JPH0753205A - Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production - Google Patents

Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production

Info

Publication number
JPH0753205A
JPH0753205A JP5219277A JP21927793A JPH0753205A JP H0753205 A JPH0753205 A JP H0753205A JP 5219277 A JP5219277 A JP 5219277A JP 21927793 A JP21927793 A JP 21927793A JP H0753205 A JPH0753205 A JP H0753205A
Authority
JP
Japan
Prior art keywords
particles
quasi
particle
particle powder
core particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219277A
Other languages
Japanese (ja)
Inventor
Haruo Yoshida
晴男 吉田
Masaichi Kume
正市 粂
Yukiyoshi Yamada
幸良 山田
Tadashi Fuyuki
正 冬木
Satoshi Akiyama
聡 秋山
Yoshiaki Hamada
美明 濱田
Eisuke Kuroda
英輔 黒田
Tadakatsu Nabeya
忠克 鍋谷
Yukio Sumida
幸雄 隅田
Kenichi Kimura
健一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIDE KK
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
RIIDE KK
Agency of Industrial Science and Technology
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIDE KK, Agency of Industrial Science and Technology, Nisshin Seifun Group Inc filed Critical RIIDE KK
Priority to JP5219277A priority Critical patent/JPH0753205A/en
Priority to US08/288,947 priority patent/US5536485A/en
Publication of JPH0753205A publication Critical patent/JPH0753205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-performance coated-diamond quasi-fine particle sintered compact which is uniformly, densely and firmly sintered and having a highly controlled fine structure. CONSTITUTION:A core granular powder consisting of the quasi-fine particle of diamond having >=10mum average diameter in the volumetric frequency distribution is dispersed in the air. The particles of the core granular powder dispersed at >=80% are brought into contact with or collided with a coat forming material precursor in degree of dispersion beta to obtain a diamond with the surface of the single particle coated with the coat forming material. The coated diamond is sintered at the pressure and temp. where diamond is thermodynamically stable or the diamond itself or with the binder are sintered at <2000MPa and <=1850 deg.C where diamond is not thermodynamically stable but metastable to obtain a coated-diamond quasi-fine particle sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンド準微粒子
からなる準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子に被覆形成物質を被覆した被覆
ダイヤモンド準微粒子、並びにこの被覆ダイヤモンド準
微粒子を焼結した、緻密で高硬度な、高度に微組織が制
御された被覆ダイヤモンド準微粒子焼結体及びその製造
法に関する。
FIELD OF THE INVENTION The present invention relates to coated diamond quasi-fine particles obtained by coating particles of quasi-fine particle core particles consisting of quasi-fine diamond particles or particles of core particles consisting mainly of quasi-fine particles with a coating forming substance. The present invention relates to a dense, high hardness, highly controlled microstructured coated diamond quasi-fine particle sintered body obtained by sintering the coated diamond quasi-fine particle, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ダイヤモンド焼結体はその組織の
微細化や均質化を図った開発研究が精力的に進められて
きているが、用途の明確な材料については、敢えて粒子
径が相対的に大きい、例えば粒子径が10μmを越え
る、ダイヤモンド準微粒子を使用することが大変効果的
となる。例えば、超高硬度なダイヤモンドの特徴を生か
した耐摩耗性焼結体は、ダイヤモンド準微粒子を比較的
多量に分散させた準微粒子分散型のダイヤモンド準微粒
子を焼結することで製造可能となるが、この場合原材料
のダイヤモンド準微粒子が極めて重要である。ダイヤモ
ンド準微粒子を分散させたダイヤモンド準微粒子焼結体
は、このダイヤモンド準微粒子とその周りの微組織と
の、欠陥や気孔のない緊密な焼結により準微粒子分散効
果が著しく発揮される。しかしダイヤモンドは超難焼結
性のため、このダイヤモンド準微粒子とその周りの微組
織との焼結を促進する焼結助剤や結合材の存在が欠かせ
ない。従来、このような焼結助剤や結合材の添加は専ら
粉体混合法により行われてきた。
2. Description of the Related Art In recent years, diamond sintered bodies have been vigorously researched and developed with the aim of miniaturizing and homogenizing their structures. It is very effective to use quasi-fine diamond particles having a very large size, for example, a particle size exceeding 10 μm. For example, a wear-resistant sintered body that takes advantage of the characteristics of ultra-high hardness diamond can be manufactured by sintering quasi-fine particle dispersion type diamond quasi-fine particles in which a relatively large amount of diamond quasi-fine particles are dispersed. In this case, the diamond quasi-fine particles as the raw material are extremely important. The diamond quasi-fine particle sintered body in which the diamond quasi-fine particles are dispersed exhibits a quasi-fine particle dispersion effect remarkably by the close sintering of the diamond quasi-fine particles and the surrounding microstructure without defects or pores. However, since diamond is extremely hard to sinter, the presence of a sintering aid or a binder that promotes the sintering of the quasi-fine particles of diamond and the surrounding microstructure is essential. Conventionally, the addition of such a sintering aid or binder has been carried out exclusively by the powder mixing method.

【0003】しかし、粉体混合法は、混合時の不純物の
混入が避けられないのみならず、原理的に組織の均一化
に限度があり、焼結助剤や結合材の粒子が相対的に極め
て微細であっても理想的な均一な混合、即ちダイヤモン
ド準微粒子に焼結助剤や結合材の粉体粒子がむらなく行
き渡る均一な分散は極めて困難である。仮にこの均一な
分散が実現されたとしても、この焼結助剤や結合材の粉
体粒子が粒子単位で混合されるために、均一の意味にも
限界がある。特に相対的にその量が少ない場合、分布む
らが必然的に出来る。現実には、多くの場合、ダイヤモ
ンド準微粒子が集中したり、焼結助剤や結合材の粉体粒
子が凝集してダイヤモンド準微粒子焼結体中に塊状に存
在したり、またはダイヤモンド準微粒子焼結体中で偏在
してダイヤモンド準微粒子焼結体の性能を著しく低下せ
しめることになる。従って、ダイヤモンド準微粒子一個
一個に確実に焼結助剤や結合材を分布させる必要があ
る。しかも、ダイヤモンド準微粒子と周りの微組織との
緊密な焼結のために、ダイヤモンド準微粒子表面への高
度に制御された均一な被覆、即ち個々のダイヤモンド準
微粒子の表面の未被覆部分が残らない均一な被覆であっ
て且つこの均一な被覆が個々の全てのダイヤモンド準微
粒子に行われることが求められている。しかも、この高
度に制御された均一な被覆は、その粒子径が大きければ
それだけより一層未被覆部分がない均一な被覆が求めら
れる。
However, in the powder mixing method, not only the mixing of impurities at the time of mixing is unavoidable, but there is a limit to the homogenization of the structure in principle, and the particles of the sintering aid and the binder are relatively large. Even if it is extremely fine, ideal uniform mixing, that is, uniform dispersion in which powder particles of the sintering aid and the binder are evenly distributed in the diamond quasi-fine particles is extremely difficult. Even if this uniform dispersion is realized, the meaning of uniformity is limited because the powder particles of the sintering aid and the binder are mixed in particle units. Especially when the amount is relatively small, uneven distribution is inevitable. In reality, in many cases, the diamond quasi-fine particles are concentrated, the powder particles of the sintering aid or the binder are agglomerated and present in a lump in the diamond quasi-fine particle sintered body, or the diamond quasi-fine particle is sintered. It is unevenly distributed in the bonded body, and the performance of the diamond quasi-fine particle sintered body is significantly reduced. Therefore, it is necessary to surely distribute the sintering aid and the binder in each of the quasi-fine diamond particles. Moreover, due to the close sintering of the diamond quasi-fine particles and the surrounding microstructure, a highly controlled and uniform coating on the surface of the diamond quasi-fine particles, that is, no uncoated portion of the surface of each diamond quasi-fine particle remains. There is a demand for a uniform coating and this uniform coating be applied to all individual diamond quasi-fine particles. Moreover, this highly controlled and uniform coating is required to have a uniform coating free from uncoated portions as long as the particle size is large.

【0004】このように高度に制御された均一な被覆に
よる被覆ダイヤモンド準微粒子の製造、及びこの被覆ダ
イヤモンド準微粒子を用いた高性能な被覆ダイヤモンド
準微粒子焼結体の製造が強く望まれている。このダイヤ
モンド準微粒子への被覆形成物質の被覆法としては気相
法、湿式メッキ法など種々な方法が考慮されうるが、中
でも気相法により、粉体粒子表面に無機材料や金属材料
等の被覆形成物質を、膜を始めとする種々の形態で被覆
する方法は、原理的に、(1)雰囲気の制御が容易であ
る、(2)基本的に被覆形成物質の選択に制限がなく、活
性金属を始めとする金属単体物質、合金、窒化物、炭化
物、硼化物、酸化物など、いろいろな種類の物質を被覆
できる、(3)目的物質を、高純度に被覆できる、(4)被
覆形成物質の被覆量を任意に制御できる等、他の被覆法
では成し得ない大きな特徴がある。
There is a strong demand for the production of coated diamond quasi-fine particles by such highly controlled and uniform coating, and the production of a high-performance coated diamond quasi-fine particle sintered body using the coated diamond quasi-fine particles. Various methods such as a vapor phase method and a wet plating method can be considered as a coating method of the coating forming substance on the diamond quasi-fine particles. Among them, the vapor phase method is used to coat the surface of the powder particles with an inorganic material or a metal material. The method of coating the forming substance in various forms including a film is, in principle, (1) the atmosphere can be easily controlled, and (2) there is basically no limitation in the selection of the coating forming substance, and the active substance is active. Can coat various kinds of substances such as simple metal substances including metal, alloys, nitrides, carbides, borides, oxides, etc. (3) Target substance can be coated with high purity, (4) Coating formation There are major features that cannot be achieved by other coating methods, such as the amount of material coated can be controlled arbitrarily.

【0005】しかし、以下の理由により、公知の技術と
して提案されている種々の被覆装置や被覆方法では前記
高度に制御された均一な被覆が成し得なかった。例え
ば、特開昭58−31076号公報に開示されている装
置・方法によれば、PVD装置内に設置された容器の中
に芯粒子粉体の粒子を入れ、容器を電磁気的な方法によ
り振動させ、前記容器内の芯粒子を転動させながらPV
D法により被覆する。また、特開昭61−30663号
公報に開示されている装置によれば、PVD装置内に設
置された容器の中に芯粒子粉体の粒子を入れ、容器を機
械的な方法により振動させ、前記容器内の芯粒子を転動
させながらPVD法により被覆することができるとされ
ている。しかし、これらの容器の振動により芯粒子粉体
の粒子を転動させながら被覆する装置或いは方法では、
実際には、準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子は幾重にも互いに接触したま
ま重なった状態で転動するのみで単一粒子状態で被覆で
きなかった。特開平3−153864号公報に開示され
ている装置及び方法は、内面に障壁及び/又は凹凸を備
えた回転容器内に粒子を入れ、この回転容器を回転しな
がら蒸着法により芯粒子表面に被覆を行うことを目的と
するものであるが、このような装置或いは方法において
は、準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子は、幾重にも互いに接触したまま重
なった状態で変化はなく、多くの粒子が接触したまま軽
く撹拌されるだけで、単一粒子状態で被覆できなかっ
た。
However, for the following reasons, the above-mentioned highly controlled and uniform coating cannot be achieved by various coating apparatuses and coating methods proposed as known techniques. For example, according to the apparatus / method disclosed in Japanese Patent Laid-Open No. 58-31076, particles of core particle powder are put in a container installed in a PVD apparatus and the container is vibrated by an electromagnetic method. The core particles in the container while rolling the PV
Cover by method D. Further, according to the device disclosed in JP-A-61-30663, particles of core particle powder are put into a container installed in a PVD device, and the container is vibrated by a mechanical method. It is said that the core particles in the container can be coated by the PVD method while rolling. However, in the apparatus or method for coating while rolling the particles of the core particle powder by the vibration of these containers,
Actually, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles roll in the overlapping state while being in contact with each other many times and cannot be coated in a single particle state. It was The apparatus and method disclosed in Japanese Patent Application Laid-Open No. 3-153864 discloses placing particles in a rotating container having a barrier and / or unevenness on the inner surface, and coating the surface of core particles by vapor deposition while rotating the rotating container. In such an apparatus or method, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of quasi-fine particles are in contact with each other in multiple layers. There was no change in the overlapping state, and many particles were only lightly stirred while in contact with each other, and could not be coated in the single particle state.

【0006】特開昭58−141375号公報には、反
応ガス雰囲気中に置かれた粉体を反応ガスの流れと重力
の作用とによって浮遊させて、反応ガスの化学反応によ
り生成される析出物質によって粉体の表面を被覆する装
置が開示されている。又、特開平2−43377号公報
には、粒子を減圧下において流動化させながら、熱化学
反応処理を行い被覆を行う方法が開示されている。又、
特開昭64−80437号公報には、低・高周波合成音
波により芯粒子粉体の凝集体を崩して流動化させ被覆す
る方法が開示されている。しかし、これらの気流や振動
により準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子の流動層利用する方法又は装置で
は、全ての芯粒子を同じ様に単一粒子状態で独立に流
動、浮遊させることは事実上不可能であり、粒子同士が
陰になってできる各粒子の被覆むらをなくすことができ
なかった。特開昭54−153789号公報には、金属
の蒸気を発生させた真空容器内を粉末材料を落下させ金
属を被覆する装置が開示されている。又、特開昭60−
47004号公報には真空槽中の高周波プラズマ領域に
モノマーガスと粉体粒子を導入し、プラズマ重合により
有機物の被覆膜を形成させる方法が開示されている。こ
れらの装置或いは方法の如く単に導入するだけでは準微
粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子
粉体の粒子は、単一粒子状態でない凝集体を形成して落
下するだけで、粒子の陰ができてむらができたり、凝集
体の内部の粒子は全く被覆されなかったり、或いは単一
粒子に被覆されたものにくらべ被覆量の違いが生じてし
まった。
Japanese Unexamined Patent Publication (Kokai) No. 58-141375 discloses a deposit material produced by a chemical reaction of a reaction gas by suspending a powder placed in a reaction gas atmosphere by the flow of the reaction gas and the action of gravity. Discloses a device for coating the surface of powder. Further, Japanese Patent Application Laid-Open No. 2-43377 discloses a method in which particles are fluidized under a reduced pressure while a thermochemical reaction treatment is performed to perform coating. or,
Japanese Unexamined Patent Publication (Kokai) No. 64-80437 discloses a method in which agglomerates of core particle powder are broken down and fluidized by low and high frequency synthetic sound waves to cover them. However, in the method or apparatus utilizing the fluidized bed of the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles by these air flows and vibrations, all the core particles are the same as a single particle. It is virtually impossible to independently flow and float in a state, and it was not possible to eliminate the uneven coating of each particle due to the shadow of the particles. Japanese Unexamined Patent Publication No. 54-153789 discloses an apparatus for coating a metal by dropping a powder material in a vacuum container in which vapor of metal is generated. Also, JP-A-60-
Japanese Patent Publication No. 47004 discloses a method in which a monomer gas and powder particles are introduced into a high-frequency plasma region in a vacuum chamber to form an organic coating film by plasma polymerization. Simply by introducing like these devices or methods, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of quasi-fine particles can be formed by forming an aggregate not in a single particle state and dropping. The particles were shaded and uneven, the particles inside the agglomerates were not coated at all, or the coating amount was different from that coated with a single particle.

【0007】特開昭62−250172号公報には、前
処理として、ジェットミル処理した粉体を、減圧加熱処
理室で滞留せしめ、ここで加熱処理を施した後、粉体フ
ィーダーでスパッタリング室に自然落下により導入せし
め、ターゲットを垂直に設けた円筒状のスパッタリング
室に自然落下させ被覆させる装置及び方法が開示されて
いる。又、特開平2−153068号公報には、前処理
として、ジェットミル処理した粉体を、減圧加熱処理室
で滞留せしめ、ここで加熱処理を施した後、粉体フィー
ダーでスパッタリング室のスパッタリング源を納めた回
転容器に粉体状に導入せしめ、容器を回転させた状態で
スパッタリングする装置及び方法が開示されている。こ
れら装置及び方法では、被覆前の加熱工程で、ジェット
ミル処理した準微粒子芯粒子粉体の粒子又は主に準微粒
子からなる芯粒子粉体の粒子を滞留せしめる工程があ
り、加熱工程でのこの粉体の滞留のため再び単一粒子状
態でない凝集体を形成し、結局被覆工程ではこの凝集体
は単一粒子状態にならない。以上のように、従来公知の
技術は、いずれもダイヤモンド準微粒子からなる準微粒
子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉
体の粒子は、互いに接触したままで凝集体の状態で被覆
処理に供され、そのために各粒子に高度に制御された均
一な被覆が施された被覆ダイヤモンド準微粒子は製造で
きなかった。
In Japanese Patent Laid-Open No. 62-250172, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced-pressure heat treatment chamber, where after heat treatment is performed, the powder is fed into a sputtering chamber with a powder feeder. An apparatus and a method are disclosed in which the target is introduced by natural falling and the target is naturally dropped into a vertically-arranged cylindrical sputtering chamber to cover the target. Further, in Japanese Patent Application Laid-Open No. 2-153068, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced-pressure heat treatment chamber, where after heat treatment is performed, a sputtering source in a sputtering chamber is used with a powder feeder. There is disclosed an apparatus and a method in which a powder is introduced into a rotating container in which is charged and sputtering is performed in a state where the container is rotated. In these devices and methods, in the heating step before coating, there is a step of retaining the particles of the quasi-fine particle core particle powder subjected to jet mill treatment or the particles of the core particle powder mainly composed of quasi-fine particles. Due to the retention of the powder, agglomerates that are not in the single particle state are formed again, and eventually the agglomerates are not in the single particle state in the coating process. As described above, conventionally known techniques are all particles of quasi-fine particle core particle powder composed of quasi-fine diamond particles or particles of core particle powder mainly composed of quasi-fine particles, in the state of agglomerates while being in contact with each other. It was not possible to produce coated diamond quasi-fine particles which had been subjected to a coating treatment in (1) to (3) and therefore had a highly controlled and uniform coating on each particle.

【0008】即ち、ダイヤモンド準微粒子は、ダイヤモ
ンド微粒子程には凝集力は強くないが、それでも準微粒
子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉
体の粒子が一個一個の単位で存在する単一粒子状態が実
現できなかった。このため、上記の気相法によるダイヤ
モンド準微粒子表面への被覆形成物質の被覆は、他の準
微粒子により遮られたところではこのダイヤモンド準微
粒子表面に未被覆部分を残存させた。そして上記のよう
に高度に制御された均一な被覆が求められているにもか
かわらず、ダイヤモンド準微粒子ではこの程度の凝集力
によっても影響が甚大で、大変深刻な問題となっていた
というのが実状である。
That is, although the diamond quasi-fine particles do not have a strong cohesive force as much as the diamond fine particles, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles are still in units of one unit. The existing single particle state could not be realized. Therefore, the coating of the coating forming material on the surface of the diamond quasi-fine particles by the above vapor phase method left an uncoated portion on the surface of the diamond quasi-fine particles when it was blocked by the other quasi-fine particles. And despite the fact that a highly controlled and uniform coating is required as described above, the influence of the quasi-fine particles of diamond is greatly affected by this level of cohesive force, which is a very serious problem. It is the actual situation.

【0009】[0009]

【発明が解決しようとする課題】従って、現実に、例え
ばダイヤモンド準微粒子が10μmを越える粒子であ
る、準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子への、高度に制御された均一な被
覆、即ち個々のダイヤモンド準微粒子の表面の大きな未
被覆部分が残らない均一な被覆で、且つこの均一な被覆
が全てのダイヤモンド準微粒子に成される被覆が要求さ
れる。しかも、この高度に制御された均一な被覆は、そ
の粒子径が大きいものについては、より一層未被覆部分
がない均一なものである被覆ダイヤモンド準微粒子の製
造が強く求められている。本発明は、ダイヤモンド準微
粒子からなる準微粒子芯粒子粉体の粒子又は主に準微粒
子からなる芯粒子粉体の粒子に、被覆形成物質を高度に
制御された均一な被覆、即ち個々のダイヤモンド準微粒
子の表面の未被覆部分が残らない均一な被覆であって且
つこの均一な被覆が個々の全てのダイヤモンド準微粒子
に成されており、しかも、その粒子径が大きいものにつ
いては、より一層未被覆部分が少ない均一な被覆をした
被覆ダイヤモンド準微粒子、並びにこの被覆ダイヤモン
ド準微粒子を用いた被覆ダイヤモンド準微粒子焼結体及
びその製造法を提供することを目的とする。
Therefore, in reality, for example, to the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles, in which the quasi-fine diamond particles are particles having a diameter of more than 10 μm, A highly controlled and uniform coating, that is, a uniform coating that does not leave a large uncoated portion on the surface of each individual diamond quasi-fine particle, and a coating in which this uniform coating is formed on all diamond quasi-fine particles is required. . In addition, this highly controlled and uniform coating has a strong demand for the production of coated diamond quasi-fine particles having a large particle diameter and having a uniform uncoated portion. The present invention provides a highly controlled and uniform coating of a coating forming substance on particles of quasi-fine particle core particle powder composed of quasi-fine diamond particles or particles of core particle powder mainly composed of quasi-fine particles, that is, individual diamond particles. It is a uniform coating in which the uncoated portion of the surface of the fine particles does not remain, and this uniform coating is formed on all individual diamond quasi-fine particles, and even if the particle size is large, it is even more uncoated. An object of the present invention is to provide a coated diamond quasi-fine particle having a uniform coating with a small number of parts, a coated diamond quasi-fine particle sintered body using the coated diamond quasi-fine particle, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明者が鋭意研究を重ねた結果、ダイヤモンド準
微粒子である準微粒子芯粒子粉体の粒子又は主に準微粒
子からなる芯粒子粉体の粒子に、被覆形成物質を高度に
制御された均一な被覆、即ち個々のダイヤモンド準微粒
子の表面の未被覆部分が残らない均一な被覆であって、
且つこの均一な被覆が個々の全てのダイヤモンド準微粒
子に成されており、しかも、その粒子径が大きいものに
ついては、より一層未被覆部分がない均一な被覆をする
ためには、(1)体積基準頻度分布で平均粒子径が10
μmを越え、20μm以下の芯粒子粉体の粒子が主に単
一粒子状態で気中に存在する高分散芯粒子粉体の粒子・
気体混合物中のこの芯粒子粉体の粒子を、分散度βが8
0%以上である高い分散状態の被覆空間の被覆開始領域
でか、又は(2)体積基準頻度分布で平均粒子径が20
μmを越え、50μm以下の芯粒子粉体の粒子が主に単
一粒子状態で気中に存在する高分散芯粒子粉体の粒子・
気体混合物中のこの芯粒子粉体の粒子を、分散度βが9
0%以上である高い分散状態の被覆空間の被覆開始領域
でか、又は(3)体積基準頻度分布で平均粒子径が50
μmを越え、300μm以下の芯粒子粉体の粒子が主に
単一粒子状態で気中に存在する高分散芯粒子粉体の粒子
・気体混合物中のこの芯粒子粉体の粒子を、分散度βが
95%以上である高い分散状態の被覆空間の被覆開始領
域でか、又は(4)体積基準頻度分布で平均粒子径が3
00μmを越え、800μm以下の芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度
βが97%以上である高い分散状態の被覆空間の被覆開
始領域でか、又は(5)体積基準頻度分布で平均粒子径
が800μmを越える芯粒子粉体の粒子が主に単一粒子
状態で気中に存在する高分散芯粒子粉体の粒子・気体混
合物中のこの芯粒子粉体の粒子を、分散度βが99%以
上である高い分散状態の被覆空間の被覆開始領域で被覆
を開始しなければならないことを見い出した。
In order to solve the above-mentioned problems, as a result of intensive studies by the present inventors, particles of quasi-fine particle core particle powder which is quasi-fine particle of diamond or core particles mainly composed of quasi-fine particles. The powder particles have a highly controlled uniform coating of the coating-forming substance, that is, a uniform coating in which the uncoated portion of the surface of the individual diamond quasi-fine particles does not remain,
In addition, if this uniform coating is formed on all individual diamond quasi-fine particles and the particle size is large, in order to obtain a uniform coating with no uncoated portion, (1) volume Average particle size is 10 in standard frequency distribution
Particles of highly dispersed core particle powder in which particles of core particle powder having a size of more than 20 μm and larger than μm mainly exist in the air in a single particle state.
The particles of this core particle powder in the gas mixture have a dispersity β of 8
In the coating start region of the coating space in a highly dispersed state of 0% or more, or (2) the volume-based frequency distribution has an average particle diameter of 20.
Particles of highly dispersed core particle powder in which particles of core particle powder having a size of more than 50 μm and less than 50 μm mainly exist in the air in a single particle state.
The particles of this core particle powder in the gas mixture have a dispersity β of 9
In the coating start region of the coating space in a highly dispersed state of 0% or more, or (3) the volume-based frequency distribution has an average particle diameter of 50.
Particles of core particle powder having a particle size of more than 300 μm and not more than 300 μm are mainly present in the air in the form of a single particle. In the coating start region of the coating space in a highly dispersed state where β is 95% or more, or (4) the volume-based frequency distribution has an average particle diameter of 3
Particles of core particle powder of more than 00 μm and 800 μm or less mainly exist in the air in a single particle state. Particles of highly dispersed core particle powder / particles of this core particle powder in a gas mixture are dispersed. In the coating start region of the coating space in a highly dispersed state where β is 97% or more, or (5) the core particle powder whose average particle size exceeds 800 μm in the volume standard frequency distribution is mainly in a single particle state. The coating of the particles of the highly dispersed core particle powder present in the air / the particles of the core particle powder in the gas mixture is started in the coating start region of the coating space in a highly dispersed state where the dispersity β is 99% or more. I found what I had to do.

【0011】より詳しくは、(I)芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物の状態の芯粒子粉体の粒子は、滞留さ
せなくとも、時間の経過と共に主に乱流凝集等により再
凝集する傾向にあり、一旦再凝集すると、前記分散処理
前の凝集体と同じく特別に高い分散性能を有する分散処
理手段により分散させなければこの再凝集の状態を崩し
て高度に分散、即ち一個一個の単位の単一粒子状態へ再
分散させることが困難であり、このため、(1)体積基
準頻度分布で平均粒子径が10μmを越え、20μm以
下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒
子粉体の粒子を、分散度βが80%以上である高い分散
状態でか、又は(2)体積基準頻度分布で平均粒子径が
20μmを越え、50μm以下の芯粒子粉体の粒子が主
に単一粒子状態で気中に存在する高分散芯粒子粉体の粒
子・気体混合物中のこの芯粒子粉体の粒子を、分散度β
が90%以上である高い分散状態でか、又は(3)体積
基準頻度分布で平均粒子径が50μmを越え、300μ
m以下の芯粒子粉体の粒子が主に単一粒子状態で気中に
存在する高分散芯粒子粉体の粒子・気体混合物中のこの
芯粒子粉体の粒子を、分散度βが95%以上である高い
分散状態でか、又は(4)体積基準頻度分布で平均粒子
径が300μmを越え、800μm以下の芯粒子粉体の
粒子が主に単一粒子状態で気中に存在する高分散芯粒子
粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、
分散度βが97%以上である高い分散状態の被覆空間の
被覆開始領域でか、又は(5)体積基準頻度分布で平均
粒子径が800μmを越える芯粒子粉体の粒子が主に単
一粒子状態で気中に存在する高分散芯粒子粉体の粒子・
気体混合物中のこの芯粒子粉体の粒子を、分散度βが9
9%以上である高い分散状態で被覆空間の被覆開始領域
に導く必要があること、またそのためには、(II)この
芯粒子粉体からなる凝集体を崩し、且つ粒子径に応じた
非常に高い分散度で気中に分散させる、―以上からなる
特別に高い分散性能を有する分散処理手段群が必要であ
ることを見い出して本発明に至った。
More specifically, (I) The particles of the core particle powder are particles of the highly dispersed core particle powder in which the particles of the core particle powder are mainly present in the air in a single particle state, and the particles of the core particle powder in the state of a gas mixture are: However, even if it does not stay, it tends to reaggregate mainly due to turbulent agglomeration with the passage of time, and once reaggregated, it is dispersed by a dispersion treatment means having a particularly high dispersibility like the aggregate before the dispersion treatment. If this is not done, it is difficult to break this re-aggregation state and disperse it to a high degree, that is, to re-disperse it into a single particle state of each unit. Therefore, (1) in the volume standard frequency distribution, the average particle diameter is Particles of core particle powder of more than 10 μm and 20 μm or less mainly exist in the air in a single particle state. Particles of highly dispersed core particle powder / particles of this core particle powder in a gas mixture are dispersed. In a highly dispersed state where β is 80% or more, or (2 Highly-dispersed core particles having an average particle size of more than 20 μm and 50 μm or less in the volume-based frequency distribution, and particles of the core particle powder mainly present in the air in a single particle state. The degree of dispersion β
Is 90% or higher, or (3) the volume-based frequency distribution has an average particle size of more than 50 μm and 300 μm.
Particles of core particle powder having a particle diameter of m or less are mainly present in the air in a single particle state. Particles of highly dispersed core particle powder-The particles of this core particle powder in a gas mixture have a dispersity β of 95%. In the high dispersion state as described above, or (4) the high dispersion in which particles of the core particle powder having an average particle size of more than 300 μm and 800 μm or less in the volume standard frequency distribution are mainly present in the air in a single particle state. The particles of this core particle powder in the particle / gas mixture of the core particle powder,
In the coating start region of the coating space in a highly dispersed state where the dispersity β is 97% or more, or (5) the core particle powder particles having an average particle diameter exceeding 800 μm in the volume standard frequency distribution are mainly single particles. Particles of highly dispersed core particles powder existing in the air in the state
The particles of this core particle powder in the gas mixture have a dispersity β of 9
It is necessary to lead to the coating start region of the coating space in a highly dispersed state of 9% or more, and for that purpose, (II) the agglomerates made of the core particle powder are broken down and the particle size is very high depending on the particle size. The present invention has been accomplished by finding that a dispersion processing means group having particularly high dispersion performance is required, which disperses in air with a high dispersity.

【0012】すなわち、本発明は、ダイヤモンドの準微
粒子からなる芯粒子粉体を被覆空間に投入し、気相を経
て生成する被覆形成物質前駆体及び/又は気相状態の被
覆形成物質前駆体を、芯粒子粉体の粒子に接触及び/又
は衝突させて、この芯粒子粉体の粒子の表面を被覆形成
物質で被覆して得られる被覆ダイヤモンド準微粒子であ
って、 (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) この芯粒子粉体の粒子を気中に分散させる分散
手段、及び(b) 芯粒子粉体の粒子を気中に分散させ
た芯粒子粉体の粒子と気体との混合物において低分散芯
粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒
子状態で気中に存在する高分散芯粒子粉体の粒子・気体
混合物を選択する高分散芯粒子粉体の粒子・気体混合物
選択手段とこの高分散芯粒子粉体の粒子・気体混合物選
択手段により選択分離された低分散芯粒子粉体部分を準
微粒子高分散処理手段群中の分散手段の内の最終分散手
段及び/又は最終分散手段以前の処理手段に搬送するフ
ィードバック手段とを備えた高分散芯粒子粉体の粒子・
気体混合物選択手段、から選ばれる準微粒子高分散処理
手段群により、体積基準頻度分布で平均粒子径が10μ
mを越える準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子を、気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とする分散工程、 (B) 分散工程で分散させた芯粒子粉体の粒子を、そ
の平均粒子径が10μmを越え20μm以下のときには
分散度βが80%以上、20μmを越え50μm以下の
ときには分散度βが90%以上、50μmを越え300
μm以下のときには分散度βが95%以上、300μm
を越え800μm以下のときは分散度βが97%以上、
そして800μmを越えるときは分散度βが99%以上
の分散状態で、被覆空間の被覆開始領域において被覆形
成物質前駆体と接触及び/又は衝突させて被覆を開始す
る被覆工程、からなる被覆手段によって調製された、被
覆ダイヤモンド準微粒子に関する。また本発明は、前記
被覆されたダイヤモンド準微粒子が、被覆されたダイヤ
モンド準微粒子の被覆形成物質を介して接触状態で集合
塊を形成した被覆されたダイヤモンド準微粒子の集合塊
を、解砕及び/又は破砕する被覆されたダイヤモンド準
微粒子集合塊の解砕・破砕工程、及び/又はこの被覆ダ
イヤモンド準微粒子集合塊と一次粒子単位の被覆された
ダイヤモンド準微粒子とを選択分離する選択分離工程を
更に経て調製されたものであることを特徴とする、被覆
ダイヤモンド準微粒子に関する。
That is, the present invention provides a coating material precursor and / or a coating material precursor in a gas phase, which is produced by introducing a core particle powder made of quasi-fine particles of diamond into a coating space and generating the gas phase. A coated diamond quasi-fine particle obtained by contacting and / or colliding with the particle of the core particle powder to coat the surface of the particle of the core particle powder with a coating forming substance, wherein The final processing means of the processing means group is
(A) Dispersing means for dispersing the particles of the core particle powder in the air, and (b) Low dispersion in a mixture of the particles of the core particle powder and the gas in which the particles of the core particle powder are dispersed in the air. Highly dispersed core particle powder particles that separate the core particle powder part and select the particle / gas mixture of highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. The gas dispersion selection means and the particles of the highly dispersed core particle powder, and the low dispersion core particle powder portion selectively separated by the gas mixture selection means are the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group. And / or feedback means for conveying to the processing means before the final dispersing means, particles of highly dispersed core particle powder,
The average particle diameter is 10 μm in the volume-based frequency distribution by means of the quasi-fine particle high dispersion treatment means group selected from the gas mixture selecting means.
a dispersion step of dispersing particles of the quasi-fine particle core particle powder exceeding m or particles of the core particle powder mainly consisting of quasi-fine particles into the air to form a particle / gas mixture of the highly dispersed core particle powder; ) The particles of the core particle powder dispersed in the dispersion step have a dispersity β of 80% or more when the average particle size is more than 10 μm and 20 μm or less, and a dispersity β of 90% or more when the average particle size is more than 20 μm and 50 μm or less, 300 over 50 μm
When it is less than μm, the dispersity β is 95% or more, 300 μm
When it exceeds 800 μm and the dispersity β is 97% or more,
When it exceeds 800 μm, in a dispersion state in which the dispersity β is 99% or more, a coating step of contacting and / or colliding with the coating material precursor in the coating start region of the coating space to start coating, It relates to prepared, coated diamond quasi-fine particles. The present invention also provides a method of crushing and / or crushing an aggregate of coated diamond quasi-fine particles, wherein the coated diamond quasi-fine particles form an aggregate in contact with each other through a coating forming substance of the coated diamond quasi-fine particles. Or a crushing and crushing step of crushing the coated quasi-fine particle aggregates of the coated diamond, and / or a selective separation step of selectively separating the coated quasi-fine particle aggregates of the coated diamond and the coated diamond quasi-fine particles of the primary particle unit. The present invention relates to coated diamond quasi-fine particles, which are prepared.

【0013】また本発明は、上記した被覆形成物質で被
覆するべきダイヤモンドの準微粒子からなる芯粒子粉体
の粒子又は主に同準微粒子からなる芯粒子粉体の粒子
が、溶融塩浴を用いる浸漬法により、浸漬法に由来する
被覆物質で一層以上被覆された準微粒子芯粒子粉体の粒
子又は主に準微粒子からなる芯粒子粉体の粒子である被
覆ダイヤモンド準微粒子に関する。
Further, according to the present invention, the particles of the core particle powder composed of the quasi-fine particles of diamond or the particles of the core particle powder mainly composed of the quasi-fine particles to be coated with the above-mentioned coating forming substance use a molten salt bath. The present invention relates to coated diamond quasi-fine particles which are particles of a quasi-fine particle core particle powder or particles of a core particle powder mainly composed of quasi-fine particles which are further coated with a coating material derived from the immersion method by an immersion method.

【0014】更に本発明は、被覆されたダイヤモンド準
微粒子が、体積基準頻度分布で平均粒子径が10μmを
越え20μm以下の芯粒子粉体を、準微粒子高分散処理
手段群の最終処理により気中に分散させて高分散芯粒子
粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の
分散度βを80%以上とする分散性能を有する準微粒子
高分散処理手段群、又は体積基準頻度分布で平均粒子径
が20μmを越え50μm以下の芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを90%以上とする分散性能を有
する準微粒子高分散処理手段群、又は体積基準頻度分布
で平均粒子径が50μmを越え300μm以下の芯粒子
粉体を、準微粒子高分散処理手段群の最終処理により気
中に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを95%以上とす
る分散性能を有する準微粒子高分散処理手段群、又は体
積基準頻度分布で平均粒子径が300μmを越え800
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を97%以上とする分散性能を有する準微粒子高分散処
理手段群、又は体積基準頻度分布で平均粒子径が800
μmを越える芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを99%以上とする分散性能を有する準微粒子高分散
処理手段群による分散工程を設け、準微粒子高分散処理
手段群により分散させた高分散芯粒子粉体の粒子・気体
混合物を被覆工程に直接放出するか、又は分散工程と被
覆工程の間に、準微粒子高分散処理手段群により分散さ
せた高分散芯粒子粉体の粒子・気体混合物を放出する放
出部から、搬送に不可避の、中空部材、中空を形成せし
める部材からなる中間部材、及びパイプから選択される
一種類又はそれ以上の部材を介して搬送するか、及び/
又は、前記分散性能で気中に分散させた高分散芯粒子粉
体の粒子・気体混合物中の粒子の気中分散状態を維持す
る気中分散維持手段、前記分散性能で気中に分散させた
高分散芯粒子粉体の粒子・気体混合物中の粒子の気中分
散状態を高める気中分散促進手段、芯粒子粉体の粒子と
気体との混合物の内の、低分散芯粒子粉体部分を分離
し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物を選択する高
分散芯粒子粉体の粒子・気体混合物選択手段の一種類又
はそれ以上を介して搬送して調製されたものである被覆
ダイヤモンド準微粒子に関する。
Further, according to the present invention, the coated diamond quasi-fine particles are a core particle powder having an average particle size of more than 10 μm and 20 μm or less in a volume-based frequency distribution, which is subjected to the final treatment in the quasi-fine particle high dispersion treatment means group in the air. To form a particle / gas mixture of highly dispersed core particle powder, and the dispersion degree β of the particles of the core particle powder is 80% or more. A core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. A group of quasi-fine particle high-dispersion treatment means having a dispersibility of 90% or more of the degree of dispersion β of particles of the particle powder, or a core particle powder having an average particle size of more than 50 μm and 300 μm or less in a volume standard frequency distribution, High dispersion of fine particles By the final treatment of the treatment means group, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more. The average particle diameter exceeds 800 μm in the dispersion treatment means group or volume standard frequency distribution of 800
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Of high-dispersion quasi-fine particles having a dispersion performance of 97% or more, or a volume-based frequency distribution with an average particle diameter of 800
The core particle powder exceeding μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder A dispersion process using a group of quasi-particulate high-dispersion treatment means having a dispersion performance of 99% or more is provided, and the particle-gas mixture of the highly-dispersed core particle powder dispersed by the quasi-fine particle high-dispersion treatment means group is directly applied to the coating step. A hollow member unavoidable for transportation from a discharging part that discharges or discharges a particle / gas mixture of highly dispersed core particle powder dispersed by a quasi-fine particle high dispersion treatment means group between the dispersing step and the coating step. , An intermediate member made of a member forming a hollow, and one or more members selected from pipes, and / or
Alternatively, an air dispersion maintaining means for maintaining the air dispersion state of the particles in the particle / gas mixture of the highly dispersed core particle powder dispersed in the air with the dispersion performance, and dispersed in the air with the dispersion performance. An air dispersion promoting means for increasing the air dispersion state of particles in a highly dispersed core particle powder / gas mixture, and a low dispersion core particle powder portion in a mixture of particles and gas of the core particle powder. The particles / gas mixture of the highly dispersed core particle powder for separating and selecting the particle / gas mixture of the highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state The present invention relates to coated diamond quasi-fine particles prepared by being transported via one or more kinds.

【0015】更に本発明は、被覆ダイヤモンド準微粒子
が、体積基準頻度分布で平均粒子径が10μmを越え2
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを80%以上とする分散性能を有する準微粒子高分散
処理手段群、又は体積基準頻度分布で平均粒子径が20
μmを越え50μm以下の芯粒子粉体を、準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを90%以上とする分散性能を有する準
微粒子高分散処理手段群、又は体積基準頻度分布で平均
粒子径が50μmを越え300μm以下の芯粒子粉体
を、準微粒子高分散処理手段群の最終処理により気中に
分散させて高分散芯粒子粉体の粒子・気体混合物とし、
その芯粒子粉体の粒子の分散度βを95%以上とする分
散性能を有する準微粒子高分散処理手段群、又は体積基
準頻度分布で平均粒子径が300μmを越え800μm
以下の芯粒子粉体を、準微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βを9
7%以上とする分散性能を有する準微粒子高分散処理手
段群、又は体積基準頻度分布で平均粒子径が800μm
を越える芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
99%以上とする分散性能を有する準微粒子高分散処理
手段群による分散工程の一部以上と前記被覆工程の一部
以上とを、空間を一部以上共有して行うことにより調製
されたものである被覆ダイヤモンド準微粒子に関する。
Further, according to the present invention, the coated diamond quasi-fine particles have a volume-based frequency distribution with an average particle size exceeding 10 μm.
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 80% or more of quasi-fine particle high-dispersion treatment means having a dispersion performance, or a volume-based frequency distribution with an average particle diameter of 20.
A core particle powder having a particle diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder. Quasi-fine particle high-dispersion treatment means group having a dispersibility β of 90% or more and having quasi-fine particle high-dispersion treatment means group, or core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in volume standard frequency distribution By the final treatment of, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder,
A group of quasi-fine particle high-dispersion processing means having a dispersibility of 95% or more of the degree of dispersion β of the core particle powder, or an average particle diameter exceeding 300 μm and 800 μm in the volume standard frequency distribution.
The following core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group, and the particles of the high-dispersion core particle powder
As a gas mixture, the degree of particle dispersion β of the core particle powder is 9
A group of quasi-fine particles high-dispersion treatment means having a dispersion performance of 7% or more, or a volume-based frequency distribution having an average particle diameter of 800 μm.
The core particle powder exceeding the above is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is It is prepared by performing a part or more of the dispersion step and a part or more of the coating step by the quasi-fine particle high dispersion treatment means group having a dispersibility of 99% or more while sharing a part or more of the space. Certain coated diamond quasi-fine particles.

【0016】更に本発明は、被覆ダイヤモンド準微粒子
が、体積基準頻度分布で平均粒子径が、10μmを越え
20μm以下の芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを80%以上とする空間領域、体積基準頻度分布で
平均粒子径が、20μmを越え50μm以下の芯粒子粉
体を、準微粒子高分散処理手段群の最終処理により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを90%以上とす
る空間領域、体積基準頻度分布で平均粒子径が、50μ
mを越え300μm以下の芯粒子粉体を、準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを95%以上とする空間領域、体積基準
頻度分布で平均粒子径が、300μmを越え800μm
以下の芯粒子粉体を、準微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βを9
7%以上とする空間領域、体積基準頻度分布で平均粒子
径が、800μmを越える芯粒子粉体を、準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを99%以上とする空間領域の内の高分
散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子
の全ての粒子が通過する面を含む空間領域に、被覆空間
の被覆開始領域を位置せしめるか、又は体積基準頻度分
布で平均粒子径が、10μmを越え20μm以下の芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを80%以上と
する空間領域、体積基準頻度分布で平均粒子径が20μ
mを越え50μm以下の芯粒子粉体を、準微粒子高分散
処理手段群の最終処理により気中に分散させて高分散芯
粒子粉体の粒子・気体混合物とし、芯粒子粉体の粒子の
分散度βを90%以上とする空間領域、体積基準頻度分
布で平均粒子径が、50μmを越え300μm以下の芯
粒子粉体を、準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを95%以上
とする空間領域、体積基準頻度分布で平均粒子径が、3
00μmを越え800μm以下の芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、芯粒子粉体
の粒子の分散度βを97%以上とする空間領域、体積基
準頻度分布で平均粒子径が、800μmを越える芯粒子
粉体を準微粒子高分散処理手段群の最終処理により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物と
し、その芯粒子粉体の粒子の分散度βを99%以上とす
る空間領域の内の、回収手段の回収部に回収する全ての
粒子が通過する面を含む空間領域に、被覆空間の被覆開
始領域を位置せしめて被覆したものである被覆ダイヤモ
ンド準微粒子に関する。
Further, according to the present invention, the coated diamond quasi-fine particles are core particles having a volume-based frequency distribution and an average particle size of more than 10 μm and 20 μm or less, which are put into the air by the final treatment of the quasi-fine particle high dispersion treatment means group. Dispersed into a particle / gas mixture of highly dispersed core particle powder, a spatial region where the degree of dispersion β of the particles of the core particle powder is 80% or more, and the average particle diameter by volume-based frequency distribution exceeds 20 μm and 50 μm. The following core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 90% or more of the spatial region, volume standard frequency distribution, the average particle size is 50μ
A core particle powder having a particle size of more than 300 μm and not more than 300 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Spatial region where dispersity β is 95% or more, average particle size in volume-based frequency distribution exceeds 300 μm and 800 μm
The following core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group, and the particles of the high-dispersion core particle powder
As a gas mixture, the degree of particle dispersion β of the core particle powder is 9
A high-dispersion core particle powder having a spatial region of 7% or more and a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. Of the core particle powder, and all of the particles of the core particle powder in the gas mixture of the highly dispersed core particle powder in the space region where the degree of dispersion β of the particle of the core particle powder is 99% or more. The coating start region of the coating space is located in the space region including the surface through which the particles pass, or the core particle powder having an average particle size of more than 10 μm and 20 μm or less in the volume standard frequency distribution is quasi-fine particle highly dispersed. By the final treatment of the treatment means group, it is dispersed in the air to obtain a particle / gas mixture of highly dispersed core particle powder, and the spatial degree and volume standard frequency distribution in which the degree of dispersion β of the core particle powder is 80% or more. And the average particle size is 20μ
A core particle powder having a particle diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder and the dispersion of the particles of the core particle powder. The core particle powder having a spatial region with a degree β of 90% or more and a volume-based frequency distribution and an average particle size of more than 50 μm and 300 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. A high-dispersion core particle powder in the form of a particle / gas mixture, and the core particle powder has a particle size distribution of 3 or more in a spatial region where the degree of dispersion β of the particles is 95% or more.
A core particle powder of more than 00 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. A high-dispersion core particle in which a core particle powder having an average particle diameter of more than 800 μm in a spatial region and a volume-based frequency distribution with a degree β of 97% or more is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group. A space including a surface through which all the particles to be recovered by the recovery unit of the recovery means are included in the space area where the particle-gas mixture of the powder is the core particle powder and the dispersity β of the particles of the powder is 99% or more. The present invention relates to coated diamond quasi-fine particles obtained by locating and coating the coating start region of the coating space in the region.

【0017】更にまた本発明は、使用する、芯粒子粉体
の粒子の粒度分布が、平均粒子径をDMとしたとき、体
積基準頻度分布で(〔DM/5,5DM〕,≧90%)で
あることを特徴とする、被覆されたダイヤモンド準微粒
子に関する。更にまた本発明は、上記の被覆されたダイ
ヤモンド準微粒子又は同粒子を含む混合物を、2000
MPa以上の圧力および高温において焼結するか、又は上
記請求範囲に記載の被覆されたダイヤモンド準微粒子又
は同粒子を含む混合物を2000MPa未満の圧力及び1
850℃を越えない、ダイヤモンドが熱力学的に安定で
はないが準安定な圧力・温度の焼結条件において焼結す
るか、又は上記請求項に記載の被覆されたダイヤモンド
準微粒子と結合材との体積で1〜90:99〜10の割
合の混合物であって、この結合材は2000MPa未満の
圧力で1850℃を越えないダイヤモンド粒子が熱力学
的に準安定な条件で密度85%以上に焼結されるもので
ある、上記混合物を2000MPa未満の圧力及び185
0℃を越えないダイヤモンドが熱力学的に安定ではない
が準安定な圧力・温度の焼結条件において焼結する被覆
ダイヤモンド準微粒子焼結体の製造法にも関する。そし
て本発明は、上に記載の被覆ダイヤモンド準微粒子焼結
体の製造法により製造することを特徴とする、被覆ダイ
ヤモンド準微粒子焼結体に関するものである。
[0017] Furthermore, the present invention uses, the particle size distribution of the particles in the powder of core particles is, when the average particle diameter is D M, by volume frequency distribution ([D M / 5,5D M], ≧ 90%). Furthermore, the present invention provides the above-mentioned coated diamond quasi-fine particles or a mixture containing the same to 2000
Sintering at pressures above MPa and elevated temperatures or coating coated diamond quasi-fine particles or mixtures containing said particles at pressures below 2000 MPa and 1
The diamond is not thermodynamically stable but does not exceed 850 ° C., and is sintered under a pressure-temperature sintering condition which is not thermodynamically stable, or the coated quasi-fine particles of the above-mentioned claim and the binder are combined. The binder is a mixture of 1 to 90:99 to 10 by volume, and the binder is a diamond particle which does not exceed 1850 ° C at a pressure of less than 2000 MPa and has a density of 85% or more under thermodynamically metastable conditions. The above mixture at a pressure of less than 2000 MPa and 185
The present invention also relates to a method for producing a coated diamond quasi-fine particle sintered body, in which diamond not exceeding 0 ° C. is not thermodynamically stable, but is sintered under metastable pressure and temperature sintering conditions. The present invention also relates to a coated diamond quasi fine particle sintered body produced by the method for producing a coated diamond quasi fine particle sintered body described above.

【0018】而して、本発明によれば、ダイヤモンドの
準微粒子からなる芯粒子粉体の粒子又は主に同準微粒子
からなる芯粒子粉体の粒子であって、その表面が被覆形
成物質で被覆されたものまたは同粒子を含む混合物を、
2000MPa以上の圧力および高温度において焼結する
か、またはこれら粒子又は粒子を含む混合物を、200
0MPa未満の圧力及び1850℃を越えない、ダイヤモ
ンドが熱力学的に安定ではないが準安定な圧力・温度の
焼結条件において焼結するか、又はこの被覆されたダイ
ヤモンド準微粒子と結合材との体積で1〜90:99〜
10の割合の混合物であって、この結合材は2000MP
a未満の圧力で1850℃を越えないダイヤモンド粒子
が熱力学的に準安定な条件で密度85%以上に焼結され
るものである、上記混合物を2000MPa未満の圧力及
び1850℃を越えないダイヤモンドが熱力学的に安定
ではないが準安定な圧力・温度の焼結条件において焼結
してダイヤモンド粒子の焼結体を製造するに際して、上
記した表面が被覆形成物質で被覆された芯粒子の粉体と
して、気相法により気相を経て生成する被覆形成物質前
駆体及び/又は気相状態の被覆形成物質前駆体と、準微
粒子高分散処理手段群の最終処理手段により気中に分散
させた準微粒子からなる高分散芯粒子粉体の粒子・気体
混合物とを、被覆空間の被覆開始領域で、高分散芯粒子
粉体の粒子・気体混合物中の芯粒子粉体の粒子の分散度
を準微粒子の粒径に応じて上記の値とした分散状態で合
流させ、接触及び/又は衝突させて芯粒子粉体の粒子の
表面を被覆形成物質で被覆したものを用いることによ
り、これまでに得られなかったダイヤモンドの粒子表面
の未焼結部分のない、均一で、緻密で且つ強固に焼結さ
れた高度に制御された微組織を有する高性能なダイヤモ
ンド焼結体を得ることができた。そして、上記した被覆
芯粒子の調製に際して、被覆形成物質前駆体は、原子、
分子、イオン、クラスター、原子クラスター、分子クラ
スター、クラスターイオン等からなる気相状態の、或い
は気相を経て生成したばかりのもので当該高分散状態の
ダイヤモンドの芯粒子と接触及び/又は衝突を始めるこ
とにより、一次粒子状態の個々の芯粒子の表面に被覆形
成物質は強固に結合し、その結果、当該芯粒子の表面を
被覆形成物質により単一粒子単位で被覆を施した被覆さ
れたダイヤモンド粒子が製造できるのである。
According to the present invention, therefore, the particles of the core particle powder composed of the quasi-fine particles of diamond or the particles of the core particle powder mainly composed of the quasi-fine particles, the surface of which is the coating forming substance, A coated or mixture containing the same particles,
Sintering at pressures above 2000 MPa and high temperatures, or adding particles or mixtures containing these particles to 200
A pressure of less than 0 MPa and a temperature of not more than 1850 ° C., the diamond is not thermodynamically stable, but is sintered under pressure conditions of metastable pressure or temperature, or the coated diamond quasi-fine particles and the binder are 1-90: 99 by volume
Mixture of 10 parts, this binder is 2000MP
Diamond particles not exceeding 1850 ° C. at a pressure of less than a are sintered to a density of 85% or more under thermodynamically metastable conditions. A powder of core particles whose surface is coated with a coating-forming substance when producing a sintered body of diamond particles by sintering under a pressure-temperature sintering condition that is not thermodynamically stable but metastable. As the coating forming substance precursor and / or the coating forming substance precursor in a gas phase state which is generated through the gas phase by the gas phase method, and the semi-fine particles dispersed in the air by the final treatment means of the semi-fine particle high dispersion treatment means group. Particles of highly dispersed core particles consisting of fine particles and a gas mixture are mixed with each other in the coating start region of the coating space, and the degree of dispersion of particles of the core particle powder in the mixture of highly dispersed core particles and gas is quasi fine particles. According to the particle size of Then, the core particles are coated with the coating-forming substance on the surfaces of the particles of the core particle powder by bringing them into contact with each other and / or colliding with each other in a dispersed state having the above value. It was possible to obtain a high-performance diamond sintered body having a uniform, dense and strongly sintered finely controlled microstructure with no unsintered part on the grain surface. Then, in the preparation of the above-mentioned coated core particles, the coating-forming substance precursor is an atom,
Initiates contact and / or collision with the highly dispersed diamond core particles in the gas phase, which is composed of molecules, ions, clusters, atomic clusters, molecular clusters, cluster ions, etc., or has just been formed through the gas phase. Thereby, the coating forming substance is firmly bound to the surface of each core particle in the primary particle state, and as a result, the coated diamond particles obtained by coating the surface of the core particle with the coating forming substance in a unit of a single particle. Can be manufactured.

【0019】上記したように、本発明において、被覆ダ
イヤモンド準微粒子を2000MPa以上の圧力及び高温
度であるダイヤモンドが熱力学的に安定である焼結条件
において焼結する場合には、この被覆ダイヤモンド準微
粒子は被覆を押し破って互いに接触したダイヤモンド粒
子同志が直接に結合することになり、きわめて均一で緻
密な焼結体となるものである。また本発明において、被
覆ダイヤモンド準微粒子をそれ自体でかまたは結合材と
共に2000MPa未満の圧力及び1850℃を越えない
ダイヤモンドが熱力学的に安定ではないが準安定な圧力
・温度の焼結条件において焼結する場合については、ダ
イヤモンド準微粒子が互いに接触しても粒子同志が直接
に結合することはないが、被覆ダイヤモンド準微粒子同
志が直接に接触している場所以外は必ずこのダイヤモン
ド準微粒子の周りには結合材または焼結助材である被覆
物質が存在し、得られた焼結体は未焼結部分のない均一
で、緻密で且つ強固に焼結された極めて高度に制御され
た微組織を有するものとなる。
As described above, in the present invention, when the coated diamond quasi-fine particles are sintered under the sintering conditions in which diamond having a pressure of 2000 MPa or higher and a high temperature is thermodynamically stable, the coated diamond quasi-fine particles are The fine particles break through the coating, and the diamond particles that are in contact with each other are directly bonded to each other, resulting in an extremely uniform and dense sintered body. Further, in the present invention, the coated diamond quasi-fine particles are burned by themselves or together with a binder under a pressure of less than 2000 MPa and a diamond not exceeding 1850 ° C. in a thermodynamically stable but metastable pressure / temperature sintering condition. When the diamond quasi-fine particles come into contact with each other, the particles do not directly bond with each other, but the diamond quasi-fine particles should always be around the diamond quasi-fine particles except where they are in direct contact. Exists a coating material that is a binder or a sintering aid, and the obtained sintered body has a uniform, dense and strongly sintered microstructure with no unsintered portion, which is extremely highly controlled. Will have.

【0020】以下に本発明を詳細に説明する前に、本明
細書中に使用する用語をはじめに定義することにし、そ
して必要によってその用語の具体的内容を説明し、次い
で被覆形成物質で被覆されたダイヤモンド準微粒子の調
製がどのような技術的手段によって行われるものである
かの説明を行うことにする。
Before describing the present invention in detail below, the terms used in the present specification will be first defined, and if necessary, the specific contents of the terms will be explained, followed by coating with a coating forming material. The technical means for preparing the diamond quasi-fine particles will be described.

【0021】被覆されたダイヤモンド準微粒子 被覆されたダイヤモンド準微粒子とは、被覆が施された
下記するダイヤモンド準微粒子をいう。例えば、具体的
には、被覆形成物質が、超微粒子状、島状、連続質状、
一様な膜状、突起物状等の内の一種以上の形態で芯粒子
としてダイヤモンド準微粒子に被覆を施した被覆された
準微粒子をいう。
Coated diamond quasi-fine particles The coated diamond quasi-fine particles are the following coated diamond quasi-fine particles. For example, specifically, the coating forming substance is in the form of ultrafine particles, islands, continuous materials,
It refers to coated quasi-fine particles obtained by coating diamond quasi-fine particles as core particles in one or more forms such as uniform film shape and protrusion shape.

【0022】ダイヤモンド原料粉体粒子 本発明に係る、準微粒子芯粒子粉体の粒子又は主に準微
粒子からなる芯粒子粉体の粒子であるダイヤモンド粒子
の表面に、被覆形成物質を被覆した被覆ダイヤモンド粒
子を製造するためのダイヤモンド準粒子の原料粒子に
は、天然及び/又は人工のダイヤモンド粉体粒子があ
る。天然品の場合は、超高純度のものを選択できるので
好適である。合成品の場合は、合成時に触媒として使用
された物質を可能な限り取り除いたものが好ましい。合
成品で特に好適な例として、例えば物理蒸着法(PVD
法)或いは化学蒸着法(CVD法)による、気相を介し
て合成されて触媒物質を含まない超高純度なダイヤモン
ドが選択可能である。薄膜状に合成される場合は、不純
物の混入に注意しながら粉砕して使用する。粒状或いは
粉体状に合成される場合は、そのまま使用することがで
きる。これ以外の高純度な例として単結晶からなるもの
が選択可能である。或いは、積極的に不純物を除去した
ものが選択できる。高性能な被覆ダイヤモンド準微粒子
焼結体を製造するためのダイヤモンド原料粉体として
は、その粒子径が10μmを越えるダイヤモンド準微粒
子が用いられる。具体的には、ダイヤモンドは平均粒径
Mが10μmを越え体積基準頻度分布が(〔DM/5,
5DM〕,≧90%)のダイヤモンド準微粒子が一般に
流通しているのでこれを適用できる。用途に応じて、比
較的分布の幅の狭い平均粒径DMが10μmを越え体積
基準頻度分布が(〔DM/3,3DM〕,≧90%)のダ
イヤモンド準微粒子、或いは分級等によりダイヤモンド
準微粒子の粒径が管理され更に分布の幅の狭い平均粒径
Mが10μmを越え体積基準頻度分布が(〔DM/2,
3DM/2〕,≧90%)のダイヤモンド準微粒子を選
択できる。
Diamond Raw Material Powder Particles Coated diamonds according to the present invention in which the surface of diamond particles, which are particles of quasi-fine particle core particle powder or particles of core particle powder mainly composed of quasi-fine particles, is coated with a coating forming substance. The raw particles of diamond quasi-particles for producing the particles include natural and / or artificial diamond powder particles. In the case of a natural product, an ultra-high purity product can be selected, which is preferable. In the case of synthetic products, it is preferable to remove substances used as catalysts during synthesis as much as possible. As a particularly preferable example of a synthetic product, for example, a physical vapor deposition method (PVD
Method) or a chemical vapor deposition method (CVD method), ultrahigh-purity diamond synthesized through the gas phase and containing no catalytic substance can be selected. When synthesizing into a thin film, crush and use it while paying attention to the inclusion of impurities. When synthesized in a granular or powder form, it can be used as it is. As a high-purity example other than this, a single crystal can be selected. Alternatively, it is possible to select one in which impurities are positively removed. As the diamond raw material powder for producing a high-performance coated diamond quasi-fine particle sintered body, diamond quasi-fine particles having a particle diameter of more than 10 μm are used. Specifically, the average particle size D M of diamond exceeds 10 μm and the volume-based frequency distribution is ([D M / 5,
5D M ], ≧ 90%) quasi-fine diamond particles are in general circulation and can be applied. Depending on the application, the average particle size D M with a relatively narrow distribution exceeds 10 μm and the volume standard frequency distribution is ([D M / 3,3D M ], ≧ 90%). The particle size of the diamond quasi-fine particles is controlled, and the average particle size D M with a narrow distribution width exceeds 10 μm, and the volume standard frequency distribution ((D M / 2,
3D M / 2], ≧ 90%) quasi-fine diamond particles can be selected.

【0023】気相被覆法 気相被覆法とは、被覆形成物質の原料が、分子流、イオ
ン流、プラズマ、ガス、蒸気、エアロゾルの一種以上か
らなる気相状態を少なくとも一度は経て被覆する方法、
又は気相状態の被覆形成物質の原料により被覆する方法
をいう。
Vapor-phase coating method The vapor-phase coating method is a method in which the raw material of the coating-forming material is at least once in a vapor-phase state composed of one or more of molecular flow, ionic flow, plasma, gas, vapor and aerosol. ,
Alternatively, it refers to a method of coating with a raw material of a coating forming substance in a gas phase.

【0024】芯粒子 芯粒子とは、被覆を施す対象物となる粒子をいう。これ
はまた、母材粒子、種粒子或いは被覆される粒子ともい
う。この芯粒子は、ダイヤモンドからなる。
Core Particles Core particles are particles to be coated. This is also referred to as matrix particles, seed particles or coated particles. The core particles consist of diamond.

【0025】芯粒子粉体 芯粒子粉体とは、芯粒子からなる粉体をいう。芯粒子粉
体の粒子とは、芯粒子粉体を構成する粒子をいう。本発
明で用いる被覆に供する準微粒子芯粒子粉体の粒子又は
主に準微粒子からなる芯粒子粉体の粒子は、平均粒子径
が体積基準頻度分布で10μmを越えるものである。好
ましくは、平均粒子径をDMとしたとき、DMが10μm
を越えて、粒度分布が体積基準頻度分布で(〔DM/5,
5DM〕,≧90%)である。このような比較的分布幅
の狭い粉体では、平均粒子径で粉体の分散特性又は凝集
特性が特徴付けられ、DMの値に適した条件で準微粒子
高分散処理手段群を作動させれば分散できる。平均粒子
径が10μmを越える芯粒子粉体の粒子の粒度分布が、
幅広い分布又は互いに離れた複数のピークを持つ分布の
粉体では、好適には適当な選択分離処理、例えば分級処
理を行ってそれぞれ分級された粉体ごとに、本発明の被
覆処理を施す。これにより、それぞれ分級された粉体ご
とに上記条件の下で、被覆空間の被覆開始領域で分散度
が平均粒子径に応じて分散度βで80%以上、90%以
上、95%以上、97%以上又は99%以上の状態で被
覆が開始され、芯粒子粉体の粒子一つ一つの粒子に被覆
が可能となる。
Core particle powder The core particle powder is a powder composed of core particles. The particles of the core particle powder refer to particles constituting the core particle powder. The particles of the quasi-fine particle core particle powder to be used in the coating used in the present invention or the particles of the core particle powder mainly composed of quasi-fine particles have an average particle diameter of more than 10 μm in volume-based frequency distribution. Preferably, when the average particle diameter is D M , D M is 10 μm
, The particle size distribution is a volume-based frequency distribution ([D M / 5,
5D M ], ≧ 90%). In such a powder having a relatively narrow distribution width, the dispersion property or agglomeration property of the powder is characterized by the average particle size, and the quasi-fine particle high dispersion treatment means group is operated under the condition suitable for the value of D M. Can be dispersed. The particle size distribution of the particles of the core particle powder having an average particle size of more than 10 μm is
In the case of a powder having a wide distribution or a distribution having a plurality of peaks separated from each other, a suitable selective separation treatment, for example, classification treatment is preferably performed, and the coating treatment of the present invention is applied to each classified powder. As a result, under the above conditions for each classified powder, the dispersity in the coating start region of the coating space is 80% or more, 90% or more, 95% or more in terms of the dispersity β according to the average particle diameter. %, Or 99% or more, the coating is started, and it becomes possible to coat each particle of the core particle powder.

【0026】被覆形成物質 被覆形成物質とは、被覆を施す対象物に被覆を形成する
物質をいう。例えば、具体的には、超微粒子状、島状、
連続質状、一様な膜状、突起物状等の一種以上からなる
形態で芯粒子粉体の粒子に被覆を形成する物質をいう。
特に、被覆形成物質の形態が超微粒子状の場合、超微粒
子の粒子径は、例えば0.005μm〜0.5μmの範囲
のものをいう。この被覆形成物質は、被覆形成物質自体
がそのままで被覆を形成するか、又は被覆形成物質と芯
粒子のダイヤモンドとが反応して及び/又はダイヤモン
ド粒子に固溶して及び/又は二種類以上の被覆形成物質
同志が反応して及び/又は合金化して及び/又は固溶し
て被覆を形成するための目的とする無機化合物、合金、
金属間化合物等の一種類又はそれ以上を生成し、被覆さ
れたダイヤモンド粒子の焼結を促進する焼結助剤及び/
又は結合材となる単体物質及び/又は化合物及び/又は
ダイヤモンド粒子の表面改質剤となる単体物質及び/又
は化合物から選択される。直接ダイヤモンド粒子に被覆
する被覆形成物質は、ダイヤモンドをグラファイト相に
相転移を促進しない被覆形成物質が選択される。このダ
イヤモンド粒子の粒界を制御する表面改質剤としても被
覆形成物質が選択可能である。必要に応じて、例えば、
ダイヤモンド準微粒子と当該焼結助剤及び/又は結合材
との化学結合性を高めたり、又は個々のダイヤモンド準
微粒子を任意の物質から隔離し、これにより、ダイヤモ
ンドのグラファイト型相への相転移を抑止したり或いは
ダイヤモンドと任意の物質との反応を抑止したりするこ
とができる。これにより、焼結助剤及び/又は結合材と
しての被覆形成物質の選択の幅が飛躍的に大きく広がり
好適である。
Coating-forming substance The coating-forming substance is a substance that forms a coating on an object to be coated. For example, specifically, ultrafine particles, islands,
It refers to a substance that forms a coating on the particles of the core particle powder in the form of one or more types such as a continuous substance, a uniform film, and protrusions.
Particularly, when the form of the coating forming material is ultrafine particles, the particle diameter of the ultrafine particles is, for example, in the range of 0.005 μm to 0.5 μm. This coating forming substance forms a coating as it is, or the coating forming substance reacts with the diamond of the core particles and / or forms a solid solution with the diamond particles and / or two or more kinds of Inorganic compounds, alloys intended to form coatings by reacting and / or alloying and / or solid-solving coating-forming substances
And / or a sintering aid which produces one or more intermetallic compounds and the like and promotes the sintering of the coated diamond particles.
Alternatively, it is selected from a simple substance and / or a compound serving as a binder and / or a simple substance and / or a compound serving as a surface modifier of the diamond particles. The coating forming substance that directly coats the diamond particles is selected as a coating forming substance that does not promote the phase transition of diamond into the graphite phase. The coating forming substance can be selected as a surface modifier for controlling the grain boundaries of the diamond particles. If necessary, for example,
The chemical bond between the diamond quasi-fine particles and the sintering aid and / or the binder is enhanced, or the individual diamond quasi-fine particles are separated from an arbitrary substance, whereby the phase transition of diamond to the graphite type phase is achieved. It can be suppressed or the reaction between diamond and any substance can be suppressed. As a result, the range of selection of the coating material as the sintering aid and / or the binder is greatly expanded, which is preferable.

【0027】これらの被覆形成物質は、周期律表1a、
2a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、5b、6b、7b、8族の金属、半導体、半
金属、希土類金属、非金属及びその酸化物、窒化物、炭
化物、酸窒化物、酸炭化物、炭窒化物、酸炭窒化物、硼
化物、珪化物の一種類又はそれ以上、例えばAl、B、
Si、Fe、Ni、Co、Ti、Nb、V、Zr、H
f、Ta、W、Re、Cr、Cu、Mo、Y、La、T
iAl、Ti3Al、TiAl3、TiNi、NiAl、
Ni3Al、SiC、TiC、ZrC、B4C、WC、W
2C、HfC、VC、TaC、Ta2C、NbC、Mo2
C、Cr32、Si34、TiN、ZrN、Si2
2O、AlN、HfN、VxN(x=1〜3)、NbN、
TaN、Ta2N、TiB、TiB2、ZrB2、VB、
32、VB2、NbB、NbB2、TaB、TaB2
MoB、MoB2、MoB4、Mo2B、WB、W2B、W
25、LaB6、B132、MoSi2、BP、Al
23、ZrO2、MgAl24(スピネル)、Al2Si
5(ムライト)の一種類又はそれ以上を含む物質であ
ることができる。この被覆されたダイヤモンド準微粒子
表面を被覆する被覆形成物質の被覆による添加量は、特
に制限はないが、好適には被覆ダイヤモンド焼結体を緻
密化可能な程度の任意の量が選択される。
These coating-forming substances are listed in Periodic Table 1a,
2a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
b, 4b, 5b, 6b, 7b, group 8 metals, semiconductors, semimetals, rare earth metals, nonmetals and their oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides , One or more of borides, silicides, eg Al, B,
Si, Fe, Ni, Co, Ti, Nb, V, Zr, H
f, Ta, W, Re, Cr, Cu, Mo, Y, La, T
iAl, Ti 3 Al, TiAl 3 , TiNi, NiAl,
Ni 3 Al, SiC, TiC, ZrC, B 4 C, WC, W
2 C, HfC, VC, TaC, Ta 2 C, NbC, Mo 2
C, Cr 3 C 2 , Si 3 N 4 , TiN, ZrN, Si 2 N
2 O, AlN, HfN, V x N (x = 1 to 3), NbN,
TaN, Ta 2 N, TiB, TiB 2 , ZrB 2 , VB,
V 3 B 2 , VB 2 , NbB, NbB 2 , TaB, TaB 2 ,
MoB, MoB 2 , MoB 4 , Mo 2 B, WB, W 2 B, W
2 B 5 , LaB 6 , B 13 P 2 , MoSi 2 , BP, Al
2 O 3 , ZrO 2 , MgAl 2 O 4 (spinel), Al 2 Si
It can be a substance containing one or more of O 5 (mullite). The amount of the coating forming substance that coats the surface of the coated diamond quasi-fine particles by coating is not particularly limited, but is preferably selected to be an amount that allows the coated diamond sintered body to be densified.

【0028】均一な被覆 一様な膜状の被覆形成物質の場合には、単一粒子におい
て被覆膜の厚さがいたるところで均一であることをい
う。被覆形成物質が超微粒子状、島状又は突起物状の場
合には、超微粒子状、島状又は突起物状の被覆形成物質
が均一な分布で被覆することをいう。被覆形成物質の生
成過程で、避けられない不均一さは、均一の範疇に含ま
れるものである。
Uniform coating In the case of a uniform film-forming coating material, it means that the thickness of the coating film is uniform every single particle. When the coating forming substance is in the form of ultrafine particles, islands or protrusions, it means that the coating forming substance in the form of ultrafine particles, islands or protrusions is coated in a uniform distribution. Inevitable inhomogeneities in the process of producing coating-forming substances are included in the category of uniformity.

【0029】被覆空間に投入の定義 被覆空間に投入とは、例えば、自由落下等の落下によっ
て芯粒子粉体を被覆空間に導入することをいう。搬送ガ
スにより投入する場合には、芯粒子粉体を芯粒子粉体の
粒子・気体混合物の流れの方向に乗せて導入したり、気
体に乗せて流れの方向へ、或いは気体に乗り方向が変え
られて導入することをいう。または、搬送ガスの作用を
受けて導入することをもいう。例えば、搬送ガスの波動
現象、具体的には非線系波動によって導入することをも
いう。或いは、ガス中の音波、超音波、磁場、電子線等
によって被覆空間に導入することをもいう。また、外
場、例えば電場、磁場、電子線等により導入することを
もいう。具体的には、電場、磁場、電子線等により粉体
粒子を帯電させ、または帯磁させ引力又は斥力により被
覆空間に導入することをもいう。また、ガスの背圧や減
圧によって吸い込まれ、導入することも含む。
Definition of charging into the coating space The charging into the coating space means, for example, introducing the core particle powder into the coating space by falling such as free fall. In the case of charging with carrier gas, the core particle powder is introduced by carrying it in the flow direction of the particle / gas mixture of the core particle powder, or by carrying it on the gas in the flow direction, or by changing the riding direction of the gas. It means being introduced. Alternatively, it also means that the gas is introduced under the action of the carrier gas. For example, it also refers to introduction by a wave phenomenon of carrier gas, specifically, a non-linear wave. Alternatively, it also means introducing into the coating space by a sound wave in a gas, an ultrasonic wave, a magnetic field, an electron beam, or the like. It also means introduction by an external field such as an electric field, a magnetic field, or an electron beam. Specifically, it also means that the powder particles are charged or magnetized by an electric field, a magnetic field, an electron beam or the like and introduced into the coating space by an attractive force or a repulsive force. It also includes the introduction and introduction of gas by back pressure or pressure reduction.

【0030】被覆空間 被覆空間とは、被覆形成物質の原料から気相を経て生成
する被覆形成物質前駆体及び/又は気相状態の被覆形成
物質前駆体と芯粒子粉体の粒子が接触及び/又は衝突す
る空間をいう。あるいは、芯粒子粉体の粒子の表面を被
覆形成物質で被覆する空間領域をいう。
Coating Space The coating space is a precursor of a coating-forming substance produced from a raw material of a coating-forming substance in a gas phase and / or a precursor of the coating-forming substance in a gas phase and particles of the core particle powder contact and / or Or, it means the space where it collides. Alternatively, it refers to a space region in which the surface of the particles of the core particle powder is coated with the coating forming substance.

【0031】被覆室 被覆室とは、被覆空間を一部以上有する室をいう。より
具体的には、被覆室とは、被覆空間を含む仕切られた、
又は略仕切られた(略閉じた、半閉じた)室であって、
被覆空間を一部以上含む室である。
Coating Chamber The coating chamber is a chamber having a part or more of the coating space. More specifically, the coating chamber is a partition including a coating space,
Or it is a room that is partitioned (generally closed, semi-closed),
This is a room that contains a part or more of the coated space.

【0032】気中 気中とは、真空又は気相状態の空間内をいう。ここで、
本発明において、気相状態とは、分子流、イオン流、プ
ラズマ、ガス、蒸気、エアロゾルなどの状態をいう。真
空とは、技術的には、減圧状態をさす。どんな減圧下で
も、厳密にはガス、分子、原子、イオン等が含まれる。
In the air, the air refers to the inside of a vacuum or a gas phase space. here,
In the present invention, the gas phase state means a state such as molecular flow, ion flow, plasma, gas, vapor, and aerosol. The vacuum is technically a reduced pressure state. Strictly speaking, gas, molecule, atom, ion, etc. are contained under any reduced pressure.

【0033】被覆形成物質前駆体 被覆形成物質前駆体とは、被覆形成物質の前駆体であ
る。より詳しくは、気相状態の被覆形成物質の原料がそ
のまま、又は被覆形成物質の原料から気相を経て形成及
び/又は合成され、被覆を施す対象物となる粒子である
芯粒子に被覆を形成する直前までの物質をいう。被覆形
成物質前駆体は、被覆形成物質の原料から、気相を経て
形成及び/又は合成する限り、状態の制限はない。被覆
形成物質の原料が気相の場合、原料が被覆形成物質前駆
体にもなりうる。被覆形成物質前駆体そのものが気相で
あってもよい。また、被覆形成物質前駆体が反応性物質
の場合は、反応前でも良く、反応中でもよく、反応後で
もよい。被覆形成物質前駆体の具体例としては、イオ
ン、原子、分子、クラスター、原子クラスター、分子ク
ラスター、クラスターイオン、超微粒子、ガス、蒸気、
エアロゾル等が挙げられる。
Coating Forming Substance Precursor A coating forming substance precursor is a precursor of a coating forming substance. More specifically, the raw material of the coating-forming substance in the vapor phase is formed as it is, or is formed and / or synthesized from the raw material of the coating-forming substance through the vapor phase to form a coating on the core particles which are particles to be coated. It refers to the substance until just before. The coating substance precursor is not limited in its state as long as it is formed and / or synthesized from the raw material of the coating substance via the gas phase. When the raw material of the coating forming substance is in the gas phase, the raw material can also be a coating forming substance precursor. The coating forming material precursor itself may be in the gas phase. When the coating-forming substance precursor is a reactive substance, it may be before the reaction, during the reaction, or after the reaction. Specific examples of the coating material precursor include ions, atoms, molecules, clusters, atomic clusters, molecular clusters, cluster ions, ultrafine particles, gas, vapor,
Examples thereof include aerosol.

【0034】被覆形成物質の原料 被覆形成物質の原料とは、気相を経て被覆を形成する物
質となる原料物質をいう。被覆形成物質の原料の形態の
具体例として、塊状の固体、粉体粒子、気体、液体等が
挙げられる。
Raw Material of Coating Forming Material The raw material of the coating forming material means a raw material which becomes a material which forms a coating through a gas phase. Specific examples of the form of the raw material of the coating forming substance include lumpy solids, powder particles, gas and liquid.

【0035】分散度β 分散度βとは、粉体分散装置の分散性能を評価する指数
として増田、後藤氏らが提案(化学工学、第22回、秋
季大会研究発表講演要旨集、P349(1989)参
照)したように、全粒子の重量に対する、見かけの一次
粒子の重量の割合と定義する。ここで、見かけの一次粒
子状態の粒子とは、任意の分散状態の粉体粒子の質量基
準の頻度分布fm2と完全分散されている粉体粒子の質量
基準の頻度分布fm1のオーバーラップしている部分の割
合を示し、次の式のβで表される。
Dispersity β Dispersity β is an index for evaluating the dispersion performance of a powder disperser, proposed by Masuda and Goto (Chemical Engineering, 22nd Autumn Meeting, Abstracts of Research Presentations, P349 (1989) )), The ratio of the weight of apparent primary particles to the weight of all particles is defined. Here, the particles in the apparent primary particle state are the overlap of the mass-based frequency distribution f m2 of the powder particles in an arbitrary dispersed state and the mass-based frequency distribution f m1 of the completely dispersed powder particles. The ratio of the part that is shown is represented by β in the following equation.

【0036】[0036]

【数1】 上式において、粒子径の単位(μm)は規定されるもの
ではない。上式は質量基準で表した粒度分布を基にして
分散度を評価しているが、本来分散度は体積基準で表し
た粒度分布を基にして評価されるべきものである。しか
し粉体粒子密度が同じである場合には質量基準で表した
粒度分布と体積基準で表した粒度分布は同じになる。そ
こで実用上測定が容易な質量基準の粒度分布を測定し、
それを体積基準の粒度分布として用いている。従って本
来の分散度βは次の式及び図1(a)の斜線部分の面積で
表される。
[Equation 1] In the above equation, the unit of particle diameter (μm) is not specified. In the above formula, the dispersity is evaluated based on the particle size distribution expressed on a mass basis, but the dispersity should be evaluated based on the particle size distribution expressed on a volume basis. However, when the powder particle densities are the same, the particle size distribution expressed by mass and the particle size distribution expressed by volume are the same. Therefore, the particle size distribution based on mass, which is practically easy to measure, is measured,
It is used as a volume-based particle size distribution. Therefore, the original dispersion degree β is expressed by the following equation and the area of the shaded portion in FIG.

【0037】[0037]

【数2】 上式において、粒子径の単位(μm)は規定されるもの
ではない。そして芯粒子粉体の分布及び平均粒子径は、
特に断らない限り基本的には体積基準を用いることとす
る。
[Equation 2] In the above equation, the unit of particle diameter (μm) is not specified. And the distribution and average particle size of the core particle powder are
Unless otherwise specified, the volume standard is basically used.

【0038】体積基準頻度分布 体積基準頻度分布とは、粒子径の分布をある粒子径に含
まれる体積割合をもって表したものをいう。
Volume-Based Frequency Distribution The volume-based frequency distribution refers to the distribution of particle diameters expressed by the volume ratio contained in a certain particle diameter.

【0039】(〔D1,D2〕,≧90%)の定義 (〔D1,D2〕,≧90%)分布とは、D1、D2を粒子
径、但しD1<D2とするとき、D1以上でD2以下の粒子
が体積で90%以上含まれる分布を表し、図2(b)のよ
うに斜線の部分の割合が90%以上である粒子からなる
粉体を表す。
[0039] ([D 1, D 2], ≧ 90%) Definition of ([D 1, D 2], ≧ 90%) and the distribution, D 1, the particle diameter D 2, where D 1 <D 2 , A distribution in which 90% or more by volume of particles of D 1 or more and D 2 or less is contained, and a powder composed of particles having a shaded portion ratio of 90% or more as shown in FIG. Represent

【0040】体積基準頻度分布(〔DM/5,5DM〕,
≧90%)の定義 粒度分布が、体積基準頻度分布で(〔DM/5,5
M〕,≧90%)分布とは、DMを体積基準の平均粒子
径とするとき、DMの1/5倍の粒子径以上、DMの5倍
の粒子径以下の粒子を体積で90%以上含む分布を表
す。例えば、平均粒子径DMが20μmで体積基準頻度
分布が(〔DM/5,5DM〕,≧90%)とは、体積基
準の平均粒子径が20μmで、4μm以上且つ100μ
m以下の粒子径の粒子が体積で90%以上含まれるよう
な分布を表す。ここで、体積基準の平均粒子径DMは、
Volume-based frequency distribution ([D M / 5,5D M ],
≧ 90%) The particle size distribution is a volume-based frequency distribution ([D M / 5,5
D M], and is ≧ 90%) distribution, when the average particle diameter on a volume basis of D M, 1/5 times the particle size or less on the D M, volume 5 times under particle size or less particles of D M Represents a distribution containing 90% or more. For example, when the average particle size D M is 20 μm and the volume-based frequency distribution is ([D M / 5,5D M ], ≧ 90%), the volume-based average particle size is 20 μm and 4 μm or more and 100 μm or more.
The distribution is such that particles having a particle diameter of m or less are contained in an amount of 90% or more by volume. Here, the volume-based average particle diameter D M is

【数3】 又は技術的にはある粒子径間隔をDi±△Di/2(△D
iは区分の幅)内にある粒子群の体積をViとすると、 DM=Σ(vii)/Σvi と表される。
[Equation 3] Or, technically, a certain particle size interval is D i ± ΔD i / 2 (ΔD
If the volume of the particle group within ( i is the width of the section) is V i, it can be expressed as D M = Σ (v i D i ) / Σv i .

【0041】被覆開始領域 微粒子高分散処理手段群の最終処理後、初めて被覆が開
始される領域を被覆開始領域という。従って、微粒子高
分散処理手段群の最終処理以前では、初めて被覆が開始
される領域でも、ここでいう被覆開始領域ではない。
Coating start region The region where coating is started for the first time after the final treatment of the group of means for highly dispersing fine particles is called the coating start region. Therefore, even before the final treatment of the fine particle high-dispersion treatment means group, the area where the coating is first started is not the coating start area here.

【0042】被覆開始領域での分散度β 本発明では、(1)体積基準頻度分布で平均粒子径が1
0μmを越え20μm以下の芯粒子粉体を準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを80%以上とするか、又は(2)体積
基準頻度分布で平均粒子径が20μmを越え50μm以
下の芯粒子粉体を準微粒子高分散処理手段群の最終処理
により気中分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを90%以
上とするか、又は(3)体積基準頻度分布で平均粒子径
が50μmを越え300μm以下の芯粒子粉体を準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを95%以上とするか、又は
(4)体積基準頻度分布で平均粒子径が300μmを越
え800μm以下の芯粒子粉体を準微粒子高分散処理手
段群の最終処理により気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とし、その芯粒子粉体の粒子の分
散度βを97%以上とするか、又は(5)体積基準頻度
分布で平均粒子径が800μmを越える芯粒子粉体を、
準微粒子高分散処理手段群の最終処理により気中に分散
させて高分散芯粒子粉体の粒子・気体混合物とし、その
芯粒子粉体の粒子の分散度βを99%以上とした領域に
被覆空間の被覆開始領域を位置せしめた被覆室を設け
る。
Dispersion degree β in coating start region In the present invention, (1) the volume-based frequency distribution has an average particle size of 1
A core particle powder having a particle size of more than 0 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β is set to 80% or more, or (2) the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. A particle / gas mixture of highly dispersed core particle powder, and the degree of particle dispersion β of the core particle powder is 90% or more, or (3) the volume-based frequency distribution has an average particle diameter of more than 50 μm and 300 μm or less. Is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersity β of the particles of the core particle powder is 95%. Or more, or (4) flat by volume standard frequency distribution A core particle powder having a particle diameter of more than 300 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. A core particle powder having a particle dispersity β of 97% or more, or (5) a core particle powder having an average particle diameter of more than 800 μm in a volume-based frequency distribution,
By the final treatment of the quasi-fine particle high dispersion treatment means group, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the area of the core particle powder with a dispersity β of 99% or more is covered. A coating chamber in which the coating start region of the space is located is provided.

【0043】上記した被覆空間の被覆開始領域における
分散度であれば、芯粒子粉体の粒子が、体積基準頻度分
布で平均粒子径が10μmを越える準微粒子芯粒子粉体
の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、
実質的に気中に単一粒子状態に分散して被覆に供するこ
とができ、被覆空間の被覆開始領域を通過する全ての芯
粒子粉体の粒子の表面に、被覆形成物質前駆体が均等に
接触及び/又は衝突するため、単一粒子に均一な量の被
覆形成物質を付けることができる。平均粒子径が10μ
mを越える準微粒子において、上記分散度βは、芯粒子
粉体の平均粒子径と共に連続的に変化するが、表現困難
なため便宜的に段階的な表現とした。
As far as the degree of dispersion in the coating start region of the above-mentioned coating space is concerned, the particles of the core particle powder are quasi-fine particles having an average particle diameter of more than 10 μm in the volume-based frequency distribution, or mainly particles of the quasi-fine particles. Core particles consisting of fine particles
The particles can be dispersed in a single particle state substantially in the air to be used for coating, and the coating material precursor is evenly distributed on the surface of all particles of the core particle powder passing through the coating start region of the coating space. Due to contact and / or collision, a uniform amount of coating-forming substance can be applied to a single particle. Average particle size is 10μ
In the case of quasi-fine particles exceeding m, the dispersity β changes continuously with the average particle diameter of the core particle powder, but it is difficult to express it, so it is expressed stepwise for convenience.

【0044】好適には、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体を準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを90%以上とするか、又は
(2)体積基準頻度分布で平均粒子径が20μmを越え
50μmの芯粒子粉体を準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
95%以上とするか、又は(3)体積基準頻度分布で平
均粒子径が50μmを越え300μm以下の芯粒子粉体
を準微粒子高分散処理手段群の最終処理により気中に分
散させて高分散芯粒子粉体の粒子・気体混合物とし、そ
の芯粒子粉体の粒子の分散度βを97%以上とするか、
又は(4)体積基準頻度分布で平均粒子径が300μm
を越える芯粒子粉体を準微粒子高分散処理手段群の最終
処理により気中に分散させて高分散芯粒子粉体の粒子・
気体混合物とし、その芯粒子粉体の粒子の分散度βを9
9%以上とした空間領域に被覆空間の被覆開始領域を位
置せしめた被覆室を設けることである。被覆空間の被覆
開始領域をこのように位置せしめた被覆室であれば、芯
粒子粉体の粒子が、体積基準頻度分布で平均粒子径が1
0μmを越える準微粒子芯粒子粉体の粒子又は主に準微
粒子からなる芯粒子粉体の粒子に対して、単一粒子単位
で被覆形成物質をより均一に被覆でき、且つ各芯粒子ご
とに被覆量のより均一な被覆ができる。
Preferably, (1) a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 10 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core. A particle / gas mixture of particle powder, and the degree of particle dispersion β of the core particle powder is 90% or more, or (2) core particle powder having an average particle size of more than 20 μm and 50 μm in a volume-based frequency distribution. Whether the body is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more. Or (3) particles of highly dispersed core particle powder obtained by dispersing core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in the volume standard frequency distribution into the air by the final treatment of the quasi-fine particle high dispersion treatment means group.・ As a gas mixture, the core particle powder Whether the divergence β is 97% or more,
Or (4) volume-based frequency distribution with an average particle size of 300 μm
Particles of highly dispersed core particles are dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group.
As a gas mixture, the degree of particle dispersion β of the core particle powder is 9
It is to provide a coating chamber in which the coating start region of the coating space is located in the space region of 9% or more. In the coating chamber in which the coating start region of the coating space is positioned in this way, the particles of the core particle powder have an average particle diameter of 1 in volume-based frequency distribution.
The particles of the quasi-fine particle core particles having a particle size of more than 0 μm or the particles of the quasi-fine particle mainly made of quasi-fine particles can be more uniformly coated with the coating material in a single particle unit, and each core particle can be coated. A more uniform amount of coating is possible.

【0045】体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子は、気中に於いては凝集作用が
働き、粒子同士で接触及び/又は衝突しあい高分散芯粒
子粉体の粒子・気体混合物中の芯粒子粉体の粒子の分布
が不均一になる。しかし、上記、芯粒子粉体の粒子の粒
径に応じた分散度のごとき分散状態で被覆を開始すれ
ば、準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子単一粒子単位により均一に被覆形成
物質を被覆でき、且つ各粒子ごとにより均一な量に被覆
形成物質を被覆できる。
Volume-based frequency distribution with an average particle size of 10 μm
Particles of quasi-fine particle core particles having a particle size of more than 50% or particles of core particle powder mainly composed of quasi-fine particles have an aggregating action in the air, and the particles are in contact with each other and / or collide with each other to obtain highly dispersed core particle powder. Non-uniform distribution of particles in the core particle powder in the body particle / gas mixture. However, if the coating is started in a dispersed state such as the degree of dispersion according to the particle size of the core particle powder, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles The single particle unit can coat the coating forming material uniformly, and each particle can coat the coating forming material in a more uniform amount.

【0046】準微粒子高分散処理手段群 本発明に於いて、準微粒子高分散処理手段群とは、 (A) 少なくとも分散手段を1以上有し、 (B) 最終の処理手段として、(a)芯粒子粉体の粒子
を気中に分散させる分散手段、又は、(b)芯粒子粉体
の粒子を気中に分散させた芯粒子粉体の粒子と気体との
混合物において低分散芯粒子粉体部分を分離し、芯粒子
粉体の粒子が主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子
粉体の粒子・気体混合物選択手段と高分散芯粒子粉体の
粒子・気体混合物選択手段により分離された低分散芯粒
子粉体部分を準微粒子高分散処理手段群中の分散手段の
内の最終分散手段及び/又は最終分散手段以前の処理手
段に搬送するフィードバック手段とを備えた高分散芯粒
子粉体の粒子・気体混合物選択手段を有するものであ
る。
Semi-fine particle high dispersion treatment means group In the present invention, the semi-fine particle high dispersion treatment means group includes (A) at least one dispersion means and (B) a final treatment means (a) Dispersing means for dispersing particles of the core particle powder in the air, or (b) a low dispersion core particle powder in a mixture of particles of the core particle powder in which the particles of the core particle powder are dispersed in the air and gas. A particle / gas mixture of highly dispersed core particle powder that separates the body part and selects the particle / gas mixture of highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. The final dispersion means and / or the final dispersion of the dispersion means in the quasi-fine particle high dispersion treatment means group for the powder portion of the low dispersion core particles separated by the selection means and the particle / gas mixture selection means of the high dispersion core particle powder. High-dispersion core with feedback means for conveying to processing means before the means And it has a particle-gas mixture selection means child powder.

【0047】好適には、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体を当
該準微粒子高分散処理手段群の最終処理により気中に分
散させて高分散芯粒子粉体の粒子・気体混合物とし、そ
の芯粒子粉体の粒子の分散度βを80%以上とするか、
又は(2)体積基準頻度分布で平均粒子径が20μmを
越え50μm以下の芯粒子粉体を準微粒子高分散処理手
段群の最終処理により気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とし、その芯粒子粉体の粒子の分
散度βを90%以上とするか、又は(3)体積基準頻度
分布で平均粒子径が50μmを越え300μm以下の芯
粒子粉体を準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを95%以上と
するか、又は(4)体積基準頻度分布で平均粒子径が3
00μmを越え800μm以下の芯粒子粉体を準微粒子
高分散処理手段群の最終処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉
体の粒子の分散度βを97%以上とするか、又は(5)
体積基準頻度分布で平均粒子径が800μmを越える芯
粒子粉体を、準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを99%以上
とする分散性能を有するものである。前記被覆開始領域
における種々の分散度に対応してそれらと同等以上の分
散性能の準微粒子高分散処理手段群を設けることによ
り、被覆開始領域において、各分散度に応じた高品位な
被覆を施すことができる。
Preferably, (1) core particle powder having a volume-based frequency distribution and an average particle diameter of more than 10 μm and 20 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group and highly dispersed. The particle / gas mixture of the core particle powder is used, and the degree of particle dispersion β of the core particle powder is 80% or more, or
Or (2) a core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to form particles of the highly dispersed core particle powder. As a gas mixture, the degree of dispersion β of the particles of the core particle powder is 90% or more, or (3) the core particle powder having an average particle size of more than 50 μm and 300 μm or less in the volume standard frequency distribution is quasi-fine particle The final treatment of the dispersion treatment means group disperses in air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more, or (4) Volume-based frequency distribution with an average particle size of 3
A core particle powder of more than 00 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β should be 97% or more, or (5)
A core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder. It has a dispersibility in which the dispersity β of the particles of the particle powder is 99% or more. Corresponding to various dispersities in the coating start region, by providing a group of quasi-fine particle high dispersion treatment means having a dispersion performance equivalent to or higher than those of the dispersion start regions, a high-quality coating corresponding to each dispersity is performed in the coating start region. be able to.

【0048】最終処理手段 準微粒子高分散処理手段群の最終の処理手段が分散手段
の場合、この分散処理手段を微粒子高分散処理手段群の
最終処理手段という。又、準微粒子高分散処理手段群の
最終の処理手段が、準微粒子高分散処理手段の最終の分
散手段へ、高分散芯粒子粉体の粒子・気体混合物選択処
理工程時に於いて低分散状態であったために選択分離さ
れた部分を搬送するフィードバック手段を備えた高分散
芯粒子粉体の粒子・気体混合物選択手段、又は当該最終
の分散手段より前の処理手段に、高分散芯粒子粉体の粒
子・気体混合物選択処理工程時に於いて低分散状態であ
ったために選択分離された部分を搬送するフィードバッ
ク手段を備えた高分散芯粒子粉体の粒子・気体混合物選
択手段の場合、この高分散芯粒子粉体の粒子・気体混合
物選択手段を準微粒子高分散処理手段群の最終処理手段
という。尚、準微粒子高分散処理手段群の最終処理手段
であるフィードバック手段を備えた高分散芯粒子粉体の
粒子・気体混合物選択手段より前に設ける(例えば、フ
ィードバック手段を備えた高分散芯粒子粉体の粒子・気
体混合物選択手段と最終分散手段の間、或いは最終分散
手段より前)高分散芯粒子粉体の粒子・気体混合物選択
手段は、フィードバック手段の有無にかかわらず微粒子
高分散処理手段群の構成要素である。
Final Treatment Means When the final treatment means of the semi-fine particle high dispersion treatment means group is a dispersion means, this dispersion treatment means is referred to as the final treatment means of the fine particle high dispersion treatment means group. Also, the final processing means of the quasi-fine particle high dispersion processing means group is added to the final dispersion means of the quasi-fine particle high dispersion processing means in a low dispersion state at the time of the particle / gas mixture selective processing step of the highly dispersed core particle powder. Since there was a particle / gas mixture selecting means for the highly dispersed core particle powder provided with a feedback means for conveying the selected and separated portion, or a treatment means before the final dispersing means, the highly dispersed core particle powder Highly dispersed core in the case of the particle / gas mixture selecting means of powder particles, which has a feedback means for conveying the selectively separated portion because it was in a low dispersion state during the particle / gas mixture selection treatment step. The means for selecting the particle / gas mixture of the particle powder is referred to as the final treatment means of the quasi-fine particle high dispersion treatment means group. In addition, it is provided before the particle / gas mixture selecting means of the highly dispersed core particle powder having the feedback means which is the final treatment means of the quasi-fine particle highly dispersed treatment means group (for example, the highly dispersed core particle powder having the feedback means). Between the particle / gas mixture selecting means of the body and the final dispersing means, or before the final dispersing means) The highly dispersed core particle powder particle / gas mixture selecting means is a group of means for high-dispersion treatment of fine particles regardless of presence / absence of feedback means. Is a component of.

【0049】分散手段 準微粒子を分散するために用いる手段を分散手段とい
う。この分散手段は少しでも或いは僅かでも分散効果を
有するものは分散手段として使用可能であり、これを分
散手段とする。例えば、一般に供給手段として用いる空
気輸送用のロータリーフィーダーやインジェクションフ
ィーダー(粉体工学会編:“粉体工学便覧”、日刊工業
新聞社(1986)P568、P571)は、分散効果
も有するので、分散目的の手段として使用する場合は分
散手段である。後述の分散維持・促進手段も分散目的で
(βを高める目的で)使用する場合は分散手段となる。
そしてこの分散手段は単一の装置、機器である場合も、
複合された装置、機器である場合もあり、これらを総称
して準微粒子高分散処理手段群と呼ぶ。この準微粒子高
分散処理手段群は、芯粒子粉体の粒子の加速及び/又は
速度勾配に置く気流による分散、芯粒子粉体の粒子の静
止障害物及び/又は回転体でなる障害物への衝突による
分散、芯粒子粉体の粒子の流動層及び/又は脈流及び/
又は回転ドラム及び/又は振動及び/又は掻取りからな
る機械的解砕による分散等の内の選択された一種類以上
の分散の機構を備えたものをいう。
Dispersing Means The means used to disperse the quasi-fine particles is called a dispersing means. This dispersing means can be used as a dispersing means if it has a dispersing effect even if only a little or slightly. For example, a rotary feeder for air transportation and an injection feeder (edited by Japan Society of Powder Engineering: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P568, P571), which are generally used as a supply means, have a dispersing effect, and thus are dispersed. When used as a target means, it is a dispersion means. When the dispersion maintaining / promoting means described later is also used for the purpose of dispersion (to increase β), it becomes a dispersion means.
And even if this dispersion means is a single device or device,
It may be a combined device or device, and these are collectively referred to as a quasi-fine particle high dispersion treatment means group. This quasi-fine particle high dispersion treatment means group disperses particles of the core particle powder by an air flow that is placed in an acceleration and / or velocity gradient, and the particles of the core particle powder to stationary obstacles and / or obstacles composed of a rotating body. Dispersion by collision, fluidized bed of particles of core particle powder and / or pulsating flow and / or
Alternatively, it means one provided with a mechanism for one or more kinds of dispersion selected from among dispersion by mechanical disintegration consisting of a rotating drum and / or vibration and / or scraping.

【0050】具体的には、準微粒子高分散処理手段群
は、エジェクタ型分散機、ベンチュリ型分散機、細管、
撹拌機、気流中の障害物を利用した分散機、ジェットの
吹付けを利用した分散機、螺旋管、回転羽根を利用した
分散機、回転するピンを利用した分散機(ケージミ
ル)、流動層型分散機、脈流を利用した分散機、回転ド
ラムを利用した分散機、振動を利用した分散機、振動ふ
るい、スクレーパによる掻き取りを利用した分散機、SA
EI、Gonell式分散機、中条式分散機、Roller式分散機、
オリフィス型分散機、B.M式分散機、Timbrell式分散
機、Wright式分散機等の選択された一種以上からなる分
散手段を備えたものである(粉体工学会編:“粉体工学
便覧”、日刊工業新聞社(1986)P430)。
Specifically, the quasi-fine particle high dispersion treatment means group includes an ejector type disperser, a Venturi type disperser, a narrow tube,
Stirrer, Disperser that uses obstacles in the air flow, Disperser that uses jet spraying, Spiral tube, Disperser that uses rotating blades, Disperser that uses rotating pins (cage mill), fluidized bed type Disperser, Disperser using pulsating flow, Disperser using rotating drum, Disperser using vibration, Vibration sieve, Disperser using scraping by scraper, SA
EI, Gonell type disperser, Nakajo type disperser, Roller type disperser,
Orifice type disperser, BM type disperser, Timbrell type disperser, Wright type disperser, etc. are provided with a dispersing means consisting of one or more types selected. Nikkan Kogyo Shimbun (1986) P430).

【0051】また、特開昭56−1336号に記載の撹
拌羽根を利用した分散機、特開昭58−163454号
に記載の高速気流と分散ノズルを利用した分散機、特開
昭59−199027号に記載の回転羽根による分散作
用とプラズマイオンによる分散作用を利用した分散機、
特開昭59−207319号に記載のプラズマイオンに
よる分散作用を利用した分散機、特開昭59−2166
16号に記載のエジェクタとプラズマイオンによる分散
作用を利用した分散機、特開昭59−225728号に
記載のエジェクタとイオン流の分散作用を利用した分散
機、特開昭59−183845号に記載のプラズマイオ
ンの分散作用を利用した分散機、特開昭63−1664
21号に記載の分散羽根と圧力気体による分散作用を利
用した分散機、特開昭62−176527号に記載のラ
イン状又はリング状スリット型噴出口を用いた分散機、
特開昭63−221829号に記載の網状羽根を利用し
た分散機、特開昭63−1629号に記載の噴射ノズル
からの高速気流による分散作用を利用した分散機、実開
昭63−9218号に記載の多数の細孔を利用した分散
機、実開昭62−156854号に記載のエジェクタ型
分散機、実開昭63−6034号に記載の細孔とオリフ
ィスを利用した分散機等の公報に記載のものも使用可能
である。準微粒子高分散処理手段群に好適な分散手段と
して、特願昭63−311358号、特願平1−710
71号、特願平2−218537号等に記載の装置が挙
げられる。
Further, a disperser utilizing a stirring blade described in JP-A-56-1336, a disperser utilizing a high-speed air stream and a dispersion nozzle described in JP-A-58-163454, and JP-A-59-199027. Disperser utilizing the dispersing action by the rotating blade and the dispersing action by plasma ions described in No.
A disperser utilizing the dispersing action of plasma ions described in JP-A-59-207319, and JP-A-59-2166.
No. 16, a disperser utilizing the dispersing action of an ejector and plasma ions, No. 59-225728, a disperser utilizing the dispersing action of an ejector and an ion flow, and No. 59-183845. Disperser utilizing the dispersing action of plasma ions of JP-A-63-1664
No. 21, a disperser utilizing a dispersing action by a dispersion blade and a pressure gas, a disperser using a line-shaped or ring-shaped slit type jet outlet described in JP-A-62-176527,
A disperser using a mesh blade described in JP-A No. 63-221829, a disperser using a dispersing action by a high-speed air stream from an injection nozzle described in JP-A No. 63-1629, No. Shokai 63-9218. And the ejector type disperser described in Japanese Utility Model Publication No. 62-156854, and the disperser using the micropores and orifices described in Japanese Utility Model Publication No. 63-6034. Those described in can also be used. Dispersing means suitable for a group of quasi-fine particle high-dispersion processing means include Japanese Patent Application No. 63-311358 and Japanese Patent Application No. 1-710.
71 and Japanese Patent Application No. 2-218537.

【0052】高分散芯粒子粉体の粒子・気体混合物選択
手段 高分散芯粒子粉体の粒子・気体混合物選択手段とは芯粒
子粉体の粒子・気体混合物から、低分散芯粒子粉体の粒
子・気体混合物を分離し、主に単一粒子状態の粒子を含
む高分散芯粒子粉体の粒子・気体混合物を選択する手段
をいう。一次粒子の集合体である凝集粒子は、見かけの
粒子径が一次粒子の粒子径に比べ大きくなることから、
例えば乾式分級手段により分離が可能である。高分散芯
粒子粉体の粒子・気体混合物選択手段の例としては、重
力を利用した分級手段、慣性力を利用した分級手段、遠
心力を利用した分級手段、静電気を利用した分級手段、
流動層を利用した分級手段等から一種以上選択された乾
式分級手段が挙げられる。この高分散芯粒子粉体の粒子
・気体混合物選択手段の例としては、重力分級機、慣性
分級機、遠心分級機、サイクロン、エアセパレータ、ミ
クロンセパレータ、ミクロプレックス、ムルチプレック
ス、ジグザグ分級機、アキュカット、コニカルセパレー
タ、ターボクラシファイア、スーパセパレータ、ディス
パージョンセパレータ、エルボジェット、流動層分級
機、バーチュアルインパクタ、O-Sepa、ふるい、バイブ
レーティングスクリーン、シフタ(粉体工学会編:“粉
体工学便覧”日刊工業新聞社、P514(1986))
等が挙げられる。
High-dispersion core particle powder particle / gas mixture selection means High-dispersion core particle powder particle / gas mixture selection means From low-dispersion core particle powder particles / gas mixture A means for separating a gas mixture and selecting a particle / gas mixture of highly dispersed core particle powder mainly containing particles in a single particle state. Aggregated particles, which are aggregates of primary particles, have an apparent particle size larger than the particle size of primary particles,
For example, it is possible to separate by a dry classification means. Examples of particles / gas mixture selection means for highly dispersed core particle powder include classification means using gravity, classification means using inertial force, classification means using centrifugal force, classification means using static electricity,
Examples include dry classification means selected from one or more kinds of classification means using a fluidized bed. Examples of means for selecting a particle / gas mixture of this highly dispersed core particle powder include a gravity classifier, inertia classifier, centrifugal classifier, cyclone, air separator, micron separator, microplex, multiplex, zigzag classifier, accu classifier. Cut, conical separator, turbo classifier, super separator, dispersion separator, elbow jet, fluidized bed classifier, virtual impactor, O-Sepa, sieve, vibrating screen, shifter (Powder Engineering Handbook: “Powder Engineering Handbook”) Nikkan Kogyo Shimbun, P514 (1986))
Etc.

【0053】芯粒子粉体の粒子・気体混合物 芯粒子粉体の粒子・気体混合物とは、(a)芯粒子粉体の
粒子が気中に一様に浮遊した均質流れ(一様な浮遊流
れ)、(b)芯粒子粉体の粒子が気中のある領域で非一様
な分布を示す不均質流れ(非均質浮遊流れ)、(c)芯粒
子粉体の粒子の摺動層を伴う流れ(摺動流れ)、又は
(d)芯粒子粉体の粒子の静止層を伴う流れを
Particle / gas mixture of core particle powder A particle / gas mixture of core particle powder is (a) a homogeneous flow in which particles of the core particle powder are uniformly suspended in air (a uniform floating flow). ), (B) Inhomogeneous flow (non-homogeneous floating flow) in which particles of the core particle powder show a non-uniform distribution in a certain area in the air, (c) accompanied by a sliding layer of particles of the core particle powder Flow (sliding flow), or
(d) Flow with a stationary layer of particles of core particle powder

【0054】低分散芯粒子粉体の粒子・気体混合物 低分散芯粒子粉体の粒子・気体混合物とは芯粒子粉体の
粒子・気体混合物の内、芯粒子粉体の粒子が主に単一粒
子状態以外の状態で気中に存在する芯粒子粉体の粒子・
気体混合物をいう。
Particles / gas mixture of low-dispersion core particle powder Particles / gas mixture of low-dispersion core particle powder In the particles / gas mixture of core particle powder, the particles of core particle powder are mainly single particles. Core particles that exist in the air in a state other than the particle state
Refers to a gas mixture.

【0055】高分散芯粒子粉体の粒子・気体混合物 高分散芯粒子粉体の粒子・気体混合物とは芯粒子粉体の
粒子が主に単一粒子状態で気中に存在する芯粒子粉体の
粒子・気体混合物をいう。高分散芯粒子粉体の粒子・気
体混合物は、極めて高分散であっても、実際には凝集粒
子を含む。低分散芯粒子粉体の粒子・気体混合物は、実
際には、凝集していない単粒子を含み、選択分離して低
分散芯粒子粉体の粒子・気体混合物と高分散芯粒子粉体
の粒子・気体混合物に分けられる。低分散芯粒子粉体の
粒子・気体混合物は、凝集粒子の選択分離及び/又は再
分散により、高分散芯粒子粉体の粒子・気体混合物とな
る。
Highly dispersed core particle powder particle / gas mixture Highly dispersed core particle powder particle / gas mixture is a core particle powder in which the particles of the core particle powder are mainly present in the air in a single particle state. Particle / gas mixture. The particle-gas mixture of the highly dispersed core particle powder actually contains agglomerated particles, even though it is extremely highly dispersed. The particles / gas mixture of the low-dispersion core particle powder actually contains non-aggregated single particles, and the particles / gas mixture of the low-dispersion core particle powder and the particles of the high-dispersion core particle powder are selectively separated. -Divided into gas mixtures. The particle / gas mixture of the low-dispersion core particle powder becomes a particle / gas mixture of the high-dispersion core particle powder by selectively separating and / or re-dispersing the agglomerated particles.

【0056】回収手段 被覆空間で被覆した被覆準微粒子を取り出す手段を回収
手段という。回収手段の内で回収処理の行われる部分を
回収部という。被覆空間の被覆開始領域を通過して被覆
した被覆準微粒子は、気中から直接取り出して回収する
か、又は気中から取り出して一時的に蓄えてから回収す
るか、又は、気体と共に回収される。回収手段の回収部
としては、隔壁(障害物)を利用した回収手段の回収
部、重力を利用した回収手段の回収部、慣性力を利用し
た回収手段の回収部、遠心力を利用した回収手段の回収
部、帯電による引力を利用した回収手段の回収部、熱泳
動力を利用した回収手段の回収部、ブラウン拡散を利用
した回収手段の回収部、ガスの背圧や減圧等による吸引
力を利用した回収手段の回収部等が利用可能である。こ
の回収手段の回収部の好適な例として、重力集塵機、慣
性集塵機、遠心力集塵機、濾過集塵機、電気集塵機、洗
浄集塵機、粒子充填層、サイクロン、バグフィルター、
セラミックスフィルター、スクラバー等が挙げられる。
Collecting Means The means for taking out the coated quasi-fine particles coated in the coating space is called collecting means. The part of the recovery means that performs the recovery process is called the recovery part. The coated quasi-fine particles coated by passing through the coating start region of the coating space are directly taken out from the air and collected, or taken out from the air and temporarily stored and then collected, or are collected together with the gas. . As the collecting unit of the collecting unit, a collecting unit of a collecting unit using a partition wall (obstacle), a collecting unit of a collecting unit using gravity, a collecting unit of a collecting unit using inertial force, a collecting unit using centrifugal force Collection part, collection part of collection means using attractive force due to electrification, collection part of collection means using thermophoretic force, collection part of collection means using Brownian diffusion, suction force by back pressure or decompression of gas, etc. It is possible to use the recovery unit of the recovery means used. As a preferred example of the recovery unit of this recovery means, gravity dust collector, inertial dust collector, centrifugal dust collector, filtration dust collector, electric dust collector, washing dust collector, particle packed bed, cyclone, bag filter,
Examples include ceramics filters and scrubbers.

【0057】結合材 本発明のダイヤモンド含有高硬度高密度複合焼結体の製
造に用いる結合材としては、圧力が2000MPa未満
で、1850℃を越えない温度で焼結することにより、
密度85%以上に緻密に焼結される結合材が選択され
る。好適には、更に、ダイヤモンドをグラファイト相に
相転移するのを促進しない結合材が選択される。或い
は、圧力が2000MPa未満で、1850℃を越えない
温度で焼結することにより、ダイヤモンドと反応して生
成する反応生成物の密度が85%以上である緻密な結合
材となるものが選択される。より好ましくは、圧力が2
000MPa未満で、1850℃を越えない温度で焼結し
て、密度が90%以上の緻密で、及び/又はビッカース
硬度が600以上の高硬度の結合材となるものが選択さ
れる。圧力が2000MPa未満で、1850℃を越えな
い温度で焼結することにより、密度85%以上の緻密な
結合材となる原料粉体は、周期律表1a、2a、3a、
4a、5a、6a、7a、1b、2b、3b、4b、5
b、6b、7b、8族金属、半導体、半金属、希土類金
属の内の一種類以上及び/又はこれらの内の一種類以上
を含む化合物の少なくとも一種類を含む粉体又は粒子か
ら選択される。より具体的には、この粉体又は粒子が、
B、Ti、Zr、Hf、Ta、Nb、V、SiC、Ti
C、ZrC、B4C、WC、HfC、TaC、NbC、
Si34、TiN、ZrN、AlN、HfN、TaN、
TiB、TiB2、ZrB2、HfB、HfB2、La
6、MoSi2、BP、Al23、Al2SiO5(ムラ
イト)、ZrO2(Y28、MgO又はCaO安定剤を
添加したジルコニア:PSZ又は正方晶ジルコニア多結
晶体:TZP)、MgAl24(スピネル)、の内の少
なくとも一種類から選ばれる粉体又は粒子でありうる。
好適な例として、例えばアルミナでは、高純度で易焼結
性の微細な原料、例えば、特開昭63−151616号
公報に記載のアンモニウム・アルミニウム炭酸塩熱分解
法によるアルミナであれば、常圧の普通焼結でも140
0℃程度の温度で緻密化するので好適である。更に、ア
ルミナの焼結を促進する効果のあるマグネシア(Mg
O)及び/又はチタニア(TiOx、x=1〜2)を体
積で10%まで含有する微細で高純度なアルミナ粉体で
あれば、前記特開昭63−151616号公報に記載の
アルミナ以外の高純度アルミナ、例えばバイヤー法、有
機アルミニウム加水分解法、及びアルミニウムミョウバ
ン熱分解法、エチレンクロルヒドリン法、水中火花放電
法等による、1μm以下の微細な粒子からなる純度99
%以上の高純度・易焼結性アルミナでも差し支えない。
Binder As the binder used in the production of the diamond-containing high hardness and high density composite sintered body of the present invention, the pressure is less than 2000 MPa, and the sintering is performed at a temperature not exceeding 1850 ° C.
A binder that is densely sintered to a density of 85% or more is selected. Suitably, furthermore, a binder is selected which does not promote the phase transition of diamond into the graphite phase. Alternatively, a dense binder having a density of the reaction product formed by reacting with diamond of 85% or more is selected by sintering at a pressure of less than 2000 MPa and not exceeding 1850 ° C. . More preferably, the pressure is 2
A binder that is sintered at a temperature of less than 000 MPa and not more than 1850 ° C. to be a dense binder having a density of 90% or more and / or a high hardness of Vickers hardness of 600 or more is selected. By sintering at a pressure of less than 2000 MPa and at a temperature not exceeding 1850 ° C., a raw material powder that becomes a dense binder having a density of 85% or more can be produced by the periodic table 1a, 2a, 3a,
4a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5
b, 6b, 7b, group 8 metal, semiconductor, semimetal, rare earth metal, and / or powder or particles containing at least one kind of compound containing one or more kinds thereof. . More specifically, the powder or particles are
B, Ti, Zr, Hf, Ta, Nb, V, SiC, Ti
C, ZrC, B 4 C, WC, HfC, TaC, NbC,
Si 3 N 4 , TiN, ZrN, AlN, HfN, TaN,
TiB, TiB 2 , ZrB 2 , HfB, HfB 2 , La
B 6, MoSi 2, BP, Al 2 O 3, Al 2 SiO 5 ( mullite), ZrO 2 (zirconia was added Y 2 O 8, MgO or CaO Stabilizer: PSZ or tetragonal zirconia polycrystals: TZP) , MgAl 2 O 4 (spinel), at least one kind of powder or particles.
As a preferable example, for example, alumina is a fine raw material having high purity and easy sinterability. Normal sintering of 140
It is suitable because it is densified at a temperature of about 0 ° C. Furthermore, magnesia (Mg
O) and / or titania (TiO x , x = 1 to 2) up to 10% by volume, as long as it is a fine and highly pure alumina powder, other than the alumina described in JP-A-63-151616. High-purity alumina, such as Bayer method, organoaluminum hydrolysis method, aluminum alum pyrolysis method, ethylene chlorohydrin method, underwater spark discharge method, etc.
%, High-purity, easily-sinterable alumina may be used.

【0058】前記アルミナ以外ではジルコニウムの酸化
物、好適には、共沈法によって製造される易焼結性のイ
ットリア添加部分安定化ジルコニア(2−4mol%Y2
3−ZrO2)粉体、或いはアルミナ−ジルコニア系粉体
(FCレポート、1〔5〕(1983)13−17)
や、チタン酸化物であるチタニア粉体(TiO2:第1
5回高圧討論会講演要旨集、(1973)P174)が
選択される。また、チタンの窒化物として、窒化チタン
(TiN:山田外、窯業協会誌、89、(1981)6
21〜625)も選択可能である。次に、本発明で用い
る被覆されたダイヤモンド準微粒子を調製する場合に採
用される準微粒子高分散処理手段群を添付の図面に基づ
いて説明することにする。
In addition to the above-mentioned alumina, zirconium oxide, preferably yttria-added partially stabilized zirconia (2-4 mol% Y 2 O), which is easily sinterable and is produced by a coprecipitation method.
3- ZrO 2 ) powder or alumina-zirconia powder (FC report, 1 [5] (1983) 13-17)
Or titania powder that is titanium oxide (TiO 2 : first
5th High-Press Conference Discussion Lecture Collection, (1973) P174) is selected. Further, as a titanium nitride, titanium nitride (TiN: Yamada Soga, Ceramic Industry Association, 89, (1981) 6
21 to 625) can be selected. Next, a group of means for high dispersion treatment of quasi-fine particles used when preparing coated diamond quasi-fine particles used in the present invention will be described with reference to the accompanying drawings.

【0059】準微粒子高分散処理手段群の図の説明 図2(a)は被覆されたダイヤモンド準微粒子を調製する
際の準微粒子高分散処理手段群の基本的な構成の一例を
表すブロック図である。芯粒子粉体の粒子を分散させる
最終の分散手段A、最終の分散手段以前の分散処理手段
群の構成要素dで構成されている。εは、芯粒子粉体の
粒子の内、主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物である。構成要素dとして
は、分散手段、供給手段、高分散芯粒子粉体の粒子・気
体混合物選択手段等任意の処理手段を単独又は組み合わ
せて使用できる。構成要素dは、必ずしも設けなくとも
良い。準微粒子高分散処理手段群は、好適には最終の処
理手段である分散手段Aの処理後、(1)体積基準頻度
分布で平均粒子径が10μmを越え20μm以下の芯粒
子粉体に対し、分散度βが80%以上、又は(2)体積
基準頻度分布で平均粒子径が20μmを越え50μm以
下の芯粒子粉体に対し、分散度βが90%以上、又は
(3)体積基準頻度分布で平均粒子径が50μmを越え
300μm以下の芯粒子粉体に対し、分散度βが95%
以上、又は(4)体積基準頻度分布で平均粒子径が30
0μmを越え800μm以下の芯粒子粉体に対し、分散
度βが97%以上、又は(5)体積基準頻度分布で平均
粒子径が800μmを越える芯粒子粉体に対し、分散度
βが99%以上を実現できる構成のものである。
FIG. 2 (a) is a block diagram showing an example of the basic configuration of the quasi-particulate high-dispersion processing means group when preparing coated diamond quasi-fine particles. is there. It is composed of the final dispersion means A for dispersing the particles of the core particle powder and the constituent element d of the dispersion processing means group before the final dispersion means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any treatment means such as a dispersion means, a supply means, a particle / gas mixture selection means of highly dispersed core particle powder can be used alone or in combination. The component d does not necessarily have to be provided. The quasi-fine particle high-dispersion treatment means group is preferably (1) core particle powder having an average particle diameter of more than 10 μm and 20 μm or less in the volume standard frequency distribution after the treatment by the dispersion means A which is the final treatment means, The degree of dispersion β is 80% or more, or (2) the volume standard frequency distribution is 90% or more, or (3) the volume standard frequency distribution with respect to the core particle powder having an average particle size of more than 20 μm and 50 μm or less. And the dispersity β is 95% with respect to the core particle powder having an average particle size of more than 50 μm and 300 μm or less.
Or (4) the volume-based frequency distribution has an average particle size of 30
The dispersity β is 97% or more with respect to the core particle powder having a size of more than 0 μm and 800 μm or less, or (5) the dispersity β is 99% with respect to the core particle powder having an average particle size of more than 800 μm in the volume standard frequency distribution. The configuration is capable of realizing the above.

【0060】図2(b)は、被覆されたダイヤモンド準微
粒子を調製する際の準微粒子高分散処理手段群の基本的
な構成の第2の例を表すブロック図である。芯粒子粉体
の粒子を分散させる最終の分散手段A、最終の分散手段
Aへ芯粒子粉体の粒子が、主に単一粒子状態で気中に存
在する高分散芯粒子粉体の粒子・気体混合物、以外の低
分散芯粒子粉体の粒子・気体混合物ηをフィードバック
させるフィードバック手段Cを備えた最終の高分散芯粒
子粉体の粒子・気体混合物選択手段B、最終の分散手段
以前の分散処理手段群の構成要素d、最終分散手段と最
終選択手段の間の準微粒子高分散処理手段群の構成要素
eで構成されている。εは、芯粒子粉体の粒子の内、主
に単一粒子状態で気中に存在する高分散芯粒子粉体の粒
子・気体混合物である。構成要素dとしては、分散手
段、供給手段、選択手段等任意の処理手段を単独又は組
み合わせて使用できる。構成要素eとしては、分散手段
以外の処理手段、例えば供給手段、選択手段等任意の処
理手段を単独又は組み合わせて使用できる。構成要素d
及びeは、必ずしも設けなくとも良い。準微粒子高分散
処理手段群は、好適には、最終の処理手段である選択手
段Bによる処理後、前記平均粒子径の芯粒子粉体に対し
前記分散度を実現できる構成である。
FIG. 2B is a block diagram showing a second example of the basic constitution of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles. The final dispersion means A for dispersing the particles of the core particle powder, and the particles of the core particle powder to the final dispersion means A are particles of the highly dispersed core particle powder in the air mainly in the form of a single particle. Other than the gas mixture, the particles / gas mixture selecting means B of the final high-dispersion core particle powder having the feedback means C for feeding back the particles / gas mixture η of the low-dispersion core particle powder, the dispersion before the final dispersion means It is composed of a constituent element d of the processing means group and a constituent element e of the quasi-fine particle high dispersion processing means group between the final dispersion means and the final selection means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the component e, a processing means other than the dispersion means, for example, an arbitrary processing means such as a supply means and a selection means can be used alone or in combination. Component d
And e do not necessarily need to be provided. The quasi-fine particle high-dispersion treatment means group is preferably configured so that the degree of dispersion can be realized with respect to the core particle powder having the average particle diameter after the treatment by the selection means B which is the final treatment means.

【0061】図2(c)は、被覆されたダイヤモンド準微
粒子を調製する際の準微粒子高分散処理手段群の基本的
な構成の第3の例を表すブロック図である。芯粒子粉体
の粒子を分散させる最終の分散手段A、最終の分散手段
Aより前の処理手段へ芯粒子粉体の粒子が、主に単一粒
子状態で気中に存在する高分散芯粒子粉体の粒子・気体
混合物、以外の低分散芯粒子粉体の粒子・気体混合物η
をフィードバックさせるフィードバック手段Cを備えた
最終の高分散芯粒子粉体の粒子・気体混合物選択手段
B、最終の分散手段以前の準微粒子高分散処理手段群の
構成要素d、最終の分散手段と最後の選択手段の間の準
微粒子高分散処理手段群の構成要素eで構成されてい
る。εは、芯粒子粉体の粒子の内、主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物で
ある。構成要素dとしては、分散手段、供給手段、選択
手段等任意の処理手段を単独又は組み合わせて使用でき
る。構成要素eとしては、分散手段以外の処理手段、例
えば供給手段、選択手段等任意の処理手段を単独又は組
み合わせて使用できる。構成要素d及びeは、必ずしも
設けなくとも良い。準微粒子高分散処理手段群は、好適
には最終の処理手段である選択手段Bによる処理後、前
記平均粒子径の芯粒子粉体に対し前記分散度を実現でき
る構成である。
FIG. 2C is a block diagram showing a third example of the basic constitution of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles. Highly dispersed core particles in which particles of the core particle powder are mainly present in the air in a single particle state to the final dispersion means A for dispersing the particles of the core particle powder and the processing means prior to the final dispersion means A. Powder particles / gas mixture, other than low dispersion core particles Powder particles / gas mixture η
The final particle / gas mixture selecting means B for the highly dispersed core particle powder, the constituent element d of the quasi-fine particle high dispersion processing means group before the final dispersing means, the final dispersing means and the final dispersing means It is composed of the constituent element e of the quasi-fine particle high dispersion treatment means group between the selection means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the component e, a processing means other than the dispersion means, for example, an arbitrary processing means such as a supply means and a selection means can be used alone or in combination. The components d and e do not necessarily have to be provided. The quasi-fine-particles high-dispersion treatment means group is preferably configured so that the degree of dispersion can be realized with respect to the core particle powder having the average particle diameter after the treatment by the selection means B which is the final treatment means.

【0062】なお、以上のような構成であるから、供給
槽、芯粒子生成手段等の粉体の供給源も本準微粒子高分
散処理手段群の構成に含めてもよい。例えば図3(c)の
場合、フィードバック手段Cのフィードバック先を供給
槽とする構成も高分散処理手段群の構成として良いこと
は言うまでもない。又、準微粒子高分散処理手段群の分
散工程の前に、芯粒子粉体の粒子を解砕及び/又は粉砕
する解砕工程を入れても良いことは言うまでもない。上
記した準微粒子高分散処理手段群の基本的な構成の具体
的な代表例をより詳細にしたブロック図に基づいて更に
詳しく説明することにする。 構成1 図3(a)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第1の構成を説明す
るブロック図であって図2(a)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、被覆される芯粒子粉体を分散させる最終分散手段A
から構成されている。εは、芯粒子粉体の粒子の内、主
に単一粒子状態で気中に存在する高分散芯粒子粉体の粒
子・気体混合物である。
Since the above-mentioned structure is adopted, the powder supply source such as the supply tank and the core particle generating means may be included in the structure of the semi-fine particle high dispersion processing means group. For example, in the case of FIG. 3C, it goes without saying that the configuration in which the feedback destination of the feedback unit C is the supply tank may be the configuration of the high dispersion processing unit group. Needless to say, a crushing step of crushing and / or crushing particles of the core particle powder may be added before the dispersing step of the quasi-fine particle high dispersion treatment means group. It will be described in more detail based on a more detailed block diagram of a specific representative example of the basic configuration of the above-mentioned quasi-particulate high dispersion processing means group. Configuration 1 FIG. 3 (a) is a block diagram for explaining the first configuration of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles, and corresponds to FIG. 2 (a). is there.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, final dispersing means A for dispersing the core particle powder to be coated
It consists of [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0063】構成2 図3(b)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第2の構成を説明す
るブロック図であって図2(a)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、被覆される芯粒子粉体を分散させる分散手段a、被
覆される芯粒子粉体を分散させる最終分散手段Aから構
成されている。εは、芯粒子粉体の粒子の内、主に単一
粒子状態で気中に存在する高分散芯粒子粉体の粒子・気
体混合物である。
Structure 2 FIG. 3 (b) is a block diagram for explaining the second structure of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles, and corresponds to FIG. 2 (a). To do.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, a dispersing means a for dispersing the coated core particle powder, and a final dispersing means A for dispersing the coated core particle powder. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0064】構成3 図3(c)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第3の構成を説明す
るブロック図であって図2(a)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、被覆される芯粒子粉体を分散させる分散手段a、分
散手段aで分散させた芯粒子粉体の粒子・気体混合物の
うちから主に単一粒子状態で気中に存在する高分散芯粒
子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の
粒子・気体混合物ηを分散手段aへフィードバックさせ
るフィードバック手段C、主に高分散芯粒子粉体の粒子
・気体混合物を最終の分散手段Aへ導入する高分散芯粒
子粉体の粒子・気体混合物選択手段b、被覆される芯粒
子粉体を分散させる最終分散手段A、から構成されてい
る。εは、芯粒子粉体の粒子の内、主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物で
ある。
Structure 3 FIG. 3 (c) is a block diagram for explaining the third structure of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles, and corresponds to FIG. 2 (a). To do.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, a high-dispersion core which exists mainly in the air in the form of a single particle from a dispersion means a for dispersing the core particle powder to be coated and a particle / gas mixture of the core particle powder dispersed by the dispersion means a. The particle / gas mixture of the particle powder, the feedback means C for feeding back the particle / gas mixture η of the low-dispersion core particle powder to the dispersing means a, mainly the particle / gas mixture of the high-dispersion core particle powder It comprises a particle / gas mixture selecting means b for a highly dispersed core particle powder to be introduced into the dispersing means A, and a final dispersing means A for dispersing the core particle powder to be coated. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0065】構成4 図3(d)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第4の構成を説明す
るブロック図であって図2(b)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、被覆される芯粒子粉体を分散させる最終分散手段
A、最終分散手段Aで分散させた芯粒子粉体の粒子・気
体混合物のうちから主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯
粒子粉体の粒子・気体混合物ηを分散手段Aへフィード
バックするフィードバック手段C、高分散芯粒子粉体の
粒子・気体混合物を放出する最終の高分散芯粒子粉体の
粒子・気体混合物選択手段Bから構成されている。ε
は、芯粒子粉体の粒子の内、主に単一粒子状態で気中に
存在する高分散芯粒子粉体の粒子・気体混合物である。
Structure 4 FIG. 3 (d) is a block diagram for explaining a fourth structure of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles, and corresponds to FIG. 2 (b). To do.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, among the final dispersion means A for dispersing the core particle powder to be coated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A, the high level existing mainly in the single particle state in the air. The particle / gas mixture of the dispersed core particle powder, the feedback means C for feeding back the particle / gas mixture η of the low-dispersed core particle powder to the dispersion means A, and the particle / gas mixture of the highly dispersed core particle powder are discharged. The final high-dispersion core particle powder comprises a particle / gas mixture selecting means B. ε
Is a particle / gas mixture of the highly dispersed core particle powder, which is mainly present in the air in the form of a single particle among the particles of the core particle powder.

【0066】構成5 図3(e)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第5の構成を説明す
るブロック図であって図3(b)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、被覆される芯粒子粉体を分散させる分散手段a、被
覆される芯粒子粉体を分散させる最終分散手段A、最終
分散手段Aで分散させた芯粒子粉体の粒子・気体混合物
のうちから主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体
の粒子・気体混合物ηを分散手段Aへフィードバックす
るフィードバック手段C、高分散芯粒子粉体の粒子・気
体混合物を放出する最終の高分散芯粒子粉体の粒子・気
体混合物選択手段Bから構成されている。εは、芯粒子
粉体の粒子の内、主に単一粒子状態で気中に存在する高
分散芯粒子粉体の粒子・気体混合物である。
Structure 5 FIG. 3 (e) is a block diagram for explaining the fifth structure of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles, and corresponds to FIG. 3 (b). To do.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, a dispersing means a for dispersing the core particle powder to be coated, a final dispersing means A for dispersing the core particle powder to be coated, and a particle / gas mixture of the core particle powder dispersed by the final dispersing means A A feedback means C for feeding back the particles / gas mixture η of the low-dispersion core particle powder other than the particles / gas mixture of the high-dispersion core particle powder existing mainly in the air in a single particle state to the dispersion means A, It comprises a final particle / gas mixture selecting means B of highly dispersed core particle powder for releasing the particle / gas mixture of highly dispersed core particle powder. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0067】構成6 図3(f)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第6の構成を説明す
るブロック図であって図2(b)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、芯粒子粉体の粒子・気体混合物のうちから主に低分
散芯粒子粉体の粒子・気体混合物を取り除き、主に高分
散芯粒子粉体の粒子・気体混合物を分散手段Aへ導入す
る高分散芯粒子粉体の粒子・気体混合物選択手段b、選
択分離された芯粒子粉体の粒子を分散させる最終分散手
段A、最終分散手段Aで分散させた芯粒子粉体の粒子・
気体混合物のうちから主に単一粒子状態で気中に存在す
る高分散芯粒子粉体の粒子・気体混合物、以外の低分散
芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィー
ドバックさせるフィードバック手段C、高分散芯粒子粉
体の粒子・気体混合物を放出する最終の高分散芯粒子粉
体の粒子・気体混合物選択手段Bから構成されている。
εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中
に存在する高分散芯粒子粉体の粒子・気体混合物であ
る。
Structure 6 FIG. 3 (f) is a block diagram for explaining the sixth structure of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles, and corresponds to FIG. 2 (b). To do.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, the particles / gas mixture of low-dispersion core particles powder is mainly removed from the particles / gas mixture of core particles powder, and the particles / gas mixture of high-dispersion core particles powder is mainly introduced into the dispersing means A. Highly dispersed core particle powder particle / gas mixture selection means b, final dispersion means A for dispersing the selected and separated core particle powder particles, core particle powder particles dispersed by the final dispersion means A.
The particles / gas mixture η of the low-dispersion core particle powder other than the high-dispersion core particle powder / gas mixture mainly existing in the air in a single particle state from the gas mixture are fed back to the dispersion means A. It comprises a feedback means C and a final particle / gas mixture selecting means B of the highly dispersed core particle powder for discharging the highly dispersed core particle powder particle / gas mixture.
[epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0068】構成7 図3(g)は、被覆されたダイヤモンド準微粒子を調製す
る際の準微粒子高分散処理手段群の第7の構成を説明す
るブロック図であって図2(c)に対応するものである。
本例は、被覆される芯粒子粉体を供給する供給槽10
0、被覆される芯粒子粉体を分散させる分散手段a、被
覆される芯粒子粉体を分散させる最終分散手段A、最終
分散手段Aで分散させた芯粒子粉体の粒子・気体混合物
のうちから主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体
の粒子・気体混合物ηを分散手段aへフィードバックす
るフィードバック手段C、高分散芯粒子粉体の粒子・気
体混合物を放出する最終の高分散芯粒子粉体の粒子・気
体混合物選択手段Bから構成されている。εは、芯粒子
粉体の粒子の内、主に単一粒子状態で気中に存在する高
分散芯粒子粉体の粒子・気体混合物である。
Structure 7 FIG. 3 (g) is a block diagram for explaining the seventh structure of the group of means for high dispersion treatment of quasi-fine particles when preparing coated diamond quasi-fine particles, and corresponds to FIG. 2 (c). To do.
This example shows a supply tank 10 for supplying core particle powder to be coated.
0, a dispersing means a for dispersing the core particle powder to be coated, a final dispersing means A for dispersing the core particle powder to be coated, and a particle / gas mixture of the core particle powder dispersed by the final dispersing means A A feedback means C for feeding back the particle / gas mixture η of the low-dispersion core particle powder other than the particles / gas mixture of the high-dispersion core particle powder mainly existing in the air in a single particle state to the dispersion means a, It comprises a final particle / gas mixture selecting means B of the highly dispersed core particle powder for releasing the particle / gas mixture of the highly dispersed core particle powder. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0069】このようにして達成された準微粒子の高分
散状態を維持するために、気中分散維持手段を準微粒子
高分散処理手段群と被覆室の間に付加することもでき
る。ここでいう気中分散維持手段とは、気中に分散担持
された芯粒子粉体の粒子の再凝集を防止して分散度βを
維持する手段をいう。又、このようにして達成された芯
粒子の高分散状態を促進するために、気中分散促進手段
を微粒子高分散処理手段群と被覆室の間に付加すること
もできる。ここでいう気中分散促進手段とは、気中に分
散担持された芯粒子粉体の粒子のうち主に再凝集下粒子
の再分散を促進し、分散状態の低下を鈍られたり、一旦
低下した分散状態を元の高分散の状態まで隗服するよう
に再凝分散を促す手段をいう。
In order to maintain the high dispersion state of the quasi-fine particles thus achieved, an air dispersion maintaining means may be added between the quasi-fine particle high dispersion treatment means group and the coating chamber. The term "in-air dispersion maintaining means" as used herein means means for preventing re-aggregation of particles of the core particle powder dispersed and carried in air to maintain the degree of dispersion β. Further, in order to promote the highly dispersed state of the core particles thus achieved, an air dispersion promoting means can be added between the fine particle high dispersion treatment means group and the coating chamber. The air dispersion promoting means here mainly promotes redispersion of particles under reaggregation among particles of the core particle powder dispersed and carried in the air, and slows down the deterioration of the dispersed state, or once decreases. It means a method of promoting re-coagulation so that the dispersed state is taken up to the original high dispersion state.

【0070】この気中分散維持手段又は気中分散促進手
段の好適な例としては、パイプ振動装置、パイプ加熱装
置、プラズマ発生装置、荷電装置等が挙げられる。パイ
プ振動装置は、発振器を設置したパイプの振動により、
気中に分散している粒子に分散機とは言えない振動を与
えることで、再凝集を抑制し高分散状態を維持する手段
又は再凝集した粒子の分散を促進する手段である。パイ
プ加熱装置は、加熱したパイプにより搬送気体の外側か
ら熱を加えて搬送気体を膨張させ、分散機とは言えない
ほどに流速を加速して再凝集を抑制し、再凝集した粒子
の分散を促進する手段である。プラズマ発生装置は、芯
粒子粉体を分散担持している気中にプラズマを発生さ
せ、そのプラズマイオンと芯粒子との衝突により、再凝
集を抑制し高分散状態を維持する手段又は再凝集した粒
子の分散を促進する手段である。荷電装置は、芯粒子粉
体を分散担持している気中に、コロナ放電、電子ビー
ム、放射線等の方法で単極イオンを発生させ、単極イオ
ン雰囲気中を通過させることで粒子を単極に帯電させ、
静電気の斥力により再凝集を抑制し高分散状態を維持す
る手段又は再凝集した粒子の分散を促進する手段であ
る。
Suitable examples of the air dispersion maintaining means or the air dispersion promoting means include a pipe vibrating device, a pipe heating device, a plasma generating device, a charging device and the like. The pipe vibration device uses the vibration of the pipe where the oscillator is installed,
This is a means for suppressing re-aggregation and maintaining a high dispersion state or a means for accelerating the dispersion of re-aggregated particles by giving vibrations, which cannot be called a disperser, to particles dispersed in air. The pipe heating device expands the carrier gas by applying heat from the outside of the carrier gas by the heated pipe, accelerates the flow velocity so that it can not be called a disperser, suppresses reaggregation, and disperses the reaggregated particles. It is a means to promote. The plasma generator generates plasma in the air carrying the core particle powder in a dispersed manner, and collision between the plasma ions and the core particles suppresses re-aggregation and maintains a high dispersion state or re-aggregated. It is a means of promoting dispersion of particles. The charging device uses a method such as corona discharge, electron beam, or radiation to generate unipolar ions in the air carrying the core particle powder, and the particles are unipolar by passing through the unipolar ion atmosphere. Charged to
It is a means for suppressing reaggregation by the repulsive force of static electricity and maintaining a high dispersion state, or a means for promoting the dispersion of reaggregated particles.

【0071】このようにして形成された準微粒子の高分
散状態の芯粒子粉体は粒子の表面を被覆形成物質で被覆
するために被覆室に送られる。この被覆室には被覆開始
領域を含む被覆空間が設けられている。準微粒子高分散
処理手段群と被覆室とは直結することが望ましいが、搬
送に不可避の中空部材及び/又はパイプを使って接続し
ても良い。この場合にも、被覆開始領域での分散度βを
上記した範囲の値とすることが不可欠である。準微粒子
高分散処理手段群と被覆室を別々に置いてその間を連結
する場合は、芯粒子粉体をその分散状態のまま被覆室へ
導入してやれば良い。そのためには、この間に芯粒子粉
体の分散状態を維持するための装置である気中分散維持
手段及び/又は分散状態を高めるための装置である気中
分散促進手段及び/又は芯粒子粉体の粒子・気体混合物
から、低分散芯粒子粉体部分を分離し、主に単一粒子状
態の粒子を含む高分散芯粒子粉体の粒子・気体混合物を
選択する高分散芯粒子粉体の粒子・気体混合物選択手段
を設けることもできる。又、被覆されたダイヤモンド準
微粒子を調製するに際して、準微粒子高分散処理手段群
が、(1)被覆室、又は(2)被覆空間、又は(3)被覆開始
領域と一部以上空間を共有することもできる。例えば、
準微粒子高分散処理手段群中の分散空間と被覆室とを、
又は準微粒子高分散処理手段群中の分散空間と被覆開始
領域を有する被覆空間とを、又は準微粒子高分散処理手
段群中の分散空間と被覆開始領域とを、空間的に共有す
ることもできる。
The highly dispersed core particle powder of the quasi-fine particles thus formed is sent to the coating chamber for coating the surface of the particles with the coating forming substance. A coating space including a coating start area is provided in the coating chamber. It is desirable that the quasi-fine particle high dispersion treatment means group and the coating chamber are directly connected, but they may be connected by using a hollow member and / or a pipe which is inevitable for transportation. Also in this case, it is indispensable to set the dispersion degree β in the coating start region to a value within the above range. When the quasi-fine particle high dispersion treatment means group and the coating chamber are separately placed and connected to each other, the core particle powder may be introduced into the coating chamber in the dispersed state. For that purpose, the air dispersion maintaining means and / or the air dispersion promoting means and / or the core particle powder which is an apparatus for maintaining the dispersed state of the core particle powder during this period. High-dispersion core particle powder particles that separate the low-dispersion core particle powder part from the particle-gas mixture and select the high-dispersion core particle powder particle / gas mixture that mainly contains particles in a single particle state -Gas mixture selection means can also be provided. Further, when preparing coated diamond quasi-fine particles, the quasi-fine particle high dispersion treatment means group shares (1) the coating chamber, (2) the coating space, or (3) the coating start region with a part or more of the space. You can also For example,
The dispersion space and the coating chamber in the quasi-fine particle high dispersion treatment means group,
Alternatively, the dispersion space in the quasi-fine particle high dispersion treatment means group and the coating space having the coating start area, or the dispersion space in the quasi-fine particle high dispersion treatment means group and the coating start area can be spatially shared. .

【0072】ここで被覆開始領域とは、(1)体積基準頻
度分布で平均粒径が10μmを越え20μm以下の芯粒
子粉体にあっては粒子の分散度βが80%以上、(2)体
積基準頻度分布で平均粒径が20μmを越え50μm以
下の芯粒子粉体にあっては粒子の分散度βが90%以
上、(3)体積基準頻度分布で平均粒径が50μmを越え
300μm以下の芯粒子粉体にあっては粒子の分散度β
が95%以上、(4)体積基準頻度分布で平均粒径が30
0μmを越え800μm以下の芯粒子粉体にあっては粒
子の分散度βが97%以上、(5)体積基準頻度分布で平
均粒径が800μmを越える芯粒子粉体にあっては粒子
の分散度βが99%以上である分散状態で搬送された高
分散状態の芯粒子粉体に気相を経て生成する被覆形成物
質前駆体及び/又は気相状態の被覆形成物質前駆体が接
触及び/又は衝突し、被覆を開始する領域を指し、次の
図5(a)〜(e)で示される態様が考慮される。すなわ
ち、図5(a)〜(e)において被覆開始領域は2で示され
る領域である。
Here, the coating start region means (1) the core particle powder having a volume-based frequency distribution and an average particle size of more than 10 μm and 20 μm or less has a particle dispersity β of 80% or more, (2) The core particle powder having a volume-based frequency distribution with an average particle size of more than 20 μm and 50 μm or less has a particle dispersity β of 90% or more, and (3) a volume-based frequency distribution with an average particle size of more than 50 μm and 300 μm or less. In the case of the core particle powder of
Is 95% or more, and (4) volume-based frequency distribution has an average particle size of 30
The degree of dispersion β of the particles is 97% or more in the case of the core particle powder of more than 0 μm and 800 μm or less, and (5) the dispersion of the particles in the core particle powder of which the average particle size exceeds 800 μm in the volume standard frequency distribution. And / or a coating-forming substance precursor in a gas-phase state is brought into contact with the core-particle powder in a highly-dispersed state conveyed in a dispersed state having a degree β of 99% or more and / or Alternatively, it refers to a region where collision occurs and coating is started, and the modes shown in the following FIGS. 5A to 5E are considered. That is, the coating start area is the area indicated by 2 in FIGS.

【0073】図4(a)において芯粒子の平均粒子径に応
じて上記した分散度βの分散状態で被覆を始める被覆空
間の被覆開始領域2を準微粒子高分散処理手段群又は準
微粒子高分散処理手段群の放出部1を覆って設ける。図
4(b)において準微粒子高分散処理手段群又は準微粒子
高分散処理手段群の放出部1から放出される芯粒子粉体
の粒子4が全て通る前記、被覆空間の被覆開始領域2を
設ける。上記の構成により、全ての芯粒子粉体の粒子は
上記した分散度βの分散状態で被覆始められる。図4
(c)において準微粒子高分散処理手段群又は準微粒子高
分散処理手段群の放出部1から放出される芯粒子粉体の
粒子4の内、回収部5に入る粒子が必ず通過する前記被
覆空間の被覆開始領域2を設ける。
In FIG. 4 (a), the coating start region 2 of the coating space in which coating is started in the dispersed state of the above-mentioned dispersity β according to the average particle diameter of the core particles is the semi-fine particle high dispersion treatment means group or the semi-fine particle high dispersion. It is provided so as to cover the discharge part 1 of the processing means group. In FIG. 4B, the coating start region 2 of the coating space through which all the particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion treatment means group or the quasi-fine particle high dispersion treatment means group are provided. . With the above configuration, all the particles of the core particle powder are started to be coated in the dispersed state of the degree of dispersion β described above. Figure 4
In (c), the coating space in which the particles entering the collecting section 5 among the particles 4 of the core particle powder discharged from the discharging section 1 of the quasi-fine particle high dispersion processing means group or the quasi-fine particle high dispersion processing means group always pass. The coating start area 2 is provided.

【0074】図4(d)において回収部5を囲む前記被覆
空間の被覆開始領域2を設ける。図4(e)において高分
散芯粒子粉体の粒子・気体混合物の粒子のみが到達可能
な位置に回収部5を設ける。従って、ここでの領域6は
重力を利用した選択手段となる。回収部に入る高分散芯
粒子粉体の粒子・気体混合物の粒子が、必ず通過する前
記被覆空間の被覆開始領域2を図の斜線部のように設け
る。このようにすることで上記した分散度βの分散状態
で被覆始めた芯粒子のみ回収でき、被覆開始領域を通っ
ていない芯粒子と被覆開始領域を通過した被覆準微粒子
とは混ざることはない。
In FIG. 4D, a coating start area 2 of the coating space surrounding the recovery section 5 is provided. In FIG. 4 (e), the recovery unit 5 is provided at a position where only the particles of the highly dispersed core particle powder and the particles of the gas mixture can reach. Therefore, the area 6 here is a selecting means utilizing gravity. The coating start region 2 of the coating space through which the particles of the highly dispersed core particle powder / particles of the gas mixture that enter the recovery section must pass is provided as shown by the hatched portion in the figure. By doing so, only the core particles that have begun to be coated in the dispersed state of the above-described dispersity β can be recovered, and the core particles that have not passed through the coating start region and the coated quasi-fine particles that have passed through the coating start region do not mix.

【0075】上記したところから、本発明を実施する装
置は、準微粒子高分散処理手段群と被覆室又は準微粒子
高分散処理手段群と被覆室と回収手段から構成されるも
のであるが、これらの装置の構成要素は、種々の組み合
わせ方をすることが可能で、これらの装置の構成例を図
面にもとづいて説明するとつぎのとおりである。
From the above, the apparatus for carrying out the present invention comprises a group of quasi-fine particle high dispersion treatment means and a coating chamber or a group of quasi-fine particle high dispersion treatment means, a coating chamber and a recovery means. The components of the device can be combined in various ways, and the configuration examples of these devices will be described below with reference to the drawings.

【0076】装置の構成1 図5(a)は、被覆されたダイヤモンド準微粒子を製造す
るための第一の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1に直結してある。
Apparatus Configuration 1 FIG. 5 (a) is a block diagram for explaining the configuration of a first apparatus for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is directly connected to the coating chamber 2-B1.

【0077】装置の構成2 図5(b)は、被覆されたダイヤモンド準微粒子を製造す
るための第二の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、不可避
の中空部材2−C2、回収手段2−Dから構成されてい
る。準微粒子高分散処理手段群2−C1は、被覆室2−
B1に不可避の中空部材2−C2を介して接続してあ
る。
Apparatus Configuration 2 FIG. 5 (b) is a block diagram illustrating the configuration of a second apparatus for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, unavoidable hollow member 2-C2, and recovery means 2-D. . The quasi-fine particle high-dispersion processing means group 2-C1 includes a coating chamber 2-
It is connected to B1 via an unavoidable hollow member 2-C2.

【0078】装置の構成3 図5(c)は、被覆されたダイヤモンド準微粒子を製造す
るための第三の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、気中分
散維持手段2−C3、回収手段2−Dから構成されてい
る。準微粒子高分散処理手段群2−C1は、被覆室2−
B1に気中分散維持手段2−C3を介して接続してあ
る。
Apparatus Configuration 3 FIG. 5 (c) is a block diagram illustrating the configuration of a third apparatus for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, air dispersion maintaining means 2-C3, and recovery means 2-D. There is. The quasi-fine particle high-dispersion processing means group 2-C1 includes a coating chamber 2-
It is connected to B1 via the air dispersion maintaining means 2-C3.

【0079】装置の構成4 図5(d)は、被覆されたダイヤモンド準微粒子を製造す
るための第四の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1と空間を共有している。
Apparatus Configuration 4 FIG. 5 (d) is a block diagram illustrating the configuration of a fourth apparatus for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 shares a space with the coating chamber 2-B1.

【0080】装置の構成5 図5(e)は、被覆されたダイヤモンド準微粒子を製造す
るための第五の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1中に設けている。
Apparatus Configuration 5 FIG. 5 (e) is a block diagram illustrating the configuration of a fifth apparatus for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is provided in the coating chamber 2-B1.

【0081】装置の構成6 図5(f)は、被覆されたダイヤモンド準微粒子を製造す
るための第六の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1の分散空間中に、被覆室2−B1を設けてい
る。
Device Configuration 6 FIG. 5 (f) is a block diagram illustrating the configuration of a sixth device for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. A coating chamber 2-B1 is provided in the dispersion space of the quasi-fine particle high dispersion treatment means group 2-C1.

【0082】装置の構成7 図5(g)は、被覆されたダイヤモンド準微粒子を製造す
るための第七の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−D、再被覆供給手段2−Eから構成されている。
回収手段2−Dから被覆後の被覆準微粒子を高分散処理
手段群2−C1に再被覆供給手段2−Eにより搬送し
て、繰り返して被覆処理が行える。かかる構成の装置の
いずれかにより、被覆されたダイヤモンド準微粒子が製
造されるものである。
Apparatus Configuration 7 FIG. 5 (g) is a block diagram illustrating the configuration of a seventh apparatus for producing coated diamond quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, recovery means 2-D, re-coating supply means 2-E. .
The coated quasi-fine particles after coating are conveyed from the collection means 2-D to the high dispersion treatment means group 2-C1 by the re-coating supply means 2-E, and the coating treatment can be repeated. The coated diamond quasi-fine particles are produced by any of the apparatuses having such a constitution.

【0083】上記のようにしてダイヤモンド準微粒子で
ある芯粒子粉体を被覆形成物質で被覆した被覆準微粒子
について、再び被覆形成物質で被覆すること、またはこ
の再被覆を反復することもできる。この場合、被覆準微
粒子は再被覆供給手段に送られる。ここで、再被覆供給
手段とは、再被覆を行うために被覆後の被覆準微粒子を
準微粒子高分散処理手段群へ搬送する手段をいう。具体
的には、(a)被覆準微粒子を回収する回収手段、及び
(b)この回収手段から準微粒子高分散処理手段群に当該
被覆準微粒子を搬送する被覆粒子搬送手段を備えた手段
である。または、(a)被覆準微粒子を回収する回収手
段、(b)この回収手段から準微粒子高分散処理手段群に
当該被覆準微粒子を搬送する被覆粒子搬送手段、(c)及
び被覆後の被覆準微粒子を分級する被覆粒子分級手段を
備えた手段である。被覆量が多い場合、被覆前の芯粒子
粉体の粒子の粒度分布と被覆後の被覆準微粒子の粒度分
布は変わってしまう。そこで、被覆後の被覆準微粒子の
粒度分布を被覆粒子分級手段により調整し、再被覆処理
を行えば効果的である。この再被覆処理は、必要によっ
て繰り返すことができ、そして被覆形成物質の被覆量を
所望のものに設定することができる。更に、この被覆形
成物質の種類を変えてこの被覆処理を繰り返すことがで
き、このようにして複数成分の物質を被覆形成物質とし
て多重被覆することもできる。
The coated quasi-fine particles obtained by coating the core particle powder which is the quasi-fine diamond particles with the coating-forming substance as described above can be coated with the coating-forming substance again, or this re-coating can be repeated. In this case, the coated quasi-fine particles are sent to the recoating supply means. Here, the re-coating supply means means for conveying the coated quasi-fine particles after coating to the quasi-fine particle high dispersion treatment means group for performing re-coating. Specifically, (a) a collecting means for collecting the coated quasi-fine particles, and
(b) A means provided with a coated particle transporting means for transporting the coated quasi-fine particles from the recovery means to the quasi-fine particle high dispersion treatment means group. Alternatively, (a) a collecting means for collecting the coated quasi-fine particles, (b) a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion treatment means group, (c) and a coated quasi-particle after coating. It is a means provided with a coated particle classification means for classifying fine particles. When the coating amount is large, the particle size distribution of the core particle powder before coating and the particle size distribution of the coated quasi-fine particles after coating change. Therefore, it is effective to adjust the particle size distribution of the coated quasi-fine particles after coating by the coated particle classification means and perform the recoating treatment. This recoating process can be repeated as necessary, and the coating amount of the coating forming substance can be set to a desired value. Further, this coating treatment can be repeated by changing the type of the coating forming substance, and in this way, it is also possible to multiply coat a substance of a plurality of components as a coating forming substance.

【0084】本発明で用いる被覆準微粒子の製造装置
は、被覆形成物質が、気相を経る気相法によって、芯粒
子粉体の粒子表面に被覆される被覆準微粒子の製造装置
であれば制限はない。例えば、化学蒸着(CVD)装置
としては、熱CVD装置、プラズマCVD装置、電磁波
を利用したCVD(可視光線CVD、レーザCVD、紫
外線CVD、赤外線CVD、遠赤外線CVD)装置、M
OCVD装置等、或いは、物理蒸着(PVD)装置とし
ては、真空蒸着装置、イオンスパックリング装置、イオ
ンプレーティング装置等が適用可能である。より具体的
には、例えば、特開平3−75302号公報の超微粒子
で表面が被覆された粒子およびその製造方法に記載の被
覆粒子製造装置が好適である。
The apparatus for producing coated quasi-fine particles used in the present invention is limited as long as the coating forming substance is an apparatus for producing coated quasi-fine particles in which the particle surface of the core particle powder is coated by a gas phase method in which a gas phase is passed. There is no. For example, as a chemical vapor deposition (CVD) apparatus, a thermal CVD apparatus, a plasma CVD apparatus, a CVD (visible light CVD, laser CVD, ultraviolet CVD, infrared CVD, far infrared CVD) apparatus using electromagnetic waves, M
As the OCVD device or the like or the physical vapor deposition (PVD) device, a vacuum vapor deposition device, an ion sprinkling device, an ion plating device, or the like can be applied. More specifically, for example, a particle whose surface is coated with ultrafine particles disclosed in JP-A-3-75302 and a coated particle manufacturing apparatus described in the manufacturing method thereof are suitable.

【0085】以上述べたとおり、本発明ではダイヤモン
ドの準微粒子からなる芯粒子粉体、又は主に準微粒子か
らなる芯粒子粉体の粒子を被覆空間に投入し、気相を経
て生成する被覆形成物質前駆体及び/又は気相状態の被
覆形成物質前駆体をこの芯粒子粉体の粒子に接触及び/
又は衝突させてこの芯粒子粉体の粒子の表面を被覆形成
物質で被覆して被覆ダイヤモンド準微粒子が製造される
が、この準微粒子からなる芯粒子を被覆するための基本
的な工程を要約するとつぎの通りである。
As described above, according to the present invention, the core particle powder made of quasi-fine particles of diamond, or the particles of the core particle powder mainly made of quasi-fine particles is charged into the coating space and the coating is formed through the gas phase. Contacting the substance precursor and / or the coating-forming substance precursor in the gas phase with the particles of the core particle powder and / or
Alternatively, the surface of the particles of the core particle powder is collided to be coated with a coating forming substance to produce coated diamond quasi-fine particles, and the basic steps for coating the core particles composed of the quasi-fine particles will be summarized as follows. It is as follows.

【0086】I (A) 準微粒子高分散処理手段群により、体積基準頻
度分布で平均粒子径が10μmを越える準微粒子芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とする分散工程、 (B) この分散工程で分散させた高分散芯粒子粉体の
粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上
記した範囲の値とする分散状態で、被覆空間の被覆開始
領域において被覆形成物質前駆体と接触及び/又は衝突
させて被覆を開始する被覆工程、を設けた被覆法。
I (A) Particles of a quasi-fine particle core particle powder having an average particle size of more than 10 μm in a volume-based frequency distribution or a core particle powder mainly composed of quasi-fine particles by means of a group of quasi-fine particle high dispersion treatment means Dispersing step of dispersing particles of particle powder in air to obtain a particle / gas mixture of highly dispersed core particle powder, (B) Particle / gas mixture of highly dispersed core particle powder dispersed in this dispersing step A coating step of contacting and / or colliding the particles of the core particle powder with the coating forming material precursor in the coating start region of the coating space in a dispersed state in which the degree of dispersion β is a value in the above range. , The coating method provided.

【0087】II (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、 (B) この分散工程で分散させた高分散芯粒子粉体の
粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上
記した範囲の値とする分散状態で、被覆空間の被覆開始
領域において被覆形成物質前駆体と接触及び/又は衝突
させて被覆を開始する被覆工程、を設けた被覆法。
II (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means that realizes the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step A coating method including a coating step of starting coating by bringing particles into contact with and / or colliding with a coating-forming substance precursor in a coating start region of a coating space in a dispersion state in which the degree of dispersion β is a value in the above range. .

【0088】III (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する微粒子高分散処理手段群
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とする分散工程、 (B) この分散工程で分散させた高分散芯粒子粉体の
粒子・気体混合物の芯粒子粉体の粒子を、被覆工程に直
接搬送する搬送工程、 (C) この搬送工程で搬送した高分散芯粒子粉体の粒
子・気体混合物の芯粒子粉体の粒子を、分散度βを上記
した範囲の値とする分散状態で、被覆空間の被覆開始領
域において被覆形成物質前駆体と接触及び/又は衝突さ
せて被覆を開始する被覆工程、を設けた被覆法。
III (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles By means of a group of fine particle high-dispersion processing means for realizing the dispersion degree β of the particles of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range Dispersing step of dispersing in air to form particles / gas mixture of highly dispersed core particle powder, (B) Particles of highly dispersed core particle powder / particles of core particle powder of gas mixture dispersed in this dispersing step And (C) the particles of the high-dispersion core particle powder / the core particle powder of the gas mixture, which have been conveyed in this conveying step, with the dispersity β being set to a value within the above range. Coating in the coating start region of the coating space in the dispersed state Coating process to start the coating are allowed to contact and / or colliding with adult material precursor, coating methods provided.

【0089】IV (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、 (B) この分散工程で分散させた高分散芯粒子粉体の
粒子・気体混合物の芯粒子粉体の粒子を、搬送に不可避
の、中空部材、中空を形成する部材からなる中間部材、
及びパイプから選択される1種類又はそれ以上の部材を
介して搬送する搬送工程、 (C) この搬送工程で搬送した高分散芯粒子粉体の粒
子・気体混合物の芯粒子粉体の粒子を、分散度βを上記
した範囲の値とする分散状態で、被覆空間の被覆開始領
域において被覆形成物質前駆体と接触及び/又は衝突さ
せて被覆を開始する被覆工程、を設けた被覆法。
IV (A) Particles of quasi-fine particle core particle powder having an average particle size of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step Particles, inevitable for transportation, a hollow member, an intermediate member consisting of a member forming a hollow,
And a carrying step of carrying through one or more members selected from a pipe, (C) particles of the highly dispersed core particle powder and particles of the gas mixture of the core particle powder carried in this carrying step, A coating method including a coating step of starting coating by contacting and / or colliding with a precursor of a coating forming substance in a coating starting region of a coating space in a dispersed state in which the degree of dispersion β is a value in the above range.

【0090】V (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、 (B) この分散工程で分散させた高分散芯粒子粉体の
粒子・気体混合物の芯粒子粉体の粒子を、この分散性能
で気中に分散させた高分散芯粒子粉体の粒子・気体混合
物の芯粒子粉体の粒子の気中分散状態を維持する気中分
散維持手段、高分散芯粒子粉体の粒子・気体混合物の芯
粒子粉体の粒子の気中分散状態を高める気中分散促進手
段、芯粒子粉体の粒子と気体との混合物において低分散
芯粒子粉体の粒子・気体混合物を分離し、芯粒子粉体の
粒子が主に単一粒子状態で気中に存在する高分散芯粒子
粉体の粒子・気体混合物を選択する高分散芯粒子粉体の
粒子・気体混合物選択手段の1種類又はそれ以上を介し
て被覆工程に搬送する搬送工程、 (C) この搬送工程で搬送した高分散芯粒子粉体の粒
子・気体混合物の芯粒子粉体の粒子を、分散度βを上記
した範囲の値とする分散状態で、被覆空間の被覆開始領
域において被覆形成物質前駆体と接触及び/又は衝突さ
せて被覆を開始する被覆工程、を設けた被覆法。
V (A) Particles of quasi-fine particle core particle powder having an average particle size of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means for realizing the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step High-dispersion core particle powder, which is an air-dispersion maintaining means for maintaining the air-dispersed state of particles of highly dispersed core particle powder / gas mixture core particle powder in which particles are dispersed in the air with this dispersion performance. Core particles of body particles / gas mixture In the air dispersion promoting means, the low-dispersion core-particle powder particles / gas mixture is separated in the mixture of the core-particle powder particles and the gas, and the core-particle powder particles are mainly dispersed in a single-particle state. A carrying step of carrying the particles / gas mixture of the highly dispersed core particle powder present therein to the coating step through one or more particles / gas mixture selecting means of the highly dispersed core particle powder, (C ) Coating the particles of the highly dispersed core particle powder / particles of the gas mixture core particle powder transported in this transportation step in the coating start region of the coating space in a dispersed state with the degree of dispersion β within the above range. A coating method, which comprises a coating step of contacting and / or colliding with a forming substance precursor to start coating.

【0091】以上、I〜Vの全てにおいて、好適には、
体積基準頻度分布で平均粒子径が10μmを越える準微
粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子
粉体の粒子を、準微粒子高分散処理手段群により分散さ
せた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体
の粒子の分散度βを上記した範囲の値とすることを実現
する空間領域の内の、高分散芯粒子粉体の粒子・気体混
合物中の芯粒子粉体の粒子の全ての粒子が通過する面を
含む空間領域に、被覆空間の被覆開始領域を位置させる
か、又は、体積基準頻度分布で平均粒子径が10μmを
越える準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子を、準微粒子高分散処理手段群に
より分散させた高分散芯粒子粉体の粒子・気体混合物の
芯粒子粉体の粒子の分散度βを上記した範囲の値とする
ことを実現する空間領域の内の、回収手段の回収部に回
収する全ての粒子が通過する面を含む空間領域に、被覆
空間の被覆開始領域を位置させるか、又は、前記I及び
IIにおいて、体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子を、準微粒子高分散処理手段群
により分散させた高分散芯粒子粉体の粒子・気体混合物
の芯粒子粉体の粒子の分散度βを上記した範囲の値とす
ることを実現する準微粒子高分散処理手段群により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物とす
る分散工程の一部以上と前記被覆工程の一部以上とを、
空間を一部以上共有して行うものである。
As described above, in all of I to V, it is preferable that
Highly dispersed core particles obtained by dispersing particles of quasi-fine particle core particle powder having a volume-based frequency distribution of more than 10 μm or particles of core particle powder mainly composed of quasi-fine particles by a quasi-fine particle high dispersion treatment means group. Core particles of powder particles / gas mixture Core particles of highly dispersed core particles powder / gas mixture in the space region that realizes the degree of dispersion β of powder particles within the above range. The coating start region of the coating space is located in the space region including the surface through which all the particles of the particle powder pass, or the quasi-fine particle core particle powder whose average particle size exceeds 10 μm in the volume-based frequency distribution Particles or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by means of a quasi-fine particle high dispersion treatment means group. A space that realizes that Of the band, in the space region including a surface all particles passing through the recovery in the recovery of the recovery means, or to position the coating start region of the coating space, or the I and
In II, the volume-based frequency distribution has an average particle size of 10 μm
Particles of a highly dispersed core particle powder in which particles of a quasi-fine particle core particle powder or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by a quasi-fine particle high dispersion treatment means group In the dispersion step of dispersing the particles in the air into a particle / gas mixture of highly dispersed core particles powder by a quasi-fine particle high-dispersion treatment means group that realizes the degree of dispersion β of the particles of the powder within the range described above. Part or more and part or more of the coating step,
This is done by sharing a part or more of the space.

【0092】上記、被覆されたダイヤモンド準微粒子
は、被覆された準微粒子の被覆形成物質を介して、接触
状態で集合塊を形成する場合がある。この被覆されたダ
イヤモンド準微粒子からなる粉体は、単一粒子状態の被
覆された準微粒子と、この単一粒子状態の被覆された準
微粒子が数個から数十個接触した集合塊、更に多数個の
単一粒子状態の被覆された準微粒子が接触した集合塊か
ら構成され、その形状及び大きさが不均一で不規則にな
る。この単一粒子状態の被覆された準微粒子からなる集
合塊は、解砕及び/又は破砕してから成形又は焼結処理
に供するのが好ましい。この被覆されたダイヤモンド準
微粒子の集合塊の解砕及び/又は破砕には、種々の解砕
手段、例えば、ボールミル、振動ボールミル、乳鉢、ジ
ェットミル等が利用可能である。また、単一粒子状態の
被覆された準微粒子と、この単一粒子状態の被覆された
準微粒子の集合塊とを選択分離して、単一粒子状態の被
覆された準微粒子のみを成形又は焼結処理に供してもよ
い。
The above-mentioned coated quasi-fine particles may form aggregates in a contact state via the coating forming substance of the coated quasi-fine particles. The powder composed of the coated diamond quasi-fine particles is composed of the coated quasi-fine particles in the state of a single particle and the aggregates in which the coated quasi-fine particles in the state of a single particle are in contact with each other from several to several tens. It is composed of agglomerates in which individual coated quasi-fine particles in contact with each other are in a nonuniform and irregular shape and size. It is preferable that the aggregated mass of the coated quasi-fine particles in a single particle state is crushed and / or crushed before being subjected to molding or sintering treatment. Various crushing means such as a ball mill, a vibrating ball mill, a mortar, and a jet mill can be used for crushing and / or crushing the coated aggregate of the diamond quasi-fine particles. Further, the coated quasi-fine particles in the single particle state and the aggregate of the coated quasi-fine particles in the single particle state are selectively separated to form or burn only the coated quasi-fine particles in the single particle state. It may be subjected to a binding treatment.

【0093】本発明によれば、上記のようにして得られ
た被覆されたダイヤモンド準微粒子又は同粒子を含む混
合物を、2000MPa以上の圧力および高温において焼
結するか、又はこの被覆されたダイヤモンド準微粒子又
は同粒子を含む混合物を2000MPa未満の圧力及び1
850℃を越えない、ダイヤモンドが熱力学的に安定で
はないが準安定な圧力・温度の焼結条件において焼結す
るか、又はこの被覆されたダイヤモンド準微粒子と結合
材との体積で1〜90:99〜10の割合の混合物であ
って、この結合材は2000MPa未満の圧力で1850
℃を越えないダイヤモンド粒子が熱力学的に準安定な条
件で密度85%以上に焼結されるものである、上記混合
物を2000MPa未満の圧力及び1850℃を越えない
ダイヤモンドが熱力学的に安定ではないが準安定な圧力
・温度の焼成条件において焼結される。
According to the present invention, the coated quasi-fine diamond particles or a mixture containing the same obtained as described above are sintered at a pressure of 2000 MPa or higher and at a high temperature, or the coated diamond quasi-fine particles are mixed. A pressure of less than 2000 MPa and a fine particle or a mixture containing the same is used.
The diamond is not thermodynamically stable at 850 ° C., but is sintered under a pressure-temperature sintering condition that is not thermodynamically stable, or the volume of the coated diamond quasi-fine particles and the binder is 1 to 90. : 99-10, the binder being 1850 at a pressure of less than 2000 MPa.
Diamond particles not exceeding ℃ are sintered to a density of 85% or more under thermodynamically metastable conditions. The above mixture is not suitable for pressure less than 2000 MPa and diamond not exceeding 1850 ° C is thermodynamically stable. Although not present, it is sintered under the firing conditions of metastable pressure and temperature.

【0094】また他の機能を発現する物質を加える場合
についてはこの物質が粉体状、板状又は粒子状のもの
で、より具体的には、周期律表第1a、2a、3a、4
a、5a、6a、7a、1b、2b、3b、4b、5
b、6b、7b、8族の金属、半導体、半金属、希土類
金属、及びその酸化物、窒化物、炭化物、酸窒化物、酸
炭化物、炭窒化物、酸炭窒化物、硼化物、珪化物の内の
選択された一種類以上のもの、例えばAl、B、Si、
Fe、Ni、Co、Ti、Nb、V、Zr、Hf、T
a、W、Re、Cr、Cu、Mo、TiAl、Ti3
l、TiAl3、TiNi、NiAl、Ni3Al、Si
C、B4C、Cr32、TiC、ZrC、WC、W2C、
HfC、TaC、Ta2C、NbC、VC、Mo2C、S
34、TiN、ZrN、Si22O、AlN、Hf
N、VxN(x=1〜3)、NbN、TaN、Ta2N、
TiB、TiB2、ZrB2、VB、V32、VB2、N
bB、NbB2、TaB、TaB2、MoB、MoB2
MoB4、Mo2B、WB、W2B、W25、LaB6、B
P、B132、MoSi2、Al23、ZrO2(Y
23、MgO又はCaO安定剤を添加した部分安定化ジ
ルコニア:PSZ、又は正方晶ジルコニア多結晶体:T
ZP)、MgAl24(スピネル)、Al2SiO5(ム
ライト)の少なくとも一種類からなる粉体及び/又は粒
子等から選択されうる。
When a substance exhibiting another function is added, this substance is in the form of powder, plate or particles, and more specifically, the periodic table 1a, 2a, 3a, 4
a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5
Group b, 6b, 7b, and 8 metals, semiconductors, semimetals, rare earth metals, and oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides, borides, and silicides thereof One or more selected from, for example Al, B, Si,
Fe, Ni, Co, Ti, Nb, V, Zr, Hf, T
a, W, Re, Cr, Cu, Mo, TiAl, Ti 3 A
1, TiAl 3 , TiNi, NiAl, Ni 3 Al, Si
C, B 4 C, Cr 3 C 2 , TiC, ZrC, WC, W 2 C,
HfC, TaC, Ta 2 C, NbC, VC, Mo 2 C, S
i 3 N 4 , TiN, ZrN, Si 2 N 2 O, AlN, Hf
N, V x N (x = 1 to 3), NbN, TaN, Ta 2 N,
TiB, TiB 2 , ZrB 2 , VB, V 3 B 2 , VB 2 , N
bB, NbB 2 , TaB, TaB 2 , MoB, MoB 2 ,
MoB 4 , Mo 2 B, WB, W 2 B, W 2 B 5 , LaB 6 , B
P, B 13 P 2 , MoSi 2 , Al 2 O 3 , ZrO 2 (Y
2 O 3 , MgO or CaO stabilizer added partially stabilized zirconia: PSZ or tetragonal zirconia polycrystal: T
ZP), MgAl 2 O 4 (spinel), and Al 2 SiO 5 (mullite).

【0095】更にこの助剤が繊維状物質であっても良
い。この被覆ダイヤモンド準微粒子に混合する、繊維状
物質は短径が500μm以下で、短径に対する長径との
比が2以上である形状の、金属又は化合物の少なくとも
一種類からなる物質で、短径が500μm以下で、短径
に対する長径との比が2以上である形状の棒状物質及び
/又は融解紡糸して繊維形状にした連続繊維である長繊
維及び/又は結晶自体が繊維形状をとる自形繊維である
短繊維及び/又は一方向に結晶成長させて繊維形状にし
たウィスカー(wisker)からなる。このウィスカー(ヒ
ゲ結晶)には、その形成においては、相変化や体積全体
に及ぼす化学反応という現象は起こらないものと定義さ
れている真性のウィスカー及び/又は相変化とか体積全
体に及ぶ化学変化によって生成する結晶の一つの結晶面
のみを成長させることにより、長い針状晶となった単結
晶を指す広義のウィスカー及び/又は断面積が8×10
-5in2以下で、長さが平均直径の10倍以上の単結晶で
あるウィスカーがある。
Further, the auxiliary may be a fibrous substance. The fibrous substance mixed with the coated diamond quasi-fine particles is a substance composed of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. A rod-shaped substance having a shape of 500 μm or less and a ratio of a major axis to a minor axis of 2 or more and / or continuous fibers which are continuous fibers formed into a fiber shape by melt spinning and / or self-forming fibers in which crystals themselves have a fiber shape And / or a unidirectional crystal growth of a whisker in the form of a fiber. It is defined that whiskers (whisker crystals) do not undergo the phenomenon of phase change or chemical reaction affecting the entire volume in the formation of the whiskers and / or phase change or chemical changes affecting the entire volume. By growing only one crystal face of the generated crystal, a whisker in a broad sense and / or a cross-sectional area that indicates a single crystal that becomes a long needle crystal is 8 × 10.
There are whiskers which are single crystals with a length of -5 in 2 or less and a length of 10 times or more of the average diameter.

【0096】繊維状物質として、周期律表第1a、2
a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、5b、6b、7b、8族の金属、半導体、半
金属、希土類金属、非金属の内の一種類以上を含む化合
物の少なくとも一種類を含む。短径が500μm以下
で、短径に対する長径との比が2以上である形状の繊維
状物質が用いられる。具体的には、周期律表第1a、2
a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、8族の金属、半導体、半金属、希土類金属、
及びその酸化物、窒化物、炭化物、酸窒化物、酸炭化
物、炭窒化物、酸炭窒化物、硼化物、珪化物の少なくと
も一種類からなる、短径が500μm以下で、短径に対
する長径との比が2以上である形状の繊維状物質が使用
される。好適には、例えばAl、B、Si、Fe、N
i、Co、Ti、Nb、V、Zr、Hf、Ta、W、R
e、Cr、Cu、Mo、TiAl、Ti3Al、TiA
3、TiNi、NiAl、Ni3Al、SiC、Cr3
2、TiC、ZrC、B4C、WC、W2C、HfC、
TaC、Ta2C、NbC、VC、Mo2C、Si34
TiN、ZrN、Si22O、AlN、HfN、Vx
(x=1〜3)、NbN、TaN、Ta2N、TiB、
TiB2、ZrB2、VB、V32、VB2、NbB、N
bB2、TaB、TaB2、MoB、MoB2、MoB4
Mo2B、WB、W2B、W25、LaB6、BP、B13
2、MoSi2、Al23、ZrO2(Y23、MgO
又はCaO安定剤を添加した部分安定化ジルコニア:P
SZ、又は正方晶ジルコニア多結晶体:TZP)、Mg
Al24(スピネル)、Al2SiO5(ムライト)の少
なくとも一種類からなる、短径が500μm以下で、短
径に対する長径との比が2以上である形状の繊維状物質
が選択されうる。
As the fibrous substance, the periodic table 1a, 2
a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
At least one kind of compound containing at least one kind selected from the group consisting of b, 4b, 5b, 6b, 7b, and 8 metals, semiconductors, semimetals, rare earth metals, and nonmetals is included. A fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is used. Specifically, the periodic table 1a, 2
a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
b, 4b, group 8 metals, semiconductors, semi-metals, rare earth metals,
And its oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides, borides, and silicides, with a minor axis of 500 μm or less and a major axis relative to the minor axis. A fibrous material having a shape having a ratio of 2 or more is used. Suitably, for example, Al, B, Si, Fe, N
i, Co, Ti, Nb, V, Zr, Hf, Ta, W, R
e, Cr, Cu, Mo, TiAl, Ti 3 Al, TiA
l 3 , TiNi, NiAl, Ni 3 Al, SiC, Cr 3
C 2 , TiC, ZrC, B 4 C, WC, W 2 C, HfC,
TaC, Ta 2 C, NbC, VC, Mo 2 C, Si 3 N 4 ,
TiN, ZrN, Si 2 N 2 O, AlN, HfN, V x N
(X = 1 to 3), NbN, TaN, Ta 2 N, TiB,
TiB 2 , ZrB 2 , VB, V 3 B 2 , VB 2 , NbB, N
bB 2 , TaB, TaB 2 , MoB, MoB 2 , MoB 4 ,
Mo 2 B, WB, W 2 B, W 2 B 5 , LaB 6 , BP, B 13
P 2, MoSi 2, Al 2 O 3, ZrO 2 (Y 2 O 3, MgO
Or partially stabilized zirconia added with CaO stabilizer: P
SZ or tetragonal zirconia polycrystal: TZP), Mg
A fibrous substance composed of at least one of Al 2 O 4 (spinel) and Al 2 SiO 5 (mullite) and having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more can be selected. .

【0097】本発明で用いる被覆されたダイヤモンド準
微粒子は、上記したように気相法によりその表面を被覆
するので基本的に被覆形成物質に制限はない。被覆ダイ
ヤモンド準微粒子焼結体を、用途に応じて任意に材料設
計する上で必要に応じて、この被覆を施す前に、ダイヤ
モンド準微粒子表面に事前に、同種及び/又は異種の被
覆形成物質を同種及び/又は異種の被覆方法により被覆
を施してもよい。例えば、ダイヤモンド準微粒子表面
に、目的とする金属の炭化物からなる被覆を形成する場
合、事前に炭素を被覆した被覆ダイヤモンド準微粒子を
使用すればよい。事前に物質を被覆する方法は、特に制
限するものではないが、例えば、特開平2−25266
0号公報に記載の溶融塩浸漬法、特開平1−20738
0号公報に記載の溶融塩不均化反応法を始め、電気メッ
キ法、無電解メッキ法、クラッド法、物理蒸着法(スパ
ッタリング法、イオンプレーティング法等)や化学蒸着
法等が好適である。目的とする金属化合物の金属の種類
は、本発明の結合材及び/又は焼結助剤として適用可能
の範囲であれば特に制限されない。
Since the coated diamond quasi-fine particles used in the present invention coat the surface thereof by the vapor phase method as described above, there is basically no limitation on the coating forming substance. If desired, in designing the material of the coated diamond quasi fine particle sintered body as desired, before and after applying this coating, the same kind and / or different kinds of coating forming substances are previously formed on the diamond quasi fine particle surface. The coating may be applied by the same and / or different coating methods. For example, in the case of forming a coating made of a target metal carbide on the surface of diamond quasi-fine particles, coated diamond quasi-fine particles coated with carbon in advance may be used. The method of coating the substance in advance is not particularly limited, but for example, JP-A-2-25266.
Japanese Patent Laid-Open No. 20738/1980.
In addition to the molten salt disproportionation reaction method described in JP-A-0, electroplating method, electroless plating method, clad method, physical vapor deposition method (sputtering method, ion plating method, etc.), chemical vapor deposition method and the like are preferable. . The type of metal of the target metal compound is not particularly limited as long as it is a range applicable as the binder and / or the sintering aid of the present invention.

【0098】上記溶融塩を用いる浸漬法により形成され
る被覆膜は、緻密な高硬度高融点物質であり、ダイヤモ
ンド準微粒子を他の物質から隔離する作用を有し、結合
材の選択の幅が飛躍的に広がる。この溶融塩を用いる浸
漬法により被覆膜を設けた、被覆されたダイヤモンド準
微粒子は、従来の圧力が2000MPa未満で、ダイヤモ
ンドが熱力学的に準安定な圧力・温度の焼結条件による
ダイヤモンド含有高硬度高密度複合焼結体の製造法では
緻密に焼結することが困難であるが、この溶融塩を用い
る浸漬法により形成された高硬度高融点物質の被覆膜で
被覆されたダイヤモンド準微粒子に、更に一層以上の、
本発明の気相法による被覆法により十分緻密で高硬度に
焼結可能な結合材として適用可能な物質を適量被覆する
と焼結促進により好適である。本発明によればダイヤモ
ンド準微粒子表面に、気相法により、被覆形成物質を被
覆させた被覆ダイヤモンド準微粒子を結合材と混合し
て、又は被覆ダイヤモンド準微粒子と結合材との混合物
と、残部が前記粉体、板状物質、粒子等及び/又は前記
短径が500μm以下で、短径に対する長径との比が2
以上である形状の繊維状物質を混合した混合物を、粉体
状で、若しくは成形後焼結することも可能である。
The coating film formed by the dipping method using the above-mentioned molten salt is a dense, high-hardness, high-melting-point substance, has the function of isolating the diamond quasi-fine particles from other substances, and has a wide range of binder selection. Spreads dramatically. The coated diamond quasi-fine particles provided with the coating film by the dipping method using this molten salt contain diamond under the conventional pressure of less than 2000 MPa and the sintering conditions of pressure and temperature at which diamond is thermodynamically metastable. Although it is difficult to sinter densely in the manufacturing method of high hardness and high density composite sintered body, diamond quasi-coated with a coating film of high hardness and high melting point substance formed by the dipping method using this molten salt In addition to fine particles,
It is preferable to coat a suitable amount of a substance that can be applied as a binder that is sufficiently dense and can sinter with high hardness by the coating method by the vapor phase method of the present invention to promote sintering. According to the present invention, the surface of diamond quasi-fine particles, by the gas phase method, the coated diamond quasi-fine particles coated with the coating forming material is mixed with the binder, or the mixture of the coated diamond quasi-fine particles and the binder, and the balance is The powder, plate-like material, particles, etc. and / or the minor axis is 500 μm or less, and the ratio of the major axis to the minor axis is 2
It is also possible to sinter the mixture of the fibrous substances having the above-mentioned shapes in powder form or after molding.

【0099】ダイヤモンドは、熱力学的には超高圧力下
のみ安定で、高温下では圧力が不十分な場合にはグラフ
ァイトに相移転する。そこでダイヤモンドを含有するダ
イヤモンド焼結体は、ダイヤモンドのグラファイトへの
相移転を防止し、且つこのダイヤモンド焼結体を緻密に
するために、ダイヤモンドが熱力学的に安定な2000
MPaを越える超高圧力及び高温度下で製造される。従っ
て圧力が2000MPa以上で、ダイヤモンドが熱力学的
に安定な圧力・温度の焼結条件を選択する場合、ダイヤ
モンドの相図の熱力学的平衡線により圧力に対して温度
は限定される。しかし、圧力が2000MPa以上で、ダ
イヤモンドが熱力学的に安定ではないが準安定な圧力・
温度の焼結条件を選択する場合、ダイヤモンドの相図の
熱力学的平衡線により圧力に対応して限定される領域か
ら若干外れる温度でも差し支えない。
Thermodynamically, diamond is stable only under ultrahigh pressure, and at high temperature, it undergoes phase transfer to graphite when the pressure is insufficient. Therefore, in order to prevent the diamond from being phase-transferred to graphite and to make the diamond sintered body dense, the diamond sintered body containing the diamond has a thermodynamically stable value of 2000.
Manufactured under ultra high pressure and high temperature exceeding MPa. Therefore, when the pressure and temperature are set to 2000 MPa or more and the sintering conditions of the pressure and temperature at which the diamond is thermodynamically stable are selected, the temperature is limited with respect to the pressure by the thermodynamic equilibrium line of the phase diagram of the diamond. However, when the pressure is 2000 MPa or more, the diamond is not thermodynamically stable, but a metastable pressure.
When selecting the temperature sintering conditions, it is permissible for the temperature to deviate slightly from the region corresponding to the pressure limited by the thermodynamic equilibrium line of the diamond phase diagram.

【0100】一方、圧力が2000MPa未満で、ダイヤ
モンドが熱力学的に安定ではないが準安定な圧力・温度
の焼結条件を選択する場合、ダイヤモンドが熱力学的に
準安定な領域に、当該圧力に対応して限定される温度が
あるので注意を要する。つまり、圧力が2000MPa未
満で、ダイヤモンドが熱力学的に安定ではないが準安定
な圧力・温度の焼結条件を選択する場合、ダイヤモンド
粒子の品質に応じて焼結温度の上限が異なる。例えばダ
イヤモンドでは、若槻らの圧力下での実験によるとダイ
ヤモンドが熱力学的には安定な状態でなくとも、熱力学
的に準安定である場合、相転移に要する時間が極めて長
いために事実上安定に存在し、その事実上安定に存在す
る温度の上限として1100℃を示して報告している
(H.T. Hall、 Science, 169(1970)868〜8
69)。
On the other hand, when the pressure is less than 2000 MPa and the diamond is not thermodynamically stable but the metastable pressure and temperature sintering conditions are selected, the diamond is placed in the thermodynamically metastable region. Note that there is a temperature limit corresponding to. That is, when the pressure is less than 2000 MPa and diamond is not thermodynamically stable but a metastable pressure / temperature sintering condition is selected, the upper limit of the sintering temperature varies depending on the quality of the diamond particles. For example, in the case of diamond, according to the experiments under the pressure of Wakatsuki et al., If the diamond is not thermodynamically stable but thermodynamically metastable, the time required for the phase transition is extremely long, so It has been reported that it exists stably, and shows 1100 ° C. as the upper limit of the temperature at which it actually exists (HT Hall, Science, 169 (1970) 868-8).
69).

【0101】特に高純度のダイヤモンド、例えばPVD
法或いはCVD法による気相を介して合成される超高純
度のダイヤモンド、或いは長時間かけて超高圧合成した
超高純度のダイヤモンドを用いれば、圧力を伝達可能な
カプセルに脱気封入して超高圧HIP(熱間静水圧加
圧)焼結又はHIP焼結を行うか或いは真空若しくは不
活性ガス中でPC(ピストンシリンダー)による焼結又
はHP(ホットプレス)焼結を行うことにより、熱力学
的に安定な状態ではなくとも、前記Hall氏らの報告の1
200℃よりも遥かに高い1850℃までダイヤモンド
が現実上安定に存在する。しかし、1850℃を越える
と短時間でグラファイト相に相転移する。従って、圧力
が2000MPa未満で、ダイヤモンドが熱力学的に安定
でないが準安定な圧力・温度の焼結条件を選択する場
合、焼結温度の上限は1850℃である。
Especially high-purity diamonds such as PVD
Ultra-high purity diamond synthesized through the vapor phase by the CVD method or the CVD method, or ultra-high purity diamond synthesized by ultra-high pressure over a long period of time, degassed and encapsulated in a capsule capable of transmitting pressure. Thermodynamics by high pressure HIP (hot isostatic pressing) sintering or HIP sintering, or by PC (piston cylinder) sintering or HP (hot press) sintering in a vacuum or an inert gas. Even if it is not in a stable state,
Diamond is practically stable up to 1850 ° C, which is much higher than 200 ° C. However, when it exceeds 1850 ° C., it undergoes a phase transition to a graphite phase in a short time. Therefore, when the pressure is less than 2000 MPa and the diamond is not thermodynamically stable but the metastable pressure and temperature sintering conditions are selected, the upper limit of the sintering temperature is 1850 ° C.

【0102】本発明のダイヤモンド準微粒子焼結体は、
圧力が異なる2種類の焼結条件の製造法により製造され
る。圧力が2000MPa以上の超高圧力下で且つ高温下
で適宜時間焼結する被覆ダイヤモンド準微粒子焼結体の
製造装置は、キュービック型、テトラ型、ガードル型、
ベルト型超高圧力装置等が適用可能で、特に制限はな
い。再現性良く試料を加圧するための加圧装置及び圧力
は、前記キュービック型超高圧力装置を始めとする各種
超高圧力装置を使用し、2000MPa以上とする。焼結
温度は、前記ダイヤモンドの熱力学的安定領域から若干
外れた条件でも差し支えない。しかし、より好適にはダ
イヤモンドの熱力学的安定領域で2000MPa以上の超
高圧力・高温下で焼結せしめる。圧力が2000MPa未
満で、温度が1850℃を越えない、ダイヤモンドが熱
力学的安定ではないが準安定な圧力・温度の焼結条件で
適宜時間焼結する被覆ダイヤモンド準微粒子焼結体の製
造装置は、PC(ピストンシリンダー)型超高圧力装
置、又は超高圧HIP(熱間静水圧加圧)装置、或いは
HIP装置、若しくはHP(ホットプレス)装置等が適
用可能で、特に制限はない。PC型超高圧力装置を使用
する場合は、圧力は2000MPa未満を適用しても差し
支えないが、このPC型超高圧力装置の耐久性を考慮す
ると1500MPaを越えないことが好ましい。圧力発生
に関する従来公知の技術としては、超高圧HIP装置の
場合1000MPaまでHIP圧力を作用可能であり、こ
の超高圧HIP装置を除くHIP装置及びHP装置の場
合は、200MPaまでそれぞれ作動可能である。
The diamond quasi fine particle sintered body of the present invention is
It is manufactured by a manufacturing method under two kinds of sintering conditions with different pressures. An apparatus for producing a coated diamond quasi fine particle sintered body, which is sintered at an ultrahigh pressure of 2000 MPa or more and at a high temperature for an appropriate time, is a cubic type, a tetra type, a girdle type,
A belt type ultra high pressure device or the like can be applied, and there is no particular limitation. The pressurizing device and the pressure for pressurizing the sample with good reproducibility are 2000 MPa or more using various ultrahigh pressure devices including the above-mentioned cubic type ultrahigh pressure device. The sintering temperature may be a little outside the thermodynamically stable region of the diamond. However, more preferably, it is sintered in the thermodynamically stable region of diamond under ultrahigh pressure and high temperature of 2000 MPa or more. An apparatus for producing a coated diamond quasi-fine particle sintered body, in which the pressure is less than 2000 MPa, the temperature does not exceed 1850 ° C., and the diamond is not thermodynamically stable but is sintered for a suitable period of time under a metastable pressure / temperature sintering condition, A PC (piston cylinder) type ultra high pressure device, an ultra high pressure HIP (hot isostatic pressurization) device, a HIP device, an HP (hot press) device, or the like can be applied and is not particularly limited. When using a PC type ultra-high pressure device, the pressure may be less than 2000 MPa, but considering the durability of this PC type ultra-high pressure device, it is preferable that the pressure does not exceed 1500 MPa. As a conventionally known technique relating to pressure generation, a HIP pressure of up to 1000 MPa can be applied in the case of an ultrahigh pressure HIP apparatus, and up to 200 MPa can be operated in the case of the HIP apparatus and HP apparatus excluding this ultrahigh pressure HIP apparatus.

【0103】以上の方法により焼結させた被覆ダイヤモ
ンド準微粒子焼結体は、高度に微組織が制御された高性
能な焼結体である。用途として最も一般的な機械部材用
に、被覆ダイヤモンド準微粒子焼結体でそのビッカース
硬度が好適には600以上の高硬度で、その密度が85
%以上の緻密な被覆ダイヤモンド準微粒子焼結体が製造
できる。好適には、この被覆ダイヤモンド準微粒子焼結
体でそのビッカース硬度が800以上の高硬度で、及び
/又は、その密度が90%以上の緻密な被覆ダイヤモン
ド準微粒子焼結体が製造できる。より好ましくは、例え
ば、耐摩耗性の高い機械部材への適用を考慮すると、相
対的にダイヤモンドの含有量を増し、且つ緻密に焼結す
ることにより、ビッカース硬度は1000以上の高硬度
の被覆ダイヤモンド準微粒子焼結体が製造できる。より
一層耐摩耗性を要求される工具用等には、更にダイヤモ
ンドの含有量を増し、且つ緻密に焼結することにより、
ビッカース硬度2000以上の被覆ダイヤモンド準微粒
子焼結体が製造できる。
The coated diamond quasi-fine particle sintered body sintered by the above method is a high-performance sintered body having a highly controlled microstructure. For the most general purpose machine parts, the coated diamond quasi-fine particle sintered body has a high Vickers hardness of preferably 600 or more and a density of 85.
%, A dense coated diamond quasi fine particle sintered body can be manufactured. Suitably, a dense coated diamond quasi fine particle sintered body having a Vickers hardness of 800 or higher and / or a density of 90% or higher can be produced from this coated diamond quasi fine particle sintered body. More preferably, for example, in consideration of application to a mechanical member having high wear resistance, a diamond having a high Vickers hardness of 1000 or more can be obtained by relatively increasing the diamond content and sintering the diamond densely. A quasi-fine particle sintered body can be manufactured. For tools etc. that require even more wear resistance, by further increasing the diamond content and sintering densely,
A coated diamond quasi fine particle sintered body having a Vickers hardness of 2000 or more can be manufactured.

【0104】以下、本発明の被覆ダイヤモンド準微粒
子、並びに被覆ダイヤモンド準微粒子焼結体及びその製
造法を実施例により説明する。 実施例1 平均粒子径DMが17μmで、体積基準頻度分布が
(〔DM/2,3DM/2〕,≧90%)のダイヤモンド
準微粒子をチタン金属の炭化物である炭化チタンを被覆
した。使用した装置は、図6およびその部分拡大図であ
る図7に示したものであり、図5(a)に示した構成の具
体例である。本例の装置は、プラズマトーチ3−A、プ
ラズマ室3−a、被覆形成物質前駆体生成室の冷却槽3
−B、被覆形成物質前駆体生成室3−b、狭義の被覆室
冷却槽3−C、狭義の被覆室3−c、被覆準微粒子冷却
室の冷却槽3−D、被覆準微粒子冷却室3−d、被覆形
成物質の原料の供給側に、供給装置3−E1、芯粒子粉
体の供給側に、撹拌式分散機3−F1とエジェクター式
分散機3−H1、細管分散機107及び被覆準微粒子回
収部3−Gより成る。供給装置3−E1は被覆形成物質
の原料粉体の供給槽112に、撹拌式分散機3−F1は
芯粒子粉体の供給槽を備えた供給機111にそれぞれ結
合される。本例における被覆室は、定義ではプラズマ室
3−a、被覆形成物質前駆体生成室3−b、狭義の被覆
室3−c、被覆粒子冷却室3−dから構成されており、
ここではこれらを広義の被覆室と称する。当該広義の被
覆室の内、主に被覆処理の行われる室3−cを狭義の被
覆室と称する。
Hereinafter, the coated diamond quasi-fine particles of the present invention, the coated diamond quasi-fine particle sintered body and the method for producing the same will be described with reference to Examples. Example 1 Diamond quasi-fine particles having an average particle size D M of 17 μm and a volume-based frequency distribution of ([D M / 2,3D M / 2], ≧ 90%) were coated with titanium carbide which is a carbide of titanium metal. . The apparatus used is that shown in FIG. 6 and FIG. 7 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. The apparatus of this example includes a plasma torch 3-A, a plasma chamber 3-a, and a cooling tank 3 for a coating-former precursor production chamber.
-B, coating forming substance precursor generation chamber 3-b, narrowly-defined coating chamber cooling tank 3-C, narrowly-defined coating chamber 3-c, coating quasi-fine particle cooling chamber cooling tank 3-D, coating quasi-fine particle cooling chamber 3 -D, a supply device 3-E1 on the supply side of the raw material of the coating forming substance, a stirring type dispersion machine 3-F1 and an ejector type dispersion machine 3-H1, a capillary tube dispersion machine 107 and a coating on the supply side of the core particle powder. The quasi-fine particle recovery unit 3-G. The supply device 3-E1 is connected to the supply tank 112 for the raw material powder of the coating-forming substance, and the stirring-type disperser 3-F1 is connected to the supply device 111 equipped with the supply tank for the core particle powder. By definition, the coating chamber in this example is composed of a plasma chamber 3-a, a coating-forming substance precursor generation chamber 3-b, a coating chamber 3-c in a narrow sense, and a coating particle cooling chamber 3-d.
Here, these are called the coating chamber in a broad sense. Of the coating chambers in the broad sense, the chamber 3-c in which the coating process is mainly performed is referred to as the coating chamber in the narrow sense.

【0105】本例における準微粒子高分散処理手段群α
は、供給槽を備えた供給機111、撹拌式分散機3−F
1とエジェクター式分散機3−H1及び内径4mmのステ
ンレス製細管分散機107で構成されており、図2(a)
の準微粒子高分散処理手段群の構成である。準微粒子高
分散処理手段群は、DM=17μmの(〔DM/5,5
M〕,≧90%)分布の粉体に対して出力時β≧80
%を実現できるように構成されている。準微粒子高分散
処理手段群の最終処理手段である細管107は被覆室3
−Cに直結してあり、被覆空間の3−L2の被覆開始領
域3−L1においてβ≧80%を実現できるように構成
されている。
Semi-fine particle high dispersion treatment means group α in this example
Is a feeder 111 having a feed tank, a stirring type dispersing machine 3-F
1 and an ejector type disperser 3-H1 and a stainless steel capillary disperser 107 having an inner diameter of 4 mm, as shown in FIG.
2 is a structure of a quasi-fine particle high dispersion processing means group. The quasi-fine particle high dispersion treatment means group has a D M of 17 μm ([D M / 5,5
D M ], ≧ 90%) When powder is output β ≧ 80
% So that it can be achieved. The thin tube 107, which is the final processing means of the quasi-fine particle high dispersion processing means group, is the coating chamber 3
It is directly connected to -C and is configured so that β ≧ 80% can be realized in the coating start region 3-L1 of 3-L2 in the coating space.

【0106】プラズマトーチ3−Aの上部に設けられた
ガス噴出口101に供給源102からアルゴンガスを2
0リットル/分の割合で供給する。このアルゴンガスは
印加された高周波によってプラズマ化され、プラズマト
ーチ3−A内プラズマ室3−aでプラズマ焔を形成す
る。被覆形成物質の原料の供給槽を備えた供給機112
から供給した被覆形成物質の原料である平均粒子径2μ
mの炭化チタン粉末は、5リットル/分のキャリアガス
103に担持されて、プラズマトーチ3−Aの下部に設
けられた被覆形成物質の原料の投入口104から、プラ
ズマ焔中に0.3g/分の割合で導入され、プラズマ焔
の熱により蒸発して気相を経て、被覆形成物質前駆体生
成室3−bで被覆形成物質前駆体となる。芯粒子粉体の
供給槽を備えた供給機111から3.0g/分で供給さ
れる平均粒子径17μmのダイヤモンドの芯粒子を、撹
拌式分散機3−F1により分散させ、5リットル/分の
割合で供給されるキャリアガス105により担持され、
10リットル/分の流量の分散ガス106によるエジェ
クター式分散機3−H1及び細管分散機107により分
散度β=89%の分散状態に分散させ、被覆室に導入す
る。高分散状態のダイヤモンド準微粒子は、被覆空間の
3−L2の被覆開始領域3−L1において被覆形成物質
前駆体とβ=89%の分散状態で接触及び/又は衝突し
始める。このようにして生成した、被覆形成物質で表面
に被覆が施された被覆準微粒子は、気体と共に被覆準微
粒子冷却室3−dを降下し、被覆準微粒子回収部3−G
に至る。被覆準微粒子からなる製品は、フィルター11
0により気体と分離し、集められ取り出される。
Argon gas is supplied from the supply source 102 to the gas ejection port 101 provided on the upper part of the plasma torch 3-A.
Supply at a rate of 0 liters / minute. The argon gas is turned into plasma by the applied high frequency, and forms a plasma flame in the plasma chamber 3-a in the plasma torch 3-A. Feeder 112 equipped with a feed tank for the raw material of the coating forming substance
Average particle size of 2μ which is the raw material of the coating forming material supplied from
The titanium carbide powder of m is supported by the carrier gas 103 of 5 liters / minute, and is supplied to the plasma torch 3-A from the charging port 104 of the raw material of the coating forming material at 0.3 g / min in the plasma flame. It is introduced at a rate of minutes, evaporates by the heat of the plasma flame, passes through the gas phase, and becomes a coating material precursor in the coating material precursor production chamber 3-b. The core particles of diamond having an average particle diameter of 17 μm supplied at 3.0 g / min from a feeder 111 equipped with a core particle powder supply tank are dispersed by a stirring type disperser 3-F1 and 5 liters / min. Supported by a carrier gas 105 supplied in proportion,
The ejector type disperser 3-H1 and the narrow tube disperser 107 with the dispersion gas 106 having a flow rate of 10 liters / minute are used to disperse the dispersion state β to 89%, and the dispersion state is introduced into the coating chamber. The highly-dispersed diamond quasi-fine particles start to contact and / or collide with the coating forming material precursor in a dispersed state of β = 89% in the coating start region 3-L1 of 3-L2 in the coating space. The coated quasi-fine particles having the surface coated with the coating-forming substance, which have been generated in this manner, descend together with the gas in the coated quasi-fine particle cooling chamber 3-d, and the coated quasi-fine particle recovery unit 3-G.
Leading to. Products made of coated quasi-fine particles are filters
It is separated from gas by 0, collected and taken out.

【0107】得られた被覆準微粒子である、炭化チタン
で表面に被覆を施したダイヤモンド準微粒子を走査型電
子顕微鏡で観察したところ、図8に示す通り、個々の粒
子は、いずれも、一様に0.005μm程度の炭化チタ
ンが超微粒子状に被覆したものであった。炭化チタンの
被覆量は、体積で5%であった。このようにして得られ
た炭化チタン被覆ダイヤモンド準微粒子を結合する結合
材として、この炭化チタン被覆ダイヤモンド準微粒子と
略同様の条件で被覆を行って、粒径0.5〜2μm(平
均粒子径1μm)の微粒子からなるダイヤモンド微粒子
粉体に炭化チタンを体積で15%被覆した被覆ダイヤモ
ンド粉体を用いた。上記の被覆ダイヤモンド準微粒子を
体積で60%、また上記の粒径0.5〜2μm(平均粒
子径1μm)の微粒子からなる被覆ダイヤモンド微粒子
を体積で40%をアセトンを用いて湿式で混合し、これ
を外径6mm、高さ2mmに型押し成形し、その外側に六方
晶窒化硼素(h−BN)成形体を配置した圧力媒体に埋
め込み、200℃、10-3torrで一昼夜真空乾燥して、
低沸点不純物を除去した。これをキュービック型超高圧
装置にセットし、先ず、室温で5.5GPaまで昇圧し、そ
の後1450℃に昇温し、30分保持後に降温し、圧力
を下げた。
Observation of the obtained coated quasi-fine particles, that is, the diamond quasi-fine particles having the surface coated with titanium carbide, was observed by a scanning electron microscope. As shown in FIG. Further, titanium carbide of about 0.005 μm was coated in the form of ultrafine particles. The coating amount of titanium carbide was 5% by volume. As a binder for bonding the titanium carbide-coated diamond quasi-fine particles thus obtained, coating was performed under substantially the same conditions as those of the titanium carbide-coated diamond quasi-fine particles to give a particle size of 0.5 to 2 μm (average particle size 1 μm The coated diamond powder in which 15% by volume of titanium carbide is coated on the diamond fine particle powder composed of the fine particles of (1) was used. 60% by volume of the above coated diamond quasi-fine particles, and 40% by volume of the coated diamond fine particles composed of the above-mentioned fine particles having a particle size of 0.5 to 2 μm (average particle diameter 1 μm) were wet mixed using acetone, This was press-molded to have an outer diameter of 6 mm and a height of 2 mm, and it was embedded in a pressure medium having a hexagonal boron nitride (h-BN) compact on the outside and vacuum dried at 200 ° C. and 10 −3 torr for 24 hours. ,
Low boiling impurities were removed. This was set in a cubic type ultra-high pressure apparatus, first, the pressure was raised to 5.5 GPa at room temperature, then the temperature was raised to 1450 ° C., the temperature was held for 30 minutes, and then the temperature was lowered to lower the pressure.

【0108】得られた焼結体をX線回折で調べたとこ
ろ、ダイヤモンドと炭化チタンが認められたのみであっ
た。実施例1の焼結体の研摩面に、観察のための通常の
金蒸着を施してなる当該研摩面の電子顕微鏡写真(×5
000)を図9に示す。図中、暗部はダイヤモンドであ
り、明部は炭化チタンである。図9から明らかなよう
に、焼結体中には気孔が全く存在せず、相対密度99%
以上に焼結出来た。しかも、未焼結な部分が全然なかっ
た。被覆形成物質が薄くなって、ダイヤモンド準微粒子
及び/又は微粒子からなるダイヤモンド微粒子同志が接
触しているところは、このダイヤモンド準微粒子及び/
又はダイヤモンド微粒子同士が被覆を押し破り、焼結し
て直接結合している。これ以外では、炭化チタンがダイ
ヤモンド準微粒子を均一に取り巻いて分布し、被覆ダイ
ヤモンド準微粒子が緻密で、均一な、極めて高度に制御
された分布を有する特徴的な焼結体であることが分か
る。しかも、ダイヤモンド粒子は、原料のダイヤモンド
粉体と比べ、粒成長がないという特徴もある。このよう
な、極めて高度に制御された微組織を有する焼結体は従
来は製造できなかった。以上のように、ダイヤモンド
は、本来極めて難焼結性であるにもかかわらず、本発明
の被覆ダイヤモンド準微粒子は、工業レベルの超高圧力
・高温下において、恰も比較的焼結し易い粒子のごとく
振る舞い、緻密で強固、且つ極めて高度に制御された微
組織を形成した。
When the obtained sintered body was examined by X-ray diffraction, only diamond and titanium carbide were found. An electron micrograph (× 5) of the polished surface obtained by subjecting the polished surface of the sintered body of Example 1 to ordinary gold vapor deposition for observation.
000) is shown in FIG. In the figure, the dark part is diamond and the bright part is titanium carbide. As is clear from FIG. 9, there are no pores in the sintered body and the relative density is 99%.
It was able to sinter above. Moreover, there were no unsintered parts at all. Where the coating-forming substance becomes thin and the diamond quasi-fine particles and / or the diamond fine particles composed of the fine particles are in contact with each other, the diamond quasi-fine particles and / or
Alternatively, the diamond particles crush the coating, sinter, and are directly bonded. Other than this, it can be seen that titanium carbide is distributed uniformly around the diamond quasi-fine particles, and the coated diamond quasi-fine particles are a dense, uniform, and characteristic sintered body having an extremely highly controlled distribution. Moreover, the diamond particles are also characterized in that they do not grow as compared with the raw diamond powder. Such a sintered body having an extremely highly controlled microstructure could not be produced in the past. As described above, although the diamond is originally extremely difficult to sinter, the coated diamond quasi-fine particles of the present invention are particles that are relatively easy to sinter under industrial high pressure and temperature. It behaved as usual, and formed a microstructure that was dense, strong, and extremely highly controlled.

【0109】実施例2 平均粒子径DMが17μmで、体積基準頻度分布が
(〔DM/2,3DM/2〕,≧90%)のダイヤモンド
準微粒子をチタン金属で被覆した。使用した装置は、図
10およびその部分拡大図である図11に示したもので
あり、図5(a)に示した構成の具体例である。本例の被
覆形成物質前駆体を生成する装置の構成は実施例1と同
一である。準微粒子高分散処理手段群αは、供給槽を備
えた供給機214、撹拌式分散機5−F1、細管分散機
211及び衝突板を利用した分散機5−H2で構成され
ており、図2(a)の準微粒子高分散処理手段群の構成で
ある。細管分散機211は、内径4mmのステンレス製で
ある。準微粒子高分散処理手段群αの最終分散手段であ
る衝突板を利用した分散機5−H2は、SiC製の衝突板
213がステンレス製のホルダー212により設置され
た構成である。この衝突板を利用した分散機5−H2は
狭義の被覆室5−cの中に設けられており、準微粒子高
分散処理手段群αと狭義の被覆室5−cは共有の空間を
有している。また、被覆空間5−L1及び被覆空間の被
覆開始領域5−L2は、狭義の被覆室5−c内に設けて
ある。本装置の準微粒子高分散処理手段群は、平均粒子
径DMが17μmで、体積基準頻度分布が(〔DM/5,
5DM/2〕,≧90%)の芯粒子粉体の粒子を、最終
の分散処理である衝突板を利用した分散機5−H2の衝
突板215を衝突直後、分散度β≧80%に分散でき
る。したがって、分散度β≧80%の状態で被覆が開始
される。
Example 2 Diamond quasi-fine particles having an average particle diameter D M of 17 μm and a volume-based frequency distribution of ([D M / 2,3D M / 2], ≧ 90%) were coated with titanium metal. The apparatus used is that shown in FIG. 10 and FIG. 11 which is a partially enlarged view thereof, which is a specific example of the configuration shown in FIG. The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high dispersion treatment means group α is composed of a feeder 214 having a feed tank, a stirring type dispersing machine 5-F1, a narrow tube dispersing machine 211, and a dispersing machine 5-H2 using a collision plate. It is a constitution of a quasi-fine particle high dispersion treatment means group of (a). The thin tube disperser 211 is made of stainless steel having an inner diameter of 4 mm. The disperser 5-H2 using the collision plate, which is the final dispersion means of the quasi-fine particle high dispersion treatment means group α, has a structure in which a collision plate 213 made of SiC is installed by a holder 212 made of stainless steel. The disperser 5-H2 using this collision plate is provided in the narrowly-defined coating chamber 5-c, and the quasi-fine particle high dispersion treatment means group α and the narrowly-defined coating chamber 5-c have a common space. ing. Further, the coating space 5-L1 and the coating start region 5-L2 of the coating space are provided in the coating chamber 5-c in a narrow sense. The quasi-fine particle high dispersion treatment means group of this device has an average particle diameter D M of 17 μm and a volume-based frequency distribution of ([D M / 5,
5D M / 2], ≧ 90%), and the dispersity β ≧ 80% immediately after collision with the collision plate 215 of the disperser 5-H2 using the collision plate, which is the final dispersion treatment. Can be dispersed. Therefore, the coating is started in the state where the degree of dispersion β ≧ 80%.

【0110】プラズマトーチ5−Aの上部に設けられた
ガス噴出口201に供給源202から20リットル/分
のアルゴンガスを供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ5
−A内プラズマ室5−aでプラズマ焔を形成する。被覆
形成物質の原料の供給槽を備えた供給機215から0.
5g/分で供給した被覆形成物質の原料である平均粒子
径25μmのチタン金属粉末は、5リットル/分のキャ
リアガス203に担持されて、プラズマトーチ5−Aの
下部に設けられた被覆形成物質の原料の投入口204か
ら、プラズマ焔中に導入され、プラズマ焔の熱により蒸
発して気相を経て、被覆形成物質前駆体生成室5−bで
被覆形成物質前駆体となる。芯粒子粉体の供給槽を備え
た供給機214から2.5g/分で供給されるダイヤモ
ンドの芯粒子は、撹拌式分散機5−F1により分散さ
せ、20リットル/分の割合で供給されるキャリアガス
205により担持され、細管分散機211を経て、被覆
室中に設けた衝突板を利用した分散機5−H2によっ
て、分散度β=89%に気中に分散させる。高分散状態
のダイヤモンド準微粒子は、被覆空間の5−L2の被覆
開始領域5−L1において被覆形成物質前駆体とβ=8
9%の分散状態で接触及び/又は衝突し始める。このよ
うにして生成した、被覆形成物質で表面が被覆された被
覆準微粒子は、気体と共に被覆準微粒子冷却室5−dを
降下し、被覆準微粒子回収部5−Gに至る。この被覆準
微粒子からなる製品は、フィルター210により気体と
分離し、集められ取り出される。
20 l / min of argon gas is supplied from the supply source 202 to the gas ejection port 201 provided on the upper part of the plasma torch 5-A. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 5
-A plasma flame is formed in the plasma chamber 5-a in A. From a feeder 215 equipped with a feed tank for the raw material of the coating-forming substance.
The titanium metal powder having an average particle diameter of 25 μm, which is the raw material of the coating forming material supplied at 5 g / min, is carried by the carrier gas 203 at 5 liters / minute, and the coating forming material provided below the plasma torch 5-A. It is introduced into the plasma flame from the raw material charging port 204, evaporated by the heat of the plasma flame, and passes through the gas phase to become the coating substance precursor in the coating substance precursor generation chamber 5-b. The diamond core particles, which are supplied at a rate of 2.5 g / min from a feeder 214 equipped with a core particle powder supply tank, are dispersed by a stirring disperser 5-F1 and supplied at a rate of 20 liters / minute. The carrier gas 205 carries it through the narrow tube disperser 211, and disperses it in the air to a dispersity β = 89% by a disperser 5-H2 using a collision plate provided in the coating chamber. The highly dispersed diamond quasi-fine particles and β = 8 with the coating material precursor in the coating start region 5-L1 of 5-L2 in the coating space.
Start contact and / or collision at 9% dispersion. The coated quasi-fine particles, whose surfaces are coated with the coating-forming substance, thus generated move down together with the gas in the coated quasi-fine particle cooling chamber 5-d and reach the coated quasi-fine particle recovery section 5-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 210 and collected and taken out.

【0111】得られた被覆準微粒子である、チタン金属
で表面を被覆したダイヤモンド準微粒子を、走査型電子
顕微鏡で観察したところ、個々の粒子は、いずれも、一
様に0.005μm程度のチタン金属が超微粒子状に被
覆したものであった。チタン金属の被覆量は、体積で1
0%であった。このようにして得られたチタン金属被覆
ダイヤモンド準微粒子を結合する結合材として、このチ
タン金属被覆ダイヤモンド準微粒子と略同様の条件でチ
タン金属による被覆を行って、粒径0.5〜2μm(平
均粒子径1μm)の微粒子からなるダイヤモンド微粒子
粉体にチタン体積で15%被覆した被覆ダイヤモンド粉
体を用いた。上記の被覆ダイヤモンド準微粒子を体積で
60%、また上記の粒径0.5〜2μm(平均粒子径1μ
m)の微粒子からなる被覆ダイヤモンド微粒子を体積で
40%をアセトンを用いて湿式で混合し、これを外径6
mm、高さ2mmに型押し成形し、その外側に六方晶窒化硼
素(h−BN)成形体を配置した圧力媒体に埋め込み、
200℃、10-3torrで一昼夜真空乾燥して、低沸点不
純物を除去した。これをキュービック型超高圧装置にセ
ットし、先ず、室温で5.5GPaまで昇圧し、その後14
50℃に昇温し、30分保持後に降温し、圧力を下げ
た。得られた焼結体をX線回折で調べたところ、ダイヤ
モンドと炭化チタンが認められダイヤモンド87%、炭
化チタン13%であった。この焼結体は実施例1の焼結
体と同様、緻密で強固、且つ極めて高度に制御された微
組織を形成した。
The obtained coated quasi-fine particles, that is, the diamond quasi-fine particles whose surface was coated with titanium metal, were observed with a scanning electron microscope. The metal was coated in the form of ultrafine particles. Titanium metal coverage is 1 by volume
It was 0%. The titanium metal-coated diamond quasi-fine particles thus obtained were coated with titanium metal under substantially the same conditions as those of the titanium metal-coated diamond quasi-fine particles, and the particle diameter was 0.5 to 2 μm (average). A coated diamond powder having 15% titanium volume coated on a diamond fine particle powder composed of fine particles having a particle diameter of 1 μm) was used. 60% by volume of the above-mentioned coated diamond quasi-fine particles, and the above particle size of 0.5 to 2 μm (average particle size 1 μm
40% by volume of the coated diamond fine particles composed of fine particles of m) were wet mixed using acetone, and the outer diameter was 6
mm, height 2 mm, embossed and embedded in a pressure medium with a hexagonal boron nitride (h-BN) compact placed outside
Vacuum drying was carried out at 200 ° C. and 10 −3 torr for one day to remove low boiling point impurities. This was set in a cubic type ultra-high pressure device, and first the pressure was raised to 5.5 GPa at room temperature, then 14
The temperature was raised to 50 ° C., the temperature was kept for 30 minutes, and then the temperature was lowered to lower the pressure. When the obtained sintered body was examined by X-ray diffraction, diamond and titanium carbide were found to be 87% diamond and 13% titanium carbide. Similar to the sintered body of Example 1, this sintered body formed a dense, strong and extremely highly controlled microstructure.

【0112】実施例3 平均粒子径DMが17μmで、体積基準頻度分布が
(〔DM/2,3DM/2〕,≧90%)のダイヤモンド
準微粒子をジルコニウム金属で被覆した。使用した装置
は、図12およびその部分拡大図である図13に示した
ものであり、図5(b)に示した構成の具体例である。本
例の被覆形成物質前駆体を生成する装置の構成は実施例
1と同一である。準微粒子高分散処理手段群αは、供給
槽を備えた供給機313、分散手段である撹拌式分散機
6−F1、高分散芯粒子粉体の粒子・気体混合物選択手
段であるサイクロン6−Iで構成されており、図2(b)
のブロック図の構成の一例である。サイクロン6−Iの
高分散芯粒子粉体の粒子・気体混合物の放出部は、搬送
に不可避のパイプ307で狭義の被覆室6−cへ接続し
てあり、低分散芯粒子粉体部分の放出部は、ホッパー6
−J、ロータリーバルブ6−Kを介して搬送管310で
撹拌式分散機6−F1へ接続してある。本装置の準微粒
子高分散処理手段群によれば、体積基準の粒度分布とし
て、平均粒子径DMが17μmで、体積基準頻度分布が
(〔DM/5,5DM〕,≧90%)の芯粒子粉体の粒子
を、最終の処理手段であるサイクロン6−Iの高分散芯
粒子粉体流の放出部で、分散度β≧85%に分散でき
る。狭義の被覆室6−cに図のごとく被覆空間6−L2
及び被覆空間の被覆開始領域6−L1が設けてある。6
−Cと6−Dを結合せしめるフランジ部の制約による搬
送に不可避のパイプ307による分散度βの低下は少な
くとどめられる。したがって、被覆開始領域において、
分散度β≧80%の状態で被覆が開始される。
Example 3 Diamond quasi-fine particles having an average particle diameter D M of 17 μm and a volume-based frequency distribution of ([D M / 2,3D M / 2], ≧ 90%) were coated with zirconium metal. The apparatus used is that shown in FIG. 12 and FIG. 13 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. 5 (b). The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high dispersion treatment means group α includes a feeder 313 having a supply tank, a stirring type dispersing machine 6-F1 which is a dispersing means, and a cyclone 6-I which is a means for selecting a particle / gas mixture of highly dispersed core particle powder. 2 (b)
2 is an example of the configuration of the block diagram of FIG. The discharge part of the particle / gas mixture of the high-dispersion core particle powder of the cyclone 6-I is connected to the coating chamber 6-c in a narrow sense by a pipe 307 which is inevitable for transportation, and discharge of the low-dispersion core particle powder portion. Part is hopper 6
It is connected to the stirring type dispersing machine 6-F1 through the carrier pipe 310 via the -J and rotary valve 6-K. According to the quasi-fine particle high-dispersion processing means group of the present apparatus, the volume-based particle size distribution has an average particle diameter D M of 17 μm and a volume-based frequency distribution ([D M / 5,5D M ], ≧ 90%). The particles of the core particle powder can be dispersed with a degree of dispersion β ≧ 85% at the discharge portion of the cyclone 6-I high-dispersion core particle powder flow, which is the final processing means. In the narrowly-defined coating chamber 6-c, as shown in the drawing, the coating space 6-L2
And a coating start region 6-L1 of the coating space is provided. 6
The decrease in the degree of dispersion β due to the pipe 307, which is unavoidable for the transportation due to the restriction of the flange portion that joins -C and 6-D, is limited. Therefore, in the coating start area,
The coating is started in the state where the dispersity β ≧ 80%.

【0113】プラズマトーチ6−Aの上部に設けられた
ガス噴出口301に供給源302からアルゴンガスを2
0リットル/分で供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ6
−A内プラズマ室6−aでプラズマ焔を形成する。被覆
形成物質の原料の供給槽を備えた供給機314から0.
5g/分で供給した被覆形成物質の原料であるジルコニ
ウム粉末は、5リットル/分のキャリアガス303に担
持されて、プラズマトーチ6−Aの下部に設けられた被
覆形成物質の原料の投入口304から、プラズマ焔中に
導入され、プラズマ焔の熱により蒸発して気相を経て被
覆形成物質前駆体生成室6−bで被覆形成物質前駆体と
なる。芯粒子粉体の供給槽を備えた供給機313から
2.0g/分で供給されるダイヤモンドの芯粒子は、撹
拌式分散機6−F1により分散させ、15リットル/分
のキャリアガス305により担持されパイプ306を介
してサイクロン6−Iに搬送される。サイクロン6−I
は、微粉側の最大粒子径が20μmとなるように調節さ
れており、単一粒子を主に含むβ=92%の分散状態の
高分散芯粒子粉体の粒子・気体混合物を、搬送に不可避
のパイプ307を介し放出口308から狭義の被覆室6
−cに放出させる。一方、サイクロン6−Iにより選択
分離した低分散芯粒子粉体部分は、ホッパー6−J、ロ
ータリーバルブ6−Kを経て、10リットル/分のキャ
リアガス309によりパイプ310中を搬送され、撹拌
式分散機6−F1へフィードバックする。
Argon gas is supplied from the supply source 302 to the gas outlet 301 provided on the upper portion of the plasma torch 6-A.
Supply at 0 l / min. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 6
-A plasma flame is formed in the plasma chamber 6-a in A. From a feeder 314 equipped with a feed tank for the raw material of the coating forming material.
The zirconium powder, which is the raw material of the coating forming material supplied at 5 g / min, is carried by the carrier gas 303 of 5 liters / minute, and the raw material inlet 304 of the coating forming substance provided in the lower portion of the plasma torch 6-A. Is introduced into the plasma flame, evaporated by the heat of the plasma flame, passes through the gas phase, and becomes a coating substance precursor in the coating substance precursor generation chamber 6-b. Diamond core particles supplied at 2.0 g / min from a feeder 313 equipped with a core particle powder supply tank are dispersed by a stirring type dispersing machine 6-F1 and carried by a carrier gas 305 of 15 liters / minute. Then, it is conveyed to the cyclone 6-I through the pipe 306. Cyclone 6-I
Is adjusted so that the maximum particle size on the fine powder side is 20 μm, and it is unavoidable to convey a particle / gas mixture of highly dispersed core particle powder in a dispersed state of β = 92% mainly containing single particles. From the outlet 308 through the pipe 307 of
-C is released. On the other hand, the low-dispersion core particle powder portion selectively separated by the cyclone 6-I is conveyed through the pipe 310 by the carrier gas 309 of 10 l / min through the hopper 6-J and the rotary valve 6-K, and the stirring type Feedback to the disperser 6-F1.

【0114】高分散状態のダイヤモンド準微粒子は、被
覆空間6−L2の被覆開始領域6−L1において被覆形
成物質前駆体とβ=89%の分散状態で接触及び/又は
衝突し始める。このようにして生成した、被覆形成物質
で表面が被覆された被覆粒子は、気体と共に被覆準微粒
子冷却室6−dを降下し、被覆準微粒子回収部6−Gに
至る。この被覆準微粒子からなる製品は、フィルター3
12により気体と分離し、集められ取り出される。得ら
れた被覆準微粒子である、ジルコニウムで表面を被覆し
たダイヤモンド準微粒子を、走査型電子顕微鏡で観察し
たところ、個々の粒子は、いずれも、一様に0.005
μm程度のジルコニウムが超微粒子状に被覆したもので
あった。ジルコニウムの被覆量は体積で10%であっ
た。
The highly dispersed diamond quasi-fine particles start to contact and / or collide with the coating substance precursor in the coating start region 6-L1 of the coating space 6-L2 in a dispersed state of β = 89%. The generated coated particles, the surfaces of which are coated with the coating forming substance, descend in the coated quasi-fine particle cooling chamber 6-d together with the gas and reach the coated quasi-fine particle recovery unit 6-G. This coated quasi-fine particle product is a filter 3
It is separated from the gas by 12 and collected and taken out. As a result of observing the obtained coated quasi-fine particles, that is, the diamond quasi-fine particles whose surfaces were coated with zirconium, with a scanning electron microscope, all the individual particles were uniformly 0.005.
The zirconium particles of about μm were coated in the form of ultrafine particles. The zirconium coverage was 10% by volume.

【0115】このようにして得られたジルコニウム被覆
ダイヤモンド準微粒子を結合させる結合材として、この
ジルコニウム被覆ダイヤモンド準微粒子と略同様の条件
で炭化チタンによる被覆を行って、粒径0.5〜2μm
(平均粒子径1μm)の微粒子からなるダイヤモンド微
粒子粉体に炭化チタンを体積で15%被覆した被覆ダイ
ヤモンド粉体を用いた。上記の被覆ダイヤモンド準微粒
子を体積で30%、また上記の粒径0.5〜2μm(平
均粒子径1μm)の微粒子からなる被覆ダイヤモンド微
粒子を体積で70%をアセトンを用いて湿式で混合し、
これを外径6mm、高さ2mmに型押し成形し、その外側に
六方晶窒化硼素(h−BN)成形体を配置した圧力媒体
に埋め込み、200℃、10-3torrで一昼夜真空乾燥し
て、低沸点不純物を除去した。これをキュービック型超
高圧装置にセットし、先ず、室温で5.5GPaまで昇圧
し、その後1450℃に昇温し、30分保持後に降温
し、圧力を下げた。得られた焼結体をX線回折で調べた
ところ、ダイヤモンド、炭化ジルコニウム、および炭化
チタンが認められたのみであった。焼結体は相対密度9
9%以上に緻密に焼結出来た。この焼結体は、X線定量
分析によれば、ダイヤモンド、炭化ジルコニウム、炭化
チタンの体積割合は、それぞれ約86%、3%及び11
%であった。焼結体は、緻密で強固、且つ極めて高度に
制御された微組織を形成した。
As a binder for bonding the zirconium-coated diamond quasi-fine particles thus obtained, coating with titanium carbide was carried out under substantially the same conditions as those of the zirconium-coated diamond quasi-fine particles to give a grain size of 0.5 to 2 μm.
A coated diamond powder in which 15% by volume of titanium carbide was coated on a diamond fine particle powder composed of fine particles (average particle diameter 1 μm) was used. 30% by volume of the above coated diamond quasi-fine particles, and 70% by volume of the coated diamond fine particles composed of the above-mentioned fine particles having a particle size of 0.5 to 2 μm (average particle diameter 1 μm) were wet mixed using acetone,
This was press-molded to have an outer diameter of 6 mm and a height of 2 mm, and it was embedded in a pressure medium having a hexagonal boron nitride (h-BN) compact on the outside and vacuum dried at 200 ° C. and 10 −3 torr for 24 hours. , Low boiling impurities were removed. This was set in a cubic type ultra-high pressure apparatus, first, the pressure was raised to 5.5 GPa at room temperature, then the temperature was raised to 1450 ° C., the temperature was held for 30 minutes, and then the temperature was lowered to lower the pressure. When the obtained sintered body was examined by X-ray diffraction, only diamond, zirconium carbide and titanium carbide were found. Sintered body has a relative density of 9
It could be sintered finely to 9% or more. According to X-ray quantitative analysis, this sintered body had a volume ratio of diamond, zirconium carbide and titanium carbide of about 86%, 3% and 11%, respectively.
%Met. The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

【0116】実施例4 実施例1の装置により、実施例1と略同様の条件で炭化
チタンを体積で5%被覆して、更にアルミナを体積で5
0%を被覆した被覆ダイヤモンド準微粒子を直径8mm、
厚さ5mmに型押し成形し、この成形体を、h−BN粉体
を充填したパイレックスガラス製のカプセルに配置し、
10-6torr、400℃、12時間脱気後封入した。この
カプセルを、アルゴンガスを圧力媒体とするHIP装置
に配置し、焼結温度1200℃、焼結圧力150MPaで
3時間保持して焼結した。しかる後、炉冷し、圧力を開
放して、焼結体を取り出した。粉末X線回折により焼結
体の結晶相を調べたところ、ダイヤモンド、炭化チタン
及びα−アルミナ以外の回折ピークは認められなかっ
た。焼結体は相対密度99%以上に緻密に焼結できた。
焼結体は、緻密で強固、且つ極めて高度に制御された微
組織を形成した。
Example 4 Using the apparatus of Example 1, 5% by volume of titanium carbide was coated under substantially the same conditions as in Example 1, and further 5% by volume of alumina was further coated.
8% diameter of coated diamond quasi fine particles coated with 0%,
Molded to a thickness of 5 mm and placed in a Pyrex glass capsule filled with h-BN powder.
After deaeration at 10 −6 torr, 400 ° C. for 12 hours, it was sealed. The capsule was placed in a HIP device using argon gas as a pressure medium, and sintered at a sintering temperature of 1200 ° C. and a sintering pressure of 150 MPa for 3 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the crystal phase of the sintered body was examined by powder X-ray diffraction, no diffraction peaks other than those of diamond, titanium carbide and α-alumina were observed. The sintered body could be densely sintered to a relative density of 99% or more.
The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

【0117】実施例5 実施例1の装置により、実施例1と略同様の条件で被覆
を行って炭化チタンを体積で10%を被覆した被覆ダイ
ヤモンド準微粒子を得た。この被覆ダイヤモンド準微粒
子を、結合材として高純度で易焼結性のアルミナ(特開
昭63−151616号公報に記載のアルミナ粉体)を
用い、焼結した。すなわち、この被覆ダイヤモンド準微
粒子を体積で40%、結合材として、特開昭63−15
1616号公報に記載の平均粒径が0.2μmの高純度
・易焼結性アルミナ粉体を体積で53.4%、及びこの
アルミナ粉体の焼結助剤としてマグネシア(MgO)及
びチタニア(TiOx、x=1〜2)を体積でそれぞれ
0.6%及び1.0%からなる混合物を調製し、これらを
アルミナ製ボールミルを用い、アセトン中湿式で2時間
混合した。その後、10-6torr、200℃でこの混合粉
体を真空乾燥した。次いで、直径16mm、厚さ5mmの円
盤状に型押し成形し、当該成形体を、h−BN粉体を充
填したパイレックスガラス製のカプセルに配置し、10
-6torr、400℃、12時間脱気後封入した。このカプ
セルをアルゴンガスを圧力媒体とするHIP装置に配置
し、焼結温度1300℃、焼結圧力150MPaで3時間
保持して焼結した。しかる後、炉冷し、圧力を開放し
て、焼結体を取り出した。X線回折により実施例5の焼
結体の結晶相を調べたところ、ダイヤモンド、炭化チタ
ン及びα−アルミナ以外の回折ピークは認められなかっ
た。焼結体は相対密度99%以上に緻密に焼結出来た。
焼結体は、緻密で強固、且つ極めて高度に制御された微
組織を形成した。
Example 5 Using the apparatus of Example 1, coating was performed under substantially the same conditions as in Example 1 to obtain coated diamond quasi-fine particles coated with 10% by volume of titanium carbide. The coated diamond quasi-fine particles were sintered using a high-purity and easily-sinterable alumina (alumina powder described in JP-A-63-151616) as a binder. That is, 40% by volume of the coated diamond quasi-fine particles, as a binder, is disclosed in JP-A-63-15.
The high-purity and easily-sinterable alumina powder having an average particle diameter of 0.2 μm described in Japanese Patent No. 1616 is 53.4% by volume, and magnesia (MgO) and titania (as a sintering aid for the alumina powder). A mixture of TiO x , x = 1 to 2) was prepared in an amount of 0.6% and 1.0% by volume, respectively, and these were wet-mixed for 2 hours in acetone using an alumina ball mill. Then, the mixed powder was vacuum dried at 10 −6 torr and 200 ° C. Then, it was pressed into a disk shape with a diameter of 16 mm and a thickness of 5 mm, and the molded body was placed in a capsule made of Pyrex glass filled with h-BN powder.
After deaeration at -6 torr and 400 ° C for 12 hours, it was sealed. This capsule was placed in a HIP apparatus using argon gas as a pressure medium, and sintered at a sintering temperature of 1300 ° C and a sintering pressure of 150 MPa for 3 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the crystal phase of the sintered body of Example 5 was examined by X-ray diffraction, no diffraction peaks other than those of diamond, titanium carbide and α-alumina were observed. The sintered body could be densely sintered to a relative density of 99% or more.
The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

【0118】[0118]

【発明の効果】本発明によれば、(1)体積基準頻度分布
で平均粒子径が10μmを越え、20μm以下の芯粒子
粉体の粒子が主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物中の当該芯粒子粉体の粒
子を、分散度βが80%以上である高い分散状態でか、
又は(2)体積基準頻度分布で平均粒子径が20μmを越
え、50μm以下の芯粒子粉体の粒子が主に単一粒子状
態で気中に存在する高分散芯粒子粉体の粒子・気体混合
物中の芯粒子粉体の粒子を、分散度βで90%以上であ
る高い分散状態でか、又は(3)体積基準頻度分布で平均
粒子径が50μmを越え、300μm以下の芯粒子粉体
の粒子が主に単一粒子状態で気中に存在する高分散芯粒
子粉体の粒子・気体混合物中の当該芯粒子粉体の粒子
を、分散度βで95%以上である高い分散状態でか、又
は(4)体積基準頻度分布で平均粒子径が300μmを越
え、800μm以下の芯粒子粉体の粒子が主に単一粒子
状態で気中に存在する高分散芯粒子粉体の粒子・気体混
合物中の当該芯粒子粉体の粒子を、分散度βが97%以
上である高い分散状態でか、又は(5)体積基準頻度分布
で平均粒子径が800μmを越える芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物中の当該芯粒子粉体の粒子を、分散度
βで99%以上である高い分散状態で被覆形成物質前駆
体と接触又は衝突させることによって、単一粒子状態で
その表面を被覆形成物質で被覆した被覆ダイヤモンド準
微粒子が得られる。そしてこの被覆ダイヤモンド準微粒
子はこの準微粒子自体で、または結合材と共に高圧下に
焼結することにより、実質的にグラファイト相を含まな
い、緻密で極めて高度に微組織が制御された被覆ダイヤ
モンド準微粒子焼結体が製造出来るようになった。特
に、超高圧HIP装置或いは当該超高圧HIP装置を除
くHIP装置を使用する場合は、更に複雑形状の焼結体
の製造も可能である等、本発明は工業生産上のメリット
が頗る大きい。
EFFECTS OF THE INVENTION According to the present invention, (1) the core particle powder having an average particle size of more than 10 μm and 20 μm or less in the volume standard frequency distribution is mainly present in the air in the form of a single particle. Whether the particles of the core particle powder in the particle / gas mixture of the dispersed core particle powder are in a highly dispersed state with a dispersity β of 80% or more,
Or (2) A particle / gas mixture of highly dispersed core particle powder in which particles of the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume-based frequency distribution mainly exist in the air in a single particle state. The particles of the core particle powder are in a highly dispersed state having a dispersity β of 90% or more, or (3) the core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in the volume standard frequency distribution. Particles of high-dispersion core particle powder that are mainly present in the air in the form of a single particle-The particles of the core particle powder in the gas mixture are in a highly dispersed state with a dispersity β of 95% or more. Or (4) Particles / gas of highly dispersed core particle powder in which particles in the core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in the volume standard frequency distribution are mainly present in the air in a single particle state. Whether the particles of the core particle powder in the mixture are in a highly dispersed state with a dispersity β of 97% or more, (5) Core particles having a volume-based frequency distribution and an average particle size of more than 800 μm. Particles of highly dispersed core particles in which particles of the powder are mainly present in the air in a single particle state. A coated diamond quasi-particle whose surface is coated with a coating-forming substance in a single particle state by contacting or colliding the particles of the powder with a coating-forming substance precursor in a highly dispersed state with a dispersity β of 99% or more. Fine particles are obtained. The coated diamond quasi-fine particles, which are dense or have extremely finely controlled microstructure, are substantially free of a graphite phase by being sintered with the quasi-fine particles themselves or with a binder under high pressure. A sintered body can be manufactured. In particular, when the ultra-high pressure HIP device or the HIP device other than the ultra-high pressure HIP device is used, it is possible to manufacture a sintered body having a more complicated shape, and the present invention has a great advantage in industrial production.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉体粒子の分布図であり、(a)は本来の分散度
βを表わし、(b)は粒径D1〜D2の範囲の粒子が体積で
90%を占める粉体の粒径対体積基準頻度を表わす。
FIG. 1 is a distribution chart of powder particles, (a) shows the original dispersity β, and (b) shows the distribution of particles having a particle size range of D 1 to D 2 occupying 90% by volume. Represents particle size vs. volume based frequency.

【図2】(a)〜(c)は準微粒子高分散処理手段群の基本
構成を示すブロック図。
2A to 2C are block diagrams showing a basic configuration of a quasi-fine particle high dispersion treatment means group.

【図3】(a)〜(g)は準微粒子高分散処理手段群の構成
をより詳細に説明するブロック図。
3 (a) to 3 (g) are block diagrams for explaining the configuration of a quasi-fine particle high dispersion treatment means group in more detail.

【図4】(a)〜(e)は芯粒子粉体に被覆が開始される態
様を示す図。
FIGS. 4A to 4E are views showing a mode in which coating of core particle powder is started. FIG.

【図5】(a)〜(g)は被覆されたダイヤモンド準微粒子
を製造するための装置の構成を説明するブロック図。
5 (a) to 5 (g) are block diagrams illustrating the configuration of an apparatus for producing coated diamond quasi-fine particles.

【図6】実施例1で用いる装置を示す図。FIG. 6 is a diagram showing an apparatus used in Example 1.

【図7】実施例1で用いる装置の部分拡大図。FIG. 7 is a partially enlarged view of the device used in the first embodiment.

【図8】実施例1で得られた被覆準微粒子の走査型電子
顕微鏡写真。
FIG. 8 is a scanning electron micrograph of the coated quasi-fine particles obtained in Example 1.

【図9】実施例1の焼結体の研磨面の電子顕微鏡写真。9 is an electron micrograph of a polished surface of the sintered body of Example 1. FIG.

【図10】実施例2で用いる装置を示す図。FIG. 10 is a diagram showing an apparatus used in Example 2.

【図11】実施例2で用いる装置の部分拡大図。FIG. 11 is a partially enlarged view of the device used in the second embodiment.

【図12】実施例3で用いる装置を示す図。FIG. 12 is a diagram showing an apparatus used in Example 3;

【図13】実施例3で用いる装置の部分拡大図。FIG. 13 is a partially enlarged view of the device used in the third embodiment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/87 S (72)発明者 吉田 晴男 愛知県名古屋市北区尾上町1番地の2 尾 上団地第5号棟第1406号室 (72)発明者 粂 正市 愛知県津島市鹿伏兎町字二之割150番地の 2 (72)発明者 山田 幸良 埼玉県比企郡川島町八幡3丁目6番18号 (72)発明者 冬木 正 埼玉県入間郡大井町緑ヶ丘2丁目23番16号 (72)発明者 秋山 聡 埼玉県川越市稲荷町17番22号 (72)発明者 濱田 美明 埼玉県川越市末広町3丁目4番8号 (72)発明者 黒田 英輔 埼玉県川越市西小仙波町2丁目16番4号 (72)発明者 鍋谷 忠克 神奈川県鎌倉市山ノ内1095−21 (72)発明者 隅田 幸雄 宮城県亘理郡亘理町吉田字中原55−520 (72)発明者 木村 健一 宮城県仙台市太白区八木山本町2−33−5 グレイス八木山502号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location C04B 41/87 S (72) Inventor Haruo Yoshida 2 at 1 Onoe-cho, Kita-ku, Nagoya-shi, Aichi Kamidanchi No. 5 Building No. 1406 Room (72) Inventor Minamoto Tadashi City 150 2 Ninowari, Shikabushigo-cho, Tsushima City, Aichi Prefecture (72) Inventor Yuki Yamada 3-6-18 Hachiman, Kawashima-cho, Hiki-gun, Saitama Prefecture (72) Inventor Tadashi Tadashi 2-23-16 Midorigaoka, Oi-cho, Iruma-gun, Saitama Prefecture (72) Inventor Satoshi Akiyama 17-22, Inari-cho, Kawagoe City, Saitama Prefecture (72) Inventor Miaki Hamada Suehiro, Kawagoe City, Saitama Prefecture Town 3-4-8 (72) Inventor Eisuke Kuroda 2-16-4 Nishikosenba-cho, Kawagoe-shi, Saitama Prefecture (72) Inventor Tadakatsu Nabeya 1095-21 Yamanouchi, Kamakura-shi, Kanagawa Prefecture (72) Yukio Sumida Miyagi Prefecture Watari-gun Watari-cho Yoshi Character Nakahara 55-520 (72) inventor Kenichi Kimura Sendai, Miyagi Prefecture Taebaek-ku, Yagiyamahon-cho 2-33-5 Grace Yagiyama 502 No.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンドの準微粒子からなる芯粒子
粉体を被覆空間に投入し、気相を経て生成する被覆形成
物質前駆体及び/又は気相状態の被覆形成物質前駆体
を、この芯粒子粉体の粒子に接触及び/又は衝突させ
て、この芯粒子粉体の粒子の表面を被覆形成物質で被覆
して得られる被覆ダイヤモンド準微粒子であって、 (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) 芯粒子粉体の粒子を気中に分散させる分散手
段、及び(b) 芯粒子粉体の粒子を気中に分散させた
芯粒子粉体の粒子と気体との混合物において低分散芯粒
子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒子
状態で気中に存在する高分散芯粒子粉体の粒子・気体混
合物を選択する高分散芯粒子粉体の粒子・気体混合物選
択手段とこの高分散芯粒子粉体の粒子・気体混合物選択
手段により選択分離された低分散芯粒子粉体部分を準微
粒子高分散処理手段群中の分散手段の内の最終分散手段
及び/又は最終分散手段以前の処理手段に搬送するフィ
ードバック手段とを備えた高分散芯粒子粉体の粒子・気
体混合物選択手段、から選ばれる準微粒子高分散処理手
段群により、体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子を、気中に分散させて高分散芯
粒子粉体の粒子・気体混合物とする分散工程、 (B) この分散工程で分散させた芯粒子粉体の粒子
を、その平均粒子径が10μmを越え20μm以下のと
きには分散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上の分散状態で、被覆空間の被覆開始領域にお
いて被覆形成物質前駆体と接触及び/又は衝突させて被
覆を開始する被覆工程、からなる被覆手段によって調製
された、被覆ダイヤモンド準微粒子。
1. A core forming powder containing core particle powder made of quasi-fine diamond particles is charged into a coating space to form a coating forming substance precursor and / or a vapor forming state of the coating forming substance precursor. A coated diamond quasi-fine particle obtained by contacting and / or colliding with a particle of a powder to coat the surface of the particle of the core particle powder with a coating forming substance, which comprises (A) a group of quasi-fine particle high dispersion treatment means The final processing means of
(A) Dispersing means for dispersing particles of core particle powder in air, and (b) Low dispersion core in a mixture of particles of core particle powder and gas in which particles of core particle powder are dispersed in air. Particles of highly dispersed core particle powder that separates the particle powder portion and particles of the core particle powder are mainly present in the air in a single particle state. Particles of highly dispersed core particle powder that selects a gas mixture. The gas mixture selection means and the low-dispersion core particle powder portion selectively separated by the particle / gas mixture selection means of the high-dispersion core particle powder are the final dispersion means of the dispersion means in the quasi-fine particle high-dispersion processing means group, and And / or a means for selecting a particle / gas mixture of a highly dispersed core particle powder, which comprises a feedback means for conveying to a processing means before the final dispersing means, and a means for quasi-fine particle high dispersion processing means selected from the average of volume-based frequency distributions. Particle size is 10 μm
A dispersing step of dispersing particles of the quasi-fine particle core particle powder exceeding the above or particles of the core particle powder mainly consisting of quasi-fine particles into the air to form a particle / gas mixture of the highly dispersed core particle powder, (B) When the average particle size of the core particle powder dispersed in this dispersion step is more than 10 μm and 20 μm or less, the dispersity β is 80% or more, and when the average particle size is more than 20 μm and 50 μm or less, the dispersity β is 90 or more.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
A coating step of contacting and / or colliding with the coating-forming material precursor in the coating start region of the coating space in a dispersed state having a dispersity β of 99% or more when it is 7% or more and 800 μm or more; Coated diamond quasi-fine particles prepared by the following coating means.
【請求項2】 前記被覆されたダイヤモンド準微粒子
が、 被覆されたダイヤモンド準微粒子の被覆形成物質を介し
て接触状態で集合塊を形成した被覆されたダイヤモンド
準微粒子の集合塊を、解砕及び/又は破砕する被覆され
たダイヤモンド準微粒子集合塊の解砕・破砕工程、及び
/又はこの被覆ダイヤモンド準微粒子集合塊と一次粒子
単位の被覆されたダイヤモンド準微粒子とを選択分離す
る選択分離工程を更に経て調製されたものであることを
特徴とする、請求項1に記載の被覆ダイヤモンド準微粒
子。
2. The aggregated diamond quasi-fine particles, wherein the coated diamond quasi-fine particles form an agglomerate in a contact state through a coating forming substance of the coated diamond quasi-fine particles, and crush and / or Or a crushing / crushing step of the coated diamond quasi fine particle aggregates to be crushed, and / or a selective separation step of selectively separating the coated diamond quasi fine particle aggregates from the coated diamond quasi fine particles of the primary particle unit. The coated diamond quasi-fine particles according to claim 1, which are prepared.
【請求項3】 被覆形成物質で被覆するべきダイヤモン
ドの準微粒子からなる芯粒子粉体の粒子又は主に同準微
粒子からなる芯粒子粉体の粒子が、溶融塩浴を用いる浸
漬法により、浸漬法に由来する被覆物質で一層以上被覆
された準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子であることを特徴とする、請求項
1又は請求項2に記載の被覆ダイヤモンド準微粒子。
3. Particles of core particle powder consisting of quasi-fine particles of diamond to be coated with a coating forming substance or particles of core particle powder mainly consisting of quasi-fine particles are dipped by a dipping method using a molten salt bath. The particles of a quasi-fine particle core particle powder coated with one or more coating materials derived from the method or particles of a core particle powder mainly composed of quasi-fine particles. Coated diamond quasi-fine particles.
【請求項4】 被覆されたダイヤモンド準微粒子が、 体積基準頻度分布で平均粒子径が10μmを越え20μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
80%以上とする分散性能を有する準微粒子高分散処理
手段群、又は体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを90%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が50μmを越え300μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを95%以上とする分散性能
を有する準微粒子高分散処理手段群、又は体積基準頻度
分布で平均粒子径が300μmを越え800μm以下の
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを97%以
上とする分散性能を有する準微粒子高分散処理手段群、
又は体積基準頻度分布で平均粒子径が800μmを越え
る芯粒子粉体を、準微粒子高分散処理手段群の最終処理
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とし、その芯粒子粉体の粒子の分散度βを99%
以上とする分散性能を有する準微粒子高分散処理手段群
による分散工程を設け、準微粒子高分散処理手段群によ
り分散させた高分散芯粒子粉体の粒子・気体混合物を被
覆工程に直接放出するか、又は分散工程と被覆工程の間
に、準微粒子高分散処理手段群により分散させた高分散
芯粒子粉体の粒子・気体混合物を放出する放出部から、
搬送に不可避の、中空部材、中空を形成せしめる部材か
らなる中間部材、及びパイプから選択される一種類又は
それ以上の部材を介して搬送するか、及び/又は、前記
分散性能で気中に分散させた高分散芯粒子粉体の粒子・
気体混合物中の粒子の気中分散状態を維持する気中分散
維持手段、前記分散性能で気中に分散させた高分散芯粒
子粉体の粒子・気体混合物中の粒子の気中分散状態を高
める気中分散促進手段、芯粒子粉体の粒子と気体との混
合物の内の、低分散芯粒子粉体部分を分離し、芯粒子粉
体の粒子が主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉
体の粒子・気体混合物選択手段の一種類又はそれ以上を
介して搬送して調製されたものであることを特徴とす
る、請求項1に記載の被覆ダイヤモンド準微粒子。
4. The coated quasi-fine diamond particles have an average particle diameter of more than 10 μm and 20 μm in a volume-based frequency distribution.
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of high-dispersion quasi-fine particles having a dispersion performance of 80% or more, or a volume-based frequency distribution with an average particle diameter of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion treatment means group having a dispersion performance of making the degree β 90% or more, or the core particle powder having an average particle diameter exceeding 50 μm and 300 μm or less in the volume standard frequency distribution A quasi-particulate high dispersion treatment means group having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment, and the degree of dispersion β of the particles of the core particle powder is 95% or more. , Or a particle / gas of a highly dispersed core particle powder, in which a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a mixture, the core particles Quasi particle group of means for high dispersion treatment with a dispersing performance of the body of the dispersity β of the particles and 97% or more,
Alternatively, a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, Particle dispersity β of core particle powder is 99%
Whether to provide a dispersion process by means of the quasi-fine particle high-dispersion treatment means group having the above dispersion performance and directly release the particle / gas mixture of the highly-dispersed core particle powder dispersed by the quasi-fine particle high-dispersion treatment means group to the coating step , Or between the dispersion step and the coating step, from the discharge part for discharging the particle / gas mixture of the highly dispersed core particle powder dispersed by the quasi-fine particle high dispersion treatment means group,
It is conveyed through one or more members selected from a hollow member, an intermediate member composed of a member for forming a hollow, and a pipe, which is unavoidable for carrying, and / or dispersed in the air with the above-mentioned dispersion performance. Particles of highly dispersed core particles powder
In-air dispersion maintaining means for maintaining the air-dispersed state of particles in a gas mixture, the particles of highly dispersed core particle powder dispersed in air with the above-mentioned dispersion performance, and enhancing the air-dispersed state of particles in a gas mixture Air dispersion promoting means, separating low-dispersion core particle powder portion of a mixture of core particle powder particles and gas, and the core particle powder particles mainly exist in the air in a single particle state. A highly dispersed core particle powder particle / gas mixture for selecting a highly dispersed core particle powder particle / gas mixture selecting means, which is prepared by being conveyed through one or more means. The coated diamond quasi-fine particles according to claim 1.
【請求項5】 被覆ダイヤモンド準微粒子が、 体積基準頻度分布で平均粒子径が10μmを越え20μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
80%以上とする分散性能を有する準微粒子高分散処理
手段群、又は体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを90%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が50μmを越え300μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを95%以上とする分散性能
を有する準微粒子高分散処理手段群、又は体積基準頻度
分布で平均粒子径が300μmを越え800μm以下の
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを97%以
上とする分散性能を有する準微粒子高分散処理手段群、
又は体積基準頻度分布で平均粒子径が800μmを越え
る芯粒子粉体を、準微粒子高分散処理手段群の最終処理
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とし、その芯粒子粉体の粒子の分散度βを99%
以上とする分散性能を有する準微粒子高分散処理手段群
による分散工程の一部以上と前記被覆工程の一部以上と
を、空間を一部以上共有して行うことにより調製された
ものであることを特徴とする、請求項1に記載の被覆ダ
イヤモンド準微粒子。
5. The coated diamond quasi-fine particles have a volume-based frequency distribution and an average particle size of more than 10 μm and 20 μm.
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of high-dispersion quasi-fine particles having a dispersion performance of 80% or more, or a volume-based frequency distribution with an average particle diameter of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion treatment means group having a dispersion performance of making the degree β 90% or more, or the core particle powder having an average particle diameter exceeding 50 μm and 300 μm or less in the volume standard frequency distribution A quasi-particulate high dispersion treatment means group having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment, and the degree of dispersion β of the particles of the core particle powder is 95% or more. , Or a particle / gas of a highly dispersed core particle powder, in which a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a mixture, the core particles Quasi particle group of means for high dispersion treatment with a dispersing performance of the body of the dispersity β of the particles and 97% or more,
Alternatively, a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, Particle dispersity β of core particle powder is 99%
It is prepared by performing a part or more of the dispersion step and a part or more of the coating step by the group of quasi-particulate high-dispersion processing means having the above-mentioned dispersion performance by sharing a part or more of the space. The coated diamond quasi-fine particles according to claim 1, wherein
【請求項6】 被覆ダイヤモンド準微粒子が、 体積基準頻度分布で平均粒子径が、10μmを越え20
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を80%以上とする空間領域、 体積基準頻度分布で平均粒子径が、20μmを越え50
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を90%以上とする空間領域、 体積基準頻度分布で平均粒子径が、50μmを越え30
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを95%以上とする空間領域、 体積基準頻度分布で平均粒子径が、300μmを越え8
00μm以下の芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを97%以上とする空間領域、 体積基準頻度分布で平均粒子径が、800μmを越える
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを99%以
上とする空間領域の内の当該高分散芯粒子粉体の粒子・
気体混合物中の芯粒子粉体の粒子の全ての粒子が通過す
る面を含む空間領域に、被覆空間の被覆開始領域を位置
せしめるか、又は体積基準頻度分布で平均粒子径が、1
0μmを越え20μm以下の芯粒子粉体を、準微粒子高
分散処理手段群の最終処理により気中に分散させて高分
散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体
の粒子の分散度βを80%以上とする空間領域、 体積基準頻度分布で平均粒子径が20μmを越え50μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
90%以上とする空間領域、 体積基準頻度分布で平均粒子径が、50μmを越え30
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを95%以上とする空間領域、 体積基準頻度分布で平均粒子径が、300μmを越え8
00μm以下の芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを97%以上とする空間領域、 体積基準頻度分布で平均粒子径が、800μmを越える
芯粒子粉体を準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを99%以上
とする空間領域の内の、回収手段の回収部に回収する全
ての粒子が通過する面を含む空間領域に、被覆空間の被
覆開始領域を位置せしめることを特徴とする、請求項
1、2又は3に記載の被覆ダイヤモンド準微粒子。
6. The coated diamond quasi-fine particles have a volume-based frequency distribution and an average particle size of more than 10 μm and 20.
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Is 80% or more, and the average particle size exceeds 50 μm in the volume standard frequency distribution.
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Of 90% or more, the average particle size exceeds 50 μm in the volume-based frequency distribution, and 30
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 95% or more, the volume-based frequency distribution has an average particle size of more than 300 μm and 8
The core particle powder having a particle size of 00 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 97% or more in a space region, and a core particle powder having an average particle size of more than 800 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a highly dispersed core particle powder. Particles of the high-dispersion core particle powder in a space region where the particle dispersity β of the core particle powder is 99% or more as a body particle / gas mixture.
The coating start region of the coating space is located in the space region including the surface through which all the particles of the core particle powder in the gas mixture pass, or the average particle size is 1 in the volume standard frequency distribution.
A core particle powder having a particle size of more than 0 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Spatial region with dispersity β of 80% or more, volume-based frequency distribution with average particle size exceeding 20 μm and 50 μm
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 90% or more, the average particle size exceeds 50 μm in the volume-based frequency distribution, and 30
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 95% or more, the volume-based frequency distribution has an average particle size of more than 300 μm and 8
The core particle powder having a particle size of 00 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 90% or more in a spatial region, and a core particle powder having an average particle size of more than 800 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. In the space area including the surface through which all particles to be recovered by the recovery unit of the recovery means pass, in the space area in which the degree of dispersion β of the particles of the core particle powder is 99% or more. The coated diamond quasi-fine particles according to claim 1, 2 or 3, wherein a coating start region of the coating space is located.
【請求項7】 使用する、芯粒子粉体の粒子の粒度分布
が、平均粒子径をDMとしたとき、体積基準頻度分布で
(〔DM/5,5DM〕,≧90%)であることを特徴と
する、請求項1、請求項4、請求項5又は請求項6に記
載の被覆ダイヤモンド準微粒子。
7. The particle size distribution of the particles of the core particle powder used is a volume standard frequency distribution ([D M / 5,5D M ], ≧ 90%) when the average particle size is D M. The coated diamond quasi-fine particles according to claim 1, claim 4, claim 5 or claim 6, characterized in that they are present.
【請求項8】 請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6又は請求項7に記載の被覆され
たダイヤモンド準微粒子又は同粒子を含む混合物を、2
000MPa以上の圧力および高温において焼結するか、
又は上記請求範囲に記載の被覆されたダイヤモンド準微
粒子又は同粒子を含む混合物を2000MPa未満の圧力
及び1850℃を越えない、ダイヤモンドが熱力学的に
安定ではないが準安定な圧力・温度の焼結条件において
焼結するか、又は上記請求項に記載の被覆されたダイヤ
モンド準微粒子と結合材との体積で1〜90:99〜1
0の割合の混合物であって、この結合材は2000MPa
未満の圧力で1850℃を越えないダイヤモンド粒子が
熱力学的に準安定な条件で密度85%以上に焼結される
ものである、上記混合物を2000MPa未満の圧力及び
1850℃を越えないダイヤモンドが熱力学的に安定で
はないが準安定な圧力・温度の焼結条件において焼結す
ることを特徴とする、被覆ダイヤモンド準微粒子焼結体
の製造法。
8. The coated diamond quasi-fine particles according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6 or claim 7, or a mixture containing the same, 2
Sintering at pressure of 000MPa or more and high temperature,
Or sintering the coated diamond quasi-fine particles or the mixture containing the particles according to the above claims at a pressure of less than 2000 MPa and not exceeding 1850 ° C., where diamond is not thermodynamically stable but metastable pressure and temperature. 1 to 90:99 to 1 by volume of the sintered diamond quasi-fine particles and the binder according to the above claims.
0% mixture, the binder is 2000 MPa
Diamond particles not exceeding 1850 ° C. at a pressure of less than 1850 ° C. are sintered to a density of 85% or more under thermodynamically metastable conditions. The above mixture is heated at a pressure of less than 2000 MPa and diamond not exceeding 1850 ° C. A method for producing a coated diamond quasi-fine particle sintered body, which comprises sintering under a pressure-temperature sintering condition that is not mechanically stable but metastable.
【請求項9】 請求項8に記載の被覆ダイヤモンド準微
粒子焼結体の製造法により製造することを特徴とする、
被覆ダイヤモンド準微粒子焼結体。
9. The coated diamond quasi-fine particle sintered body according to claim 8 is manufactured.
Coated diamond quasi-fine particle sintered body.
JP5219277A 1993-08-12 1993-08-12 Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production Pending JPH0753205A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5219277A JPH0753205A (en) 1993-08-12 1993-08-12 Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production
US08/288,947 US5536485A (en) 1993-08-12 1994-08-11 Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219277A JPH0753205A (en) 1993-08-12 1993-08-12 Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003393214A Division JP4635215B2 (en) 2003-11-25 2003-11-25 Coated diamond quasi-fine particle sintered body

Publications (1)

Publication Number Publication Date
JPH0753205A true JPH0753205A (en) 1995-02-28

Family

ID=16733003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219277A Pending JPH0753205A (en) 1993-08-12 1993-08-12 Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0753205A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055649A (en) * 2001-08-22 2003-02-26 Ishizuka Kenkyusho:Kk Diamond powder coated with carbide
WO2010092996A1 (en) * 2009-02-13 2010-08-19 株式会社インキュベーション・アライアンス Process for the production of diamond materials
JP2013500920A (en) * 2009-07-31 2013-01-10 エレメント シックス リミテッド Polycrystalline diamond composite compact
JP2013049599A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Production apparatus of fibrous carbon material
JP2017504552A (en) * 2014-06-09 2017-02-09 河海大学 Method for producing titanium nitride-titanium diboride-cubic boron nitride composite material
CN112079640A (en) * 2020-07-21 2020-12-15 南昌航空大学 MoSi2@ZrO2Preparation method of core-shell structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055649A (en) * 2001-08-22 2003-02-26 Ishizuka Kenkyusho:Kk Diamond powder coated with carbide
WO2010092996A1 (en) * 2009-02-13 2010-08-19 株式会社インキュベーション・アライアンス Process for the production of diamond materials
JPWO2010092996A1 (en) * 2009-02-13 2012-08-16 株式会社インキュベーション・アライアンス Method for producing diamond material
JP2013500920A (en) * 2009-07-31 2013-01-10 エレメント シックス リミテッド Polycrystalline diamond composite compact
JP2013049599A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Production apparatus of fibrous carbon material
JP2017504552A (en) * 2014-06-09 2017-02-09 河海大学 Method for producing titanium nitride-titanium diboride-cubic boron nitride composite material
CN112079640A (en) * 2020-07-21 2020-12-15 南昌航空大学 MoSi2@ZrO2Preparation method of core-shell structure

Similar Documents

Publication Publication Date Title
US5536485A (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JP3533459B2 (en) Manufacturing method of coated metal quasi-fine particles
EP0712941B1 (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
US6024915A (en) Coated metal particles, a metal-base sinter and a process for producing same
Hahn Gas phase synthesis of nanocrystalline materials
JP5101605B2 (en) Phase powder and method for producing the phase powder
US5876683A (en) Combustion flame synthesis of nanophase materials
US6579573B2 (en) Nanostructured feeds for thermal spray systems, method of manufacture, and coatings formed therefrom
JP2562442B2 (en) Composite powder particles, manufacturing method and manufacturing apparatus
JP4970638B2 (en) Method of manufacturing a cemented carbide body with increased wear resistance
NL8201161A (en) Preferentially bonded cemented carbide bodies and process for their manufacture.
US6024909A (en) Coated ceramic particles, a ceramic-base sinter and a process for producing the same
JP3948631B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JPH0753205A (en) Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production
JPH0753282A (en) Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof
JP3948632B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
EP0663456B1 (en) Method of producing coated particles
JP3533458B2 (en) Manufacturing method of coated metal fine particles
JP3948633B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3960484B2 (en) Coated diamond sintered body and manufacturing method thereof
JPH0753272A (en) Coated ceramic semifine particles, ceramic-based sintered compact and its production
JP3948634B2 (en) Coated diamond sintered body and manufacturing method thereof
JP4016091B2 (en) Coated ceramic particles, ceramic-based sintered body and method for producing the same
JP4635215B2 (en) Coated diamond quasi-fine particle sintered body
JP3948635B2 (en) Coated diamond sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070122