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 6
-A plasma flame is formed in the plasma chamber 6-a in A.

【0160】被覆形成物質の原料の供給槽を備えた供給
機314から0.7g/分で供給した被覆形成物質の原
料である炭化チタン粉末は、5リットル/分のキャリア
ガス303に担持されて、プラズマトーチ6−Aの下部
に設けられた被覆形成物質の原料の投入口304から、
プラズマ焔中に導入され、プラズマ焔の熱により蒸発し
て気相を経て、被覆形成物質前駆体生成室6−bで被覆
形成物質前駆体となる。
Titanium carbide powder, which is a raw material of the coating forming material, was supplied at 0.7 g / min from a feeder 314 equipped with a feed tank of the raw material of the coating forming material, and was carried on a carrier gas 303 of 5 liters / minute. From the charging port 304 of the raw material of the coating forming substance provided in the lower part of the plasma torch 6-A,
It is introduced into the plasma flame, evaporates by the heat of the plasma flame, passes through the gas phase, and becomes the coating substance precursor in the coating substance precursor generation chamber 6-b.

【0161】芯粒子粉体の供給槽を備えた供給機313
から2.6g/分で供給される炭化ジルコニウムの芯粒
子は、撹拌式分散機6−F1により分散させ、15リッ
トル/分のキャリアガス305により担持されパイプ3
06を介してサイクロン6−Iに搬送される。サイクロ
ン6−Iは、微粉側の最大粒子径が50μmとなるよう
に調節されており、主に単一粒子からなるβ=96%の
分散状態の高分散芯粒子粉体の粒子・気体混合物を、搬
送に不可避のパイプ307を介し放出口308から狭義
の被覆室6−cに放出させる。一方、サイクロン6−I
により選択分離した低分散芯粒子粉体部分は、ホッパー
6−J、ロータリーバルブ6−Kを経て、10リットル
/分のキャリアガス309によりパイプ310中を搬送
され、撹拌式分散機6−F1へフィードバックする。
Feeder 313 equipped with a supply tank for core particle powder
The core particles of zirconium carbide, which are supplied at a rate of 2.6 g / min from above, are dispersed by a stirring type disperser 6-F1 and carried by a carrier gas 305 of 15 liters / min.
It is conveyed to cyclone 6-I via 06. Cyclone 6-I is adjusted so that the maximum particle size on the fine powder side is 50 μm, and a particle / gas mixture of highly dispersed core particle powder in a dispersed state of β = 96% mainly composed of single particles is used. , Through the pipe 307, which is inevitable for transportation, to the coating chamber 6-c in a narrow sense from the discharge port 308. On the other hand, cyclone 6-I
The low-dispersion core particle powder portion selectively separated by means of the hopper 6-J and the rotary valve 6-K is conveyed in the pipe 310 by the carrier gas 309 of 10 l / min, and is then fed to the stirring type disperser 6-F1. provide feedback.

【0162】高分散状態の炭化ジルコニウムの芯粒子
は、被覆空間6−L2の被覆開始領域6−L1において
被覆形成物質前駆体とβ=94%の分散状態で接触及び
/又は衝突し始める。
The zirconium carbide core particles in a highly dispersed state start to contact and / or collide with the coating material precursor in the coating starting region 6-L1 in the coating space 6-L2 in a dispersed state of β = 94%.

【0163】このようにして生成した。前記被覆形成物
質で表面に被覆を施した被覆準微粒子は、気体と共に被
覆準微粒子冷却室6−dを降下し、被覆準微粒子回収部
6−Gに至る。この被覆準微粒子からなる製品は、フィ
ルター312により気体と分離し、集められ取り出され
る。
It was generated in this way. The coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 6-d and reaches the coated quasi-fine particle recovery unit 6-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 312, collected and taken out.

【0164】得られた被覆されたセラミックス準微粒子
である、炭化チタンで表面に被覆を施した炭化ジルコニ
ウム準微粒子を、走査型電子顕微鏡で観察したところ、
個々の粒子は、いずれも、一様に0.005μm程度の
炭化チタンが超微粒子状に被覆したものであった。炭化
チタンの被覆量は、体積で20%であった。
The obtained coated ceramic quasi-fine particles, that is, zirconium carbide quasi-fine particles coated on the surface with titanium carbide, were observed with a scanning electron microscope.
Each individual particle was uniformly coated with ultrafine particles of titanium carbide of about 0.005 μm. The coating amount of titanium carbide was 20% by volume.

【0165】実施例4 実施例1で得られた炭化チタン(TiC)で被覆した硼
化ジルコニウム(ZrB2)準微粒子を、直径16mm、
厚さ10mmの円盤状に型押し成形し、その外側に六方晶
窒化硼素(h−BN)粉末を充填した黒鉛製の型を装備
するホットプレス(HP)装置に配置し、10-3torrで
200℃まで脱気後、アルゴンガスを流しながら、温度
1900℃、圧力20MPaで3時間保持して焼結した。
その後炉冷し圧力を開放して焼結体を取り出した。
Example 4 Zirconium boride (ZrB 2 ) quasi-fine particles coated with titanium carbide (TiC) obtained in Example 1 were used,
It was placed in a hot press (HP) machine equipped with a graphite mold that was formed by stamping into a disk shape with a thickness of 10 mm and filled with hexagonal boron nitride (h-BN) powder on the outside, at 10 -3 torr. After degassing to 200 ° C., the temperature was maintained at 1900 ° C. and the pressure was 20 MPa for 3 hours to sinter while flowing an argon gas.
Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.

【0166】得られた焼結体は、相対密度が測定誤差内
で99%以上と大変緻密であり、ビッカース微小硬度が
2400と大変高硬度であった。この焼結体の研磨面の
電子顕微鏡写真(×1000)を図13に示す。図13
から焼結体には未焼結部や気孔、欠陥等は全くなく、高
度に制御された微組織の焼結体であることが分かる。
The obtained sintered body was very dense with a relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 2400. An electron micrograph (× 1000) of the polished surface of this sintered body is shown in FIG. FIG.
It can be seen from the results that the sintered body has no unsintered parts, pores, defects, etc. and has a highly controlled microstructure.

【0167】比較のために実施例1で用いた硼化ジルコ
ニウム準微粒子で炭化チタンを被覆していないものと、
相当する量の炭化チタン粒子とを混合した粉末を実施例
4と同一の焼結条件で焼結した。このようにして得られ
た焼結体の研磨面の電子顕微鏡写真(×1000)図1
4に示す。この図から同一の焼結条件にもかかわらず粒
子は粒成長して粗大となり、しかも気孔が多数認めら
れ、微組織が全く制御されていないことがわかる。
For comparison, zirconium boride quasi-fine particles used in Example 1 not coated with titanium carbide,
The powder mixed with a corresponding amount of titanium carbide particles was sintered under the same sintering conditions as in Example 4. Electron micrograph (× 1000) of the polished surface of the sintered body thus obtained.
4 shows. From this figure, it can be seen that the grains grow and become coarser under the same sintering conditions, and many pores are observed, and the microstructure is not controlled at all.

【0168】実施例5 実施例2で得られた硼化チタン(TiB2)で被覆した
硼化ジルコニウム(ZrB2)準微粒子を、直径16m
m、厚さ10mmの円盤状に型押し成形し、その外側に六
方晶窒化硼素(h−BN)粉末を充填した黒鉛製の型を
装備するホットプレス(HP)装置に配置し、10-3to
rrで200℃まで脱気後、アルゴンガスを流しながら、
温度2200℃、圧力20MPaで3時間保持して焼結し
た。その後炉冷し圧力を開放して、焼結体を取り出し
た。
Example 5 Zirconium boride (ZrB 2 ) quasi-fine particles coated with titanium boride (TiB 2 ) obtained in Example 2 were used to obtain a diameter of 16 m.
m, stamped into a disc having a thickness of 10mm molding, placed in a hot press (HP) apparatus equipped with the type of the outer hexagonal boron nitride (h-BN) manufactured by powder was packed with graphite, 10-3 to
After degassing to 200 ° C with rr, while flowing argon gas,
Sintering was carried out at a temperature of 2200 ° C. and a pressure of 20 MPa for 3 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.

【0169】得られた焼結体は、相対密度が測定誤差内
で99%以上と大変緻密であり、ビッカース微小硬度が
2700と大変高硬度であった。また、焼結体には未焼
結部分や気孔、欠陥等は全くなく、硼化ジルコニウム準
微粒子は粒成長がなくこの周りに硼化チタンが均一に分
布した極めて高度に制御された微組織の焼結体であっ
た。
The obtained sintered body had a very high relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 2700. In addition, the sintered body has no unsintered parts, pores, defects, etc., and the zirconium boride quasi-fine particles do not have grain growth, and titanium boride is uniformly distributed around this and has an extremely highly controlled microstructure. It was a sintered body.

【0170】実施例6 実施例3で得られた炭化チタン(TiC)で被覆された
炭化ジルコニウム(ZrC)準微粒子を、実施例4で行
った操作と同一の条件下で焼結した。得られた焼結体
は、相対密度が測定誤差内で99%以上と大変緻密であ
り、ビッカース微小硬度が2100と大変高硬度であっ
た。また、焼結体には未焼結部分や気孔、欠陥等は全く
なく、ZrC準微粒子は粒成長がなく、この周りにTi
Cが均一に分布した高度に制御された微組織の焼結体で
あった。
Example 6 Zirconium carbide (ZrC) quasi-fine particles coated with titanium carbide (TiC) obtained in Example 3 were sintered under the same conditions as the operation performed in Example 4. The obtained sintered body had a very high relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 2100. In addition, the sintered body has no unsintered parts, pores, defects, etc., and the ZrC quasi-fine particles have no grain growth.
It was a sintered body having a highly controlled microstructure in which C was uniformly distributed.

【0171】実施例7 実施例3の装置により、実施例3と略同様の条件によ
り、平均粒子径DMが40μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の炭化ジルコニウム
(ZrC)準微粒子を炭化チタン(TiC)で被覆し、
炭化チタンを体積で15%被覆した被覆された炭化ジル
コニウム準微粒子を得た。
Example 7 Using the apparatus of Example 3, the average particle diameter D M was 40 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 3. %) Zirconium carbide (ZrC) quasi fine particles are coated with titanium carbide (TiC),
Obtained coated zirconium carbide quasi-fine particles coated with 15% by volume of titanium carbide.

【0172】この炭化チタンで被覆された炭化ジルコニ
ウム準微粒子を直径16mm、厚さ10mmの円盤状に型押
し成形し、h−BN粉体を充填したパイレックスガラス
製のカプセルに配置し、10-6torr、400℃、12時
間脱気後封入した。このカプセルをアルゴンガスを圧力
媒体とするHIP装置に配置し、焼結温度1900℃、
焼結圧力200MPaで3時間保持して焼結した。その後
炉冷し圧力を開放して、焼結体を取り出した。
[0172] positioned on the titanium carbide coated with zirconium carbide quasi particle diameter 16 mm, embossed and molded into a disk having a thickness of 10 mm, h-BN powder capsules made of Pyrex glass filled, 10-6 After degassing at torr, 400 ° C. for 12 hours, it was sealed. This capsule was placed in a HIP device using argon gas as a pressure medium, and the sintering temperature was 1900 ° C.
Sintering pressure was kept at 200 MPa for 3 hours for sintering. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.

【0173】得られた焼結体は、相対密度が測定誤差内
で99%以上と大変緻密であり、ビッカース微小硬度が
2000と大変高硬度であった。また、焼結体の未焼結
部分や気孔、欠陥等は全くなく、ZrC準微粒子は粒長
がなく、この周りにTiCが均一に分布した高度に制御
された微組織の焼結体であった。
The obtained sintered body was very dense with a relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 2000. In addition, there are no unsintered parts, pores, defects, etc. of the sintered body, ZrC quasi-fine particles have no grain length, and TiC has a highly controlled microstructure in which TiC is uniformly distributed. It was

【0174】実施例8 実施例3の装置により、実施例3と略同様の条件によ
り、平均粒子径DMが40μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の窒化ジルコニウム
(ZrN)準微粒子を窒化チタン(TiN)で被覆し、
窒化チタンを体積で25%被覆した被覆された窒化ジル
コニウム準微粒子を得た。
Example 8 Using the apparatus of Example 3, the average particle diameter D M was 40 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90) under substantially the same conditions as in Example 3. %) Zirconium nitride (ZrN) quasi fine particles are coated with titanium nitride (TiN),
Coated zirconium nitride quasi-fine particles with 25% by volume coating of titanium nitride were obtained.

【0175】この被覆された窒化ジルコニウム準微粒子
を、直径16mm、厚さ10mmの円盤状に型押し成形し、
その外側に六方晶窒化硼素(h−BN)粉末を充填した
黒鉛製の型を装備するホットプレス(HP)装置に配置
し、10-3torrで200℃まで脱気後、窒素ガスを流し
ながら、温度1900℃、圧力20MPaで3時間保持し
て焼結した。その後炉冷し圧力を開放して、焼結体を取
り出した。
The coated zirconium nitride quasi-fine particles were embossed into a disk having a diameter of 16 mm and a thickness of 10 mm,
It is placed in a hot press (HP) device equipped with a graphite mold filled with hexagonal boron nitride (h-BN) powder on the outside, degassed to 200 ° C. at 10 −3 torr, and then while flowing nitrogen gas. The temperature was maintained at 1900 ° C. and the pressure was maintained at 20 MPa for 3 hours for sintering. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.

【0176】得られた焼結体は、相対密度が測定誤差内
で99%以上と大変緻密であり、ビッカース微小硬度が
1800と大変高硬度であった。また、焼結体には未焼
結部分や気孔、欠陥等は全くなく、窒化ジルコニウム準
微粒子は粒成長がなく、この周りに窒化チタンが均一に
分布した高度に制御された微組織の焼結体であった。
The obtained sintered body had a very high relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 1800. In addition, the sintered body has no unsintered parts, pores, defects, etc., and the zirconium nitride quasi-fine particles do not have grain growth. Sintering of a highly controlled microstructure in which titanium nitride is uniformly distributed around this. It was a body.

【0177】実施例9 実施例3の装置により、実施例3と略同様の条件によ
り、平均粒子径DMが40μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の窒化ジルコニウム
(ZrN)準微粒子を窒化アルミ(AlN)で被覆し、
窒化アルミを体積で25%被覆した被覆された窒化ジル
コニウム準微粒子を得た。
Example 9 Using the apparatus of Example 3, the average particle diameter D M was 40 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 3. %) Zirconium nitride (ZrN) quasi fine particles are coated with aluminum nitride (AlN),
Obtained coated zirconium nitride quasi-fine particles in which 25% by volume of aluminum nitride was coated.

【0178】この被覆された窒化ジルコニウム準微粒子
を、焼結温度を2000℃とする以外は実施例8で行っ
た操作と同一の条件下で焼結した。得られた焼結体は、
相対密度が測定誤差内で99%以上と大変緻密であり、
ビッカース微小硬度が1600と大変高硬度であった。
また、焼結体には未焼結部分や気孔、欠陥等は全くな
く、窒化ジルコニウム準微粒子は粒成長がなく、この周
りに窒化アルミが均一に分布した高度に制御された微組
織の焼結体であった。
The coated zirconium nitride quasi-fine particles were sintered under the same conditions as the operation performed in Example 8 except that the sintering temperature was 2000 ° C. The obtained sintered body is
The relative density is 99% or more within the measurement error, which is very precise,
The Vickers microhardness was 1600, which was a very high hardness.
In addition, the sintered body has no unsintered parts, pores, defects, etc., zirconium nitride quasi-fine particles do not have grain growth, and a highly controlled microstructure in which aluminum nitride is uniformly distributed around this It was a body.

【0179】実施例10 実施例1の装置により、実施例1と略同様の条件によ
り、平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の硼化チタン(Ti
2)を窒化チタン(TiN)で被覆し、窒化チタンを
体積で20%被覆した被覆された硼化チタン準微粒子を
得た。
Example 10 Using the apparatus of Example 1, the average particle diameter D M was 20 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 1. %) Titanium boride (Ti
B 2 ) was coated with titanium nitride (TiN) to obtain coated titanium boride quasi-fine particles coated with 20% by volume of titanium nitride.

【0180】この被覆硼化チタン準微粒子を、実施例4
で行った操作と同一の条件下で焼結した。得られた焼結
体は、相対密度が測定誤差内で99%以上と大変緻密で
あり、ビッカース微小硬度が2900と大変高硬度であ
った。また、焼結体には未焼結部分や気孔、欠陥等は全
くなく、硼化チタン準微粒子は粒成長がなく、この周り
に窒化チタンが均一に分布した高度に制御された微組織
の焼結体であった。
The coated titanium boride quasi-fine particles were used in Example 4
Sintering was performed under the same conditions as the operation performed in. The obtained sintered body was very dense with a relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 2900. In addition, the sintered body has no unsintered parts, pores, defects, etc., and the titanium boride quasi-fine particles do not have grain growth, and a highly controlled microstructure in which titanium nitride is uniformly distributed around this. It was a union.

【0181】実施例11 実施例1の装置により、実施例1と略同様の条件によ
り、平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の硼化チタン(Ti
2)をチタン(Ti)で被覆し、チタンを体積で16.
8%被覆した被覆された硼化チタン準微粒子を得た。
Example 11 Using the apparatus of Example 1, the average particle size D M was 20 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 1. %) Titanium boride (Ti
B 2 ) is coated with titanium (Ti), and titanium is contained by volume 16.
Obtained coated titanium boride quasi-fine particles with 8% coverage.

【0182】この被覆された硼化チタン準微粒子を、焼
結温度を1600℃とする以外は実施例8で行った操作
と同一の条件下で窒素ガスを流しながら焼結した。得ら
れた焼結体の組成は、硼化チタン(TiB2)が体積で
80%と窒化チタン(TiN)が体積で20%であっ
た。焼結体は、相対密度が測定誤差内で99%以上と大
変緻密であり、ビッカース微小硬度が3100と大変高
硬度であった。また、焼結体には未焼結部分や気孔、欠
陥等は全くなく、硼化チタン準微粒子は粒成長がなく、
この周りに窒化チタンが均一に分布した高度に制御され
た微組織の焼結体であった。
The coated titanium boride quasi-fine particles were sintered under the same conditions as in Example 8 except that the sintering temperature was 1600 ° C. while flowing a nitrogen gas. The composition of the obtained sintered body was such that titanium boride (TiB 2 ) was 80% by volume and titanium nitride (TiN) was 20% by volume. The relative density of the sintered body was 99% or more within the measurement error, which was very dense, and the Vickers microhardness was 3100, which was a very high hardness. Also, the sintered body has no unsintered parts, pores, defects, etc., and the titanium boride quasi-fine particles have no grain growth.
It was a sintered body with a highly controlled microstructure in which titanium nitride was uniformly distributed around this.

【0183】実施例12 実施例1の装置により、実施例1と略同様の条件によ
り、平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の窒化チタン(Ti
N)を窒化アルミ(AlN)で被覆し、窒化アルミを体
積で20%被覆した被覆された窒化チタン準微粒子を得
た。
Example 12 Using the apparatus of Example 1, the average particle diameter D M was 20 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 1. %) Titanium nitride (Ti
N) was coated with aluminum nitride (AlN) to obtain coated titanium nitride quasi-fine particles coated with 20% by volume of aluminum nitride.

【0184】この被覆された窒化チタン準微粒子を、焼
結温度を2000℃とする以外は実施例4で行った操作
と同一の条件下で焼結した。得られた焼結体は、相対密
度が測定誤差内で99%以上と大変緻密であり、ビッカ
ース微小硬度が1700と大変高硬度であった。また、
焼結体には未焼結部分や気孔、欠陥等は全くなく、窒化
チタン準微粒子は粒成長がなく、この周りに窒化アルミ
が均一に分布した高度に制御された微組織の焼結体であ
った。
The coated titanium nitride quasi-fine particles were sintered under the same conditions as the operation performed in Example 4 except that the sintering temperature was 2000 ° C. The obtained sintered body had a very dense relative density of 99% or more within a measurement error, and had a very high Vickers hardness of 1700. Also,
There are no unsintered parts, pores, defects, etc. in the sintered body, titanium nitride quasi-fine particles do not have grain growth, and it is a sintered body of highly controlled microstructure in which aluminum nitride is uniformly distributed around this. there were.

【0185】実施例13 実施例1の装置により、実施例1と略同様の条件によ
り、平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の窒化チタン(Ti
N)を窒化アルミ(AlN)で被覆し、窒化アルミを体
積で20%被覆した被覆された窒化チタン準微粒子を得
た。
Example 13 Using the apparatus of Example 1, the average particle diameter D M was 20 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 1. %) Titanium nitride (Ti
N) was coated with aluminum nitride (AlN) to obtain coated titanium nitride quasi-fine particles coated with 20% by volume of aluminum nitride.

【0186】この被覆された窒化チタン準微粒子を、焼
結温度を2000℃とする以外は実施例7で行った操作
と同一の条件下で焼結した。得られた焼結体は、相対密
度が測定誤差内で99%以上と大変緻密であり、ビッカ
ース微小硬度が1700と大変高硬度であった。また、
焼結体には未焼結部分や気孔、欠陥等は全くなく、窒化
チタン準微粒子は粒成長がなく、この周りに窒化アルミ
が均一に分布した高度に制御された微組織の焼結体であ
った。
The coated titanium nitride quasi-fine particles were sintered under the same conditions as the operation performed in Example 7 except that the sintering temperature was 2000 ° C. The obtained sintered body had a very dense relative density of 99% or more within a measurement error, and had a very high Vickers hardness of 1700. Also,
There are no unsintered parts, pores, defects, etc. in the sintered body, titanium nitride quasi-fine particles do not have grain growth, and it is a sintered body of highly controlled microstructure in which aluminum nitride is uniformly distributed around this. there were.

【0187】実施例14 実施例1の装置により、実施例1と略同様の条件によ
り、平均粒子径DMが20μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の窒化チタン(Ti
N)をアルミナ(Al23)で被覆し、アルミナを体積
で20%被覆した被覆された窒化チタン準微粒子粉体を
得た。
Example 14 Using the apparatus of Example 1, the average particle size D M was 20 μm and the volume-based frequency distribution was ([D M / 5,5D M ], ≧ 90, under substantially the same conditions as in Example 1. %) Titanium nitride (Ti
N) was coated with alumina (Al 2 O 3 ) to obtain a coated titanium nitride quasi-fine particle powder in which 20% by volume of alumina was coated.

【0188】この被覆された窒化チタン準微粒子を、焼
結温度を1700℃とする以外は実施例7で行った操作
と同一の条件下で焼結した。得られた焼結体は、相対密
度が測定誤差内で99%以上と大変緻密であり、ビッカ
ース微小硬度が2200と大変高硬度であった。また、
焼結体には未焼結部分や気孔、欠陥等は全くなく、窒化
チタン準微粒子は粒成長がなく、この周りにアルミナが
均一に分布した高度に制御された微組織の焼結体であっ
た。
The coated titanium nitride quasi-fine particles were sintered under the same conditions as the operation performed in Example 7, except that the sintering temperature was 1700 ° C. The obtained sintered body was very dense with a relative density of 99% or more within the measurement error, and had a very high Vickers hardness of 2200. Also,
The sintered body had no unsintered parts, pores, defects, etc., and the titanium nitride quasi-fine particles had no grain growth, and had a highly controlled microstructure in which alumina was uniformly distributed around this. It was

【0189】[0189]

【発明の効果】本発明によれば、体積基準頻度分布で平
均粒子径が10μmを越えるセラミックス準微粒子から
なる芯粒子粉体を気中に分散させ、この分散した芯粒子
粉体の粒子を平均粒子径に応じて分散度βが80%以
上、90%以上、95%以上、97%以上又は99%以
上である分散状態で被覆形成物質前駆体と接触又は衝突
させることによって、単一粒子状態でその表面を被覆形
成物質で被覆を施した被覆されたセラミックス準微粒子
が得られる。この被覆されたセラミックス準微粒子を焼
結することにより、均一で、緻密で、且つ強固に焼結さ
れた、高度に制御された微組織を有する高性能なセラミ
ックス基焼結体が得られた。
According to the present invention, a core particle powder made of ceramic quasi-fine particles having an average particle size of more than 10 μm in a volume-based frequency distribution is dispersed in the air, and the particles of the dispersed core particle powder are averaged. A single particle state is obtained by contacting or colliding with the coating material precursor in a dispersed state having a dispersity β of 80% or more, 90% or more, 95% or more, 97% or more or 99% or more depending on the particle diameter. Thus, coated ceramic quasi-fine particles whose surface is coated with a coating-forming substance are obtained. By sintering the coated ceramic quasi-fine particles, a high-performance ceramic-based sintered body having a uniform, dense, and strongly sintered microstructure with a highly controlled microstructure was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉体粒子の分布図であり、(a)は分散度βを
表わし、(b)は粒径D1〜D3の範囲の粒子が体積で9
0%を占める粉体の粒径対体積基準頻度を表わす。
FIG. 1 is a distribution diagram of powder particles, (a) shows a dispersity β, and (b) shows a volume of particles having a particle size of D 1 to D 3 of 9
The particle size vs. volume standard frequency of the powder occupying 0% is shown.

【図2】(a)〜(c)は準微粒子高分散処理手段群の
基本構成を示すブロック図。
2A to 2C are block diagrams showing the basic configuration of a quasi-fine particle high dispersion treatment means group.

【図3】(a)〜(g)は準微粒子高分散処理手段群の
構成をより詳細に説明するブロック図。
3 (a) to 3 (g) are block diagrams for explaining the configuration of a quasi-fine particle high dispersion processing means group in more detail.

【図4】(a)〜(e)は芯粒子粉体に被覆が開始され
る態様を示す図。
4 (a) to (e) are views showing an aspect in which coating of core particle powder is started.

【図5】(a)〜(g)は被覆されたセラミックス粒子
を製造するための装置の構成を説明するブロック図。
5A to 5G are block diagrams illustrating a configuration of an apparatus for producing coated ceramic particles.

【図6】実施例1で用いる装置を示す図。FIG. 6 is a diagram showing an apparatus used in Example 1.

【図7】実施例1で用いる装置の部分拡大図。FIG. 7 is a partially enlarged view of the device used in the first embodiment.

【図8】実施例1で得られた被覆されたセラミックス準
微粒子の走査電子顕微鏡写真。
8 is a scanning electron micrograph of the coated ceramic quasi-fine particles obtained in Example 1. FIG.

【図9】実施例2で用いる装置を示す図。FIG. 9 is a view showing an apparatus used in Example 2.

【図10】実施例2で用いる装置の部分拡大図。FIG. 10 is a partially enlarged view of the device used in the second embodiment.

【図11】実施例3で用いる装置を示す図。FIG. 11 is a diagram showing an apparatus used in Example 3;

【図12】実施例3で用いる装置の部分拡大図。FIG. 12 is a partially enlarged view of the apparatus used in Example 3.

【図13】実施例4で得られた焼結体の研摩面の走査電
子顕微鏡写真。
13 is a scanning electron micrograph of the polished surface of the sintered body obtained in Example 4. FIG.

【図14】比較例の焼結体の研摩面の走査電子顕微鏡写
真。
FIG. 14 is a scanning electron micrograph of a polished surface of a sintered body of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/87 F (72)発明者 粂 正市 愛知県津島市鹿伏兎町字二之割150番地の 2 (72)発明者 山田 幸良 埼玉県比企郡川島町八幡3丁目6番18号 (72)発明者 冬木 正 埼玉県入間郡大井町緑ヶ丘2丁目23番16号 (72)発明者 秋山 聡 埼玉県川越市稲荷町17番22号 (72)発明者 濱田 美明 埼玉県川越市末広町3丁目4番8号 (72)発明者 黒田 英輔 埼玉県川越市西小仙波町2丁目16番4号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location C04B 41/87 F (72) Inventor Minamoto Masayoshi 150 Ninowari, Kashifushigo-cho, Tsushima City, Aichi Prefecture Number 2 (72) Inventor Yuki Yamada 3-6-18 Hachiman, Kawashima-cho, Hiki-gun, Saitama Prefecture (72) Tadashi Fuyuki 2-23-16 Midorigaoka, Oi-cho, Iruma-gun, Saitama (72) Inventor Satoshi Akiyama Saitama 17-22 Inari-cho, Kawagoe-shi, prefecture (72) Inventor Miaki Hamada, 3-4-8 Suehiro-cho, Kawagoe-shi, Saitama (72) Eisuke Kuroda 2--16-4 Nishikosenba-cho, Kawagoe-shi, Saitama

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 セラミックスの準微粒子からなる芯粒子
粉体を被覆空間に投入し、気相を経て生成する被覆形成
物質前駆体及び/又は気相状態の被覆形成物質前駆体
を、この芯粒子粉体の準微粒子に接触及び/又は衝突さ
せて、芯粒子粉体の準微粒子の表面を被覆形成物質で被
覆して得られる被覆されたセラミックス準微粒子であっ
て (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) この芯粒子粉体の準微粒子を気中に分散させる
分散手段、及び(b) 芯粒子粉体の準微粒子を気中に
分散させた芯粒子粉体の粒子と気体との混合物において
低分散芯粒子粉体部分を分離し、芯粒子粉体の粒子が主
に単一粒子状態で気中に存在する高分散芯粒子粉体の粒
子・気体混合物を選択する高分散芯粒子粉体の粒子・気
体混合物選択手段とこの高分散芯粒子粉体の粒子・気体
混合物選択手段により選択分離された低分散芯粒子粉体
部分を準微粒子高分散処理手段群中の分散手段の内の最
終分散手段及び/又は最終分散手段以前の処理手段に搬
送するフィードバック手段とを備えた高分散芯粒子粉体
の粒子・気体混合物選択手段、から選ばれる準微粒子高
分散処理手段群により、体積基準頻度分布で平均粒子径
が10μmを越える準微粒子芯粒子粉体の粒子又は主に
準微粒子からなる芯粒子粉体の粒子を、気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とする分散工
程、 (B) この分散工程で分散させた芯粒子粉体の粒子
を、 その平均粒子径が10μmを越え20μm以下のときに
は分散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときには分散度が9
7%以上、 800μmを越えるときには分散度が99%以上の分散
状態で、被覆空間の被覆開始領域において被覆形成物質
前駆体と接触及び/又は衝突させて被覆を開始する被覆
工程、からなる被覆手段によって調製された、被覆セラ
ミックス準微粒子。
1. A core particle powder comprising a core particle powder made of quasi-fine particles of ceramics, charged into a coating space, and produced through a gas phase and / or a gas phase coating material precursor. A coated ceramic quasi-fine particle obtained by contacting and / or colliding with a quasi-fine particle of a powder to coat the surface of the quasi-fine particle of the core particle powder with a coating forming substance (A) High-dispersion treatment of quasi-fine particle The final processing means of the means group
(A) Dispersing means for dispersing the quasi-fine particles of the core particle powder in air, and (b) a mixture of particles and gas of the core particle powder in which the quasi-fine particles of core particle powder are dispersed in the air. Low-dispersion core particle powder A high-dispersion core particle powder that separates the powder portion and selects the particle / gas mixture of the high-dispersion core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. Of the low-dispersion core particle powder selected and separated by the particle-gas mixture selecting means and the high-dispersion core particle powder selecting means of the high-dispersion core particle powder, Volume reference frequency by means of a group of quasi-fine particle high dispersion treatment means selected from a particle / gas mixture selection means of highly dispersed core particle powder, which comprises a dispersion means and / or a feedback means for conveying to a processing means before the final dispersion means. The average particle size in the distribution is more than 10 μm Dispersing step of dispersing particles of fine particle core particle powder or particles of core particle powder mainly composed of quasi-fine particles into air to form a particle / gas mixture of highly dispersed core particle powder, (B) this dispersing step When the average particle size of the core particle powder dispersed in step 1 is more than 10 μm and 20 μm or less, the dispersity β is 80% or more, and when the average particle size is more than 20 μm and 50 μm or less, the dispersity β is 90 or more.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity is 9
A coating step comprising a coating step of contacting and / or colliding with the coating material precursor in the coating start region of the coating space in a dispersed state having a dispersity of 99% or more when the dispersion degree is 7% or more and 800 μm or more. Coated ceramic quasi-fine particles prepared by.
【請求項2】 前記被覆されたセラミックス準微粒子
が、 被覆されたセラミックス準微粒子の被覆形成物質を介し
て接触状態で集合塊を形成した被覆されたセラミックス
準微粒子の集合塊を、解砕及び/又は破砕する被覆され
たセラミックス準微粒子集合塊の解砕・破砕工程、及び
/又はこの被覆されたセラミックス準微粒子集合塊と一
次粒子単位の被覆されたセラミックス準微粒子とを選択
分離する選択分離工程を更に経て調製されたものである
ことを特徴とする、請求項1に記載の被覆セラミックス
準微粒子。
2. The coated agglomerates of ceramic quasi-fine particles, in which the agglomerated agglomerates of coated ceramic quasi-fine particles, in which the agglomerated agglomerates of coated ceramic quasi-fine particles are in contact with each other through a coating forming substance of the coated ceramic quasi-fine particles, are crushed and / or Or a step of crushing and crushing the coated quasi-fine particles of the coated ceramic quasi-fine particles, and / or a selective separation step of selectively separating the coated quasi-fine particles of the ceramic quasi-fine particles from the coated ceramic quasi-fine particles of the primary particle unit. The coated ceramic quasi-fine particles according to claim 1, wherein the coated ceramic quasi-fine particles are prepared through the above processes.
【請求項3】 前記、セラミックスの準微粒子からなる
芯粒子粉体の粒子を構成する物質のビッカース硬度が4
000を越えないものである、請求項1又は2に記載の
被覆セラミックス準微粒子。
3. The Vickers hardness of the substance forming the particles of the core particle powder made of quasi-fine particles of ceramics is 4
The coated ceramic quasi-fine particles according to claim 1 or 2, which do not exceed 000.
【請求項4】 被覆されたセラミック準微粒子が、体積
基準頻度分布で平均粒子径が10μmを越え20μm以
下の芯粒子粉体を、準微粒子高分散処理手段群の最終処
理により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とし、その芯粒子粉体の粒子の分散度βを80
%以上とする分散性能を有する準微粒子高分散処理手段
群、又は体積基準頻度分布で平均粒子径が20μmを越
え50μm以下の芯粒子粉体を、準微粒子高分散処理手
段群の最終処理により気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とし、その芯粒子粉体の粒子の分
散度βを90%以上とする分散性能を有する準微粒子高
分散処理手段群、又は体積基準頻度分布で平均粒子径が
50μmを越え300μm以下の芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを95%以上とする分散性を有す
る準微粒子高分散処理手段群、又は体積基準頻度分布で
平均粒子径が300μmを越え800μm以下の芯粒子
粉体を、準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを97%以上とす
る分散性能を有する準微粒子高分散処理手段群、又は体
積基準頻度分布で平均粒子径が800μmを越える芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを99%以上と
する分散性能を有する準微粒子高分散処理手段群による
分散工程を設け、準微粒子高分散処理手段群により分散
させた高分散芯粒子粉体の準微粒子・気体混合物を被覆
工程に直接放出するか、又は分散工程と被覆工程の間
に、準微粒子高分散処理手段群により分散させた高分散
芯粒子粉体の粒子・気体混合物を放出する放出部から、
搬送に不可避の、中空部材、中空を形成する部材からな
る中間部材、及びパイプから選択される一種類又はそれ
以上の部材を介して搬送するか、及び/又は、前記分散
性能で気中に分散させた高分散芯粒子粉体の粒子・気体
混合物中の粒子の気中分散状態を維持する気中分散維持
手段、前記分散性能で気中に分散させた高分散芯粒子粉
体の粒子・気体混合物中の粒子の気中分散状態を高める
気中分散促進手段、芯粒子粉体の粒子と気体との混合物
の内の、低分散芯粒子粉体部分を分離し、芯粒子粉体の
粒子が主に単一粒子状態で気中に存在する高分散芯粒子
粉体の粒子・気体混合物を選択する高分散芯粒子粉体の
粒子・気体混合物選択手段の一種類又はそれ以上を介し
て搬送して調製されたものであることを特徴とする、請
求項1に記載の被覆セラミックス準微粒子。
4. The coated ceramic quasi-fine particles have a core particle powder having an average particle size of more than 10 μm and 20 μm or less in a volume-based frequency distribution, which is dispersed in the air by a final treatment of a quasi-fine particle high dispersion treatment means group. As a particle / gas mixture of highly dispersed core particle powder, and the degree of particle dispersion β of the core particle powder is 80
% Or more quasi-fine particle high-dispersion treatment means group having a dispersion performance, or core particle powder having an average particle diameter of more than 20 μm and 50 μm or less in a volume-based frequency distribution, by a final treatment of the quasi-fine particle high-dispersion treatment means group. Highly dispersed core particle powder particles / gas mixture dispersed therein, and a group of quasi-particulate high dispersion treatment means having a dispersion performance of making the degree of dispersion β of the particles of the core particle powder 90% or more, or on a volume basis A core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in a frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, A group of quasi-fine particle high-dispersion treatment means having dispersibility in which the degree of particle dispersion β of the core particle powder is 95% or more, or a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume standard frequency distribution, Semi-fine particle high dispersion By the final treatment of the treatment means group, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 97% or more. A dispersion treatment means group, or a core particle powder having an average particle diameter of more than 800 μm in a volume-based frequency distribution, is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form particles of a highly dispersed core particle powder. A gas mixture is used, and a dispersion process is performed by a group of quasi-fine particle high-dispersion processing means having a dispersion performance that makes the degree of dispersion β of the particles of the core particle powder 99% or more. Directly release the quasi-fine particle / gas mixture of the dispersed core particle powder to the coating step, or particles of the highly dispersed core particle powder dispersed by the quasi-fine particle high dispersion treatment means group between the dispersing step and the coating step. Release to release a gas mixture From,
It is transported through one or more members selected from a hollow member, an intermediate member composed of a member forming a hollow, and a pipe, which is unavoidable for carrying, and / or dispersed in the air with the above-mentioned dispersion performance. Air-dispersion maintaining means for maintaining the air-dispersed state of the particles in the high-dispersion core particle powder / gas mixture, and the high-dispersion core-particle powder particles / gas dispersed in the air with the dispersion performance In-air dispersion promoting means for increasing the air-dispersed state of particles in the mixture, in the mixture of particles and gas of the core particle powder, the low-dispersion core particle powder portion is separated, and the particles of the core particle powder are The particles / gas mixture of the highly dispersed core particle powder that mainly exists in the air in the form of a single particle is selected and the particles / gas mixture of the highly dispersed core particle powder is conveyed through one or more means. The product according to claim 1, which is prepared by Ceramics quasi-particles.
【請求項5】 被覆されたセラミックス準微粒子が、体
積基準頻度分布で平均粒子径が10μmを越え20μm
以下の芯粒子粉体を、準微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βを8
0%以上とする分散性能を有する準微粒子高分散処理手
段群、又は体積基準頻度分布で平均粒子径が20μmを
越え50μm以下の芯粒子粉体を、準微粒子高分散処理
手段群の最終処理により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の
分散度βを90%以上とする分散性能を有する準微粒子
高分散処理手段群、又は体積基準頻度分布で平均粒子径
が50μmを越え300μm以下の芯粒子粉体を、準微
粒子高分散処理手段群の最終処理により気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とし、その芯粒
子粉体の粒子の分散度βを95%以上とする分散性能を
有する準微粒子高分散処理手段群、又は体積基準頻度分
布で平均粒子径が300μmを越え800μm以下の芯
粒子粉体を、準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを97%以上
とする分散性能を有する準微粒子高分散処理手段群、又
は体積基準頻度分布で平均粒子径が800μmを越える
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを99%以
上とする分散性能を有する準微粒子高分散処理手段群に
よる分散工程の一部以上と前記被覆工程の一部以上と
を、空間を一部以上共有して行うことにより調製された
ものであることを特徴とする、請求項1に記載の被覆セ
ラミックス準微粒子。
5. The coated ceramic quasi-fine particles have an average particle size of more than 10 μm and 20 μm in a volume-based frequency distribution.
The following core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group, and the particles of the high-dispersion core particle powder
As a gas mixture, the degree of particle dispersion β of the core particle powder is 8
The quasi-fine particle high dispersion treatment means group having a dispersion performance of 0% or more, or the core particle powder having an average particle diameter of more than 20 μm and 50 μm or less in the volume standard frequency distribution is subjected to the final treatment of the quasi-fine particle high dispersion treatment means group. A group of quasi-particulate high-dispersion treatment means or a volume which has a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air and the degree of dispersion β of the particles of the core particle powder is 90% or more. A core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in a standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, A group of quasi-fine particle high-dispersion treatment means having a dispersibility of 95% or more of the degree of particle dispersion β of the core particle powder, or a core particle powder having an average particle size of more than 300 μm and 800 μm or less in a volume standard frequency distribution. , Quasi-fine particle height A quasi-fine particle having a dispersibility in which the particle / gas mixture of the highly dispersed core particle powder is dispersed in the air by the final treatment of the dispersion treatment means group, and the degree of dispersion β of the particles of the core particle powder is 97% or more. Particles of high-dispersion core particle powder obtained by dispersing high-dispersion processing means group or core particle powder having an average particle size exceeding 800 μm in volume-based frequency distribution into the air by final treatment of quasi-fine particle high-dispersion processing means group. A gas mixture, which comprises a part or more of a dispersion process by a group of quasi-fine particle high-dispersion processing means having a dispersibility of 99% or more of particles of the core particle powder and a part or more of the coating process. The coated ceramic quasi-fine particles according to claim 1, which are prepared by sharing a part or more of the space.
【請求項6】 被覆されたセラミックス準微粒子が、体
積基準頻度分布で平均粒子径が10μmを越え20μm
以下の芯粒子粉体を、準微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βを8
0%以上とする空間領域、又は体積基準頻度分布で平均
粒子径が、20μmを越え50μm以下の芯粒子粉体
を、準微粒子高分散処理手段群の最終処理により気中に
分散させて高分散芯粒子粉体の粒子・気体混合物とし、
その芯粒子粉体の粒子の分散度βを90%以上とする空
間領域、又は体積基準頻度分布で平均粒子径が、50μ
mを越え300μm以下の芯粒子粉体を、準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを95%以上とする空間領域、又は体積
基準頻度分布で平均粒子径が、300μmを越え800
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を97%以上とする空間領域、又は体積基準頻度分布で
平均粒子径が、800μmを越える芯粒子粉体を、準微
粒子高分散処理手段群の最終処理により気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とし、その芯粒
子粉体の粒子の分散度βを99%以上とする空間領域の
内の高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉
体の粒子の全ての粒子が通過する面を含む空間領域に、
被覆空間の被覆開始領域を位置せしめるか、又は体積基
準頻度分布で平均粒子径が、10μmを越え20μm以
下の芯粒子粉体を、準微粒子高分散処理手段群の最終処
理により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とし、その芯粒子粉体の粒子の分散度βを80
%以上とする空間領域、又は体積基準頻度分布で平均粒
子径が20μmを越え50μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、芯粒子
粉体の粒子の分散度βを90%以上とする空間領域、又
は体積基準頻度分布で平均粒子径が、50μmを越え3
00μm以下の芯粒子粉体を準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを95%以上とする空間領域、又は体積基準頻度分布
で平均粒子径が300μmを越え800μm以下の芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、芯粒子粉体の粒子の分散度βを97%以上とする
空間領域、又は体積基準頻度分布で平均粒子径が、80
0μmを越える芯粒子粉体を準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを99%以上とする空間領域の内の、回収手段の回収
部に回収する全ての粒子が通過する面を含む空間領域
に、被覆空間の被覆開始領域を位置せしめることにより
調製されたものであることを特徴とする、請求項1、4
又は5に記載の被覆セラミックス準微粒子。
6. The coated ceramic quasi-fine particles have an average particle size of more than 10 μm and 20 μm in a volume-based frequency distribution.
The following core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group, and the particles of the high-dispersion core particle powder
As a gas mixture, the degree of particle dispersion β of the core particle powder is 8
Core particles having an average particle size of more than 20 μm and not more than 50 μm in a spatial region of 0% or more or in a volume-based frequency distribution are dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to achieve high dispersion. As a particle / gas mixture of core particle powder,
The average particle size is 50μ in the spatial region where the particle dispersity β of the core particle powder is 90% or more, or in the volume standard frequency distribution.
A core particle powder having a particle size of more than 300 μm and not more than 300 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. The average particle size in the spatial region where the dispersity β is 95% or more, or in the volume standard frequency distribution exceeds 300 μm and is 800
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Of 97% or more in a spatial region, or a core particle powder having an average particle diameter of more than 800 μm in a volume-based frequency distribution, is dispersed in the air by the final treatment of a group of quasi-fine particle high-dispersion treatment means to obtain highly dispersed core particles. Particles of powder / gas mixture, core particles of high-dispersion core particles in a space region where the degree of dispersion β of particles of powder is 99% or more / particles of core particles of powder in gas mixture In the space area including the surface through which all particles of
The coating start region of the coating space is located, or the core particle powder having an average particle size of more than 10 μm and 20 μm or less in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a particle / gas mixture of highly dispersed core particle powder, and the degree of particle dispersion β of the core particle powder is 80
% Or more, or a core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in a volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain highly dispersed core particles. As a powder particle / gas mixture, the average particle size exceeds 50 μm in the spatial region where the degree of particle dispersion β of the core particle powder is 90% or more, or in the volume standard frequency distribution.
The core particle powder having a particle diameter of 00 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more of the space region, or the core particle powder having an average particle size of more than 300 μm and 800 μm or less in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core. As a particle / gas mixture of particle powder, the average particle size is 80 in a spatial region where the degree of dispersion β of particles of the core particle powder is 97% or more, or in the volume standard frequency distribution.
The core particle powder exceeding 0 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is It is prepared by positioning the coating start region of the coating space in a space region including a surface through which all particles to be recovered by the recovery unit of the recovery means out of the space region of 99% or more. Claims 1 and 4, characterized in that
Alternatively, the coated ceramic quasi-fine particles according to item 5.
【請求項7】 使用する、芯粒子粉体の準微粒子の粒度
分布が、平均粒子径をDMとしたとき、体積基準頻度分
布で(〔DM/5,5DM〕,≧90%)であることを特
徴とする、請求項1、4、5又は6に記載の被覆セラミ
ックス準微粒子。
7. The particle size distribution of the quasi-fine particles of the core particle powder to be used is a volume standard frequency distribution ([D M / 5,5D M ], ≧ 90%) when the average particle size is D M. The coated ceramic quasi-fine particles according to claim 1, 4, 5, or 6, characterized in that.
【請求項8】 請求項1、2、3、4、5、6又は7に
記載の被覆されたセラミックス準微粒子又は被覆された
セラミックス準微粒子を含む混合物を焼結することを特
徴とするセラミックス基焼結体の製造法。
8. A ceramic base comprising sintering the coated ceramic quasi-fine particles according to claim 1, 2, 3, 4, 5, 6 or 7 or a mixture containing the coated ceramic quasi-fine particles. Manufacturing method of sintered body.
【請求項9】 請求項8に記載のセラミックス基焼結体
の製造法により製造したセラミックス基焼結体。
9. A ceramic-based sintered body produced by the method for producing a ceramic-based sintered body according to claim 8.
JP5219280A 1993-08-12 1993-08-12 Coated ceramic semifine particles, ceramic-based sintered compact and its production Pending JPH0753272A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5219280A JPH0753272A (en) 1993-08-12 1993-08-12 Coated ceramic semifine particles, ceramic-based sintered compact and its production
US08/949,902 US6024909A (en) 1993-08-12 1997-10-14 Coated ceramic particles, a ceramic-base sinter and a process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219280A JPH0753272A (en) 1993-08-12 1993-08-12 Coated ceramic semifine particles, ceramic-based sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH0753272A true JPH0753272A (en) 1995-02-28

Family

ID=16733044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219280A Pending JPH0753272A (en) 1993-08-12 1993-08-12 Coated ceramic semifine particles, ceramic-based sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0753272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090630A1 (en) * 2004-03-22 2005-09-29 Youtec Co., Ltd Fine particle
WO2006003735A1 (en) * 2004-07-01 2006-01-12 Youtec Co., Ltd. Coated fine particles, cvd apparatus and method for cvd film forming, microcapsule and method for preparation thereof
US9155206B2 (en) 2007-12-11 2015-10-06 Saint-Gobain Glass France Solder connection element
JP2016182552A (en) * 2015-03-26 2016-10-20 株式会社豊田自動織機 Coat particle manufacturing apparatus
EP3029009A4 (en) * 2013-09-24 2017-03-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Method for producing ingot and powder of zirconium carbide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090630A1 (en) * 2004-03-22 2005-09-29 Youtec Co., Ltd Fine particle
JP2005264297A (en) * 2004-03-22 2005-09-29 Takayuki Abe Fine particle
WO2006003735A1 (en) * 2004-07-01 2006-01-12 Youtec Co., Ltd. Coated fine particles, cvd apparatus and method for cvd film forming, microcapsule and method for preparation thereof
JP2006016661A (en) * 2004-07-01 2006-01-19 Utec:Kk Coated-particulate, cvd system, cvd film deposition method, microcapsule and its production method
US9155206B2 (en) 2007-12-11 2015-10-06 Saint-Gobain Glass France Solder connection element
EP3029009A4 (en) * 2013-09-24 2017-03-15 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Method for producing ingot and powder of zirconium carbide
JP2016182552A (en) * 2015-03-26 2016-10-20 株式会社豊田自動織機 Coat particle manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3533459B2 (en) Manufacturing method of coated metal quasi-fine particles
US6024915A (en) Coated metal particles, a metal-base sinter and a process for producing same
US5536485A (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
EP0712941B1 (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
US5352269A (en) Spray conversion process for the production of nanophase composite powders
JP2562442B2 (en) Composite powder particles, manufacturing method and manufacturing apparatus
JP5101605B2 (en) Phase powder and method for producing the phase powder
JP4970638B2 (en) Method of manufacturing a cemented carbide body with increased wear resistance
US6024909A (en) Coated ceramic particles, a ceramic-base sinter and a process for producing the same
KR102326418B1 (en) Composite material powder with synthetic grains for additive synthesis
JP3545783B2 (en) Method for producing coated particles
JP3948631B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3533458B2 (en) Manufacturing method of coated metal fine particles
JP3948632B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JPH0753272A (en) Coated ceramic semifine particles, ceramic-based sintered compact and its production
JPH0753282A (en) Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof
JP4016091B2 (en) Coated ceramic particles, ceramic-based sintered body and method for producing the same
JPH0753205A (en) Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production
JP3948633B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3545784B2 (en) Method for producing coated quasi-fine particles
JPH08199372A (en) Production of functionally gradient material and device therefor
JP3948634B2 (en) Coated diamond sintered body and manufacturing method thereof
JP3960484B2 (en) Coated diamond sintered body and manufacturing method thereof
JP3948635B2 (en) Coated diamond sintered body and manufacturing method thereof
JP4635215B2 (en) Coated diamond quasi-fine particle sintered body