JP4635215B2 - Coated diamond quasi-fine particle sintered body - Google Patents

Coated diamond quasi-fine particle sintered body Download PDF

Info

Publication number
JP4635215B2
JP4635215B2 JP2003393214A JP2003393214A JP4635215B2 JP 4635215 B2 JP4635215 B2 JP 4635215B2 JP 2003393214 A JP2003393214 A JP 2003393214A JP 2003393214 A JP2003393214 A JP 2003393214A JP 4635215 B2 JP4635215 B2 JP 4635215B2
Authority
JP
Japan
Prior art keywords
quasi
particles
coating
particle
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003393214A
Other languages
Japanese (ja)
Other versions
JP2004182590A (en
Inventor
晴男 吉田
正市 粂
幸良 山田
正 冬木
聡 秋山
美明 濱田
英輔 黒田
忠克 鍋谷
幸雄 隅田
健一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Co Ltd
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Read Co Ltd
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Co Ltd, Nisshin Seifun Group Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Read Co Ltd
Priority to JP2003393214A priority Critical patent/JP4635215B2/en
Publication of JP2004182590A publication Critical patent/JP2004182590A/en
Application granted granted Critical
Publication of JP4635215B2 publication Critical patent/JP4635215B2/en
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダイヤモンド準微粒子からなる準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子に被覆形成物質を被覆した被覆ダイヤモンド準微粒子、並びにこの被覆ダイヤモンド準微粒子を焼結した、緻密で高硬度な、高度に微組織が制御された被覆ダイヤモンド準微粒子焼結体及びその製造法に関する。   The present invention provides a coated diamond quasi-fine particle obtained by coating a particle of a quasi-fine particle core particle powder composed of diamond quasi-fine particles or a core particle powder mainly composed of quasi-fine particles with a coating forming substance, and the coated diamond quasi-fine particle. The present invention relates to a dense, high-hardness coated diamond quasi-fine particle sintered body having a highly controlled microstructure and a method for producing the same.

近年、ダイヤモンド焼結体はその組織の微細化や均質化を図った開発研究が精力的に進められてきているが、用途の明確な材料については、敢えて粒子径が相対的に大きい、例えば粒子径が10μmを越える、ダイヤモンド準微粒子を使用することが大変効果的となる。
例えば、超高硬度なダイヤモンドの特徴を生かした耐摩耗性焼結体は、ダイヤモンド準微粒子を比較的多量に分散させた準微粒子分散型のダイヤモンド準微粒子を焼結することで製造可能となるが、この場合原材料のダイヤモンド準微粒子が極めて重要である。
ダイヤモンド準微粒子を分散させたダイヤモンド準微粒子焼結体は、このダイヤモンド準微粒子とその周りの微組織との、欠陥や気孔のない緊密な焼結により準微粒子分散効果が著しく発揮される。しかしダイヤモンドは超難焼結性のため、このダイヤモンド準微粒子とその周りの微組織との焼結を促進する焼結助剤や結合材の存在が欠かせない。
従来、このような焼結助剤や結合材の添加は専ら粉体混合法により行われてきた。
In recent years, research and development has been energetically promoted to refine and homogenize the structure of sintered diamond, but for materials with clear applications, the particle diameter is intentionally relatively large. It is very effective to use diamond quasi-fine particles having a diameter exceeding 10 μm.
For example, a wear-resistant sintered body that makes use of the characteristics of ultra-hard diamond can be manufactured by sintering quasi-fine-particle-dispersed diamond quasi-fine particles in which a relatively large amount of diamond quasi-fine particles are dispersed. In this case, the raw material diamond quasi-fine particles are extremely important.
The diamond quasi-fine particle sintered body in which the diamond quasi-fine particles are dispersed exhibits a quasi-fine particle dispersion effect remarkably due to the close sintering of the diamond quasi-fine particles and the surrounding microstructure without defects and pores. However, since diamond is extremely difficult to sinter, the presence of a sintering aid or a binder that promotes the sintering of the diamond quasi-fine particles and the surrounding microstructure is indispensable.
Conventionally, the addition of such sintering aids and binders has been carried out exclusively by the powder mixing method.

しかし、粉体混合法は、混合時の不純物の混入が避けられないのみならず、原理的に組織の均一化に限度があり、焼結助剤や結合材の粒子が相対的に極めて微細であっても理想的な均一な混合、即ちダイヤモンド準微粒子に焼結助剤や結合材の粉体粒子がむらなく行き渡る均一な分散は極めて困難である。仮にこの均一な分散が実現されたとしても、この焼結助剤や結合材の粉体粒子が粒子単位で混合されるために、均一の意味にも限界がある。特に相対的にその量が少ない場合、分布むらが必然的に出来る。
現実には、多くの場合、ダイヤモンド準微粒子が集中したり、焼結助剤や結合材の粉体粒子が凝集してダイヤモンド準微粒子焼結体中に塊状に存在したり、またはダイヤモンド準微粒子焼結体中で偏在してダイヤモンド準微粒子焼結体の性能を著しく低下せしめることになる。
従って、ダイヤモンド準微粒子一個一個に確実に焼結助剤や結合材を分布させる必要がある。しかも、ダイヤモンド準微粒子と周りの微組織との緊密な焼結のために、ダイヤモンド準微粒子表面への高度に制御された均一な被覆、即ち個々のダイヤモンド準微粒子の表面の未被覆部分が残らない均一な被覆であって且つこの均一な被覆が個々の全てのダイヤモンド準微粒子に行われることが求められている。しかも、この高度に制御された均一な被覆は、その粒子径が大きければそれだけより一層未被覆部分がない均一な被覆が求められる。
However, the powder mixing method not only inevitably introduces impurities during mixing, but in principle has a limit to homogenizing the structure, and the particles of the sintering aid and binder are relatively fine. Even in this case, it is extremely difficult to achieve ideal uniform mixing, that is, uniform dispersion in which the powder particles of the sintering aid and the binder are evenly distributed over the diamond quasi-fine particles. Even if this uniform dispersion is realized, since the powder particles of the sintering aid and the binder are mixed in units of particles, the meaning of uniformity is limited. In particular, when the amount is relatively small, uneven distribution is inevitably generated.
In reality, in many cases, the diamond quasi-fine particles are concentrated, the powder particles of the sintering aid and the binder are aggregated and exist in a lump in the diamond quasi-fine particle sintered body, or the diamond quasi-fine particles are sintered. It is unevenly distributed in the sintered body, and the performance of the diamond quasi-fine particle sintered body is remarkably lowered.
Therefore, it is necessary to reliably distribute the sintering aid and the binder to each of the diamond quasi-fine particles. Moreover, due to the close sintering of the diamond quasi-fine particles and the surrounding microstructure, a highly controlled and uniform coating on the surface of the diamond quasi-fine particles, i.e., no uncoated part of the surface of the individual diamond quasi-fine particles remains. There is a need for a uniform coating and that this uniform coating is applied to all individual diamond quasi-fine particles. Moreover, this highly controlled and uniform coating is required to have a uniform coating with no more uncoated parts if the particle size is large.

このように高度に制御された均一な被覆による被覆ダイヤモンド準微粒子の製造、及びこの被覆ダイヤモンド準微粒子を用いた高性能な被覆ダイヤモンド準微粒子焼結体の製造が強く望まれている。
このダイヤモンド準微粒子への被覆形成物質の被覆法としては気相法、湿式メッキ法など種々な方法が考慮されうるが、中でも気相法により、粉体粒子表面に無機材料や金属材料等の被覆形成物質を、膜を始めとする種々の形態で被覆する方法は、原理的に、(1)雰囲気の制御が容易である、(2)基本的に被覆形成物質の選択に制限がなく、活性金属を始めとする金属単体物質、合金、窒化物、炭化物、硼化物、酸化物など、いろいろな種類の物質を被覆できる、(3)目的物質を、高純度に被覆できる、(4)被覆形成物質の被覆量を
任意に制御できる等、他の被覆法では成し得ない大きな特徴がある。
Production of coated diamond quasi-fine particles by such highly controlled uniform coating and production of a high-performance coated diamond quasi-fine particle sintered body using the coated diamond quasi-fine particles are strongly desired.
Various methods such as a vapor phase method and a wet plating method can be considered as a method for coating the diamond quasi-fine particles with a coating forming substance. Among them, the surface of powder particles can be coated with an inorganic material or a metal material by a vapor phase method. The method of coating the forming material in various forms including a film is in principle (1) easy to control the atmosphere, (2) there is basically no restriction on the selection of the coating forming material, and the activity It is possible to coat various kinds of materials such as simple metals such as metals, alloys, nitrides, carbides, borides, oxides, etc. (3) The target material can be coated with high purity. (4) Coating formation There are significant features that cannot be achieved by other coating methods, such as the amount of material coating can be controlled arbitrarily.

しかし、以下の理由により、公知の技術として提案されている種々の被覆装置や被覆方法では前記高度に制御された均一な被覆が成し得なかった。
例えば、特開昭58−31076号公報に開示されている装置・方法によれば、PVD装置内に設置された容器の中に芯粒子粉体の粒子を入れ、容器を電磁気的な方法により振動させ、前記容器内の芯粒子を転動させながらPVD法により被覆する。また、特開昭61−30663号公報に開示されている装置によれば、PVD装置内に設置された容器の中に芯粒子粉体の粒子を入れ、容器を機械的な方法により振動させ、前記容器内の芯粒子を転動させながらPVD法により被覆することができるとされている。しかし、これらの容器の振動により芯粒子粉体の粒子を転動させながら被覆する装置或いは方法では、実際には、準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子は幾重にも互いに接触したまま重なった状態で転動するのみで単一粒子状態で被覆できなかった。
特開平3−153864号公報に開示されている装置及び方法は、内面に障壁及び/又は凹凸を備えた回転容器内に粒子を入れ、この回転容器を回転しながら蒸着法により芯粒子表面に被覆を行うことを目的とするものであるが、このような装置或いは方法においては、準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子は、幾重にも互いに接触したまま重なった状態で変化はなく、多くの粒子が接触したまま軽く撹拌されるだけで、単一粒子状態で被覆できなかった。
However, for the following reasons, the various coating apparatuses and coating methods proposed as known techniques cannot achieve the highly controlled uniform coating.
For example, according to the apparatus and method disclosed in JP-A-58-31076, core particle powder particles are put into a container installed in a PVD apparatus, and the container is vibrated by an electromagnetic method. Then, the core particles in the container are coated by the PVD method while rolling. Further, according to the apparatus disclosed in JP-A-61-30663, the core powder particles are put into a container installed in the PVD apparatus, the container is vibrated by a mechanical method, It is said that the core particles in the container can be coated by the PVD method while rolling. However, in the apparatus or method for coating the core particles while rolling the particles of the core particles by the vibration of these containers, in practice, the particles of the quasi fine particle core particle powder or the core particle powder mainly composed of quasi fine particles are used. The particles could not be coated in a single particle state, only rolling while in contact with each other in layers.
In the apparatus and method disclosed in JP-A-3-153864, particles are placed in a rotating container having a barrier and / or irregularities on the inner surface, and the core particle surface is coated by vapor deposition while rotating the rotating container. However, in such an apparatus or method, the particles of the quasi fine particle core particle powder or the core particle powder mainly composed of quasi fine particles are in contact with each other several times. There was no change in the overlapping state, and it was not possible to coat in a single particle state simply by agitating lightly while many particles were in contact.

特開昭58−141375号公報には、反応ガス雰囲気中に置かれた粉体を反応ガスの流れと重力の作用とによって浮遊させて、反応ガスの化学反応により生成される析出物質によって粉体の表面を被覆する装置が開示されている。又、特開平2−43377号公報には、粒子を減圧下において流動化させながら、熱化学反応処理を行い被覆を行う方法が開示されている。又、特開昭64−80437号公報には、低・高周波合成音波により芯粒子粉体の凝集体を崩して流動化させ被覆する方法が開示されている。しかし、これらの気流や振動により準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子の流動層利用する方法又は装置では、全ての芯粒子を同じ様に単一粒子状態で独立に流動、浮遊させることは事実上不可能であり、粒子同士が陰になってできる各粒子の被覆むらをなくすことができなかった。
特開昭54−153789号公報には、金属の蒸気を発生させた真空容器内を粉末材料を落下させ金属を被覆する装置が開示されている。又、特開昭60−47004号公報には真空槽中の高周波プラズマ領域にモノマーガスと粉体粒子を導入し、プラズマ重合により有機物の被覆膜を形成させる方法が開示されている。これらの装置或いは方法の如く単に導入するだけでは準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子は、単一粒子状態でない凝集体を形成して落下するだけで、粒子の陰ができてむらができたり、凝集体の内部の粒子は全く被覆されなかったり、或いは単一粒子に被覆されたものにくらべ被覆量の違いが生じてしまった。
In Japanese Patent Laid-Open No. 58-141375, a powder placed in a reaction gas atmosphere is suspended by the flow of reaction gas and the action of gravity, and the powder is formed by a precipitate generated by a chemical reaction of the reaction gas. An apparatus for coating the surface of the is disclosed. Japanese Patent Application Laid-Open No. 2-43377 discloses a method of coating by performing a thermochemical reaction process while fluidizing particles under reduced pressure. Japanese Patent Application Laid-Open No. 64-80437 discloses a method in which an agglomerate of core particle powder is broken and fluidized and coated with low-frequency and high-frequency synthetic sound waves. However, in the method or apparatus using the fluidized bed of the quasi-fine particle powder or the core particle powder mainly composed of quasi-fine particles due to these air currents and vibrations, all the core particles are similarly treated as single particles. It was practically impossible to flow and float independently in the state, and it was impossible to eliminate the uneven coating of the particles formed by the particles.
Japanese Patent Application Laid-Open No. 54-153789 discloses an apparatus for covering a metal by dropping a powder material in a vacuum vessel in which a metal vapor is generated. Japanese Patent Laid-Open No. 60-47004 discloses a method in which a monomer gas and powder particles are introduced into a high-frequency plasma region in a vacuum chamber and an organic coating film is formed by plasma polymerization. By simply introducing them as in these apparatuses or methods, the particles of the quasi fine particle core particle powder or the core particle powder mainly composed of the quasi fine particles simply fall in the form of aggregates that are not in a single particle state. The shade of the particles was uneven, the particles inside the agglomerates were not coated at all, or the coating amount was different from that coated with a single particle.

特開昭62−250172号公報には、前処理として、ジェットミル処理した粉体を、減圧加熱処理室で滞留せしめ、ここで加熱処理を施した後、粉体フィーダーでスパッタリング室に自然落下により導入せしめ、ターゲットを垂直に設けた円筒状のスパッタリング室に自然落下させ被覆させる装置及び方法が開示されている。又、特開平2−153068号公報には、前処理として、ジェットミル処理した粉体を、減圧加熱処理室で滞留せしめ、ここで加熱処理を施した後、粉体フィーダーでスパッタリング室のスパッタリング源を納めた回転容器に粉体状に導入せしめ、容器を回転させた状態でスパッタリングする装置及び方法が開示されている。これら装置及び方法では、被覆前の加熱工程で、ジェットミル処理した準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を滞留せしめる工程があり、加熱工程でのこの粉体の滞留のため再び単一粒子状態でない凝集体を形成し、結局被覆工程ではこの凝集体は単一粒子状態にならない。
以上のように、従来公知の技術は、いずれもダイヤモンド準微粒子からなる準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子は、互いに接触したままで凝集体の状態で被覆処理に供され、そのために各粒子に高度に制御された均一な被覆が施された被覆ダイヤモンド準微粒子は製造できなかった。
In Japanese Patent Laid-Open No. 62-250172, as a pretreatment, the powder that has been jet milled is retained in a reduced pressure heat treatment chamber. An apparatus and a method for introducing and covering a target by allowing it to fall naturally into a cylindrical sputtering chamber provided vertically are disclosed. In JP-A-2-153068, as a pretreatment, the powder that has been jet milled is retained in a reduced pressure heat treatment chamber. After the heat treatment is performed here, the powder source is used in the sputtering source of the sputtering chamber. An apparatus and a method are disclosed in which sputtering is performed in a state where the container is rotated in a state where the container is rotated in a powder form. In these apparatuses and methods, there is a step of retaining the particles of the quasi fine particle core particle powder subjected to jet mill treatment or the core particle powder mainly composed of quasi fine particles in the heating step before coating. Aggregates that are not in a single particle state are formed again due to the retention of the powder, and the aggregate does not become a single particle state in the coating process.
As described above, all of the conventionally known techniques are such that the particles of the quasi-fine particle core particle powder made of diamond quasi-fine particles or the core particle powder particles mainly made of quasi-fine particles remain in contact with each other in an aggregated state. Thus, it was not possible to produce coated diamond quasi-fine particles in which each particle was subjected to a coating treatment, and each particle had a highly controlled and uniform coating.

即ち、ダイヤモンド準微粒子は、ダイヤモンド微粒子程には凝集力は強くないが、それでも準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子が一個一個の単位で存在する単一粒子状態が実現できなかった。このため、上記の気相法によるダイヤモンド準微粒子表面への被覆形成物質の被覆は、他の準微粒子により遮られたところではこのダイヤモンド準微粒子表面に未被覆部分を残存させた。そして上記のように高度に制御された均一な被覆が求められているにもかかわらず、ダイヤモンド準微粒子ではこの程度の凝集力によっても影響が甚大で、大変深刻な問題となっていたというのが実状である。   That is, although the diamond quasi-fine particles are not as cohesive as the diamond fine particles, the quasi-fine core particle powder particles or the core particle powder particles mainly composed of quasi-fine particles exist in single units. A single particle state could not be realized. For this reason, the coating of the coating material on the surface of the diamond quasi-fine particles by the vapor phase method described above left uncoated portions on the surface of the diamond quasi-fine particles when blocked by other quasi-fine particles. In spite of the demand for a highly controlled and uniform coating as described above, the effect of such a cohesive force on diamond quasi-fine particles was enormous, and it was a very serious problem. It's real.

従って、現実に、例えばダイヤモンド準微粒子が10μmを越える粒子である、準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子への、高度に制御された均一な被覆、即ち個々のダイヤモンド準微粒子の表面の大きな未被覆部分が残らない均一な被覆で、且つこの均一な被覆が全てのダイヤモンド準微粒子に成される被覆が要求される。しかも、この高度に制御された均一な被覆は、その粒子径が大きいものについては、より一層未被覆部分がない均一なものである被覆ダイヤモンド準微粒子の製造が強く求められている。
本発明は、ダイヤモンド準微粒子からなる準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子に、被覆形成物質を高度に制御された均一な被覆、即ち個々のダイヤモンド準微粒子の表面の未被覆部分が残らない均一な被覆であって且つこの均一な被覆が個々の全てのダイヤモンド準微粒子に成されており、しかも、その粒子径が大きいものについては、より一層未被覆部分が少ない均一な被覆をした被覆ダイヤモンド準微粒子、並びにこの被覆ダイヤモンド準微粒子を用いた被覆ダイヤモンド準微粒子焼結体及びその製造法を提供することを目的とする。
Therefore, in reality, a highly controlled uniform coating on particles of quasi fine particle core particle powder or core particle powder mainly composed of quasi fine particles, for example, diamond quasi fine particles are particles exceeding 10 μm, That is, a uniform coating that does not leave large uncoated portions on the surface of individual diamond quasi-fine particles, and a coating in which this uniform coating is formed on all diamond quasi-fine particles is required. In addition, for this highly controlled uniform coating, for those having a large particle size, there is a strong demand for the production of coated diamond quasi-fine particles that are even without an uncoated portion.
The present invention provides a highly controlled uniform coating, i.e., individual diamond quasi-particles, on a quasi-fine particle powder composed of quasi-fine particles or a core particle powder composed mainly of quasi-fine particles. A uniform coating that does not leave an uncoated portion of the surface of the fine particles, and this uniform coating is formed on all individual diamond quasi-fine particles, and those having a large particle diameter are further uncoated. It is an object of the present invention to provide a coated diamond quasi-fine particle having a uniform coating with few parts, a coated diamond quasi-fine particle sintered body using the coated diamond quasi-fine particle, and a method for producing the same.

前記課題を解決するために、本発明者が鋭意研究を重ねた結果、ダイヤモンド準微粒子である準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子に、被覆形成物質を高度に制御された均一な被覆、即ち個々のダイヤモンド準微粒子の表面の未被覆部分が残らない均一な被覆であって、且つこの均一な被覆が個々の全てのダイヤモンド準微粒子に成されており、しかも、その粒子径が大きいものについては、より一層未被覆部分がない均一な被覆をするためには、(1)体積基準頻度分布で平均粒子径が10μmを越え、20μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが80%以上である高い分散状態の被覆空間の被覆開始領域でか、又は(2)体積基準頻度分布で平均粒子径が20μmを越え、50μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが90%以上である高い分散状態の被覆空間の被覆開始領域でか、又は(3)体積基準頻度分布で平均粒子径が50μmを越え、300μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが95%以上である高い分散状態の被覆空間の被覆開始領域でか、又は(4)体積基準頻度分布で平均粒子径が300μmを越え、800μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の
粒子を、分散度βが97%以上である高い分散状態の被覆空間の被覆開始領域でか、又は(5)体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが99%以上である高い分散状態の被覆空間の被覆開始領域で被覆を開始しなければならないことを見い出した。
In order to solve the above-mentioned problems, the present inventor has conducted intensive research. A highly controlled uniform coating, i.e., a uniform coating that does not leave an uncoated portion of the surface of each individual diamond quasi-fine particle, and this uniform coating is formed on all individual diamond quasi-fine particles. In addition, for those having a large particle size, in order to achieve a uniform coating without any uncoated parts, (1) a core particle powder having an average particle size of more than 10 μm and 20 μm or less in a volume-based frequency distribution Highly dispersed state in which the particles of the core particle powder in the particle / gas mixture of the highly dispersed core particle powder in which the body particles are mainly present in the air in a single particle state has a dispersity β of 80% or more Start of covering space Or (2) a highly dispersed core particle powder in which particles of a core particle powder having an average particle diameter of more than 20 μm and 50 μm or less exist mainly in a single particle state in a volume-based frequency distribution. The particles of the core particle powder in the particle / gas mixture are coated in the coating start region of the coating space in a highly dispersed state in which the dispersity β is 90% or more, or (3) the average particle size is in the volume-based frequency distribution The particles of the core particle powder in the highly dispersed core particle powder / gas mixture in which the particles of the core particle powder exceeding 50 μm and not more than 300 μm are mainly present in the air in a single particle state (4) In the volume-based frequency distribution, the average particle diameter exceeds 300 μm and the core particle powder particles of 800 μm or less are mainly single particles. In a particle / gas mixture of highly dispersed core particle powder that exists in the air in a single particle state The particles of the core particle powder are coated in a coating start region of a highly dispersed coating space having a dispersity β of 97% or more, or (5) a core particle powder having an average particle diameter exceeding 800 μm in a volume-based frequency distribution. Highly dispersed state in which the particles of the core particle powder in the particle / gas mixture of the highly dispersed core particle powder in which the body particles are mainly present in the air in a single particle state have a dispersity β of 99% or more It has been found that the coating must be started at the coating start area of the coating space.

より詳しくは、(I)芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物の状態の芯粒子粉体の粒子は、滞留させなくとも、時間の経過と共に主に乱流凝集等により再凝集する傾向にあり、一旦再凝集すると、前記分散処理前の凝集体と同じく特別に高い分散性能を有する分散処理手段により分散させなければこの再凝集の状態を崩して高度に分散、即ち一個一個の単位の単一粒子状態へ再分散させることが困難であり、このため、(1)体積基準頻度分布で平均粒子径が10μmを越え、20μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが80%以上である高い分散状態でか、又は(2)体積基準頻度分布で平均粒子径が20μmを越え、50μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが90%以上である高い分散状態でか、又は(3)体積基準頻度分布で平均粒子径が50μmを越え、300μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが95%以上である高い分散状態でか、又は(4)体積基準頻度分布で平均粒子径が300μmを越え、800μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが97%以上である高い分散状態の被覆空間の被覆開始領域でか、又は(5)体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度βが99%以上である高い分散状態で被覆空間の被覆開始領域に導く必要があること、またそのためには、(II)この芯粒子粉体からなる凝集体を崩し、且つ粒子径に応じた非常に高い分散度で気中に分散させる、―以上からなる特別に高い分散性能を有する分散処理手段群が必要であることを見い出して本発明に至った。   More specifically, (I) the core particle powder particles in the state of a highly dispersed core particle powder particle / gas mixture in which the core particle powder particles are mainly present in the air in a single particle state are retained. Even if it does not tend to re-aggregate mainly due to turbulent agglomeration etc. over time, once re-agglomerated, it must be dispersed by a dispersion processing means having a particularly high dispersion performance like the aggregate before the dispersion treatment. It is difficult to disperse this re-aggregation state and highly disperse, that is, to re-disperse into a single particle state of each unit. For this reason, (1) the average particle diameter exceeds 10 μm in the volume-based frequency distribution. The particles of the core particle powder in the particle / gas mixture of the highly dispersed core particle powder in which the particles of the core particle powder of 20 μm or less are mainly present in the air in a single particle state have a dispersity β of 80 % In a highly dispersed state, or (2) volume-based frequency This core particle powder in a highly dispersed core particle powder / gas mixture in which particles of a core particle powder having an average particle size of more than 20 μm and less than 50 μm are present in the air mainly in a single particle state. In a highly dispersed state in which the degree of dispersion β is 90% or more, or (3) a core-based powder particle having an average particle diameter of more than 50 μm and 300 μm or less is mainly obtained by volume-based frequency distribution. The particles of the core particle powder in the particle / gas mixture of the highly dispersed core particle powder present in the air in the particle state are in a highly dispersed state with a dispersity β of 95% or more, or (4) volume This core particle in a high-dispersion core particle powder particle / gas mixture in which particles of a core particle powder with a standard frequency distribution exceeding 300 μm and having a particle diameter of 800 μm or less are mainly present in the air in a single particle state The particles of the powder are covered with a coating space in a highly dispersed state with a dispersity β of 97% or more. Particles / gas of highly dispersed core particle powder in the starting region or (5) core particle powder particles having an average particle diameter of more than 800 μm in a volume-based frequency distribution mainly existing in the air in a single particle state It is necessary to guide the particles of the core particle powder in the mixture to a coating start region of the coating space in a highly dispersed state where the dispersity β is 99% or more, and for that purpose, (II) the core particle powder It is found that there is a need for a dispersion processing means group having a particularly high dispersion performance that breaks agglomerates composed of the body and disperses them in the air with a very high degree of dispersion according to the particle diameter. Invented.

すなわち、本発明は、ダイヤモンドの準微粒子からなる芯粒子粉体を被覆空間に投入し、気相を経て生成する被覆形成物質前駆体及び/又は気相状態の被覆形成物質前駆体を、芯粒子粉体の粒子に接触及び/又は衝突させて、この芯粒子粉体の粒子の表面を被覆形成物質で被覆して得られる被覆ダイヤモンド準微粒子であって、
(A) 準微粒子高分散処理手段群の最終処理手段が、
(a) この芯粒子粉体の粒子を気中に分散させる分散手段、及び
(b) 芯粒子粉体の粒子を気中に分散させた芯粒子粉体の粒子と気体との混合物において低分散芯粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉体の粒子・気体混合物選択手段とこの高分散芯粒子粉体の粒子・気体混合物選択手段により選択分離された低分散芯粒子粉体部分を準微粒子高分散処理手段群中の分散手段の内の最終分散手段及び/又は最終分散手段以前の処理手段に搬送するフィードバック手段とを備えた高分散芯粒子粉体の粒子・気体混合物選択手段、
から選ばれる準微粒子高分散処理手段群により、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、
(B) 分散工程で分散させた芯粒子粉体の粒子を、
その平均粒子径が10μmを越え20μm以下のときには分散度βが80%以上、
20μmを越え50μm以下のときには分散度βが90%以上、
50μmを越え300μm以下のときには分散度βが95%以上、
300μmを越え800μm以下のときは分散度βが97%以上、そして
800μmを越えるときは分散度βが99%以上
の分散状態で、被覆空間の被覆開始領域において被覆形成物質前駆体と接触及び/又は衝突させて被覆を開始する被覆工程、
からなる被覆手段によって調製された、被覆ダイヤモンド準微粒子に関する。
また本発明は、前記被覆されたダイヤモンド準微粒子が、被覆されたダイヤモンド準微粒子の被覆形成物質を介して接触状態で集合塊を形成した被覆されたダイヤモンド準微粒子の集合塊を、解砕及び/又は破砕する被覆されたダイヤモンド準微粒子集合塊の解砕・破砕工程、及び/又は
この被覆ダイヤモンド準微粒子集合塊と一次粒子単位の被覆されたダイヤモンド準微粒子とを選択分離する選択分離工程
を更に経て調製されたものであることを特徴とする、被覆ダイヤモンド準微粒子に関する。
That is, the present invention introduces a core particle powder composed of quasi-fine particles of diamond into a coating space, and forms a coating-forming substance precursor and / or a coating-forming substance precursor in a gas phase state that are generated through a gas phase. Coated diamond quasi-fine particles obtained by contacting and / or colliding with powder particles and coating the surface of the core particle powder particles with a coating-forming material,
(A) The final processing means of the quasi-fine particle high dispersion processing means group is:
(A) Dispersing means for dispersing the particles of the core particle powder in the air, and (b) low dispersion in the mixture of the particles of the core particle powder and the gas in which the particles of the core particle powder are dispersed in the air. Highly dispersed core particle powder particles that separate the core particle powder portion and select a highly dispersed core particle powder particle / gas mixture in which the core particle powder particles are mainly present in the air in a single particle state The gas mixture selection means and the particles of the highly dispersed core particle powder. The low dispersion core particle powder portion selectively separated by the gas mixture selection means is the final dispersion means of the dispersion means in the quasi-fine particle high dispersion processing means group. And / or a particle / gas mixture selection means for highly dispersed core particle powder, comprising feedback means for conveying to the processing means before the final dispersion means,
By means of a quasi-fine particle high dispersion treatment means group selected from the above, quasi-fine particle core particle powder particles having an average particle diameter exceeding 10 μm in volume-based frequency distribution or core particle powder particles mainly consisting of quasi-fine particles A dispersion step of dispersing and making a highly dispersed core particle powder particle / gas mixture,
(B) The core particle powder particles dispersed in the dispersion step are
When the average particle size exceeds 10 μm and is 20 μm or less, the dispersity β is 80% or more,
When it exceeds 20 μm and is 50 μm or less, the dispersity β is 90% or more,
When it exceeds 50 μm and is 300 μm or less, the dispersity β is 95% or more,
When the dispersion β is more than 97% when it is more than 300 μm and less than 800 μm, and when the dispersion β is more than 99% when it exceeds 800 μm, contact with the coating-forming substance precursor in the coating start region of the coating space Or a coating process in which collision is started to start coating,
The coated diamond quasi-fine particles prepared by the coating means consisting of
Further, the present invention provides a method for pulverizing and / or crushing an aggregate of coated diamond quasi-fine particles in which the coated diamond quasi-fine particles form aggregates in contact with each other via a coating forming material of the coated diamond quasi-fine particles. Or a crushing / crushing step of the coated diamond quasi-fine particle aggregate to be crushed, and / or a selective separation step of selectively separating the coated diamond quasi-fine particle aggregate and the coated diamond quasi-fine particle in units of primary particles. The present invention relates to a coated diamond quasi-fine particle characterized by being prepared.

また本発明は、上記した被覆形成物質で被覆するべきダイヤモンドの準微粒子からなる芯粒子粉体の粒子又は主に同準微粒子からなる芯粒子粉体の粒子が、溶融塩浴を用いる浸漬法により、浸漬法に由来する被覆物質で一層以上被覆された準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子である被覆ダイヤモンド準微粒子に関する。   Further, the present invention provides a method in which a core particle powder particle consisting of quasi-fine particles of diamond to be coated with the above-mentioned coating-forming substance or a core particle powder particle mainly consisting of the same quasi-fine particles is immersed in a molten salt bath. The present invention relates to coated diamond quasi-fine particles, which are particles of quasi-fine particle core particle powder coated with one or more coating materials derived from the dipping method, or core particle powder mainly composed of quasi-fine particles.

更に本発明は、被覆されたダイヤモンド準微粒子が、
体積基準頻度分布で平均粒子径が10μmを越え20μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを80%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が20μmを越え50μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを90%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が50μmを越え300μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が300μmを越え800μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを97%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とする分散性能を有する準微粒子高分散処理手段群による分散工程を設け、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物を被覆工程に直接放出するか、又は分散工程と被覆工程の間に、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物を放出する放出部から、搬送に不可避の、中空部材、中空を形成せしめる部材からなる中間部材、及びパイプから選択される一種類又はそれ以上の部材を介して搬送するか、及び/又は、前記分散性能で気中に分散させた高分散芯粒子粉体の粒子・気体混合物中の粒子の気中分散状態を維持する気中分散維持手段、前記分散性能で気中に分散させた高分散芯粒子粉体の粒子・気体混合物中の粒子の気中分散状態を高める気中分散促進手段、芯粒子粉体の粒子と気体との混合物の内の、低分散芯粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉体の粒子・気体混合物選択手段の一種類又はそれ以上を介して搬送して調製され
たものである被覆ダイヤモンド準微粒子に関する。
Furthermore, the present invention provides a coated diamond quasi-fine particle,
A core particle powder having a volume-based frequency distribution with an average particle diameter of more than 10 μm and less than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Or a quasi-fine particle high dispersion treatment means group having a dispersion performance in which the dispersion degree β of the core particle powder is 80% or more, or a core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in a volume-based frequency distribution. Is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the core particle powder particles is 90% or more. A quasi-fine particle highly dispersed treatment means group having a performance or a core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle highly dispersed treatment means group. Highly dispersed core particle powder A group of quasi-fine particles having a dispersion performance in which a particle / gas mixture and a dispersion degree β of the core particle powder is 95% or more, or a volume-based frequency distribution, the average particle diameter is more than 300 μm and less than 800 μm The core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion degree β of the core particle powder is 97. % Or more of the quasi-fine particle high dispersion treatment means group having a dispersion performance of at least% or a core particle powder having a volume-based frequency distribution with an average particle diameter exceeding 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. A dispersion step is performed by means of a quasi-fine particle high dispersion treatment means group having a dispersion performance in which a dispersion degree β of the core particle powder is 99% or more. Fine particle dispersion process Highly dispersed core particles which are dispersed by means of the quasi-fine particle highly dispersed treatment means between the dispersion process and the coating process, or the particle / gas mixture of the highly dispersed core particle powder dispersed by the means is directly discharged to the coating process. Conveyed from the discharge part that discharges the particle / gas mixture of particulate powder through one or more members selected from a hollow member, an intermediate member consisting of a member that forms a hollow, and a pipe, which are inevitable for transportation And / or air dispersion maintaining means for maintaining the dispersion state of particles in the particle / gas mixture of the highly dispersed core particle powder dispersed in the air with the dispersion performance. Air dispersion promoting means for increasing the dispersion state of particles in a particle / gas mixture of a highly dispersed core particle powder dispersed in the air, and a low dispersion core in a mixture of particles and gas of the core particle powder Separate the particle powder part, core particle powder particles Is transported via one or more particle / gas mixture selection means of high-dispersion core particle powder that selects the particle / gas mixture of high-dispersion core particle powder that is mainly present in the air in a single particle state It is related with the coated diamond quasi-fine particle which is prepared by.

更に本発明は、被覆ダイヤモンド準微粒子が、
体積基準頻度分布で平均粒子径が10μmを越え20μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを80%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が20μmを越え50μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを90%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が50μmを越え300μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が300μmを越え800μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを97%以上とする分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とする分散性能を有する準微粒子高分散処理手段群
による分散工程の一部以上と前記被覆工程の一部以上とを、空間を一部以上共有して行うことにより調製されたものである被覆ダイヤモンド準微粒子に関する。
Furthermore, the present invention provides a coated diamond quasi-fine particle,
A core particle powder having a volume-based frequency distribution with an average particle diameter of more than 10 μm and less than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Or a quasi-fine particle high dispersion treatment means group having a dispersion performance in which the dispersion degree β of the core particle powder is 80% or more, or a core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in a volume-based frequency distribution. Is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the core particle powder particles is 90% or more. A quasi-fine particle highly dispersed treatment means group having a performance or a core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle highly dispersed treatment means group. Highly dispersed core particle powder A group of quasi-fine particles having a dispersion performance in which a particle / gas mixture and a dispersion degree β of the core particle powder is 95% or more, or a volume-based frequency distribution, the average particle diameter is more than 300 μm and less than 800 μm The core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion degree β of the core particle powder is 97. % Or more of the quasi-fine particle high dispersion treatment means group having a dispersion performance of at least% or a core particle powder having a volume-based frequency distribution with an average particle diameter exceeding 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. A part of the dispersion step by the quasi-fine particle high dispersion treatment means group having a dispersion performance of making the dispersion of the particles of the core particle powder β 99% or more. And the coating process The present invention relates to a coated diamond quasi-fine particle which is prepared by performing a part or more with a part or more sharing a space.

更に本発明は、被覆ダイヤモンド準微粒子が、
体積基準頻度分布で平均粒子径が、10μmを越え20μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを80%以上とする空間領域、
体積基準頻度分布で平均粒子径が、20μmを越え50μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを90%以上とする空間領域、
体積基準頻度分布で平均粒子径が、50μmを越え300μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とする空間領域、
体積基準頻度分布で平均粒子径が、300μmを越え800μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを97%以上とする空間領域、
体積基準頻度分布で平均粒子径が、800μmを越える芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とする空間領域の内の高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子の全ての粒子が通過する面を含む空間領域に、被覆空間の被覆開始領域を位置せしめるか、又は
体積基準頻度分布で平均粒子径が、10μmを越え20μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを80%以上とする空間領域、
体積基準頻度分布で平均粒子径が20μmを越え50μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、芯粒子粉体の粒子の分散度βを90%以上とする空間領域、
体積基準頻度分布で平均粒子径が、50μmを越え300μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とする空間領域、
体積基準頻度分布で平均粒子径が、300μmを越え800μm以下の芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、芯粒子粉体の粒子の分散度βを97%以上とする空間領域、
体積基準頻度分布で平均粒子径が、800μmを越える芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とする空間領域の内の、回収手段の回収部に回収する全ての粒子が通過する面を含む空間領域に、被覆空間の被覆開始領域を位置せしめて被覆したものである被覆ダイヤモンド準微粒子に関する。
Furthermore, the present invention provides a coated diamond quasi-fine particle,
A core-particle powder having a volume-based frequency distribution with an average particle diameter of more than 10 μm but not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. And a spatial region in which the dispersity β of the particles of the core particle powder is 80% or more,
A core particle powder having an average particle size of more than 20 μm and not more than 50 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group, and a particle / gas mixture of the highly dispersed core particle powder. And a spatial region in which the particle dispersity β of the core particle powder is 90% or more,
A core-particle powder having a volume-based frequency distribution with an average particle diameter of more than 50 μm and not more than 300 μm is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. And a spatial region in which the particle dispersity β of the core particle powder is 95% or more,
A core-particle powder having a volume-based frequency distribution with an average particle diameter of more than 300 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. And a spatial region in which the particle dispersity β of the core particle powder is 97% or more,
The core particle powder having an average particle diameter exceeding 800 μm in the volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Includes a surface through which all of the particles of the core particle powder in the particle / gas mixture of the highly dispersed core particle powder in the space region in which the dispersity β of the particle of the core particle powder is 99% or more passes. In the space region, the coating start region of the coating space is positioned, or the core particle powder having an average particle diameter of more than 10 μm and not more than 20 μm in the volume-based frequency distribution is removed by the final processing of the quasi-fine particle high dispersion processing means group. A space region in which a dispersion of highly dispersed core particle powder is made into a particle / gas mixture, and the dispersity β of the core particle powder particles is 80% or more,
A core particle powder having a volume-based frequency distribution with an average particle diameter of more than 20 μm and less than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. , A spatial region in which the particle dispersity β of the core particle powder is 90% or more,
A core-particle powder having a volume-based frequency distribution with an average particle diameter of more than 50 μm and not more than 300 μm is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. And a spatial region in which the particle dispersity β of the core particle powder is 95% or more,
A core-particle powder having a volume-based frequency distribution with an average particle diameter of more than 300 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. And a spatial region in which the particle dispersity β of the core particle powder is 97% or more,
A core particle powder having a volume-based frequency distribution with an average particle diameter exceeding 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. The covering start region of the covering space is located in the space region including the surface through which all the particles collected in the collecting part of the collecting means pass out of the space region in which the particle dispersity β of the particle powder is 99% or more. The present invention relates to a coated diamond quasi-fine particle that is coated at least.

更にまた本発明は、使用する、芯粒子粉体の粒子の粒度分布が、平均粒子径をDMとしたとき、体積基準頻度分布で(〔DM/5,5DM〕,≧90%)であることを特徴とする、被覆されたダイヤモンド準微粒子に関する。
更にまた本発明は、上記の被覆されたダイヤモンド準微粒子又は同粒子を含む混合物を、2000MPa以上の圧力および高温において焼結するか、又は上記請求範囲に記載の被覆されたダイヤモンド準微粒子又は同粒子を含む混合物を2000MPa未満の圧力及び1850℃を越えない、ダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件において焼結するか、又は上記請求項に記載の被覆されたダイヤモンド準微粒子と結合材との体積で1〜90:99〜10の割合の混合物であって、この結合材は2000MPa未満の圧力で1850℃を越えないダイヤモンド粒子が熱力学的に準安定な条件で密度85%以上に焼結されるものである、上記混合物を2000MPa未満の圧力及び1850℃を越えないダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件において焼結する被覆ダイヤモンド準微粒子焼結体の製造法にも関する。
そして本発明は、上に記載の被覆ダイヤモンド準微粒子焼結体の製造法により製造することを特徴とする、被覆ダイヤモンド準微粒子焼結体に関するものである。
The present invention also uses, the particle size distribution of the particles in the powder of core particles is, when the average particle diameter is D M, by volume frequency distribution ([D M / 5,5D M], ≧ 90%) It is related with the coated diamond quasi-fine particle characterized by these.
Furthermore, the present invention sinters the coated diamond quasi-fine particles or a mixture containing the particles at a pressure of 2000 MPa or higher and a high temperature, or the coated diamond quasi-fine particles or the particles according to the claims. The diamond-containing mixture is sintered at pressures less than 2000 MPa and does not exceed 1850 ° C. under conditions where the diamond is not thermodynamically stable but metastable at pressure and temperature, or is coated according to the above claims. The diamond quasi-fine particles and the binder have a volume ratio of 1 to 90:99 to 10, and this binder is thermodynamically metastable with diamond particles not exceeding 1850 ° C. at a pressure of less than 2000 MPa. The above-mentioned mixture, which is sintered to a density of 85% or more under the conditions, is thermodynamically diamond with a pressure of less than 2000 MPa and a temperature not exceeding 1850 ° C Stable though not also relates to the preparation of coated diamond quasi particle sintered body is sintered in the sintering condition of metastable pressure and temperature.
The present invention relates to a coated diamond quasi-fine particle sintered body produced by the method for producing a coated diamond quasi-fine particle sintered body described above.

而して、本発明によれば、ダイヤモンドの準微粒子からなる芯粒子粉体の粒子又は主に同準微粒子からなる芯粒子粉体の粒子であって、その表面が被覆形成物質で被覆されたものまたは同粒子を含む混合物を、2000MPa以上の圧力および高温度において焼結するか、またはこれら粒子又は粒子を含む混合物を、2000MPa未満の圧力及び1850℃を越えない、ダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件において焼結するか、又はこの被覆されたダイヤモンド準微粒子と結合材との体積で1〜90:99〜10の割合の混合物であって、この結合材は2000MPa未満の圧力で1850℃を越えないダイヤモンド粒子が熱力学的に準安定な条件で密度85%以上に焼結されるものである、上記混合物を2000MPa未満の圧力及び1850℃を越えないダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件において焼結してダイヤモンド粒子の焼結体を製造するに際して、上記した表面が被覆形成物質で被覆された芯粒子の粉体として、気相法により気相を経て生成する被覆形成物質前駆体及び/又は気相状態の被覆形成物質前駆体と、準微粒子高分散処理手段群の最終処理手段により気中に分散させた準微粒子からなる高分散芯粒子粉体の粒子・気体混合物とを、被覆空間の被覆開始領域で、高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子の分散度を準微粒子の粒径に応じて上記の値とした分散状態で合流させ、接触及び/又は衝突させて芯粒子粉体の粒子の表面を被覆形成物質で被覆したものを用いることにより、これまでに得られなかったダイヤモンドの粒子表面の未焼結部分のない、均一で、緻密で且つ強固に焼結された高度に制御された微組織を有する高性能なダイヤモンド焼結体を得ることができた。そして、上記した被覆芯粒子の調製に際して、被覆形成物質前駆体は、原子、分子、イオン、クラスター、原子クラスター、分子クラスター、クラスターイオン等からなる気相状態の、或いは気相を経て生成したばかりのもので当該高分散状態のダイヤモンドの芯粒子と接触及び/又は衝突を始めることにより、一次粒子状態の個々の芯粒子の表面に被覆形成物質は強固に結合し、その結果、当該芯粒子の表面を被覆形成物質により単一粒子単位で被覆を施した被覆されたダイヤモンド粒子が製造できるのである。   Thus, according to the present invention, core particle powder particles composed of diamond quasi-fine particles or core particle powder particles mainly composed of quasi-fine particles, the surface of which is coated with a coating-forming substance. One or a mixture containing the same particles is sintered at a pressure of 2000 MPa or higher and at a high temperature, or a mixture containing these particles or particles is not more than a pressure of 2000 MPa and does not exceed 1850 ° C., and the diamond is thermodynamically stable. Sintering under metastable pressure / temperature sintering conditions, or a mixture of the coated diamond quasi-fine particles and the binder in a ratio of 1 to 90:99 to 10 The binder is a material in which diamond particles not exceeding 1850 ° C. at a pressure of less than 2000 MPa are sintered to a density of 85% or more under thermodynamically metastable conditions. When producing a sintered body of diamond particles by sintering at a pressure of less than Pa and a diamond not exceeding 1850 ° C. under the sintering conditions of thermodynamically stable but metastable pressure and temperature, As a core particle powder coated with a coating-forming material, a coating-forming material precursor and / or a coating-forming material precursor in a gas-phase state produced by a vapor phase method, and a group of quasi-fine particle high dispersion treatment means In the coating start region of the coating space, the particles / gas mixture of the highly dispersed core particle powder composed of the quasi-fine particles dispersed in the air by the final processing means in the particles / gas mixture of the highly dispersed core particle powder The surface of the core particle powder particles is coated with a coating-forming substance by bringing the dispersion degree of the core particle powder particles into a dispersion state with the above value according to the particle size of the quasi-fine particles, and contacting and / or colliding them. By using what To obtain a high-performance diamond sintered body having a highly controlled microstructure that is uniform, dense, and strongly sintered without any unsintered portion of the diamond particle surface that has never been obtained. I was able to. In the preparation of the above-described coated core particles, the coating-forming substance precursor is just formed in a gas phase state or a gas phase composed of atoms, molecules, ions, clusters, atomic clusters, molecular clusters, cluster ions, etc. By starting contact and / or collision with the highly dispersed diamond core particles, the coating-forming substance is firmly bonded to the surface of the individual core particles in the primary particle state. It is possible to produce coated diamond particles whose surface is coated in units of single particles with a coating-forming substance.

上記したように、本発明において、被覆ダイヤモンド準微粒子を2000MPa以上の圧力及び高温度であるダイヤモンドが熱力学的に安定である焼結条件において焼結する場合には、この被覆ダイヤモンド準微粒子は被覆を押し破って互いに接触したダイヤモンド粒子同志が直接に結合することになり、きわめて均一で緻密な焼結体となるものである。
また本発明において、被覆ダイヤモンド準微粒子をそれ自体でかまたは結合材と共に2000MPa未満の圧力及び1850℃を越えないダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件において焼結する場合については、ダイヤモンド準微粒子が互いに接触しても粒子同志が直接に結合することはないが、被覆ダイヤモンド準微粒子同志が直接に接触している場所以外は必ずこのダイヤモンド準微粒子の周りには結合材または焼結助材である被覆物質が存在し、得られた焼結体は未焼結部分のない均一で、緻密で且つ強固に焼結された極めて高度に制御された微組織を有するものとなる。
As described above, in the present invention, when the coated diamond quasi-fine particles are sintered under a sintering condition in which diamond having a pressure of 2000 MPa or higher and high temperature is thermodynamically stable, the coated diamond quasi-fine particles are coated. The diamond particles that are in contact with each other through direct bonding are directly bonded to each other, resulting in a very uniform and dense sintered body.
Further, in the present invention, the coated diamond quasi-fine particles are sintered by themselves or with a binder at a pressure of less than 2000 MPa and a diamond not exceeding 1850 ° C. under sintering conditions of metastable pressure and temperature, although not thermodynamically stable. When the diamond quasi-fine particles are in contact with each other, the particles do not directly bond to each other, but the diamond quasi-fine particles are always around the diamond quasi-fine particles except where the coated diamond quasi-fine particles are in direct contact. There is a coating material that is a binder or sintering aid, and the resulting sintered body has a uniform, dense and strongly sintered microstructure with no unsintered parts and a very highly controlled microstructure. It will have.

以下に本発明を詳細に説明する前に、本明細書中に使用する用語をはじめに定義することにし、そして必要によってその用語の具体的内容を説明し、次いで被覆形成物質で被覆されたダイヤモンド準微粒子の調製がどのような技術的手段によって行われるものであるかの説明を行うことにする。   Before describing the present invention in detail below, the terms used in this specification will be defined first, and the specific contents of the terms will be explained if necessary, and then the diamond preparation coated with a coating-forming material. An explanation will be given of what technical means the fine particles are prepared by.

被覆されたダイヤモンド準微粒子
被覆されたダイヤモンド準微粒子とは、被覆が施された下記するダイヤモンド準微粒子をいう。例えば、具体的には、被覆形成物質が、超微粒子状、島状、連続質状、一様な膜状、突起物状等の内の一種以上の形態で芯粒子としてダイヤモンド準微粒子に被覆を施した被覆された準微粒子をいう。
Coated diamond quasi-fine particles The coated diamond quasi-fine particles refer to the following diamond quasi-fine particles coated. For example, specifically, the coating forming substance is coated with diamond quasi-fine particles as core particles in one or more forms of ultrafine particles, islands, continuous materials, uniform films, protrusions, etc. A coated quasi-fine particle.

ダイヤモンド原料粉体粒子
本発明に係る、準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子であるダイヤモンド粒子の表面に、被覆形成物質を被覆した被覆ダイヤモンド粒子を製造するためのダイヤモンド準粒子の原料粒子には、天然及び/又は人工のダイヤモンド粉体粒子がある。
天然品の場合は、超高純度のものを選択できるので好適である。合成品の場合は、合成時に触媒として使用された物質を可能な限り取り除いたものが好ましい。合成品で特に好適な例として、例えば物理蒸着法(PVD法)或いは化学蒸着法(CVD法)による、気相を介して合成されて触媒物質を含まない超高純度なダイヤモンドが選択可能である。薄膜状に合成される場合は、不純物の混入に注意しながら粉砕して使用する。粒状或いは粉体状に合成される場合は、そのまま使用することができる。これ以外の高純度な例として単結晶からなるものが選択可能である。或いは、積極的に不純物を除去したものが選択できる。
高性能な被覆ダイヤモンド準微粒子焼結体を製造するためのダイヤモンド原料粉体としては、その粒子径が10μmを越えるダイヤモンド準微粒子が用いられる。具体的には、ダイヤモンドは平均粒径DMが10μmを越え体積基準頻度分布が(〔DM/5,5DM〕,≧90%)のダイヤモンド準微粒子が一般に流通しているのでこれを適用できる。用途に応じて、比較的分布の幅の狭い平均粒径DMが10μmを越え体積基準頻度分布が(〔DM/3,3DM〕,≧90%)のダイヤモンド準微粒子、或いは分級等によりダイヤモンド準微粒子の粒径が管理され更に分布の幅の狭い平均粒径DMが10μmを越え体積基準頻度分布が(〔DM/2,3DM/2〕,≧90%)のダイヤモンド準微粒子を選択できる。
Diamond Raw Material Powder Particles According to the present invention, coated diamond particles are produced by coating the surface of diamond particles, which are particles of quasi fine particle core particle powder or core particle powder mainly composed of quasi fine particles, with a coating forming substance. The raw material particles of the diamond quasiparticles include natural and / or artificial diamond powder particles.
In the case of a natural product, an ultra-high purity product can be selected, which is preferable. In the case of a synthetic product, it is preferable to remove as much of the material used as a catalyst during the synthesis. As a particularly suitable example of a synthetic product, for example, ultra-high-purity diamond which is synthesized through a gas phase by physical vapor deposition (PVD) or chemical vapor deposition (CVD) and does not contain a catalytic substance can be selected. . When it is synthesized in a thin film, it should be crushed while paying attention to impurities. When synthesized in a granular or powder form, it can be used as it is. As other high-purity examples, a single crystal can be selected. Alternatively, a material from which impurities are positively removed can be selected.
As a diamond raw material powder for producing a high-performance coated diamond quasi-fine particle sintered body, diamond quasi-fine particles having a particle diameter exceeding 10 μm are used. Specifically, diamond quasi-fine particles with an average particle diameter D M exceeding 10 μm and volume-based frequency distribution ([D M / 5, 5 D M ], ≧ 90%) are generally distributed. it can. Depending on the application, the average particle diameter D M with a relatively narrow distribution exceeds 10 μm, and the volume-based frequency distribution ([D M / 3, 3 D M ], ≧ 90%) is obtained by quasi fine particles of diamond or classification. diamond quasi particles of narrow average particle diameter D M is volume-based frequency distribution beyond 10μm further distribution particle size of the diamond quasi particles is managed ([D M / 2,3D M / 2], ≧ 90%) Can be selected.

気相被覆法
気相被覆法とは、被覆形成物質の原料が、分子流、イオン流、プラズマ、ガス、蒸気、エアロゾルの一種以上からなる気相状態を少なくとも一度は経て被覆する方法、又は気相状態の被覆形成物質の原料により被覆する方法をいう。
Vapor phase coating method A gas phase coating method is a method in which a coating forming material is coated at least once through a gas phase state consisting of one or more of molecular flow, ion flow, plasma, gas, vapor, and aerosol, or vapor. A method of coating with a raw material of a phase-form coating-forming substance.

芯粒子
芯粒子とは、被覆を施す対象物となる粒子をいう。これはまた、母材粒子、種粒子或いは被覆される粒子ともいう。
この芯粒子は、ダイヤモンドからなる。
Core particle A core particle means the particle | grain used as the target object which coat | covers. This is also referred to as matrix particles, seed particles or coated particles.
The core particle is made of diamond.

芯粒子粉体
芯粒子粉体とは、芯粒子からなる粉体をいう。芯粒子粉体の粒子とは、芯粒子粉体を構成する粒子をいう。本発明で用いる被覆に供する準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子は、平均粒子径が体積基準頻度分布で10μmを越えるものである。
好ましくは、平均粒子径をDMとしたとき、DMが10μmを越えて、粒度分布が体積基準頻度分布で(〔DM/5,5DM〕,≧90%)である。
このような比較的分布幅の狭い粉体では、平均粒子径で粉体の分散特性又は凝集特性が特徴付けられ、DMの値に適した条件で準微粒子高分散処理手段群を作動させれば分散できる。
平均粒子径が10μmを越える芯粒子粉体の粒子の粒度分布が、幅広い分布又は互いに離れた複数のピークを持つ分布の粉体では、好適には適当な選択分離処理、例えば分級処理を行ってそれぞれ分級された粉体ごとに、本発明の被覆処理を施す。これにより、それぞれ分級された粉体ごとに上記条件の下で、被覆空間の被覆開始領域で分散度が平均粒子径に応じて分散度βで80%以上、90%以上、95%以上、97%以上又は99%以上の状態で被覆が開始され、芯粒子粉体の粒子一つ一つの粒子に被覆が可能となる。
Core particle powder The core particle powder is a powder composed of core particles. The particles of the core particle powder are particles constituting the core particle powder. The quasi-fine particle powder or the core particle powder mainly composed of quasi-fine particles used for the coating used in the present invention has an average particle diameter of more than 10 μm in volume-based frequency distribution.
Preferably, when the average particle diameter is D M, beyond the D M is 10 [mu] m, a particle size distribution is volume-based frequency distribution ([D M / 5,5D M], ≧ 90%).
The narrow powder of such relatively distribution width, mean dispersion properties or aggregation properties of the particle size powder is characterized, it caused to operate a quasi particle group of means for high dispersion treatment under conditions suitable for the value of D M Can be dispersed.
For powders with a core particle powder having an average particle diameter of more than 10 μm and having a wide particle size distribution or a plurality of peaks separated from each other, an appropriate selective separation process such as a classification process is preferably performed. The coating treatment of the present invention is applied to each classified powder. Thus, for each classified powder, under the above conditions, the degree of dispersion in the coating start region of the coating space is 80% or more, 90% or more, 95% or more, 97 in terms of the dispersion β depending on the average particle diameter. Coating is started in a state of at least% or at least 99%, and coating of each particle of the core particle powder becomes possible.

被覆形成物質
被覆形成物質とは、被覆を施す対象物に被覆を形成する物質をいう。例えば、具体的には、超微粒子状、島状、連続質状、一様な膜状、突起物状等の一種以上からなる形態で芯粒子粉体の粒子に被覆を形成する物質をいう。
特に、被覆形成物質の形態が超微粒子状の場合、超微粒子の粒子径は、例えば0.005μm〜0.5μmの範囲のものをいう。
この被覆形成物質は、被覆形成物質自体がそのままで被覆を形成するか、又は被覆形成物質と芯粒子のダイヤモンドとが反応して及び/又はダイヤモンド粒子に固溶して及び/又は二種類以上の被覆形成物質同志が反応して及び/又は合金化して及び/又は固溶して被覆を形成するための目的とする無機化合物、合金、金属間化合物等の一種類又はそれ以上を生成し、被覆されたダイヤモンド粒子の焼結を促進する焼結助剤及び/又は結合材となる単体物質及び/又は化合物及び/又はダイヤモンド粒子の表面改質剤となる単体物質及び/又は化合物から選択される。
直接ダイヤモンド粒子に被覆する被覆形成物質は、ダイヤモンドをグラファイト相に相転移を促進しない被覆形成物質が選択される。このダイヤモンド粒子の粒界を制御する表面改質剤としても被覆形成物質が選択可能である。必要に応じて、例えば、ダイヤモンド準微粒子と当該焼結助剤及び/又は結合材との化学結合性を高めたり、又は個々のダイヤモンド準微粒子を任意の物質から隔離し、これにより、ダイヤモンドのグラファイト型相への相転移を抑止したり或いはダイヤモンドと任意の物質との反応を抑止したりすることができる。これにより、焼結助剤及び/又は結合材としての被覆形成物質の選択の幅が飛躍的に大きく広がり好適である。
Coating Forming Substance A coating forming substance refers to a substance that forms a coating on an object to be coated. For example, it specifically refers to a substance that forms a coating on the particles of the core particle powder in the form of one or more of ultrafine particles, islands, continuous material, uniform film, protrusions, and the like.
In particular, when the form of the coating forming substance is ultrafine particles, the particle diameter of the ultrafine particles is, for example, in the range of 0.005 μm to 0.5 μm.
The coating material is formed as it is by the coating material itself, or the coating material reacts with the diamond of the core particle and / or dissolves in the diamond particle and / or two or more types. The coating forming substances react and / or alloy and / or form a solid solution to form one or more of the desired inorganic compounds, alloys, intermetallic compounds, etc. Selected from a single substance and / or compound serving as a sintering aid and / or binder and / or a surface modifier for diamond particles.
As the coating forming material for directly coating the diamond particles, a coating forming material that does not promote the phase transition of diamond into a graphite phase is selected. A coating-forming substance can be selected as a surface modifier for controlling the grain boundaries of the diamond particles. If necessary, for example, the chemical bond between the diamond quasi-fine particles and the sintering aid and / or the binder is increased, or the individual diamond quasi-fine particles are isolated from an arbitrary substance, whereby the diamond graphite The phase transition to the mold phase can be suppressed, or the reaction between diamond and an arbitrary substance can be suppressed. Thereby, the range of selection of the coating forming material as the sintering aid and / or the binder is greatly widened, which is preferable.

これらの被覆形成物質は、周期律表1a、2a、3a、4a、5a、6a、7a、1b
、2b、3b、4b、5b、6b、7b、8族の金属、半導体、半金属、希土類金属、非金属及びその酸化物、窒化物、炭化物、酸窒化物、酸炭化物、炭窒化物、酸炭窒化物、硼化物、珪化物の一種類又はそれ以上、例えばAl、B、Si、Fe、Ni、Co、Ti、Nb、V、Zr、Hf、Ta、W、Re、Cr、Cu、Mo、Y、La、TiAl、Ti3Al、TiAl3、TiNi、NiAl、Ni3Al、SiC、TiC、ZrC、B4C、WC、W2C、HfC、VC、TaC、Ta2C、NbC、Mo2C、Cr32、Si34、TiN、ZrN、Si22O、AlN、HfN、VxN(x=1〜3)、NbN、TaN、Ta2N、TiB、TiB2、ZrB2、VB、V32、VB2、NbB、NbB2、TaB、TaB2、MoB、MoB2、MoB4、Mo2B、WB、W2B、W25、LaB6、B132、MoSi2、BP、Al23、ZrO2、MgAl24(スピネル)、Al2SiO5(ムライト)の一種類又はそれ以上を含む物質であることができる。
この被覆されたダイヤモンド準微粒子表面を被覆する被覆形成物質の被覆による添加量は、特に制限はないが、好適には被覆ダイヤモンド焼結体を緻密化可能な程度の任意の量が選択される。
These coating-forming substances are included in the periodic table 1a, 2a, 3a, 4a, 5a, 6a, 7a, 1b.
2b, 3b, 4b, 5b, 6b, 7b, Group 8 metals, semiconductors, semi-metals, rare earth metals, non-metals and their oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, acids One or more of carbonitrides, borides, silicides, such as Al, B, Si, Fe, Ni, Co, Ti, Nb, V, Zr, Hf, Ta, W, Re, Cr, Cu, Mo Y, La, TiAl, Ti 3 Al, TiAl 3 , TiNi, NiAl, Ni 3 Al, SiC, TiC, ZrC, B 4 C, WC, W 2 C, HfC, VC, TaC, Ta 2 C, NbC, Mo 2 C, Cr 3 C 2 , Si 3 N 4 , TiN, ZrN, Si 2 N 2 O, AlN, HfN, V x N (x = 1 to 3), NbN, TaN, Ta 2 N, TiB, TiB 2, ZrB 2, VB, V 3 B 2, VB 2, NbB, NbB 2, TaB, T B 2, MoB, MoB 2, MoB 4, Mo 2 B, WB, W 2 B, W 2 B 5, LaB 6, B 13 P 2, MoSi 2, BP, Al 2 O 3, ZrO 2, MgAl 2 O 4 (spinel), Al 2 SiO 5 (mullite), or a material containing one or more types.
There is no particular limitation on the amount of the coating-forming substance that coats the surface of the coated diamond quasi-fine particle, but any amount that can densify the coated diamond sintered body is preferably selected.

均一な被覆
一様な膜状の被覆形成物質の場合には、単一粒子において被覆膜の厚さがいたるところで均一であることをいう。被覆形成物質が超微粒子状、島状又は突起物状の場合には、超微粒子状、島状又は突起物状の被覆形成物質が均一な分布で被覆することをいう。被覆形成物質の生成過程で、避けられない不均一さは、均一の範疇に含まれるものである。
Uniform coating In the case of a uniform film-form material, it means that the thickness of the coating film is uniform throughout a single particle. When the coating-forming substance is in the form of ultrafine particles, islands or protrusions, it means that the coating-forming substances in the form of ultrafine particles, islands or protrusions are coated with a uniform distribution. Inevitable non-uniformity in the process of forming the coating-forming substance is included in the uniform category.

被覆空間に投入の定義
被覆空間に投入とは、例えば、自由落下等の落下によって芯粒子粉体を被覆空間に導入することをいう。搬送ガスにより投入する場合には、芯粒子粉体を芯粒子粉体の粒子・気体混合物の流れの方向に乗せて導入したり、気体に乗せて流れの方向へ、或いは気体に乗り方向が変えられて導入することをいう。または、搬送ガスの作用を受けて導入することをもいう。例えば、搬送ガスの波動現象、具体的には非線系波動によって導入することをもいう。或いは、ガス中の音波、超音波、磁場、電子線等によって被覆空間に導入することをもいう。また、外場、例えば電場、磁場、電子線等により導入することをもいう。具体的には、電場、磁場、電子線等により粉体粒子を帯電させ、または帯磁させ引力又は斥力により被覆空間に導入することをもいう。また、ガスの背圧や減圧によって吸い込まれ、導入することも含む。
Definition of input into the coating space Input into the coating space refers to introducing the core particle powder into the coating space, for example, by free fall or the like. When the carrier gas is used for introduction, the core particle powder is introduced in the direction of the flow of the particle / gas mixture of the core particle powder, or is introduced into the gas in the direction of the flow, or the direction of the gas is changed. It means to be introduced. Or it refers to introducing under the action of carrier gas. For example, it may be introduced by the wave phenomenon of the carrier gas, specifically, by non-linear wave. Alternatively, it may be introduced into the coating space by a sound wave, an ultrasonic wave, a magnetic field, an electron beam or the like in a gas. It also means introducing by an external field such as an electric field, a magnetic field, or an electron beam. Specifically, it means that the powder particles are charged by an electric field, a magnetic field, an electron beam or the like, or magnetized and introduced into the coating space by attractive force or repulsive force. In addition, it includes suction and introduction by back pressure or decompression of gas.

被覆空間
被覆空間とは、被覆形成物質の原料から気相を経て生成する被覆形成物質前駆体及び/又は気相状態の被覆形成物質前駆体と芯粒子粉体の粒子が接触及び/又は衝突する空間をいう。あるいは、芯粒子粉体の粒子の表面を被覆形成物質で被覆する空間領域をいう。
The coating space is a coating forming material precursor and / or a coating forming material precursor which is generated in the gas phase from the raw material of the coating forming material and / or particles of the core particle powder contact and / or collide with each other. Space. Or the space area | region which coat | covers the surface of the particle | grains of core particle powder with a coating formation substance.

被覆室
被覆室とは、被覆空間を一部以上有する室をいう。より具体的には、被覆室とは、被覆空間を含む仕切られた、又は略仕切られた(略閉じた、半閉じた)室であって、被覆空間を一部以上含む室である。
Coating chamber A coating chamber refers to a chamber having a part or more of a coating space. More specifically, the coating chamber is a partitioned or substantially partitioned (substantially closed or semi-closed) chamber including the coating space and including a part or more of the coating space.

気中
気中とは、真空又は気相状態の空間内をいう。ここで、本発明において、気相状態とは、分子流、イオン流、プラズマ、ガス、蒸気、エアロゾルなどの状態をいう。真空とは、技術的には、減圧状態をさす。どんな減圧下でも、厳密にはガス、分子、原子、イオン等が含まれる。
Air Air means the inside of a vacuum or gas phase space. Here, in the present invention, the gas phase state means a state of molecular flow, ion flow, plasma, gas, vapor, aerosol or the like. Technically, vacuum means a reduced pressure state. Strictly speaking, gases, molecules, atoms, ions, etc. are included under any reduced pressure.

被覆形成物質前駆体
被覆形成物質前駆体とは、被覆形成物質の前駆体である。より詳しくは、気相状態の被覆形成物質の原料がそのまま、又は被覆形成物質の原料から気相を経て形成及び/又は合成され、被覆を施す対象物となる粒子である芯粒子に被覆を形成する直前までの物質をいう。被覆形成物質前駆体は、被覆形成物質の原料から、気相を経て形成及び/又は合成する限り、状態の制限はない。被覆形成物質の原料が気相の場合、原料が被覆形成物質前駆体にもなりうる。被覆形成物質前駆体そのものが気相であってもよい。また、被覆形成物質前駆体が反応性物質の場合は、反応前でも良く、反応中でもよく、反応後でもよい。被覆形成物質前駆体の具体例としては、イオン、原子、分子、クラスター、原子クラスター、分子クラスター、クラスターイオン、超微粒子、ガス、蒸気、エアロゾル等が挙げられる。
Coating Forming Material Precursor A coating forming material precursor is a precursor of a coating forming material. More specifically, the coating material is formed as a raw material of the coating forming material in the gas phase state or synthesized from the raw material of the coating forming material through the gas phase, and the coating is formed on the core particles which are particles to be coated. The substance up to just before. The coating forming material precursor is not limited in state as long as it is formed and / or synthesized from the raw material of the coating forming material through the gas phase. When the raw material of the coating forming material is a gas phase, the raw material can also be a coating forming material precursor. The coating forming material precursor itself may be in the gas phase. When the coating forming material precursor is a reactive material, it may be before the reaction, during the reaction, or after the reaction. Specific examples of the coating forming material precursor include ions, atoms, molecules, clusters, atomic clusters, molecular clusters, cluster ions, ultrafine particles, gases, vapors, aerosols, and the like.

被覆形成物質の原料
被覆形成物質の原料とは、気相を経て被覆を形成する物質となる原料物質をいう。被覆形成物質の原料の形態の具体例として、塊状の固体、粉体粒子、気体、液体等が挙げられる。
The raw material of the coating forming material The raw material of the coating forming material refers to a raw material that becomes a material that forms a coating through a gas phase. Specific examples of the form of the raw material for the coating-forming substance include massive solids, powder particles, gas, and liquid.

分散度β
分散度βとは、粉体分散装置の分散性能を評価する指数として増田、後藤氏らが提案(化学工学、第22回、秋季大会研究発表講演要旨集、P349(1989)参照)したように、全粒子の重量に対する、見かけの一次粒子の重量の割合と定義する。ここで、見かけの一次粒子状態の粒子とは、任意の分散状態の粉体粒子の質量基準の頻度分布fm2と完全分散されている粉体粒子の質量基準の頻度分布fm1のオーバーラップしている部分の割合を示し、次の式のβで表される。
Dispersion β
The dispersity β is an index for evaluating the dispersion performance of a powder dispersion apparatus as proposed by Masuda and Goto et al. (See Chemical Engineering, 22nd Autumn Meeting Presentation, P349 (1989)). , Defined as the ratio of the apparent primary particle weight to the total particle weight. Here, the apparent primary particle state particle overlaps the mass-based frequency distribution f m2 of powder particles in an arbitrary dispersion state and the mass-based frequency distribution f m1 of completely dispersed powder particles. The ratio of the part which is shown is shown by (beta) of the following formula | equation.

Figure 0004635215
上式において、粒子径の単位(μm)は規定されるものではない。
上式は質量基準で表した粒度分布を基にして分散度を評価しているが、本来分散度は体
積基準で表した粒度分布を基にして評価されるべきものである。しかし粉体粒子密度が同じである場合には質量基準で表した粒度分布と体積基準で表した粒度分布は同じになる。そこで実用上測定が容易な質量基準の粒度分布を測定し、それを体積基準の粒度分布として用いている。従って本来の分散度βは次の式及び図1(a)の斜線部分の面積で表される。
Figure 0004635215
In the above formula, the unit of particle diameter (μm) is not specified.
The above formula evaluates the degree of dispersion based on the particle size distribution expressed on a mass basis, but the degree of dispersion should originally be evaluated based on the particle size distribution expressed on a volume basis. However, when the powder particle density is the same, the particle size distribution on the mass basis and the particle size distribution on the volume basis are the same. Therefore, a mass-based particle size distribution that is practically easy to measure is measured and used as a volume-based particle size distribution. Therefore, the original degree of dispersion β is expressed by the following equation and the area of the shaded portion in FIG.

Figure 0004635215
上式において、粒子径の単位(μm)は規定されるものではない。
そして芯粒子粉体の分布及び平均粒子径は、特に断らない限り基本的には体積基準を用いることとする。
Figure 0004635215
In the above formula, the unit of particle diameter (μm) is not specified.
The distribution of the core particle powder and the average particle diameter are basically based on volume unless otherwise specified.

体積基準頻度分布
体積基準頻度分布とは、粒子径の分布をある粒子径に含まれる体積割合をもって表したものをいう。
Volume-based frequency distribution The volume-based frequency distribution refers to a distribution of particle diameters expressed as a volume ratio included in a certain particle diameter.

(〔D1,D2〕,≧90%)の定義
(〔D1,D2〕,≧90%)分布とは、D1、D2を粒子径、但しD1<D2とするとき、D1以上でD2以下の粒子が体積で90%以上含まれる分布を表し、図2(b)のように斜線の部分の割合が90%以上である粒子からなる粉体を表す。
([D 1 , D 2 ], ≧ 90%) Definition ([D 1 , D 2 ], ≧ 90%) distribution means that D 1 and D 2 are particle diameters, where D 1 <D 2 , D 1 or more and D 2 or less particles are contained in a distribution containing 90% or more by volume, and a powder composed of particles having a hatched portion of 90% or more as shown in FIG. 2 (b).

体積基準頻度分布(〔DM/5,5DM〕,≧90%)の定義
粒度分布が、体積基準頻度分布で(〔DM/5,5DM〕,≧90%)分布とは、DMを体積基準の平均粒子径とするとき、DMの1/5倍の粒子径以上、DMの5倍の粒子径以下の粒子を体積で90%以上含む分布を表す。例えば、平均粒子径DMが20μmで体積基準頻度分布が(〔DM/5,5DM〕,≧90%)とは、体積基準の平均粒子径が20μmで、4μm以上且つ100μm以下の粒子径の粒子が体積で90%以上含まれるような分布を表す。ここで、体積基準の平均粒子径DMは、

Figure 0004635215
又は技術的にはある粒子径間隔をDi±△Di/2(△Diは区分の幅)内にある粒子群の体積をViとすると、
M=Σ(vii)/Σvi
と表される。 Volume-based frequency distribution ([D M / 5,5D M], ≧ 90%) defined particle size distribution of, by volume frequency distribution and the ([D M / 5,5D M], ≧ 90%) distribution, D when the average particle diameter on a volume basis M, 1/5 times the particle size or less on the D M, representing a five-fold particle distribution including 90% by volume under particle size or less of D M. For example, the average particle diameter D M is 20 μm and the volume-based frequency distribution is ([D M / 5, 5 D M ], ≧ 90%). The distribution is such that 90% or more of the diameter particles are contained in the volume. Here, the volume-based average particle diameter DM is
Figure 0004635215
Alternatively, technically, if the particle size interval is D i ± ΔD i / 2 (ΔD i is the width of the section), the volume of the particle group is V i .
D M = Σ (v i D i ) / Σv i
It is expressed.

被覆開始領域
微粒子高分散処理手段群の最終処理後、初めて被覆が開始される領域を被覆開始領域という。従って、微粒子高分散処理手段群の最終処理以前では、初めて被覆が開始される領域でも、ここでいう被覆開始領域ではない。
Coating start region The region where coating is started for the first time after the final processing of the fine particle high dispersion processing means group is referred to as a coating start region. Therefore, even before the final treatment of the fine particle high dispersion treatment means group, even the region where the coating is started for the first time is not the coating start region here.

被覆開始領域での分散度β
本発明では、(1)体積基準頻度分布で平均粒子径が10μmを越え20μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを80%以上とするか、又は(2)体積基準頻度分布で平均粒子径が20μmを越え50μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを90%以上とするか、又は(3)体積基準頻度分布で平均粒子径が50μmを越え300μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とするか、又は(4)体積基準頻度分布で平均粒子径が300μmを越え800μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを97%以上とするか、又は(5)体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体を、準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とした領域に被覆空間の被覆開始領域を位置せしめた被覆室を設ける。
Dispersion β in the coating start region
In the present invention, (1) a core particle powder having an average particle diameter of more than 10 μm and not more than 20 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder Or a particle dispersion of the core particle powder with a particle dispersity β of 80% or more, or (2) a core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in a volume-based frequency distribution. In the final treatment of the quasi-fine particle high dispersion treatment means group, the dispersion is carried out in the air to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the core particle powder is 90% or more, or ( 3) Particle / gas mixture of highly dispersed core particle powder obtained by dispersing core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in the volume-based frequency distribution in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. And the dispersity β of the particles of the core particle powder is 5% or more, or (4) core particle powder having an average particle diameter of more than 300 μm and not more than 800 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to achieve high dispersion A core particle powder particle / gas mixture with a core particle powder particle dispersity β of 97% or more, or (5) a core particle powder having a volume-based frequency distribution with an average particle diameter exceeding 800 μm. Is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion degree β of the core particle powder particles is 99% or more. Is provided with a coating chamber in which the coating start region of the coating space is located.

上記した被覆空間の被覆開始領域における分散度であれば、芯粒子粉体の粒子が、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、実質的に気中に単一粒子状態に分散して被覆に供することができ、被覆空間の被覆開始領域を通過する全ての芯粒子粉体の粒子の表面に、被覆形成物質前駆体が均等に接触及び/又は衝突するため、単一粒子に均一な量の被覆形成物質を付けることができる。
平均粒子径が10μmを越える準微粒子において、上記分散度βは、芯粒子粉体の平均粒子径と共に連続的に変化するが、表現困難なため便宜的に段階的な表現とした。
If the degree of dispersion in the coating start region of the coating space described above, the particles of the core particle powder are quasi-microparticle core particle powder particles whose volume average frequency distribution exceeds 10 μm or mainly quasi-fine particles. The particles of the core particle powder can be substantially dispersed in the air into a single particle state for use in coating, and on the surface of all the core particle powder particles passing through the coating start region of the coating space, Because the coating-forming material precursor contacts and / or collides evenly, a uniform amount of coating-forming material can be applied to a single particle.
In the quasi-fine particles having an average particle diameter of more than 10 μm, the dispersity β is continuously changed with the average particle diameter of the core particle powder, but it is difficult to express, so it is expressed stepwise for convenience.

好適には、(1)体積基準頻度分布で平均粒子径が10μmを越え20μm以下の芯粒
子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを90%以上とするか、又は(2)体積基準頻度分布で平均粒子径が20μmを越え50μmの芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とするか、又は(3)体積基準頻度分布で平均粒子径が50μmを越え300μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを97%以上とするか、又は(4)体積基準頻度分布で平均粒子径が300μmを越える芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とした空間領域に被覆空間の被覆開始領域を位置せしめた被覆室を設けることである。被覆空間の被覆開始領域をこのように位置せしめた被覆室であれば、芯粒子粉体の粒子が、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子に対して、単一粒子単位で被覆形成物質をより均一に被覆でき、且つ各芯粒子ごとに被覆量のより均一な被覆ができる。
Preferably, (1) a core particle powder having an average particle diameter of more than 10 μm and not more than 20 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the group of quasi-fine particle high dispersion treatment means to obtain a highly dispersed core particle powder. And a dispersion degree β of particles of the core particle powder is 90% or more, or (2) a core particle powder having an average particle diameter of more than 20 μm and a volume particle frequency distribution of more than 20 μm. In the final treatment of the fine particle high dispersion treatment means group, it is dispersed in the air to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the core particle powder is 95% or more, or ( 3) Particle / gas mixture of highly dispersed core particle powder obtained by dispersing core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in the volume-based frequency distribution in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. And the dispersion degree β of the core particle powder is 97 Or (4) a core particle powder having an average particle diameter of more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. A coating chamber in which the coating start region of the coating space is located is provided in a space region in which the particle / gas mixture is used and the dispersion β of the core particle powder particles is 99% or more. In the coating chamber in which the coating start area of the coating space is positioned in this way, the core particle powder particles are mainly quasi fine particle core particle powder particles whose volume average frequency distribution exceeds 10 μm, or mainly The particles of the core particle powder composed of the quasi-fine particles can be coated more uniformly with the coating forming substance in units of single particles, and the coating amount of each core particle can be more uniformly coated.

体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子は、気中に於いては凝集作用が働き、粒子同士で接触及び/又は衝突しあい高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子の分布が不均一になる。しかし、上記、芯粒子粉体の粒子の粒径に応じた分散度のごとき分散状態で被覆を開始すれば、準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子単一粒子単位により均一に被覆形成物質を被覆でき、且つ各粒子ごとにより均一な量に被覆形成物質を被覆できる。   The particles of quasi-fine particle core particles whose average particle diameter exceeds 10 μm in the volume-based frequency distribution or the particles of the core particle powder mainly composed of quasi-fine particles have an aggregating action in the air and contact each other. And / or the particle distribution of the core particle powder in the particle / gas mixture of the highly dispersed core particle powder collides with each other and becomes non-uniform. However, if the coating is started in a dispersed state such as the degree of dispersion according to the particle size of the core particle powder, the particles of the quasi-fine particle powder or the core particle powder mainly composed of quasi-fine particles A single particle unit can uniformly coat the coating-forming material, and a more uniform amount of coating-forming material can be applied to each particle.

準微粒子高分散処理手段群
本発明に於いて、準微粒子高分散処理手段群とは、
(A) 少なくとも分散手段を1以上有し、
(B) 最終の処理手段として、
(a)芯粒子粉体の粒子を気中に分散させる分散手段、又は、(b)芯粒子粉体の粒子を気中に分散させた芯粒子粉体の粒子と気体との混合物において低分散芯粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉体の粒子・気体混合物選択手段と高分散芯粒子粉体の粒子・気体混合物選択手段により分離された低分散芯粒子粉体部分を準微粒子高分散処理手段群中の分散手段の内の最終分散手段及び/又は最終分散手段以前の処理手段に搬送するフィードバック手段とを備えた高分散芯粒子粉体の粒子・気体混合物選択手段を有するものである。
In the present invention, the quasi-fine particle high dispersion treatment means group
(A) having at least one dispersing means,
(B) As the final processing means,
(A) Dispersion means for dispersing the particles of the core particle powder in the air, or (b) Low dispersion in the mixture of the particles of the core particle powder and the gas in which the particles of the core particle powder are dispersed in the air Highly dispersed core particle powder particles that separate the core particle powder part and select a particle / gas mixture of highly dispersed core particle powder in which the core particle powder particles are mainly present in the air in a single particle state The particles of the gas mixture selection means and the highly dispersed core particle powder The low dispersion core particle powder portion separated by the gas mixture selection means is the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group, and / or Alternatively, it includes a highly dispersed core particle powder particle / gas mixture selecting means provided with a feedback means for conveying to the processing means before the final dispersing means.

好適には、(1)体積基準頻度分布で平均粒子径が10μmを越え20μm以下の芯粒子粉体を当該準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを80%以上とするか、又は(2)体積基準頻度分布で平均粒子径が20μmを越え50μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを90%以上とするか、又は(3)体積基準頻度分布で平均粒子径が50μmを越え300μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを95%以上とするか、又は(4)体積基準頻度分布で平均粒子径が300μmを越え800μm以下の芯粒子粉体を準微粒子高分散処理手段群の最終処理により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを97%以上とするか、又は(5)体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体を、準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子の分散度βを99%以上とする分散性能を有するものである。
前記被覆開始領域における種々の分散度に対応してそれらと同等以上の分散性能の準微粒子高分散処理手段群を設けることにより、被覆開始領域において、各分散度に応じた高品位な被覆を施すことができる。
Preferably, (1) a core particle powder having an average particle diameter of more than 10 μm and not more than 20 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. A core particle powder having a particle particle dispersity β of 80% or more, or (2) a core particle powder having a volume-based frequency distribution with an average particle diameter of more than 20 μm and not more than 50 μm Is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion degree β of the core particle powder particles is 90% or more, Or (3) a core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group, Dispersion of particles of the core particle powder as a gas mixture β is 95% or more, or (4) a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. A highly dispersed core particle powder particle / gas mixture with a core particle powder particle dispersity β of 97% or higher, or (5) a core particle having a volume-based frequency distribution with an average particle diameter exceeding 800 μm The powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the dispersion degree β of the core particle powder particles is 99% or more It has a dispersion performance.
By providing a group of quasi-fine particle high dispersion treatment means having a dispersion performance equivalent to or higher than the various dispersion degrees in the coating start area, high-quality coating according to each degree of dispersion is applied in the coating start area. be able to.

最終処理手段
準微粒子高分散処理手段群の最終の処理手段が分散手段の場合、この分散処理手段を微粒子高分散処理手段群の最終処理手段という。又、準微粒子高分散処理手段群の最終の処理手段が、準微粒子高分散処理手段の最終の分散手段へ、高分散芯粒子粉体の粒子・気体混合物選択処理工程時に於いて低分散状態であったために選択分離された部分を搬送するフィードバック手段を備えた高分散芯粒子粉体の粒子・気体混合物選択手段、又は当該最終の分散手段より前の処理手段に、高分散芯粒子粉体の粒子・気体混合物選択処理工程時に於いて低分散状態であったために選択分離された部分を搬送するフィードバック手段を備えた高分散芯粒子粉体の粒子・気体混合物選択手段の場合、この高分散芯粒子粉体の粒子・気体混合物選択手段を準微粒子高分散処理手段群の最終処理手段という。
尚、準微粒子高分散処理手段群の最終処理手段であるフィードバック手段を備えた高分散芯粒子粉体の粒子・気体混合物選択手段より前に設ける(例えば、フィードバック手段を備えた高分散芯粒子粉体の粒子・気体混合物選択手段と最終分散手段の間、或いは最終分散手段より前)高分散芯粒子粉体の粒子・気体混合物選択手段は、フィードバック手段の有無にかかわらず微粒子高分散処理手段群の構成要素である。
Final processing means When the final processing means of the semi-fine particle high dispersion processing means group is a dispersion means, this dispersion processing means is called the final processing means of the fine particle high dispersion processing means group. Also, the final processing means of the quasi-fine particle high dispersion processing means group is transferred to the final dispersion means of the quasi-fine particle high dispersion processing means in the low dispersion state during the particle / gas mixture selection processing step of the highly dispersed core particle powder. The high-dispersion core particle powder is fed to the particle / gas mixture selection means of the high-dispersion core particle powder or the processing means prior to the final dispersion means. In the case of the particle / gas mixture selection means of the highly dispersed core particle powder equipped with the feedback means for conveying the selectively separated portion because it was in the low dispersion state during the particle / gas mixture selection processing step, this highly dispersed core The particle powder gas / gas mixture selection means is referred to as final processing means of the quasi-fine particle high dispersion processing means group.
In addition, it is provided before the particle / gas mixture selection means of the highly dispersed core particle powder provided with the feedback means which is the final processing means of the quasi-fine particle highly dispersed treatment means group (for example, the highly dispersed core particle powder provided with the feedback means). The particle / gas mixture selection means of the high-dispersion core particle powder is a group of fine particle high dispersion treatment means regardless of the presence or absence of the feedback means. Is a component of

分散手段
準微粒子を分散するために用いる手段を分散手段という。この分散手段は少しでも或いは僅かでも分散効果を有するものは分散手段として使用可能であり、これを分散手段とする。例えば、一般に供給手段として用いる空気輸送用のロータリーフィーダーやインジェクションフィーダー(粉体工学会編:“粉体工学便覧”、日刊工業新聞社(1986)P568、P571)は、分散効果も有するので、分散目的の手段として使用する場合は分散手段である。後述の分散維持・促進手段も分散目的で(βを高める目的で)使用する場合は分散手段となる。そしてこの分散手段は単一の装置、機器である場合も、複合された装置、機器である場合もあり、これらを総称して準微粒子高分散処理手段群と呼ぶ。
この準微粒子高分散処理手段群は、芯粒子粉体の粒子の加速及び/又は速度勾配に置く気流による分散、芯粒子粉体の粒子の静止障害物及び/又は回転体でなる障害物への衝突による分散、芯粒子粉体の粒子の流動層及び/又は脈流及び/又は回転ドラム及び/又は振動及び/又は掻取りからなる機械的解砕による分散等の内の選択された一種類以上の分散の機構を備えたものをいう。
Dispersion means The means used to disperse the quasi-fine particles is called dispersion means. Any dispersing means that has a slight or slight dispersion effect can be used as the dispersing means, and this is used as the dispersing means. For example, pneumatic feeders and injection feeders that are generally used as supply means (powder engineering association: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P568, P571) also have a dispersion effect. When used as an intended means, it is a dispersion means. The dispersion maintenance / promotion means described later is also a dispersion means when used for the purpose of dispersion (for the purpose of increasing β). The dispersing means may be a single device or device, or may be a composite device or device, and these are collectively referred to as a quasi-fine particle high dispersion processing means group.
This quasi-fine particle high dispersion treatment means group is used to accelerate and / or disperse the particles of the core particle powder by an air flow placed on a velocity gradient, to the obstacles composed of stationary obstacles and / or rotating bodies of the particles of the core particle powder. One or more selected from among dispersion by collision, fluidized bed and / or pulsating flow of core particle powder and / or dispersion by mechanical crushing consisting of rotating drum and / or vibration and / or scraping, etc. The one with a dispersion mechanism.

具体的には、準微粒子高分散処理手段群は、エジェクタ型分散機、ベンチュリ型分散機、細管、撹拌機、気流中の障害物を利用した分散機、ジェットの吹付けを利用した分散機、螺旋管、回転羽根を利用した分散機、回転するピンを利用した分散機(ケージミル)、流動層型分散機、脈流を利用した分散機、回転ドラムを利用した分散機、振動を利用した分散機、振動ふるい、スクレーパによる掻き取りを利用した分散機、SAEI、Gonell式分散機、中条式分散機、Roller式分散機、オリフィス型分散機、B.M式分散機、Timbrell式分散機、Wright式分散機等の選択された一種以上からなる分散手段を備えたものである(粉体工学会編:“粉体工学便覧”、日刊工業新聞社(1986)P430)。   Specifically, the quasi-fine particle high dispersion processing means group includes an ejector-type disperser, a venturi-type disperser, a thin tube, a stirrer, a disperser using an obstacle in an air stream, a disperser using jet blowing, Disperser using spiral tube, rotating blade, disperser using rotating pin (cage mill), fluidized bed type disperser, disperser using pulsating flow, disperser using rotating drum, dispersion using vibration Disperser using scraper with scraper, SAEI, Gonell type disperser, medium strip type disperser, Roller type disperser, orifice type disperser, BM type disperser, Timbrell type disperser, Wright type Dispersing means comprising at least one selected type of disperser or the like is provided (Powder Engineering Society: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P430).

また、特開昭56−1336号に記載の撹拌羽根を利用した分散機、特開昭58−163454号に記載の高速気流と分散ノズルを利用した分散機、特開昭59−199027号に記載の回転羽根による分散作用とプラズマイオンによる分散作用を利用した分散機、特開昭59−207319号に記載のプラズマイオンによる分散作用を利用した分散機、
特開昭59−216616号に記載のエジェクタとプラズマイオンによる分散作用を利用した分散機、特開昭59−225728号に記載のエジェクタとイオン流の分散作用を利用した分散機、特開昭59−183845号に記載のプラズマイオンの分散作用を利用した分散機、特開昭63−166421号に記載の分散羽根と圧力気体による分散作用を利用した分散機、特開昭62−176527号に記載のライン状又はリング状スリット型噴出口を用いた分散機、特開昭63−221829号に記載の網状羽根を利用した分散機、特開昭63−1629号に記載の噴射ノズルからの高速気流による分散作用を利用した分散機、実開昭63−9218号に記載の多数の細孔を利用した分散機、実開昭62−156854号に記載のエジェクタ型分散機、実開昭63−6034号に記載の細孔とオリフィスを利用した分散機等の公報に記載のものも使用可能である。
準微粒子高分散処理手段群に好適な分散手段として、特願昭63−311358号、特願平1−71071号、特願平2−218537号等に記載の装置が挙げられる。
Further, a disperser using a stirring blade described in JP-A No. 56-1336, a disperser using a high-speed air flow and a dispersion nozzle described in JP-A No. 58-163454, and described in JP-A No. 59-199027. A disperser using the dispersing action by the rotating blades and the dispersing action by plasma ions, a disperser using the dispersing action by plasma ions described in JP-A-59-207319,
A disperser using a dispersion action by an ejector described in JP-A-59-216616 and plasma ions, a disperser using a dispersion action of an ejector and an ion flow described in JP-A-59-225728, A dispersion machine using the dispersion action of plasma ions described in JP-A-183845, a dispersion machine using a dispersion blade and a pressure gas and a dispersion action described in JP-A No. 63-166421, and JP-A No. 62-176527 A disperser using a line-shaped or ring-shaped slit-type jet nozzle, a disperser using a mesh blade described in JP-A-63-221829, and a high-speed air flow from an injection nozzle described in JP-A-63-1629 Disperser utilizing the dispersion action of the above, disperser utilizing a large number of pores described in Japanese Utility Model Sho 63-9218, ejector described in Japanese Utility Model Sho 62-156854 Type disperser, it may be used those described in Japanese dispersing machine utilizing the pores and the orifice described in JP Utility Model 63-6034.
Dispersion means suitable for the quasi-fine particle high dispersion treatment means group include apparatuses described in Japanese Patent Application No. 63-131358, Japanese Patent Application No. 1-71071, Japanese Patent Application No. 2-218537.

高分散芯粒子粉体の粒子・気体混合物選択手段
高分散芯粒子粉体の粒子・気体混合物選択手段とは芯粒子粉体の粒子・気体混合物から、低分散芯粒子粉体の粒子・気体混合物を分離し、主に単一粒子状態の粒子を含む高分散芯粒子粉体の粒子・気体混合物を選択する手段をいう。一次粒子の集合体である凝集粒子は、見かけの粒子径が一次粒子の粒子径に比べ大きくなることから、例えば乾式分級手段により分離が可能である。高分散芯粒子粉体の粒子・気体混合物選択手段の例としては、重力を利用した分級手段、慣性力を利用した分級手段、遠心力を利用した分級手段、静電気を利用した分級手段、流動層を利用した分級手段等から一種以上選択された乾式分級手段が挙げられる。
この高分散芯粒子粉体の粒子・気体混合物選択手段の例としては、重力分級機、慣性分級機、遠心分級機、サイクロン、エアセパレータ、ミクロンセパレータ、ミクロプレックス、ムルチプレックス、ジグザグ分級機、アキュカット、コニカルセパレータ、ターボクラシファイア、スーパセパレータ、ディスパージョンセパレータ、エルボジェット、流動層分級機、バーチュアルインパクタ、O-Sepa、ふるい、バイブレーティングスクリーン、シフタ(粉体工学会編:“粉体工学便覧”日刊工業新聞社、P514(1986))等が挙げられる。
High dispersion core particle powder particle / gas mixture selection means High dispersion core particle powder particle / gas mixture selection means From core particle powder particle / gas mixture to low dispersion core particle powder particle / gas mixture Means for selecting a particle / gas mixture of highly dispersed core particle powder mainly containing particles in a single particle state. Aggregated particles, which are aggregates of primary particles, can be separated by, for example, dry classification means because the apparent particle size is larger than the particle size of the primary particles. Examples of particle / gas mixture selection means for highly dispersed core particle powder include classification means using gravity, classification means using inertial force, classification means using centrifugal force, classification means using static electricity, fluidized bed One or more dry classification means selected from the classification means using the above.
Examples of particle / gas mixture selection means for this highly dispersed core particle powder include gravity classifier, inertia classifier, centrifugal classifier, cyclone, air separator, micron separator, microplex, multiplex, zigzag classifier, accumulator. Cut, Conical Separator, Turbo Classifier, Super Separator, Dispersion Separator, Elbow Jet, Fluidized Bed Classifier, Virtual Impactor, O-Sepa, Sieve, Vibrating Screen, Shifter (Powder Engineering Association: “Powder Engineering Handbook”) Nikkan Kogyo Shimbun, P514 (1986)).

芯粒子粉体の粒子・気体混合物
芯粒子粉体の粒子・気体混合物とは、(a)芯粒子粉体の粒子が気中に一様に浮遊した均質流れ(一様な浮遊流れ)、(b)芯粒子粉体の粒子が気中のある領域で非一様な分布を示す不均質流れ(非均質浮遊流れ)、(c)芯粒子粉体の粒子の摺動層を伴う流れ(摺動流れ)、又は(d)芯粒子粉体の粒子の静止層を伴う流れを
Core particle powder particles / gas mixture Core particle powder particles / gas mixture are: (a) a homogeneous flow in which the particles of the core particle powder float uniformly in the air (uniform floating flow), ( b) Inhomogeneous flow (non-homogeneous floating flow) in which the particles of the core particle powder show a non-uniform distribution in a certain region in the air, Dynamic flow), or (d) a flow with a stationary layer of core powder particles.

低分散芯粒子粉体の粒子・気体混合物
低分散芯粒子粉体の粒子・気体混合物とは芯粒子粉体の粒子・気体混合物の内、芯粒子粉体の粒子が主に単一粒子状態以外の状態で気中に存在する芯粒子粉体の粒子・気体混合物をいう。
Particles / gas mixture of low-dispersion core particle powder What is a particle / gas mixture of low-dispersion core particle powder? Of the particle / gas mixture of core particle powder, the core particle powder is mainly not in a single particle state The particle / gas mixture of core particle powder that exists in the air in the state of

高分散芯粒子粉体の粒子・気体混合物
高分散芯粒子粉体の粒子・気体混合物とは芯粒子粉体の粒子が主に単一粒子状態で気中に存在する芯粒子粉体の粒子・気体混合物をいう。高分散芯粒子粉体の粒子・気体混合物は、極めて高分散であっても、実際には凝集粒子を含む。低分散芯粒子粉体の粒子・気体混合物は、実際には、凝集していない単粒子を含み、選択分離して低分散芯粒子粉体の粒子・気体混合物と高分散芯粒子粉体の粒子・気体混合物に分けられる。低分散芯粒子粉体の粒子・気体混合物は、凝集粒子の選択分離及び/又は再分散により、高分散芯粒子粉体の粒子・気体混合物となる。
Particles / gas mixture of highly dispersed core particle powder What are particles / gas mixture of highly dispersed core particle powder? Core particle powder particles in which the core particle powder mainly exists in the air in a single particle state. Refers to a gas mixture. The particle / gas mixture of the highly dispersed core particle powder actually contains agglomerated particles even though it is extremely highly dispersed. The particle / gas mixture of the low-dispersion core particle powder actually contains single particles that are not agglomerated, and selectively separates the particles / gas mixture of the low-dispersion core particle powder and the particles of the high-dispersion core particle powder. -Divided into gas mixtures. The particle / gas mixture of the low dispersion core particle powder becomes a particle / gas mixture of the high dispersion core particle powder by selective separation and / or redispersion of the aggregated particles.

回収手段
被覆空間で被覆した被覆準微粒子を取り出す手段を回収手段という。回収手段の内で回収処理の行われる部分を回収部という。被覆空間の被覆開始領域を通過して被覆した被覆準微粒子は、気中から直接取り出して回収するか、又は気中から取り出して一時的に蓄えてから回収するか、又は、気体と共に回収される。
回収手段の回収部としては、隔壁(障害物)を利用した回収手段の回収部、重力を利用した回収手段の回収部、慣性力を利用した回収手段の回収部、遠心力を利用した回収手段の回収部、帯電による引力を利用した回収手段の回収部、熱泳動力を利用した回収手段の回収部、ブラウン拡散を利用した回収手段の回収部、ガスの背圧や減圧等による吸引力を利用した回収手段の回収部等が利用可能である。
この回収手段の回収部の好適な例として、重力集塵機、慣性集塵機、遠心力集塵機、濾過集塵機、電気集塵機、洗浄集塵機、粒子充填層、サイクロン、バグフィルター、セラミックスフィルター、スクラバー等が挙げられる。
Collecting means The means for taking out the coated sub-fine particles coated in the coating space is called the collecting means. The part of the collection means where the collection process is performed is called a collection unit. The coated semi-fine particles coated through the coating start area of the coating space are directly taken out from the air and collected, or taken out from the air and temporarily stored and then collected, or collected together with the gas. .
As a collection unit of the collection unit, a collection unit of a collection unit using a partition wall (obstacle), a collection unit of a collection unit using gravity, a collection unit of a collection unit using inertial force, a collection unit using centrifugal force Recovery unit, recovery unit recovery unit using the attractive force of charging, recovery unit recovery unit using thermophoretic force, recovery unit recovery unit using Brownian diffusion, suction force due to gas back pressure or decompression, etc. A collection unit or the like of the used collection means can be used.
Preferable examples of the collecting unit of the collecting means include a gravity dust collector, an inertia dust collector, a centrifugal dust collector, a filtration dust collector, an electric dust collector, a cleaning dust collector, a particle packed bed, a cyclone, a bag filter, a ceramic filter, and a scrubber.

結合材
本発明のダイヤモンド含有高硬度高密度複合焼結体の製造に用いる結合材としては、圧力が2000MPa未満で、1850℃を越えない温度で焼結することにより、密度85%以上に緻密に焼結される結合材が選択される。好適には、更に、ダイヤモンドをグラファイト相に相転移するのを促進しない結合材が選択される。或いは、圧力が2000MPa未満で、1850℃を越えない温度で焼結することにより、ダイヤモンドと反応して生成する反応生成物の密度が85%以上である緻密な結合材となるものが選択される。より好ましくは、圧力が2000MPa未満で、1850℃を越えない温度で焼結して、密度が90%以上の緻密で、及び/又はビッカース硬度が600以上の高硬度の結合材となるものが選択される。圧力が2000MPa未満で、1850℃を越えない温度で焼結することにより、密度85%以上の緻密な結合材となる原料粉体は、周期律表1a、2a、3a、4a、5a、6a、7a、1b、2b、3b、4b、5b、6b、7b、8族金属、半導体、半金属、希土類金属の内の一種類以上及び/又はこれらの内の一種類以上を含む化合物の少なくとも一種類を含む粉体又は粒子から選択される。より具体的には、この粉体又は粒子が、B、Ti、Zr、Hf、Ta、Nb、V、SiC、TiC、ZrC、B4C、WC、HfC、TaC、NbC、Si34、TiN、ZrN、AlN、HfN、TaN、TiB、TiB2、ZrB2、HfB、HfB2、LaB6、MoSi2、BP、Al23、Al2SiO5(ムライト)、ZrO2(Y28、MgO又はCaO安定剤を添加したジルコニア:PSZ又は正方晶ジルコニア多結晶体:TZP)、MgAl24(スピネル)、の内の少なくとも一種類から選ばれる粉体又は粒子でありうる。好適な例として、例えばアルミナでは、高純度で易焼結性の微細な原料、例えば、特開昭63−151616号公報に記載のアンモニウム・アルミニウム炭酸塩熱分解法によるアルミナであれば、常圧の普通焼結でも1400℃程度の温度で緻密化するので好適である。更に、アルミナの焼結を促進する効果のあるマグネシア(MgO)及び/又はチタニア(TiOx、x=1〜2)を体積で10%まで含有する微細で高純度なアルミナ粉体であれば、前記特開昭63−151616号公報に記載のアルミナ以外の高純度アルミナ、例えばバイヤー法、有機アルミニウム加水分解法、及びアルミニウムミョウバン熱分解法、エチレンクロルヒドリン法、水中火花放電法等による、1μm以下の微細な粒子からなる純度99%以上の高純度・易焼結性アルミナでも差し支えない。
Binder As a binder used in the production of the diamond-containing high-hardness high-density composite sintered body of the present invention, the pressure is less than 2000 MPa, and sintering is performed at a temperature not exceeding 1850 ° C., so that the density is more than 85%. The binder to be sintered is selected. Preferably, further, a binder is selected that does not promote the phase transition of diamond into the graphite phase. Alternatively, a material that is a dense binder with a density of a reaction product generated by reaction with diamond of 85% or more by sintering at a temperature of less than 2000 MPa and not exceeding 1850 ° C. is selected. . More preferably, the pressure is less than 2000 MPa, the sintering is performed at a temperature not exceeding 1850 ° C., and a dense material having a density of 90% or more and / or a high hardness binder having a Vickers hardness of 600 or more is selected. Is done. By sintering at a pressure of less than 2000 MPa and a temperature not exceeding 1850 ° C., the raw material powder that becomes a dense binder having a density of 85% or more is obtained from the periodic table 1a, 2a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5b, 6b, 7b, at least one of group 8 metal, semiconductor, semimetal, and rare earth metal and / or a compound containing one or more of these Selected from powders or particles. More specifically, this powder or particle is B, Ti, Zr, Hf, Ta, Nb, V, SiC, TiC, ZrC, B 4 C, WC, HfC, TaC, NbC, Si 3 N 4 , TiN, ZrN, AlN, HfN, TaN, TiB, TiB 2, ZrB 2, HfB, HfB 2, LaB 6, MoSi 2, BP, Al 2 O 3, Al 2 SiO 5 ( mullite), ZrO 2 (Y 2 O 8 , MgZ or CaO stabilizer added zirconia: PSZ or tetragonal zirconia polycrystal: TZP), MgAl 2 O 4 (spinel), or powder or particles selected from at least one of them. As a suitable example, for example, alumina is a high-purity and easily sinterable fine raw material, for example, alumina by pyrolysis of ammonium aluminum carbonate described in JP-A No. 63-151616, atmospheric pressure. Even normal sintering is preferable because it is densified at a temperature of about 1400 ° C. Furthermore, if it is a fine and high-purity alumina powder containing magnesia (MgO) and / or titania (TiO x , x = 1 to 2) up to 10% by volume, which has the effect of promoting the sintering of alumina, High-purity alumina other than the alumina described in JP-A-63-151616, for example, 1 μm by Bayer method, organoaluminum hydrolysis method, aluminum alum pyrolysis method, ethylene chlorohydrin method, underwater spark discharge method, etc. High purity and easily sinterable alumina having a purity of 99% or more composed of the following fine particles may be used.

前記アルミナ以外ではジルコニウムの酸化物、好適には、共沈法によって製造される易焼結性のイットリア添加部分安定化ジルコニア(2−4mol%Y23−ZrO2)粉体、或いはアルミナ−ジルコニア系粉体(FCレポート、1〔5〕(1983)13−17)や、チタン酸化物であるチタニア粉体(TiO2:第15回高圧討論会講演要旨集、(1973)P174)が選択される。
また、チタンの窒化物として、窒化チタン(TiN:山田外、窯業協会誌、89、(1981)621〜625)も選択可能である。
次に、本発明で用いる被覆されたダイヤモンド準微粒子を調製する場合に採用される準微粒子高分散処理手段群を添付の図面に基づいて説明することにする。
Other than the alumina, an oxide of zirconium, preferably a sinterable yttria-added partially stabilized zirconia (2-4 mol% Y 2 O 3 —ZrO 2 ) powder produced by a coprecipitation method, or alumina Zirconia powder (FC report, 1 [5] (1983) 13-17) and titania powder that is titanium oxide (TiO 2 : Summary of the 15th high-pressure discussion meeting, (1973) P174) Is done.
Further, titanium nitride (TiN: Yamada Gaie, Journal of Ceramic Industry Association, 89, (1981) 621-625) can be selected as the nitride of titanium.
Next, a group of quasi-fine particle high dispersion treatment means employed when preparing coated diamond quasi-fine particles used in the present invention will be described with reference to the accompanying drawings.

準微粒子高分散処理手段群の図の説明
図2(a)は被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の基本的な構成の一例を表すブロック図である。芯粒子粉体の粒子を分散させる最終の分散手段A、最終の分散手段以前の分散処理手段群の構成要素dで構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。構成要素dとしては、分散手段、供給手段、高分散芯粒子粉体の粒子・気体混合物選択手段等任意の処理手段を単独又は組み合わせて使用できる。構成要素dは、必ずしも設けなくとも良い。準微粒子高分散処理手段群は、好適には最終の処理手段である分散手段Aの処理後、(1)体積基準頻度分布で平均粒子径が10μmを越え20μm以下の芯粒子粉体に対し、分散度βが80%以上、又は(2)体積基準頻度分布で平均粒子径が20μmを越え50μm以下の芯粒子粉体に対し、分散度βが90%以上、又は(3)体積基準頻度分布で平均粒子径が50μmを越え300μm以下の芯粒子粉体に対し、分散度βが95%以上、又は(4)体積基準頻度分布で平均粒子径が300μmを越え800μm以下の芯粒子粉体に対し、分散度βが97%以上、又は(5)体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体に対し、分散度βが99%以上を実現できる構成のものである。
FIG. 2A is a block diagram showing an example of the basic configuration of the quasi-fine particle high dispersion treatment means group when preparing coated diamond quasi-fine particles. The final dispersion means A for dispersing the particles of the core particle powder, and the component d of the dispersion processing means group before the final dispersion means. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder. As the component d, any treatment means such as a dispersion means, a supply means, a particle / gas mixture selection means of highly dispersed core particle powder can be used alone or in combination. The component d is not necessarily provided. The quasi-fine particle high dispersion processing means group is preferably (1) for the core particle powder having an average particle diameter of more than 10 μm and not more than 20 μm in the volume reference frequency distribution after the processing of the dispersion means A as the final processing means. The dispersity β is 80% or more, or (2) the core particle powder having an average particle diameter of more than 20 μm and 50 μm or less in the volume-based frequency distribution, the dispersity β is 90% or more, or (3) the volume-based frequency distribution. In the case of a core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm, a dispersion degree β of 95% or more, or (4) a core particle powder having a volume-based frequency distribution with an average particle diameter of more than 300 μm and not more than 800 μm. On the other hand, the dispersity β is 97% or more, or (5) the dispersity β is 99% or more for the core particle powder having an average particle diameter exceeding 800 μm in the volume-based frequency distribution.

図2(b)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の基本的な構成の第2の例を表すブロック図である。芯粒子粉体の粒子を分散させる最終の分散手段A、最終の分散手段Aへ芯粒子粉体の粒子が、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηをフィードバックさせるフィードバック手段Cを備えた最終の高分散芯粒子粉体の粒子・気体混合物選択手段B、最終の分散手段以前の分散処理手段群の構成要素d、最終分散手段と最終選択手段の間の準微粒子高分散処理手段群の構成要素eで構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。構成要素dとしては、分散手段、供給手段、選択手段等任意の処理手段を単独又は組み合わせて使用できる。構成要素eとしては、分散手段以外の処理手段、例えば供給手段、選択手段等任意の処理手段を単独又は組み合わせて使用できる。構成要素d及びeは、必ずしも設けなくとも良い。準微粒子高分散処理手段群は、好適には、最終の処理手段である選択手段Bによる処理後、前記平均粒子径の芯粒子粉体に対し前記分散度を実現できる構成である。   FIG. 2 (b) is a block diagram showing a second example of the basic configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particle. The final dispersion means A for dispersing the particles of the core particle powder, the particles of the highly dispersed core particle powder in which the particles of the core particle powder are mainly present in the air in the final dispersion means A The final high dispersion core particle powder particle / gas mixture selection means B provided with the feedback means C for feeding back the gas / gas mixture η of the low dispersion core particle powder other than the gas mixture, the dispersion before the final dispersion means It comprises a component d of the processing means group and a component e of the semi-fine particle high dispersion processing means group between the final dispersion means and the final selection means. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder. As the component d, any processing means such as a dispersion means, a supply means, a selection means or the like can be used alone or in combination. As the component e, any processing means other than the dispersion means, for example, any processing means such as a supply means and a selection means can be used alone or in combination. The components d and e are not necessarily provided. The quasi-fine particle high dispersion processing means group is preferably configured to realize the degree of dispersion for the core particle powder having the average particle diameter after the processing by the selection means B which is the final processing means.

図2(c)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の基本的な構成の第3の例を表すブロック図である。芯粒子粉体の粒子を分散させる最終の分散手段A、最終の分散手段Aより前の処理手段へ芯粒子粉体の粒子が、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηをフィードバックさせるフィードバック手段Cを備えた最終の高分散芯粒子粉体の粒子・気体混合物選択手段B、最終の分散手段以前の準微粒子高分散処理手段群の構成要素d、最終の分散手段と最後の選択手段の間の準微粒子高分散処理手段群の構成要素eで構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。構成要素dとしては、分散手段、供給手段、選択手段等任意の処理手段を単独又は組み合わせて使用できる。構成要素eとしては、分散手段以外の処理手段、例えば供給手段、選択手段等任意の処理手段を単独又は組み合わせて使用できる。構成要素d及びeは、必ずしも設けなくとも良い。準微粒子高分散処理手段群は、好適には最終の処理手段である選択手段Bによる処理後、前記平
均粒子径の芯粒子粉体に対し前記分散度を実現できる構成である。
FIG. 2C is a block diagram showing a third example of the basic configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particle. Highly dispersed core particles in which the particles of the core particle powder are mainly present in the air in the form of a single particle to the final dispersion means A for dispersing the particles of the core particle powder and the processing means before the final dispersion means A Final high dispersion core particle powder particle / gas mixture selection means B provided with feedback means C for feeding back the powder / gas mixture η of the low dispersion core particle powder other than the powder particle / gas mixture, It consists of a component d of the quasi-fine particle high dispersion processing means group before the dispersion means and a component e of the quasi-fine particle high dispersion processing means group between the final dispersion means and the last selection means. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder. As the component d, any processing means such as a dispersion means, a supply means, and a selection means can be used alone or in combination. As the component e, any processing means other than the dispersion means, for example, any processing means such as a supply means and a selection means can be used alone or in combination. The components d and e are not necessarily provided. The quasi-fine particle high dispersion processing means group is preferably configured so that the degree of dispersion can be realized with respect to the core particle powder having the average particle diameter after the processing by the selection means B which is the final processing means.

なお、以上のような構成であるから、供給槽、芯粒子生成手段等の粉体の供給源も本準微粒子高分散処理手段群の構成に含めてもよい。例えば図3(c)の場合、フィードバック手段Cのフィードバック先を供給槽とする構成も高分散処理手段群の構成として良いことは言うまでもない。又、準微粒子高分散処理手段群の分散工程の前に、芯粒子粉体の粒子を解砕及び/又は粉砕する解砕工程を入れても良いことは言うまでもない。
上記した準微粒子高分散処理手段群の基本的な構成の具体的な代表例をより詳細にしたブロック図に基づいて更に詳しく説明することにする。
In addition, since it is the above structures, you may include the supply sources of powders, such as a supply tank and a core particle production | generation means, in the structure of this quasi-fine particle highly dispersed process means group. For example, in the case of FIG. 3C, it goes without saying that the configuration in which the feedback destination of the feedback unit C is the supply tank may be the configuration of the highly dispersed processing unit group. Needless to say, a crushing step of crushing and / or crushing the particles of the core particle powder may be inserted before the dispersion step of the quasi-fine particle high dispersion treatment means group.
Further detailed description will be given based on a more detailed block diagram of a concrete representative example of the basic configuration of the above-described quasi-fine particle high dispersion processing means group.

構成1
図3(a)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第1の構成を説明するブロック図であって図2(a)に対応するものである。本例は、被覆される芯粒子粉体を供給する供給槽100、被覆される芯粒子粉体を分散させる最終分散手段Aから構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 1
FIG. 3A is a block diagram for explaining the first configuration of the quasi-fine particle high dispersion processing means group when preparing the coated diamond quasi-fine particles, and corresponds to FIG. 2A. This example includes a supply tank 100 for supplying core particle powder to be coated, and a final dispersion means A for dispersing the core particle powder to be coated. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

構成2
図3(b)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第2の構成を説明するブロック図であって図2(a)に対応するものである。本例は、被覆される芯粒子粉体を供給する供給槽100、被覆される芯粒子粉体を分散させる分散手段a、被覆される芯粒子粉体を分散させる最終分散手段Aから構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 2
FIG. 3B is a block diagram for explaining a second configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particles, and corresponds to FIG. This example is composed of a supply tank 100 for supplying the core particle powder to be coated, a dispersion means a for dispersing the core particle powder to be coated, and a final dispersion means A for dispersing the core particle powder to be coated. Yes. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

構成3
図3(c)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第3の構成を説明するブロック図であって図2(a)に対応するものである。本例は、被覆される芯粒子粉体を供給する供給槽100、被覆される芯粒子粉体を分散させる分散手段a、分散手段aで分散させた芯粒子粉体の粒子・気体混合物のうちから主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηを分散手段aへフィードバックさせるフィードバック手段C、主に高分散芯粒子粉体の粒子・気体混合物を最終の分散手段Aへ導入する高分散芯粒子粉体の粒子・気体混合物選択手段b、被覆される芯粒子粉体を分散させる最終分散手段A、から構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 3
FIG. 3C is a block diagram illustrating a third configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particles, and corresponds to FIG. In this example, the supply tank 100 for supplying the core particle powder to be coated, the dispersion means a for dispersing the core particle powder to be coated, and the particle / gas mixture of the core particle powder dispersed by the dispersion means a A feedback means C for feeding back the particles / gas mixture η of the low dispersion core particle powder other than the particles / gas mixture of the high dispersion core particle powder mainly existing in the air in a single particle state to the dispersion means a, Highly dispersed core particle powder particle / gas mixture selection means b for mainly introducing a highly dispersed core particle powder particle / gas mixture into the final dispersion means A, and final dispersion means for dispersing the coated core particle powder. A. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

構成4
図3(d)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第4の構成を説明するブロック図であって図2(b)に対応するものである。本例は、被覆される芯粒子粉体を供給する供給槽100、被覆される芯粒子粉体を分散させる最終分散手段A、最終分散手段Aで分散させた芯粒子粉体の粒子・気体混合物のうちから主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィードバックするフィードバック手段C、高分散芯粒子粉体の粒子・気体混合物を放出する最終の高分散芯粒子粉体の粒子・気体混合物選択手段Bから構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 4
FIG. 3 (d) is a block diagram for explaining a fourth configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particles, and corresponds to FIG. 2 (b). This example shows a supply tank 100 for supplying coated core particle powder, a final dispersion means A for dispersing the coated core particle powder, and a particle / gas mixture of the core particle powder dispersed by the final dispersion means A. The feedback means for feeding back to the dispersion means A the particles / gas mixture of the highly dispersed core particle powder mainly existing in the air in a single particle state, and the particles / gas mixture η of the low dispersion core particle powder other than C, the final high-dispersion core particle powder particle / gas mixture selection means B for releasing the high-dispersion core particle powder particle / gas mixture. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

構成5
図3(e)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第5の構成を説明するブロック図であって図3(b)に対応するものである。本例は、
被覆される芯粒子粉体を供給する供給槽100、被覆される芯粒子粉体を分散させる分散手段a、被覆される芯粒子粉体を分散させる最終分散手段A、最終分散手段Aで分散させた芯粒子粉体の粒子・気体混合物のうちから主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィードバックするフィードバック手段C、高分散芯粒子粉体の粒子・気体混合物を放出する最終の高分散芯粒子粉体の粒子・気体混合物選択手段Bから構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 5
FIG. 3 (e) is a block diagram for explaining the fifth configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particle, and corresponds to FIG. 3 (b). This example
Disperse in the supply tank 100 for supplying the core particle powder to be coated, the dispersion means a for dispersing the core particle powder to be coated, the final dispersion means A for dispersing the core particle powder to be coated, and the final dispersion means A Particles / gas mixtures of low-dispersion core particle powders other than particles / gas mixtures of high-dispersion core particle powders that are present in the air mainly in a single particle state among particles / gas mixtures of the core particle powders It comprises feedback means C for feeding back η to the dispersion means A and final high dispersion core particle powder particle / gas mixture selection means B for releasing the particle / gas mixture of highly dispersed core particle powder. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

構成6
図3(f)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第6の構成を説明するブロック図であって図2(b)に対応するものである。本例は、被覆される芯粒子粉体を供給する供給槽100、芯粒子粉体の粒子・気体混合物のうちから主に低分散芯粒子粉体の粒子・気体混合物を取り除き、主に高分散芯粒子粉体の粒子・気体混合物を分散手段Aへ導入する高分散芯粒子粉体の粒子・気体混合物選択手段b、選択分離された芯粒子粉体の粒子を分散させる最終分散手段A、最終分散手段Aで分散させた芯粒子粉体の粒子・気体混合物のうちから主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィードバックさせるフィードバック手段C、高分散芯粒子粉体の粒子・気体混合物を放出する最終の高分散芯粒子粉体の粒子・気体混合物選択手段Bから構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 6
FIG. 3 (f) is a block diagram for explaining a sixth configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particle, and corresponds to FIG. 2 (b). This example mainly removes the particle / gas mixture of the low-dispersion core particle powder from the supply tank 100 for supplying the core particle powder to be coated, the particle / gas mixture of the core particle powder, and mainly high dispersion A highly dispersed core particle powder particle / gas mixture selecting means b for introducing the core particle powder particle / gas mixture into the dispersing means A, a final dispersing means A for dispersing the selectively separated core particle powder particles, and a final Low-dispersion core particle powder other than the particles / gas mixture of the highly dispersed core particle powder that exists in the air mainly in a single particle state from the particle / gas mixture of the core particle powder dispersed by the dispersing means A A feedback means C that feeds back the body particle / gas mixture η to the dispersion means A, and a final high dispersion core particle powder particle / gas mixture selection means B that releases the particle / gas mixture of the highly dispersed core particle powder. Has been. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

構成7
図3(g)は、被覆されたダイヤモンド準微粒子を調製する際の準微粒子高分散処理手段群の第7の構成を説明するブロック図であって図2(c)に対応するものである。本例は、被覆される芯粒子粉体を供給する供給槽100、被覆される芯粒子粉体を分散させる分散手段a、被覆される芯粒子粉体を分散させる最終分散手段A、最終分散手段Aで分散させた芯粒子粉体の粒子・気体混合物のうちから主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体の粒子・気体混合物ηを分散手段aへフィードバックするフィードバック手段C、高分散芯粒子粉体の粒子・気体混合物を放出する最終の高分散芯粒子粉体の粒子・気体混合物選択手段Bから構成されている。εは、芯粒子粉体の粒子の内、主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物である。
Configuration 7
FIG. 3G is a block diagram for explaining a seventh configuration of the quasi-fine particle high dispersion processing means group in preparing the coated diamond quasi-fine particles, and corresponds to FIG. In this example, a supply tank 100 for supplying coated core particle powder, a dispersing means a for dispersing the coated core particle powder, a final dispersing means A for dispersing the coated core particle powder, and a final dispersing means Of the particles / gas mixture of the core particle powder dispersed in A, the particles / gas mixture of the highly dispersed core particle powder mainly existing in the air in a single particle state, A feedback means C for feeding back the particle / gas mixture η to the dispersion means a, and a final high dispersion core particle powder particle / gas mixture selection means B for releasing the particle / gas mixture of the highly dispersed core particle powder. Yes. ε is a particle / gas mixture of highly dispersed core particle powder that exists in the air mainly in a single particle state among the particles of the core particle powder.

このようにして達成された準微粒子の高分散状態を維持するために、気中分散維持手段を準微粒子高分散処理手段群と被覆室の間に付加することもできる。ここでいう気中分散維持手段とは、気中に分散担持された芯粒子粉体の粒子の再凝集を防止して分散度βを維持する手段をいう。又、このようにして達成された芯粒子の高分散状態を促進するために、気中分散促進手段を微粒子高分散処理手段群と被覆室の間に付加することもできる。ここでいう気中分散促進手段とは、気中に分散担持された芯粒子粉体の粒子のうち主に再凝集下粒子の再分散を促進し、分散状態の低下を鈍られたり、一旦低下した分散状態を元の高分散の状態まで隗服するように再凝分散を促す手段をいう。   In order to maintain the highly dispersed state of the quasi-fine particles achieved in this manner, an air dispersion maintaining means can be added between the quasi-fine particle highly dispersed treatment means group and the coating chamber. The air dispersion maintaining means here means means for preventing the re-aggregation of the particles of the core particle powder dispersed and supported in the air and maintaining the dispersity β. In order to promote the highly dispersed state of the core particles thus achieved, an air dispersion promoting means can be added between the fine particle highly dispersed treatment means group and the coating chamber. Air dispersion promotion means here mainly promotes the re-dispersion of particles under reagglomeration among the particles of the core particle powder dispersed and supported in the air. A means for promoting re-coagulation so that the dispersed state is reverted to the original highly dispersed state.

この気中分散維持手段又は気中分散促進手段の好適な例としては、パイプ振動装置、パイプ加熱装置、プラズマ発生装置、荷電装置等が挙げられる。
パイプ振動装置は、発振器を設置したパイプの振動により、気中に分散している粒子に分散機とは言えない振動を与えることで、再凝集を抑制し高分散状態を維持する手段又は再凝集した粒子の分散を促進する手段である。
パイプ加熱装置は、加熱したパイプにより搬送気体の外側から熱を加えて搬送気体を膨
張させ、分散機とは言えないほどに流速を加速して再凝集を抑制し、再凝集した粒子の分散を促進する手段である。
プラズマ発生装置は、芯粒子粉体を分散担持している気中にプラズマを発生させ、そのプラズマイオンと芯粒子との衝突により、再凝集を抑制し高分散状態を維持する手段又は再凝集した粒子の分散を促進する手段である。
荷電装置は、芯粒子粉体を分散担持している気中に、コロナ放電、電子ビーム、放射線等の方法で単極イオンを発生させ、単極イオン雰囲気中を通過させることで粒子を単極に帯電させ、静電気の斥力により再凝集を抑制し高分散状態を維持する手段又は再凝集した粒子の分散を促進する手段である。
Preferable examples of the air dispersion maintaining means or the air dispersion promoting means include a pipe vibration device, a pipe heating device, a plasma generator, a charging device, and the like.
The pipe vibration device is a means for suppressing reagglomeration and maintaining high dispersion by giving vibrations that cannot be called a disperser to particles dispersed in the air by vibration of the pipe where the oscillator is installed. It is a means for promoting the dispersion of the particles.
The pipe heating device expands the carrier gas by applying heat from the outside of the carrier gas using a heated pipe, accelerates the flow velocity to the extent that it cannot be called a disperser, suppresses reaggregation, and disperses the reaggregated particles. It is a means to promote.
The plasma generator generates plasma in the air in which the core particle powder is dispersedly supported, and by means of collision between the plasma ions and the core particles, means for suppressing reaggregation and maintaining a highly dispersed state or reaggregation It is a means for promoting particle dispersion.
The charging device generates monopolar ions in the air carrying the core particle powder in a dispersed manner by means of corona discharge, electron beam, radiation, etc., and passes the particles through a monopolar ion atmosphere so that the particles are monopolar. Or a means for suppressing reaggregation by electrostatic repulsion and maintaining a highly dispersed state, or a means for promoting dispersion of reaggregated particles.

このようにして形成された準微粒子の高分散状態の芯粒子粉体は粒子の表面を被覆形成物質で被覆するために被覆室に送られる。この被覆室には被覆開始領域を含む被覆空間が設けられている。
準微粒子高分散処理手段群と被覆室とは直結することが望ましいが、搬送に不可避の中空部材及び/又はパイプを使って接続しても良い。この場合にも、被覆開始領域での分散度βを上記した範囲の値とすることが不可欠である。
準微粒子高分散処理手段群と被覆室を別々に置いてその間を連結する場合は、芯粒子粉体をその分散状態のまま被覆室へ導入してやれば良い。そのためには、この間に芯粒子粉体の分散状態を維持するための装置である気中分散維持手段及び/又は分散状態を高めるための装置である気中分散促進手段及び/又は芯粒子粉体の粒子・気体混合物から、低分散芯粒子粉体部分を分離し、主に単一粒子状態の粒子を含む高分散芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉体の粒子・気体混合物選択手段を設けることもできる。
又、被覆されたダイヤモンド準微粒子を調製するに際して、準微粒子高分散処理手段群が、(1)被覆室、又は(2)被覆空間、又は(3)被覆開始領域と一部以上空間を共有することもできる。
例えば、準微粒子高分散処理手段群中の分散空間と被覆室とを、又は準微粒子高分散処理手段群中の分散空間と被覆開始領域を有する被覆空間とを、又は準微粒子高分散処理手段群中の分散空間と被覆開始領域とを、空間的に共有することもできる。
The core particle powder in a highly dispersed state of the quasi-fine particles formed in this way is sent to a coating chamber in order to coat the surface of the particles with a coating forming substance. This coating chamber is provided with a coating space including a coating start region.
Although it is desirable that the quasi-fine particle high dispersion treatment means group and the coating chamber are directly connected, they may be connected using a hollow member and / or a pipe unavoidable for conveyance. Also in this case, it is indispensable to set the degree of dispersion β in the coating start region to a value in the above range.
When the quasi-fine particle high dispersion treatment means group and the coating chamber are separately provided and connected between them, the core particle powder may be introduced into the coating chamber in its dispersed state. For this purpose, an air dispersion maintaining means and / or an air dispersion promoting means and / or a core particle powder which is an apparatus for maintaining the dispersed state of the core particle powder during this period. Highly dispersed core particle powder particles that separate the low-dispersed core particle powder portion from the particle / gas mixture and select the highly dispersed core particle powder particle / gas mixture mainly containing particles in a single particle state -A gas mixture selection means can also be provided.
Further, when preparing the coated diamond quasi-fine particles, the quasi-fine particle high dispersion processing means group shares a part or more of the space with (1) the coating chamber, or (2) the coating space, or (3) the coating start region. You can also
For example, the dispersion space and the coating chamber in the quasi-fine particle high dispersion processing means group, or the dispersion space and the coating space having the coating start area in the quasi-fine particle high dispersion processing means group, or the quasi-fine particle high dispersion processing means group. The dispersion space inside and the coating start area can also be spatially shared.

ここで被覆開始領域とは、(1)体積基準頻度分布で平均粒径が10μmを越え20μm以下の芯粒子粉体にあっては粒子の分散度βが80%以上、(2)体積基準頻度分布で平均粒径が20μmを越え50μm以下の芯粒子粉体にあっては粒子の分散度βが90%以上、(3)体積基準頻度分布で平均粒径が50μmを越え300μm以下の芯粒子粉体にあっては粒子の分散度βが95%以上、(4)体積基準頻度分布で平均粒径が300μmを越え800μm以下の芯粒子粉体にあっては粒子の分散度βが97%以上、(5)体積基準頻度分布で平均粒径が800μmを越える芯粒子粉体にあっては粒子の分散度βが99%以上である分散状態で搬送された高分散状態の芯粒子粉体に気相を経て生成する被覆形成物質前駆体及び/又は気相状態の被覆形成物質前駆体が接触及び/又は衝突し、被覆を開始する領域を指し、次の図5(a)〜(e)で示される態様が考慮される。
すなわち、図5(a)〜(e)において被覆開始領域は2で示される領域である。
Here, the coating start region is (1) a core particle powder having a volume-based frequency distribution with an average particle size of more than 10 μm and not more than 20 μm, and the particle dispersion degree β is 80% or more, and (2) the volume-based frequency. In the case of a core particle powder having an average particle size of more than 20 μm and not more than 50 μm in the distribution, the particle dispersity β is 90% or more. In the case of powder, the particle dispersity β is 95% or more. (4) In the case of a core particle powder having a volume-based frequency distribution with an average particle size of more than 300 μm and less than 800 μm, the particle dispersity β is 97%. As described above, (5) a core particle powder in a highly dispersed state that is conveyed in a dispersed state with a particle dispersion degree β of 99% or more in the case of a core particle powder having an average particle size exceeding 800 μm in a volume-based frequency distribution Before the coating-forming material precursor and / or the coating-forming material in the gas-phase state. Body contact and / or impinge, refers to the region to initiate a coating, the embodiment shown in the following FIG. 5 (a) ~ (e) are considered.
That is, in FIGS. 5A to 5E, the coating start region is a region indicated by 2.

図4(a)において芯粒子の平均粒子径に応じて上記した分散度βの分散状態で被覆を始める被覆空間の被覆開始領域2を準微粒子高分散処理手段群又は準微粒子高分散処理手段群の放出部1を覆って設ける。
図4(b)において準微粒子高分散処理手段群又は準微粒子高分散処理手段群の放出部1から放出される芯粒子粉体の粒子4が全て通る前記、被覆空間の被覆開始領域2を設ける。
上記の構成により、全ての芯粒子粉体の粒子は上記した分散度βの分散状態で被覆始められる。
図4(c)において準微粒子高分散処理手段群又は準微粒子高分散処理手段群の放出部1から放出される芯粒子粉体の粒子4の内、回収部5に入る粒子が必ず通過する前記被覆空間の被覆開始領域2を設ける。
図4(d)において回収部5を囲む前記被覆空間の被覆開始領域2を設ける。
図4(e)において高分散芯粒子粉体の粒子・気体混合物の粒子のみが到達可能な位置に回収部5を設ける。従って、ここでの領域6は重力を利用した選択手段となる。回収部に入る高分散芯粒子粉体の粒子・気体混合物の粒子が、必ず通過する前記被覆空間の被覆開始領域2を図の斜線部のように設ける。このようにすることで上記した分散度βの分散状態で被覆始めた芯粒子のみ回収でき、被覆開始領域を通っていない芯粒子と被覆開始領域を通過した被覆準微粒子とは混ざることはない。
In FIG. 4 (a), the coating start region 2 of the coating space where coating is started in the dispersion state having the dispersion degree β described above in accordance with the average particle diameter of the core particles is the quasi-fine particle high dispersion processing means group or the quasi-fine particle high dispersion processing means group. Is provided so as to cover the discharge part 1.
In FIG. 4B, the coating start area 2 of the coating space is provided through which all the particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion processing means group or the quasi-fine particle high dispersion processing means group pass. .
With the above configuration, all the core particle powder particles are started to be coated in the dispersion state with the above-described degree of dispersion β.
In FIG. 4 (c), the particles entering the recovery unit 5 out of the particles 4 of the core particle powder discharged from the discharge unit 1 of the quasi-fine particle high dispersion processing unit group or the quasi-fine particle high dispersion processing unit group always pass. A coating start area 2 of the coating space is provided.
In FIG. 4D, a coating start region 2 of the coating space surrounding the collection unit 5 is provided.
In FIG. 4 (e), the recovery unit 5 is provided at a position where only particles of the highly dispersed core particle powder / gas mixture can reach. Accordingly, the region 6 here is a selection means using gravity. The coating start region 2 of the coating space through which the particles of the highly dispersed core particle powder and the gas mixture entering the recovery unit always pass is provided as indicated by the hatched portion in the figure. In this way, only the core particles that have started to be coated in the dispersion state having the above-described degree of dispersion β can be recovered, and the core particles that have not passed through the coating start region and the coated sub-fine particles that have passed through the coating start region are not mixed.

上記したところから、本発明を実施する装置は、準微粒子高分散処理手段群と被覆室又は準微粒子高分散処理手段群と被覆室と回収手段から構成されるものであるが、これらの装置の構成要素は、種々の組み合わせ方をすることが可能で、これらの装置の構成例を図面にもとづいて説明するとつぎのとおりである。   From the above, the apparatus for carrying out the present invention is composed of a quasi-fine particle highly dispersed treatment means group and a coating chamber or a quasi-fine particle highly dispersed treatment means group, a coating chamber and a recovery means. The components can be combined in various ways, and the configuration examples of these devices will be described with reference to the drawings as follows.

装置の構成1
図5(a)は、被覆されたダイヤモンド準微粒子を製造するための第一の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、回収手段2−Dから構成されている。準微粒子高分散処理手段群2−C1は、被覆室2−B1に直結してある。
Device configuration 1
FIG. 5A is a block diagram for explaining the configuration of a first apparatus for producing coated diamond quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-particulate highly dispersed processing means group 2-C1, and a collecting means 2. -D. The semi-fine particle high dispersion treatment means group 2-C1 is directly connected to the coating chamber 2-B1.

装置の構成2
図5(b)は、被覆されたダイヤモンド準微粒子を製造するための第二の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、不可避の中空部材2−C2、回収手段2−Dから構成されている。準微粒子高分散処理手段群2−C1は、被覆室2−B1に不可避の中空部材2−C2を介して接続してある。
Device configuration 2
FIG. 5B is a block diagram illustrating the configuration of a second apparatus for producing coated diamond quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-fine particle highly dispersed treatment means group 2-C1, and an inevitable hollow. It is comprised from member 2-C2 and collection | recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is connected to the coating chamber 2-B1 through an inevitable hollow member 2-C2.

装置の構成3
図5(c)は、被覆されたダイヤモンド準微粒子を製造するための第三の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、気中分散維持手段2−C3、回収手段2−Dから構成されている。準微粒子高分散処理手段群2−C1は、被覆室2−B1に気中分散維持手段2−C3を介して接続してある。
Device configuration 3
FIG.5 (c) is a block diagram explaining the structure of the 3rd apparatus for manufacturing the coated diamond quasi-fine particle. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-fine particle high dispersion processing means group 2-C1, and air dispersion. It comprises a maintenance means 2-C3 and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is connected to the coating chamber 2-B1 via the air dispersion maintaining means 2-C3.

装置の構成4
図5(d)は、被覆されたダイヤモンド準微粒子を製造するための第四の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、回収手段2−Dから構成されている。準微粒子高分散処理手段群2−C1は、被覆室2−B1と空間を共有している。
Device configuration 4
FIG.5 (d) is a block diagram explaining the structure of the 4th apparatus for manufacturing the coated diamond quasi-fine particle. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-particulate highly dispersed processing means group 2-C1, and a collecting means 2. -D. The quasi-fine particle highly dispersed treatment means group 2-C1 shares a space with the coating chamber 2-B1.

装置の構成5
図5(e)は、被覆されたダイヤモンド準微粒子を製造するための第五の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、回収手段2−Dから構成されている。準微粒子高分散処理手段群2−C1は、被覆室2
−B1中に設けている。
Device configuration 5
FIG. 5 (e) is a block diagram for explaining the configuration of a fifth apparatus for producing coated diamond quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-particulate highly dispersed processing means group 2-C1, and a collecting means 2. -D. The quasi-fine particle high dispersion treatment means group 2-C1 is a coating chamber 2
-It is provided in B1.

装置の構成6
図5(f)は、被覆されたダイヤモンド準微粒子を製造するための第六の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、回収手段2−Dから構成されている。準微粒子高分散処理手段群2−C1の分散空間中に、被覆室2−B1を設けている。
Device configuration 6
FIG. 5 (f) is a block diagram illustrating the configuration of a sixth apparatus for producing coated diamond quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-particulate highly dispersed processing means group 2-C1, and a collecting means 2. -D. A coating chamber 2-B1 is provided in the dispersion space of the quasi-fine particle high dispersion treatment means group 2-C1.

装置の構成7
図5(g)は、被覆されたダイヤモンド準微粒子を製造するための第七の装置の構成を説明するブロック図である。本例のこの装置は、被覆装置の製造装置本体2−A、被覆室2−B1、被覆空間2−B2、被覆開始領域2−B3、準微粒子高分散処理手段群2−C1、回収手段2−D、再被覆供給手段2−Eから構成されている。回収手段2−Dから被覆後の被覆準微粒子を高分散処理手段群2−C1に再被覆供給手段2−Eにより搬送して、繰り返して被覆処理が行える。
かかる構成の装置のいずれかにより、被覆されたダイヤモンド準微粒子が製造されるものである。
Device configuration 7
FIG. 5G is a block diagram illustrating the configuration of a seventh apparatus for producing coated diamond quasi-fine particles. This apparatus of this example includes a coating apparatus manufacturing apparatus main body 2-A, a coating chamber 2-B1, a coating space 2-B2, a coating start area 2-B3, a quasi-fine particle highly dispersed processing means group 2-C1, and a collecting means 2. -D and re-coating supply means 2-E. The coated quasi-fine particles after coating are transported from the collecting means 2-D to the high dispersion processing means group 2-C1 by the re-coating supply means 2-E, and the coating treatment can be repeated.
The coated diamond quasi-fine particles are produced by any of the apparatuses having such a configuration.

上記のようにしてダイヤモンド準微粒子である芯粒子粉体を被覆形成物質で被覆した被覆準微粒子について、再び被覆形成物質で被覆すること、またはこの再被覆を反復することもできる。この場合、被覆準微粒子は再被覆供給手段に送られる。ここで、再被覆供給手段とは、再被覆を行うために被覆後の被覆準微粒子を準微粒子高分散処理手段群へ搬送する手段をいう。具体的には、(a)被覆準微粒子を回収する回収手段、及び(b)この回収手段から準微粒子高分散処理手段群に当該被覆準微粒子を搬送する被覆粒子搬送手段を備えた手段である。または、(a)被覆準微粒子を回収する回収手段、(b)この回収手段から準微粒子高分散処理手段群に当該被覆準微粒子を搬送する被覆粒子搬送手段、(c)及び被覆後の被覆準微粒子を分級する被覆粒子分級手段を備えた手段である。被覆量が多い場合、被覆前の芯粒子粉体の粒子の粒度分布と被覆後の被覆準微粒子の粒度分布は変わってしまう。そこで、被覆後の被覆準微粒子の粒度分布を被覆粒子分級手段により調整し、再被覆処理を行えば効果的である。
この再被覆処理は、必要によって繰り返すことができ、そして被覆形成物質の被覆量を所望のものに設定することができる。更に、この被覆形成物質の種類を変えてこの被覆処理を繰り返すことができ、このようにして複数成分の物質を被覆形成物質として多重被覆することもできる。
As described above, the coated quasi-fine particles obtained by coating the core particle powder, which is diamond quasi-fine particles, with the coating-forming material can be coated again with the coating-forming material, or this re-coating can be repeated. In this case, the coated semi-fine particles are sent to the re-coating supply means. Here, the re-coating supply means refers to a means for conveying the coated semi-fine particles after coating to the quasi-fine particle high dispersion processing means group for re-coating. Specifically, (a) a collecting means for collecting the coated quasi-fine particles, and (b) a means provided with a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion processing means group. . Or (a) a collecting means for collecting the coated quasi-fine particles, (b) a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion processing means group, (c) It is a means provided with a coated particle classification means for classifying fine particles. When the coating amount is large, the particle size distribution of the core particle powder before coating and the particle size distribution of the coated semi-fine particles after coating are changed. Therefore, it is effective to adjust the particle size distribution of the coated quasi-fine particles after coating by the coated particle classification means and perform the recoating process.
This re-coating process can be repeated as necessary, and the coating amount of the coating-forming material can be set as desired. Furthermore, the coating process can be repeated by changing the type of the coating forming material, and thus, a multi-component material can be coated multiple times as a coating forming material.

本発明で用いる被覆準微粒子の製造装置は、被覆形成物質が、気相を経る気相法によって、芯粒子粉体の粒子表面に被覆される被覆準微粒子の製造装置であれば制限はない。例えば、化学蒸着(CVD)装置としては、熱CVD装置、プラズマCVD装置、電磁波を利用したCVD(可視光線CVD、レーザCVD、紫外線CVD、赤外線CVD、遠赤外線CVD)装置、MOCVD装置等、或いは、物理蒸着(PVD)装置としては、真空蒸着装置、イオンスパックリング装置、イオンプレーティング装置等が適用可能である。より具体的には、例えば、特開平3−75302号公報の超微粒子で表面が被覆された粒子およびその製造方法に記載の被覆粒子製造装置が好適である。   The coated semi-fine particle production apparatus used in the present invention is not limited as long as the coating forming material is a coated semi-fine particle production apparatus in which the surface of the core particle powder is coated by the vapor phase method through the gas phase. For example, as a chemical vapor deposition (CVD) apparatus, a thermal CVD apparatus, a plasma CVD apparatus, a CVD (visible light CVD, laser CVD, ultraviolet CVD, infrared CVD, far infrared CVD) apparatus using electromagnetic waves, an MOCVD apparatus, or the like, or As a physical vapor deposition (PVD) apparatus, a vacuum vapor deposition apparatus, an ion sprinkling apparatus, an ion plating apparatus, etc. are applicable. More specifically, for example, a coated particle production apparatus described in JP-A-3-75302, particles whose surface is coated with ultrafine particles and a method for producing the same are suitable.

以上述べたとおり、本発明ではダイヤモンドの準微粒子からなる芯粒子粉体、又は主に準微粒子からなる芯粒子粉体の粒子を被覆空間に投入し、気相を経て生成する被覆形成物質前駆体及び/又は気相状態の被覆形成物質前駆体をこの芯粒子粉体の粒子に接触及び/又は衝突させてこの芯粒子粉体の粒子の表面を被覆形成物質で被覆して被覆ダイヤモンド準微粒子が製造されるが、この準微粒子からなる芯粒子を被覆するための基本的な工程を
要約するとつぎの通りである。
As described above, in the present invention, the core particle powder composed of quasi-fine particles of diamond or the core particle powder composed mainly of quasi-fine particles is introduced into the coating space and is produced through a gas phase. And / or a coating-form material precursor in a gas phase is brought into contact with and / or collided with the core particle powder particles to coat the surface of the core particle powder particles with the coating-formation material. The basic steps for coating the core particles made of quasi-fine particles are summarized as follows.


(A) 準微粒子高分散処理手段群により、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、
(B) この分散工程で分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上記した範囲の値とする分散状態で、被覆空間の被覆開始領域において被覆形成物質前駆体と接触及び/又は衝突させて被覆を開始する被覆工程、
を設けた被覆法。
I
(A) By means of a quasi-fine particle high dispersion treatment group, particles of a quasi-fine particle core particle powder having an average particle diameter exceeding 10 μm in a volume-based frequency distribution or a core particle powder consisting mainly of quasi-fine particles A dispersion step in which particles are dispersed in the air to form a highly dispersed core particle powder particle / gas mixture,
(B) The coating of the coating space is started in a dispersion state in which the core particle powder particles of the highly dispersed core particle powder / gas mixture dispersed in this dispersion step have a dispersity β in the above range. A coating process in which the coating is initiated by contacting and / or colliding with a coating-forming material precursor in the region;
Coating method.

II
(A) 体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する準微粒子高分散処理手段群により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、
(B) この分散工程で分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上記した範囲の値とする分散状態で、被覆空間の被覆開始領域において被覆形成物質前駆体と接触及び/又は衝突させて被覆を開始する被覆工程、
を設けた被覆法。
II
(A) Quasi-fine particle high-dispersion processing means for quasi-fine particle core particle powder particles having a volume-based frequency distribution and an average particle diameter exceeding 10 μm or core particle powder particles mainly composed of quasi-fine particles Highly dispersed core particle powder particles / gas mixture core particle powder particle dispersity β of particles dispersed in a group is realized in the air by a group of quasi-fine particle high dispersion processing means that realizes a value in the above range. A dispersion step of dispersing and making a highly dispersed core particle powder particle / gas mixture,
(B) The coating of the coating space is started in a dispersion state in which the core particle powder particles of the highly dispersed core particle powder / gas mixture dispersed in this dispersion step have a dispersity β in the above range. A coating process in which the coating is initiated by contacting and / or colliding with a coating-forming material precursor in the region;
Coating method.

III
(A) 体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する微粒子高分散処理手段群により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、
(B) この分散工程で分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、被覆工程に直接搬送する搬送工程、
(C) この搬送工程で搬送した高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上記した範囲の値とする分散状態で、被覆空間の被覆開始領域において被覆形成物質前駆体と接触及び/又は衝突させて被覆を開始する被覆工程、
を設けた被覆法。
III
(A) Quasi-fine particle high-dispersion processing means for quasi-fine particle core particle powder particles having a volume-based frequency distribution and an average particle diameter exceeding 10 μm or core particle powder particles mainly composed of quasi-fine particles Dispersed in the air by means of high-dispersion processing means for fine particles, which realizes the dispersion degree β of the particles of the core particle powder of the particles / gas mixture of the highly dispersed core particle powder dispersed by the group within the above range. A dispersion step of making a highly dispersed core particle powder particle / gas mixture,
(B) a conveying step for directly conveying the particles of the highly dispersed core particle powder / gas mixture core particle powder dispersed in this dispersion step to the coating step;
(C) The coating start region of the coating space in a dispersed state in which the particles of the highly dispersed core particle powder transported in this transporting step and the core particle powder particles of the gas mixture have a dispersion degree β in the above range. A coating process in which the coating is initiated by contacting and / or colliding with a coating-forming material precursor in
Coating method.

IV
(A) 体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する準微粒子高分散処理手段群により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、
(B) この分散工程で分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、搬送に不可避の、中空部材、中空を形成する部材からなる中間部材、及びパイプから選択される1種類又はそれ以上の部材を介して搬送する搬送工程、
(C) この搬送工程で搬送した高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上記した範囲の値とする分散状態で、被覆空間の被覆開始領域において被覆形成物質前駆体と接触及び/又は衝突させて被覆を開始する被覆工程、
を設けた被覆法。
IV
(A) Quasi-fine particle high-dispersion processing means for quasi-fine particle core particle powder particles having a volume-based frequency distribution and an average particle diameter exceeding 10 μm or core particle powder particles mainly composed of quasi-fine particles Highly dispersed core particle powder particles / gas mixture core particle powder particle dispersity β of particles dispersed in a group is realized in the air by a group of quasi-fine particle high dispersion processing means that realizes a value in the above range. A dispersion step of dispersing and making a highly dispersed core particle powder particle / gas mixture,
(B) A hollow member, an intermediate member made of a member forming a hollow, and a pipe, which are unavoidable for transporting the core particle powder particles of the highly dispersed core particle powder / gas mixture dispersed in the dispersion step A transporting process for transporting through one or more members selected from
(C) The coating start region of the coating space in a dispersed state in which the particles of the highly dispersed core particle powder transported in this transporting step and the core particle powder particles of the gas mixture have a dispersion degree β in the above range. A coating process in which the coating is initiated by contacting and / or colliding with a coating-forming material precursor in
Coating method.


(A) 体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する準微粒子高分散処理手段群により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、
(B) この分散工程で分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、この分散性能で気中に分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の気中分散状態を維持する気中分散維持手段、高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の気中分散状態を高める気中分散促進手段、芯粒子粉体の粒子と気体との混合物において低分散芯粒子粉体の粒子・気体混合物を分離し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子粉体の粒子・気体混合物選択手段の1種類又はそれ以上を介して被覆工程に搬送する搬送工程、
(C) この搬送工程で搬送した高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを上記した範囲の値とする分散状態で、被覆空間の被覆開始領域において被覆形成物質前駆体と接触及び/又は衝突させて被覆を開始する被覆工程、
を設けた被覆法。
V
(A) Quasi-fine particle high-dispersion processing means for quasi-fine particle core particle powder particles having a volume-based frequency distribution and an average particle diameter exceeding 10 μm or core particle powder particles mainly composed of quasi-fine particles Highly dispersed core particle powder particles / gas mixture core particle powder particle dispersity β of particles dispersed in a group is realized in the air by a group of quasi-fine particle high dispersion processing means that realizes a value in the above range. A dispersion step of dispersing and making a highly dispersed core particle powder particle / gas mixture,
(B) Highly dispersed core particle powder particles / gas obtained by dispersing the particles of the highly dispersed core particle powder / gas mixture in the dispersion step in the air with the dispersion performance. Air dispersion maintaining means for maintaining the dispersion state of the particles of the core particle powder of the mixture, air dispersion for enhancing the dispersion state of the particles of the core particle powder of the particles / gas mixture of the highly dispersed core particle powder Accelerating means, separating the particle / gas mixture of the low-dispersion core particle powder in the mixture of the core particle powder particles and gas, and the core particle powder particles are mainly present in the air in a single particle state. A conveying step of conveying to the coating step via one or more of the particle / gas mixture selection means of the highly dispersed core particle powder for selecting the particle / gas mixture of the dispersed core particle powder;
(C) The coating start region of the coating space in a dispersed state in which the particles of the highly dispersed core particle powder transported in this transporting step and the core particle powder particles of the gas mixture have a dispersion degree β in the above range. A coating process in which the coating is initiated by contacting and / or colliding with a coating-forming material precursor in
Coating method.

以上、I〜Vの全てにおいて、好適には、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する空間領域の内の、高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子の全ての粒子が通過する面を含む空間領域に、被覆空間の被覆開始領域を位置させるか、又は、
体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する空間領域の内の、回収手段の回収部に回収する全ての粒子が通過する面を含む空間領域に、被覆空間の被覆開始領域を位置させるか、
又は、前記I及びIIにおいて、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、準微粒子高分散処理手段群により分散させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の分散度βを上記した範囲の値とすることを実現する準微粒子高分散処理手段群により気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程の一部以上と前記被覆工程の一部以上とを、空間を一部以上共有して行うものである。
As described above, in all of I to V, preferably, a quasi fine particle core particle powder particle or a quasi fine particle core particle mainly composed of quasi fine particles having a volume-based frequency distribution with an average particle diameter exceeding 10 μm is used. High dispersion within the spatial region that realizes the dispersion β of the particles of the highly dispersed core particle powder / gas mixture of the highly dispersed core particle powder dispersed by the high dispersion treatment means within the above range. The coating start region of the coating space is located in the space region including the surface through which all of the particles of the core particle powder in the particle / gas mixture of the dispersed core particle powder pass, or
Highly dispersed core particles obtained by dispersing particles of quasi-fine particle core particles having an average particle diameter exceeding 10 μm in a volume-based frequency distribution or core particle powders mainly composed of quasi-fine particles by a group of quasi-fine particle high dispersion treatment means. All particles collected in the collecting part of the collecting means pass through the space region in which the dispersion degree β of the core particle powder particles of the powder particle / gas mixture is set to a value in the above range. Position the covering start region of the covering space in the space region including the surface,
Alternatively, in the above I and II, a quasi-fine particle high dispersion treatment means group is used for quasi-fine particle core particle powder particles having a volume-based frequency distribution with an average particle diameter exceeding 10 μm or core particle powder particles mainly composed of quasi-fine particles. Dispersed in the air by means of a quasi-fine particle high dispersion treatment means that achieves a dispersion degree β of the particles of the highly dispersed core particle powder / gas mixture of the highly dispersed core particle dispersed by the above-mentioned range. Thus, a part or more of the dispersion process to obtain a particle / gas mixture of the highly dispersed core particle powder and a part or more of the coating process are performed by sharing a part or more of the space.

上記、被覆されたダイヤモンド準微粒子は、被覆された準微粒子の被覆形成物質を介して、接触状態で集合塊を形成する場合がある。この被覆されたダイヤモンド準微粒子からなる粉体は、単一粒子状態の被覆された準微粒子と、この単一粒子状態の被覆された準微粒子が数個から数十個接触した集合塊、更に多数個の単一粒子状態の被覆された準微粒子が接触した集合塊から構成され、その形状及び大きさが不均一で不規則になる。この単一粒子状態の被覆された準微粒子からなる集合塊は、解砕及び/又は破砕してから成形又は焼結処理に供するのが好ましい。この被覆されたダイヤモンド準微粒子の集合塊の解砕及び/又は破砕には、種々の解砕手段、例えば、ボールミル、振動ボールミル、乳鉢、ジェットミル等が利用可能である。また、単一粒子状態の被覆された準微粒子と、この単一粒子状態の被覆された準微粒子の集合塊とを選択分離して、単一粒子状態の被覆された準微粒子のみを成形又は焼結処理に供してもよい。   The coated diamond quasi-fine particles may form aggregates in contact with each other through the coated quasi-fine particle coating forming material. The powder composed of the coated diamond quasi-fine particles includes a coated quasi-fine particle in a single particle state, an aggregate in which several to tens of coated quasi-fine particles in a single particle state are in contact, and many more. It consists of agglomerates in contact with a single quasi-fine particle in a single particle state, and its shape and size are uneven and irregular. The aggregate consisting of the coated quasi-fine particles in a single particle state is preferably crushed and / or crushed before being subjected to molding or sintering. Various crushing means such as a ball mill, a vibrating ball mill, a mortar, and a jet mill can be used for crushing and / or crushing the aggregate of the coated diamond quasi-fine particles. In addition, the single-particle coated semi-fine particles and the aggregate of the single-particle coated semi-fine particles are selectively separated, and only the single-particle coated semi-fine particles are molded or sintered. You may use for a ligation process.

本発明によれば、上記のようにして得られた被覆されたダイヤモンド準微粒子又は同粒子を含む混合物を、2000MPa以上の圧力および高温において焼結するか、又は
この被覆されたダイヤモンド準微粒子又は同粒子を含む混合物を2000MPa未満の圧力及び1850℃を越えない、ダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件において焼結するか、又は
この被覆されたダイヤモンド準微粒子と結合材との体積で1〜90:99〜10の割合の混合物であって、この結合材は2000MPa未満の圧力で1850℃を越えないダイヤモンド粒子が熱力学的に準安定な条件で密度85%以上に焼結されるものである、上記混合物を2000MPa未満の圧力及び1850℃を越えないダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼成条件において焼結される。
According to the present invention, the coated diamond quasi-fine particles or a mixture containing the particles obtained as described above is sintered at a pressure of 2000 MPa or more and at a high temperature, or the coated diamond quasi-fine particles or the same. Sintering the mixture containing the particles at a pressure of less than 2000 MPa and not exceeding 1850 ° C. under sintering conditions of pressure and temperature where the diamond is not thermodynamically stable but metastable, or the coated diamond quasi-fine particles 1 to 90:99 to 10 in a volume ratio of the binder and the binder, and the binder has a density of 85 at a pressure of less than 2000 MPa and diamond particles not exceeding 1850 ° C. under thermodynamically metastable conditions. % Of the above mixture, which is sintered to a pressure of less than 2000 MPa and a diamond not exceeding 1850 ° C. is not thermodynamically stable. There is sintered at firing conditions metastable pressure and temperature.

また他の機能を発現する物質を加える場合についてはこの物質が粉体状、板状又は粒子状のもので、より具体的には、周期律表第1a、2a、3a、4a、5a、6a、7a、1b、2b、3b、4b、5b、6b、7b、8族の金属、半導体、半金属、希土類金属、及びその酸化物、窒化物、炭化物、酸窒化物、酸炭化物、炭窒化物、酸炭窒化物、硼化物、珪化物の内の選択された一種類以上のもの、例えばAl、B、Si、Fe、Ni、Co、Ti、Nb、V、Zr、Hf、Ta、W、Re、Cr、Cu、Mo、TiAl、Ti3Al、TiAl3、TiNi、NiAl、Ni3Al、SiC、B4C、Cr32、TiC、ZrC、WC、W2C、HfC、TaC、Ta2C、NbC、VC、Mo2C、Si34、TiN、ZrN、Si22O、AlN、HfN、VxN(x=1〜3)、NbN、TaN、Ta2N、TiB、TiB2、ZrB2、VB、V32、VB2、NbB、NbB2、TaB、TaB2、MoB、MoB2、MoB4、Mo2B、WB、W2B、W25、LaB6、BP、B132、MoSi2、Al23、ZrO2(Y23、MgO又はCaO安定剤を添加した部分安定化ジルコニア:PSZ、又は正方晶ジルコニア多結晶体:TZP)、MgAl24(スピネル)、Al2SiO5(ムライト)の少なくとも一種類からなる粉体及び/又は粒子等から選択されうる。 In addition, when a substance that exhibits other functions is added, this substance is in the form of powder, plate, or particles, and more specifically, the periodic tables 1a, 2a, 3a, 4a, 5a, 6a. 7a, 1b, 2b, 3b, 4b, 5b, 6b, 7b, group 8 metals, semiconductors, semimetals, rare earth metals, and their oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides , One or more selected from among oxycarbonitrides, borides, and silicides, such as Al, B, Si, Fe, Ni, Co, Ti, Nb, V, Zr, Hf, Ta, W, Re, Cr, Cu, Mo, TiAl, Ti 3 Al, TiAl 3, TiNi, NiAl, Ni 3 Al, SiC, B 4 C, Cr 3 C 2, TiC, ZrC, WC, W 2 C, HfC, TaC, ta 2 C, NbC, VC, Mo 2 C, Si 3 N 4, TiN, ZrN, i 2 N 2 O, AlN, HfN, V x N (x = 1~3), NbN, TaN, Ta 2 N, TiB, TiB 2, ZrB 2, VB, V 3 B 2, VB 2, NbB, NbB 2, TaB, TaB 2, MoB , MoB 2, MoB 4, Mo 2 B, WB, W 2 B, W 2 B 5, LaB 6, BP, B 13 P 2, MoSi 2, Al 2 O 3, ZrO 2 (Partially stabilized zirconia with added Y 2 O 3 , MgO or CaO stabilizer: PSZ or tetragonal zirconia polycrystal: TZP), at least one of MgAl 2 O 4 (spinel), Al 2 SiO 5 (mullite) It can be selected from powders and / or particles of various types.

更にこの助剤が繊維状物質であっても良い。この被覆ダイヤモンド準微粒子に混合する、繊維状物質は短径が500μm以下で、短径に対する長径との比が2以上である形状の、金属又は化合物の少なくとも一種類からなる物質で、短径が500μm以下で、短径に対する長径との比が2以上である形状の棒状物質及び/又は融解紡糸して繊維形状にした連続繊維である長繊維及び/又は結晶自体が繊維形状をとる自形繊維である短繊維及び/又は一方向に結晶成長させて繊維形状にしたウィスカー(wisker)からなる。このウィスカー(ヒゲ結晶)には、その形成においては、相変化や体積全体に及ぼす化学反応という現象は起こらないものと定義されている真性のウィスカー及び/又は相変化とか体積全体に及ぶ化学変化によって生成する結晶の一つの結晶面のみを成長させることにより、長い針状晶となった単結晶を指す広義のウィスカー及び/又は断面積が8×10-5in2以下で、長さが平均直径の10倍以上の単結晶であるウィスカーがある。 Furthermore, this auxiliary agent may be a fibrous substance. The fibrous substance to be mixed with the coated diamond quasi-fine particles is a substance composed of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more. 500 μm or less, a rod-like substance having a ratio of the major axis to the minor axis of 2 or more, and / or a long fiber that is a continuous fiber that is melt-spun into a fiber shape and / or a self-shaped fiber in which the crystal itself takes a fiber shape Short fibers and / or whisker crystal-grown in one direction into a fiber shape. In this whisker (whisker crystal), the formation of an intrinsic whisker and / or phase change or chemical change over the whole volume is defined as a phenomenon that does not cause a phase change or a chemical reaction affecting the whole volume. By growing only one crystal face of the crystal to be produced, a broad whisker and / or a cross-sectional area of 8 × 10 −5 in 2 or less that indicates a long needle-like single crystal and an average diameter of There is a whisker which is a single crystal 10 times or more.

繊維状物質として、周期律表第1a、2a、3a、4a、5a、6a、7a、1b、2b、3b、4b、5b、6b、7b、8族の金属、半導体、半金属、希土類金属、非金属の内の一種類以上を含む化合物の少なくとも一種類を含む。短径が500μm以下で、短径に対する長径との比が2以上である形状の繊維状物質が用いられる。具体的には、周期律表第1a、2a、3a、4a、5a、6a、7a、1b、2b、3b、4b、8族の金属、半導体、半金属、希土類金属、及びその酸化物、窒化物、炭化物、酸窒化物、酸炭化物、炭窒化物、酸炭窒化物、硼化物、珪化物の少なくとも一種類からなる、短径が500μm以下で、短径に対する長径との比が2以上である形状の繊維状物質が使用される。好適には、例えばAl、B、Si、Fe、Ni、Co、Ti、Nb、V、Zr、Hf、Ta、W、Re、Cr、Cu、Mo、TiAl、Ti3Al、TiAl3、TiNi、NiAl、Ni3Al、SiC、Cr32、TiC、ZrC、B4C、WC、W2C、HfC、Ta
C、Ta2C、NbC、VC、Mo2C、Si34、TiN、ZrN、Si22O、AlN、HfN、VxN(x=1〜3)、NbN、TaN、Ta2N、TiB、TiB2、ZrB2、VB、V32、VB2、NbB、NbB2、TaB、TaB2、MoB、MoB2、MoB4、Mo2B、WB、W2B、W25、LaB6、BP、B132、MoSi2、Al23、ZrO2(Y23、MgO又はCaO安定剤を添加した部分安定化ジルコニア:PSZ、又は正方晶ジルコニア多結晶体:TZP)、MgAl24(スピネル)、Al2SiO5(ムライト)の少なくとも一種類からなる、短径が500μm以下で、短径に対する長径との比が2以上である形状の繊維状物質が選択されうる。
As the fibrous material, periodic table 1a, 2a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5b, 6b, 7b, group 8 metal, semiconductor, semimetal, rare earth metal, It includes at least one compound containing one or more of non-metals. A fibrous material having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is used. Specifically, Periodic Table 1a, 2a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, Group 8 metal, semiconductor, semimetal, rare earth metal, and oxides thereof, nitriding At least one kind of oxide, carbide, oxynitride, oxycarbide, carbonitride, oxycarbonitride, boride, and silicide, the minor axis is 500 μm or less, and the ratio of the major axis to the minor axis is 2 or more Some form of fibrous material is used. Preferably, for example, Al, B, Si, Fe, Ni, Co, Ti, Nb, V, Zr, Hf, Ta, W, Re, Cr, Cu, Mo, TiAl, Ti 3 Al, TiAl 3 , TiNi, NiAl, Ni 3 Al, SiC, Cr 3 C 2 , TiC, ZrC, B 4 C, WC, W 2 C, HfC, Ta
C, Ta 2 C, NbC, VC, Mo 2 C, Si 3 N 4 , TiN, ZrN, Si 2 N 2 O, AlN, HfN, V x N (x = 1 to 3), NbN, TaN, Ta 2 N, TiB, TiB 2, ZrB 2, VB, V 3 B 2, VB 2, NbB, NbB 2, TaB, TaB 2, MoB, MoB 2, MoB 4, Mo 2 B, WB, W 2 B, W 2 B 5 , LaB 6 , BP, B 13 P 2 , MoSi 2 , Al 2 O 3 , ZrO 2 (partially stabilized zirconia with added Y 2 O 3 , MgO or CaO stabilizer: PSZ or tetragonal zirconia polycrystal Body: TZP), MgAl 2 O 4 (spinel), Al 2 SiO 5 (mullite), a fiber having a shape with a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more Substances can be selected.

本発明で用いる被覆されたダイヤモンド準微粒子は、上記したように気相法によりその表面を被覆するので基本的に被覆形成物質に制限はない。被覆ダイヤモンド準微粒子焼結体を、用途に応じて任意に材料設計する上で必要に応じて、この被覆を施す前に、ダイヤモンド準微粒子表面に事前に、同種及び/又は異種の被覆形成物質を同種及び/又は異種の被覆方法により被覆を施してもよい。
例えば、ダイヤモンド準微粒子表面に、目的とする金属の炭化物からなる被覆を形成する場合、事前に炭素を被覆した被覆ダイヤモンド準微粒子を使用すればよい。事前に物質を被覆する方法は、特に制限するものではないが、例えば、特開平2−252660号公報に記載の溶融塩浸漬法、特開平1−207380号公報に記載の溶融塩不均化反応法を始め、電気メッキ法、無電解メッキ法、クラッド法、物理蒸着法(スパッタリング法、イオンプレーティング法等)や化学蒸着法等が好適である。目的とする金属化合物の金属の種類は、本発明の結合材及び/又は焼結助剤として適用可能の範囲であれば特に制限されない。
Since the coated diamond quasi-fine particles used in the present invention are coated on the surface by the vapor phase method as described above, there is basically no limitation on the coating forming material. In order to design the material of the coated diamond quasi-fine particle arbitrarily according to the application, before applying this coating, the surface of the diamond quasi-fine particle is coated with the same kind and / or different kinds of coating material in advance. The coating may be performed by the same and / or different coating methods.
For example, when a coating made of a carbide of a target metal is formed on the surface of diamond quasi-fine particles, coated diamond quasi-fine particles coated with carbon in advance may be used. The method of coating the substance in advance is not particularly limited, but for example, a molten salt immersion method described in JP-A-2-252660, a molten salt disproportionation reaction described in JP-A-1-207380 The electroplating method, electroless plating method, cladding method, physical vapor deposition method (sputtering method, ion plating method, etc.), chemical vapor deposition method and the like are suitable. The metal type of the target metal compound is not particularly limited as long as it can be applied as the binder and / or sintering aid of the present invention.

上記溶融塩を用いる浸漬法により形成される被覆膜は、緻密な高硬度高融点物質であり、ダイヤモンド準微粒子を他の物質から隔離する作用を有し、結合材の選択の幅が飛躍的に広がる。この溶融塩を用いる浸漬法により被覆膜を設けた、被覆されたダイヤモンド準微粒子は、従来の圧力が2000MPa未満で、ダイヤモンドが熱力学的に準安定な圧力・温度の焼結条件によるダイヤモンド含有高硬度高密度複合焼結体の製造法では緻密に焼結することが困難であるが、この溶融塩を用いる浸漬法により形成された高硬度高融点物質の被覆膜で被覆されたダイヤモンド準微粒子に、更に一層以上の、本発明の気相法による被覆法により十分緻密で高硬度に焼結可能な結合材として適用可能な物質を適量被覆すると焼結促進により好適である。
本発明によればダイヤモンド準微粒子表面に、気相法により、被覆形成物質を被覆させた被覆ダイヤモンド準微粒子を結合材と混合して、又は被覆ダイヤモンド準微粒子と結合材との混合物と、残部が前記粉体、板状物質、粒子等及び/又は前記短径が500μm以下で、短径に対する長径との比が2以上である形状の繊維状物質を混合した混合物を、粉体状で、若しくは成形後焼結することも可能である。
The coating film formed by the dipping method using the above molten salt is a dense, high-hardness, high-melting-point material, has an action of isolating the diamond quasi-fine particles from other materials, and the choice of binding materials is drastically different. To spread. The coated diamond quasi-fine particles provided with a coating film by the immersion method using molten salt contain diamonds under pressure and temperature sintering conditions where the conventional pressure is less than 2000 MPa and the diamond is thermodynamically metastable. Although it is difficult to sinter densely by the manufacturing method of a high-hardness high-density composite sintered body, a diamond quasi-coating coated with a coating film of a high-hardness, high-melting-point material formed by an immersion method using this molten salt. It is more preferable to promote sintering if fine particles are coated with an appropriate amount of a substance that can be applied as a binder that is sufficiently dense and can be sintered with high hardness by the coating method using the vapor phase method of the present invention.
According to the present invention, the surface of the diamond quasi-fine particles is mixed with the binder by the vapor phase method, or the mixture of the coated diamond quasi-fine particles and the binder is mixed with the binder. A mixture obtained by mixing the powder, plate-like substance, particles, etc. and / or the fibrous substance having a shape in which the minor axis is 500 μm or less and the ratio of the major axis to the minor axis is 2 or more. It is also possible to sinter after forming.

ダイヤモンドは、熱力学的には超高圧力下のみ安定で、高温下では圧力が不十分な場合にはグラファイトに相移転する。
そこでダイヤモンドを含有するダイヤモンド焼結体は、ダイヤモンドのグラファイトへの相移転を防止し、且つこのダイヤモンド焼結体を緻密にするために、ダイヤモンドが熱力学的に安定な2000MPaを越える超高圧力及び高温度下で製造される。
従って圧力が2000MPa以上で、ダイヤモンドが熱力学的に安定な圧力・温度の焼結条件を選択する場合、ダイヤモンドの相図の熱力学的平衡線により圧力に対して温度は限定される。しかし、圧力が2000MPa以上で、ダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件を選択する場合、ダイヤモンドの相図の熱力学的平衡線により圧力に対応して限定される領域から若干外れる温度でも差し支えない。
Diamond is thermodynamically stable only under ultra-high pressure, and phase-transfers to graphite when the pressure is insufficient at high temperatures.
Therefore, the diamond sintered body containing diamond has an ultrahigh pressure exceeding 2000 MPa, in which diamond is thermodynamically stable, in order to prevent the phase transfer of diamond to graphite and to make the diamond sintered body dense. Manufactured under high temperature.
Therefore, when the pressure and temperature sintering conditions are selected so that the pressure is 2000 MPa or more and the diamond is thermodynamically stable, the temperature is limited with respect to the pressure by the thermodynamic equilibrium line of the diamond phase diagram. However, when the pressure is 2000MPa or more and diamond is not thermodynamically stable but the metastable pressure / temperature sintering conditions are selected, the pressure is limited by the thermodynamic equilibrium line of the diamond phase diagram. The temperature may be slightly deviated from the region to be applied.

一方、圧力が2000MPa未満で、ダイヤモンドが熱力学的に安定ではないが準安定な
圧力・温度の焼結条件を選択する場合、ダイヤモンドが熱力学的に準安定な領域に、当該圧力に対応して限定される温度があるので注意を要する。
つまり、圧力が2000MPa未満で、ダイヤモンドが熱力学的に安定ではないが準安定な圧力・温度の焼結条件を選択する場合、ダイヤモンド粒子の品質に応じて焼結温度の上限が異なる。
例えばダイヤモンドでは、若槻らの圧力下での実験によるとダイヤモンドが熱力学的には安定な状態でなくとも、熱力学的に準安定である場合、相転移に要する時間が極めて長いために事実上安定に存在し、その事実上安定に存在する温度の上限として1100℃を示して報告している(H.T. Hall、 Science, 169(1970)868〜869)。
On the other hand, if the pressure is less than 2000 MPa and the sintering conditions are selected such that the diamond is not thermodynamically stable but metastable, the diamond is in a thermodynamically metastable region. Note that there is a limited temperature.
That is, when the pressure is less than 2000 MPa and the diamond is not thermodynamically stable but the metastable pressure / temperature sintering conditions are selected, the upper limit of the sintering temperature varies depending on the quality of the diamond particles.
For example, in the case of diamond, experiments under Wakatsuki's pressure show that even if diamond is not thermodynamically stable, if it is thermodynamically metastable, the time required for the phase transition is very long. 1100 ° C. is reported and reported as the upper limit of the temperature at which it exists stably and in effect (HT Hall, Science, 169 (1970) 868-869).

特に高純度のダイヤモンド、例えばPVD法或いはCVD法による気相を介して合成される超高純度のダイヤモンド、或いは長時間かけて超高圧合成した超高純度のダイヤモンドを用いれば、圧力を伝達可能なカプセルに脱気封入して超高圧HIP(熱間静水圧加圧)焼結又はHIP焼結を行うか或いは真空若しくは不活性ガス中でPC(ピストンシリンダー)による焼結又はHP(ホットプレス)焼結を行うことにより、熱力学的に安定な状態ではなくとも、前記Hall氏らの報告の1200℃よりも遥かに高い1850℃までダイヤモンドが現実上安定に存在する。しかし、1850℃を越えると短時間でグラファイト相に相転移する。
従って、圧力が2000MPa未満で、ダイヤモンドが熱力学的に安定でないが準安定な圧力・温度の焼結条件を選択する場合、焼結温度の上限は1850℃である。
The pressure can be transmitted especially when using high-purity diamond, for example, ultra-high-purity diamond synthesized through a gas phase by PVD or CVD, or ultra-high-purity diamond synthesized over a long period of time. Degassed and encapsulated in capsules to perform ultra-high pressure HIP (hot isostatic pressing) sintering or HIP sintering, or sintering with PC (piston cylinder) or HP (hot press) firing in vacuum or inert gas As a result of the crystallization, diamond is practically stable up to 1850 ° C., which is much higher than 1200 ° C. reported by Hall et al., Even if it is not thermodynamically stable. However, when the temperature exceeds 1850 ° C., the phase transitions to the graphite phase in a short time.
Accordingly, when the sintering conditions are selected such that the pressure is less than 2000 MPa and the diamond is not thermodynamically stable but metastable, the upper limit of the sintering temperature is 1850 ° C.

本発明のダイヤモンド準微粒子焼結体は、圧力が異なる2種類の焼結条件の製造法により製造される。圧力が2000MPa以上の超高圧力下で且つ高温下で適宜時間焼結する被覆ダイヤモンド準微粒子焼結体の製造装置は、キュービック型、テトラ型、ガードル型、ベルト型超高圧力装置等が適用可能で、特に制限はない。再現性良く試料を加圧するための加圧装置及び圧力は、前記キュービック型超高圧力装置を始めとする各種超高圧力装置を使用し、2000MPa以上とする。焼結温度は、前記ダイヤモンドの熱力学的安定領域から若干外れた条件でも差し支えない。しかし、より好適にはダイヤモンドの熱力学的安定領域で2000MPa以上の超高圧力・高温下で焼結せしめる。
圧力が2000MPa未満で、温度が1850℃を越えない、ダイヤモンドが熱力学的安定ではないが準安定な圧力・温度の焼結条件で適宜時間焼結する被覆ダイヤモンド準微粒子焼結体の製造装置は、PC(ピストンシリンダー)型超高圧力装置、又は超高圧HIP(熱間静水圧加圧)装置、或いはHIP装置、若しくはHP(ホットプレス)装置等が適用可能で、特に制限はない。
PC型超高圧力装置を使用する場合は、圧力は2000MPa未満を適用しても差し支えないが、このPC型超高圧力装置の耐久性を考慮すると1500MPaを越えないことが好ましい。圧力発生に関する従来公知の技術としては、超高圧HIP装置の場合1000MPaまでHIP圧力を作用可能であり、この超高圧HIP装置を除くHIP装置及びHP装置の場合は、200MPaまでそれぞれ作動可能である。
The diamond quasi-fine particle sintered body of the present invention is manufactured by a manufacturing method of two kinds of sintering conditions with different pressures. Cubic type, tetra type, girdle type, belt type ultra high pressure device, etc. can be applied to the manufacturing equipment for coated diamond quasi-fine particle sintered body under appropriate pressure under ultra high pressure of 2000MPa or higher and high temperature. There is no particular limitation. The pressurizing device and pressure for pressurizing the sample with good reproducibility are set to 2000 MPa or more using various ultrahigh pressure devices including the cubic ultrahigh pressure device. The sintering temperature may be slightly deviated from the diamond thermodynamic stability region. However, it is more preferable to sinter under ultrahigh pressure and high temperature of 2000 MPa or more in the thermodynamic stability region of diamond.
An apparatus for producing a coated diamond quasi-fine particle sintered body that is sintered at a pressure of less than 2000 MPa, a temperature not exceeding 1850 ° C., and diamond is not thermodynamically stable but is metastable under pressure and temperature under appropriate conditions. PC (piston cylinder) type ultra-high pressure device, ultra-high pressure HIP (hot isostatic pressing) device, HIP device, HP (hot press) device or the like can be applied, and there is no particular limitation.
When using a PC type ultra high pressure device, the pressure may be less than 2000 MPa, but considering the durability of the PC type ultra high pressure device, it is preferable not to exceed 1500 MPa. As a conventionally known technique relating to pressure generation, an HIP pressure can be applied up to 1000 MPa in the case of an ultra-high pressure HIP device, and in the case of an HIP device and an HP device other than the ultra-high pressure HIP device, each can operate up to 200 MPa.

以上の方法により焼結させた被覆ダイヤモンド準微粒子焼結体は、高度に微組織が制御された高性能な焼結体である。用途として最も一般的な機械部材用に、被覆ダイヤモンド準微粒子焼結体でそのビッカース硬度が好適には600以上の高硬度で、その密度が85%以上の緻密な被覆ダイヤモンド準微粒子焼結体が製造できる。好適には、この被覆ダイヤモンド準微粒子焼結体でそのビッカース硬度が800以上の高硬度で、及び/又は、その密度が90%以上の緻密な被覆ダイヤモンド準微粒子焼結体が製造できる。より好ましくは、例えば、耐摩耗性の高い機械部材への適用を考慮すると、相対的にダイヤモンドの含有量を増し、且つ緻密に焼結することにより、ビッカース硬度は1000以上の高硬度の被覆ダイヤモンド準微粒子焼結体が製造できる。より一層耐摩耗性を要求される工具用等には、更にダイヤモンドの含有量を増し、且つ緻密に焼結することにより、ビッカース
硬度2000以上の被覆ダイヤモンド準微粒子焼結体が製造できる。
The coated diamond quasi-fine particle sintered body sintered by the above method is a high-performance sintered body having a highly controlled microstructure. For the most general machine parts, the coated diamond quasi-fine particle sintered body is a dense coated quasi-fine particle sintered body having a Vickers hardness of preferably 600 or higher and a density of 85% or higher. Can be manufactured. Preferably, this coated diamond quasi-fine particle sintered body can be produced as a dense coated quasi-fine particle sintered body having a high Vickers hardness of 800 or higher and / or a density of 90% or higher. More preferably, for example, when considering application to a mechanical member having high wear resistance, a relatively hard diamond with a Vickers hardness of 1000 or more can be obtained by relatively increasing the diamond content and performing dense sintering. A quasi-fine particle sintered body can be produced. For tools and the like that require even more wear resistance, a coated diamond quasi-fine particle sintered body having a Vickers hardness of 2000 or more can be produced by further increasing the diamond content and performing dense sintering.

以下、本発明の被覆ダイヤモンド準微粒子、並びに被覆ダイヤモンド準微粒子焼結体及びその製造法を実施例により説明する。   Hereinafter, the coated diamond quasi-fine particles, the coated diamond quasi-fine particle sintered body, and the production method thereof according to the present invention will be described with reference to examples.

実施例1
平均粒子径DMが17μmで、体積基準頻度分布が(〔DM/2,3DM/2〕,≧90%)のダイヤモンド準微粒子をチタン金属の炭化物である炭化チタンを被覆した。
使用した装置は、図6およびその部分拡大図である図7に示したものであり、図5(a)に示した構成の具体例である。
本例の装置は、プラズマトーチ3−A、プラズマ室3−a、被覆形成物質前駆体生成室の冷却槽3−B、被覆形成物質前駆体生成室3−b、狭義の被覆室冷却槽3−C、狭義の被覆室3−c、被覆準微粒子冷却室の冷却槽3−D、被覆準微粒子冷却室3−d、被覆形成物質の原料の供給側に、供給装置3−E1、芯粒子粉体の供給側に、撹拌式分散機3−F1とエジェクター式分散機3−H1、細管分散機107及び被覆準微粒子回収部3−Gより成る。供給装置3−E1は被覆形成物質の原料粉体の供給槽112に、撹拌式分散機3−F1は芯粒子粉体の供給槽を備えた供給機111にそれぞれ結合される。本例における被覆室は、定義ではプラズマ室3−a、被覆形成物質前駆体生成室3−b、狭義の被覆室3−c、被覆粒子冷却室3−dから構成されており、ここではこれらを広義の被覆室と称する。当該広義の被覆室の内、主に被覆処理の行われる室3−cを狭義の被覆室と称する。
Example 1
The average particle diameter D M is 17 .mu.m, volume-based frequency distribution ([D M / 2,3D M / 2], ≧ 90%) the diamond quasi microparticles coated with titanium carbide is a carbide of titanium metal.
The apparatus used is shown in FIG. 6 and FIG. 7, which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG.
The apparatus of this example includes a plasma torch 3-A, a plasma chamber 3-a, a coating forming material precursor generating chamber cooling bath 3-B, a coating forming material precursor generating chamber 3-b, and a coating chamber cooling bath 3 in a narrow sense. -C, coating chamber 3-c in the narrow sense, cooling tank 3-D of the coating quasi-fine particle cooling chamber, coating quasi-fine particle cooling chamber 3-d, supply device 3-E1, core particles on the raw material supply side of the coating forming substance On the powder supply side, a stirring disperser 3-F1, an ejector disperser 3-H1, a thin tube disperser 107, and a coated semi-fine particle recovery unit 3-G are provided. The supply device 3-E1 is coupled to the raw material powder supply tank 112 of the coating forming material, and the agitation disperser 3-F1 is coupled to the supply machine 111 including the core particle powder supply tank. The coating chamber in this example is composed of a plasma chamber 3-a, a coating forming material precursor generation chamber 3-b, a narrowly defined coating chamber 3-c, and a coated particle cooling chamber 3-d. Is referred to as a broadly defined coating chamber. Of the covering chamber in the broad sense, the chamber 3-c in which the covering process is mainly performed is referred to as a narrowly covering chamber.

本例における準微粒子高分散処理手段群αは、供給槽を備えた供給機111、撹拌式分散機3−F1とエジェクター式分散機3−H1及び内径4mmのステンレス製細管分散機107で構成されており、図2(a)の準微粒子高分散処理手段群の構成である。準微粒子高分散処理手段群は、DM=17μmの(〔DM/5,5DM〕,≧90%)分布の粉体に対して出力時β≧80%を実現できるように構成されている。準微粒子高分散処理手段群の最終処理手段である細管107は被覆室3−Cに直結してあり、被覆空間の3−L2の被覆開始領域3−L1においてβ≧80%を実現できるように構成されている。 The quasi-fine particle high dispersion treatment means group α in this example is composed of a feeder 111 having a feed tank, an agitating type dispersing device 3-F1 and an ejector type dispersing device 3-H1, and a stainless steel thin tube dispersing device 107 having an inner diameter of 4 mm. This is the configuration of the quasi-fine particle high dispersion processing means group in FIG. The quasi-fine particle high dispersion processing means group is configured to realize β ≧ 80% at the time of output with respect to powder having a distribution of D M = 17 μm ([D M / 5, 5 D M ], ≧ 90%). Yes. The narrow tube 107 which is the final processing means of the quasi-fine particle high dispersion processing means group is directly connected to the coating chamber 3-C so that β ≧ 80% can be realized in the coating start area 3-L1 of the coating space 3-L2. It is configured.

プラズマトーチ3−Aの上部に設けられたガス噴出口101に供給源102からアルゴンガスを20リットル/分の割合で供給する。このアルゴンガスは印加された高周波によってプラズマ化され、プラズマトーチ3−A内プラズマ室3−aでプラズマ焔を形成する。
被覆形成物質の原料の供給槽を備えた供給機112から供給した被覆形成物質の原料である平均粒子径2μmの炭化チタン粉末は、5リットル/分のキャリアガス103に担持されて、プラズマトーチ3−Aの下部に設けられた被覆形成物質の原料の投入口104から、プラズマ焔中に0.3g/分の割合で導入され、プラズマ焔の熱により蒸発して気相を経て、被覆形成物質前駆体生成室3−bで被覆形成物質前駆体となる。
芯粒子粉体の供給槽を備えた供給機111から3.0g/分で供給される平均粒子径17μmのダイヤモンドの芯粒子を、撹拌式分散機3−F1により分散させ、5リットル/分の割合で供給されるキャリアガス105により担持され、10リットル/分の流量の分散ガス106によるエジェクター式分散機3−H1及び細管分散機107により分散度β=89%の分散状態に分散させ、被覆室に導入する。
高分散状態のダイヤモンド準微粒子は、被覆空間の3−L2の被覆開始領域3−L1において被覆形成物質前駆体とβ=89%の分散状態で接触及び/又は衝突し始める。
このようにして生成した、被覆形成物質で表面に被覆が施された被覆準微粒子は、気体と共に被覆準微粒子冷却室3−dを降下し、被覆準微粒子回収部3−Gに至る。被覆準微粒子からなる製品は、フィルター110により気体と分離し、集められ取り出される。
Argon gas is supplied at a rate of 20 liters / minute from a supply source 102 to a gas outlet 101 provided on the top of the plasma torch 3-A. This argon gas is turned into plasma by the applied high frequency and forms a plasma soot in the plasma chamber 3-a in the plasma torch 3-A.
A titanium carbide powder having an average particle diameter of 2 μm, which is a raw material of the coating forming material supplied from a feeder 112 equipped with a raw material supply tank for the coating forming material, is supported on a carrier gas 103 of 5 liters / minute, and the plasma torch 3 -It is introduced into the plasma soot at a rate of 0.3 g / min from the raw material inlet 104 of the coating-forming material provided in the lower part of A, evaporates by the heat of the plasma soot, passes through the gas phase, It becomes a coating forming material precursor in the precursor generation chamber 3-b.
The diamond core particles having an average particle diameter of 17 μm supplied at 3.0 g / min from a feeder 111 equipped with a core particle powder supply tank are dispersed by a stirring disperser 3-F1 and 5 liters / min. The carrier gas 105 supplied at a rate is dispersed in a dispersion state with a dispersity β = 89% by an ejector-type disperser 3-H1 and a thin tube disperser 107 with a dispersion gas 106 at a flow rate of 10 liters / minute, and coated. Introduce into the room.
Highly dispersed diamond quasi-fine particles begin to contact and / or collide with the coating-forming material precursor in a dispersed state of β = 89% in the 3-L2 coating initiation region 3-L1 of the coating space.
The coated quasi-fine particles whose surface is coated with the coating forming material thus generated descends with the gas in the coated quasi-fine particle cooling chamber 3-d and reaches the coated quasi-fine particle collecting unit 3-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 110 and collected and taken out.

得られた被覆準微粒子である、炭化チタンで表面に被覆を施したダイヤモンド準微粒子
を走査型電子顕微鏡で観察したところ、図8に示す通り、個々の粒子は、いずれも、一様に0.005μm程度の炭化チタンが超微粒子状に被覆したものであった。炭化チタンの被覆量は、体積で5%であった。
このようにして得られた炭化チタン被覆ダイヤモンド準微粒子を結合する結合材として、この炭化チタン被覆ダイヤモンド準微粒子と略同様の条件で被覆を行って、粒径0.5〜2μm(平均粒子径1μm)の微粒子からなるダイヤモンド微粒子粉体に炭化チタンを体積で15%被覆した被覆ダイヤモンド粉体を用いた。上記の被覆ダイヤモンド準微粒子を体積で60%、また上記の粒径0.5〜2μm(平均粒子径1μm)の微粒子からなる被覆ダイヤモンド微粒子を体積で40%をアセトンを用いて湿式で混合し、これを外径6mm、高さ2mmに型押し成形し、その外側に六方晶窒化硼素(h−BN)成形体を配置した圧力媒体に埋め込み、200℃、10-3torrで一昼夜真空乾燥して、低沸点不純物を除去した。これをキュービック型超高圧装置にセットし、先ず、室温で5.5GPaまで昇圧し、その後1450℃に昇温し、30分保持後に降温し、圧力を下げた。
The obtained coated quasi-fine particles, the diamond quasi-fine particles whose surface was coated with titanium carbide, were observed with a scanning electron microscope, and as shown in FIG. Titanium carbide of about 005 μm was coated in ultrafine particles. The coating amount of titanium carbide was 5% by volume.
As a binding material for binding the titanium carbide-coated diamond quasi-fine particles obtained in this manner, coating was performed under substantially the same conditions as the titanium carbide-coated diamond quasi-fine particles, and the particle size was 0.5 to 2 μm (average particle size 1 μm). A coated diamond powder obtained by coating 15% by volume of titanium carbide on a diamond fine particle powder comprising fine particles of 60% by volume of the coated diamond quasi-fine particles, and 40% by volume of the coated diamond fine particles made of fine particles having a particle diameter of 0.5 to 2 μm (average particle diameter of 1 μm) are mixed with acetone. This was stamped and molded to an outer diameter of 6 mm and a height of 2 mm, embedded in a pressure medium in which a hexagonal boron nitride (h-BN) molded body was placed outside, and vacuum-dried at 200 ° C. and 10 −3 torr all day and night. Low boiling impurities were removed. This was set in a cubic type ultrahigh pressure apparatus. First, the pressure was raised to 5.5 GPa at room temperature, then the temperature was raised to 1450 ° C., the temperature was lowered after holding for 30 minutes, and the pressure was lowered.

得られた焼結体をX線回折で調べたところ、ダイヤモンドと炭化チタンが認められたのみであった。実施例1の焼結体の研摩面に、観察のための通常の金蒸着を施してなる当該研摩面の電子顕微鏡写真(×5000)を図9に示す。図中、暗部はダイヤモンドであり、明部は炭化チタンである。図9から明らかなように、焼結体中には気孔が全く存在せず、相対密度99%以上に焼結出来た。しかも、未焼結な部分が全然なかった。被覆形成物質が薄くなって、ダイヤモンド準微粒子及び/又は微粒子からなるダイヤモンド微粒子同志が接触しているところは、このダイヤモンド準微粒子及び/又はダイヤモンド微粒子同士が被覆を押し破り、焼結して直接結合している。これ以外では、炭化チタンがダイヤモンド準微粒子を均一に取り巻いて分布し、被覆ダイヤモンド準微粒子が緻密で、均一な、極めて高度に制御された分布を有する特徴的な焼結体であることが分かる。しかも、ダイヤモンド粒子は、原料のダイヤモンド粉体と比べ、粒成長がないという特徴もある。このような、極めて高度に制御された微組織を有する焼結体は従来は製造できなかった。以上のように、ダイヤモンドは、本来極めて難焼結性であるにもかかわらず、本発明の被覆ダイヤモンド準微粒子は、工業レベルの超高圧力・高温下において、恰も比較的焼結し易い粒子のごとく振る舞い、緻密で強固、且つ極めて高度に制御された微組織を形成した。   When the obtained sintered body was examined by X-ray diffraction, only diamond and titanium carbide were found. FIG. 9 shows an electron micrograph (× 5000) of the polished surface obtained by subjecting the polished surface of the sintered body of Example 1 to normal gold deposition for observation. In the figure, the dark part is diamond and the bright part is titanium carbide. As is apparent from FIG. 9, there were no pores in the sintered body, and sintering was possible to a relative density of 99% or more. Moreover, there were no unsintered parts. When the coating material is thin and the diamond quasi-fine particles and / or diamond fine particles are in contact with each other, the diamond quasi-fine particles and / or the diamond fine particles break the coating and sinter and bond directly. is doing. Other than this, it can be seen that titanium carbide is a characteristic sintered body having a uniform and highly controlled distribution in which the diamond quasi-fine particles are uniformly distributed and the coated diamond quasi-fine particles are dense. In addition, the diamond particles have a feature that there is no grain growth compared to the raw diamond powder. Such a sintered body having a very highly controlled microstructure could not be produced conventionally. As described above, despite the fact that diamond is inherently very difficult to sinter, the coated diamond quasi-fine particles of the present invention are particles that are relatively easy to sinter under extremely high pressure and high temperature of industrial level. It behaved like this, forming a dense, strong, and extremely highly controlled microstructure.

実施例2
平均粒子径DMが17μmで、体積基準頻度分布が(〔DM/2,3DM/2〕,≧90%)のダイヤモンド準微粒子をチタン金属で被覆した。
使用した装置は、図10およびその部分拡大図である図11に示したものであり、図5(a)に示した構成の具体例である。本例の被覆形成物質前駆体を生成する装置の構成は実施例1と同一である。準微粒子高分散処理手段群αは、供給槽を備えた供給機214、撹拌式分散機5−F1、細管分散機211及び衝突板を利用した分散機5−H2で構成されており、図2(a)の準微粒子高分散処理手段群の構成である。細管分散機211は、内径4mmのステンレス製である。準微粒子高分散処理手段群αの最終分散手段である衝突板を利用した分散機5−H2は、SiC製の衝突板213がステンレス製のホルダー212により設置された構成である。この衝突板を利用した分散機5−H2は狭義の被覆室5−cの中に設けられており、準微粒子高分散処理手段群αと狭義の被覆室5−cは共有の空間を有している。また、被覆空間5−L1及び被覆空間の被覆開始領域5−L2は、狭義の被覆室5−c内に設けてある。本装置の準微粒子高分散処理手段群は、平均粒子径DMが17μmで、体積基準頻度分布が(〔DM/5,5DM/2〕,≧90%)の芯粒子粉体の粒子を、最終の分散処理である衝突板を利用した分散機5−H2の衝突板215を衝突直後、分散度β≧80%に分散できる。したがって、分散度β≧80%の状態で被覆が開始される。
Example 2
The average particle diameter D M is 17 .mu.m, volume-based frequency distribution ([D M / 2,3D M / 2], ≧ 90%) the diamond quasi microparticles coated with titanium metal.
The apparatus used is shown in FIG. 10 and FIG. 11 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. The configuration of the apparatus for producing the coating forming material precursor of this example is the same as that of Example 1. The quasi-fine particle high dispersion processing means group α is composed of a feeder 214 equipped with a feeding tank, a stirring type dispersing machine 5-F1, a thin tube dispersing machine 211, and a dispersing machine 5-H2 using a collision plate. This is a configuration of the quasi-fine particle high dispersion processing means group (a). The thin tube disperser 211 is made of stainless steel having an inner diameter of 4 mm. The disperser 5-H2 using the collision plate which is the final dispersion means of the quasi-fine particle high dispersion treatment means group α has a configuration in which the SiC collision plate 213 is installed by the stainless steel holder 212. The disperser 5-H2 using the collision plate is provided in the narrowly defined coating chamber 5-c, and the quasi-fine particle high dispersion processing means group α and the narrowly-defined coating chamber 5-c have a common space. ing. Further, the coating space 5-L1 and the coating start area 5-L2 of the coating space are provided in a narrowly defined coating chamber 5-c. The quasi-fine particle high-dispersion treatment means group of this apparatus is a particle of core particle powder having an average particle diameter D M of 17 μm and a volume-based frequency distribution ([D M / 5, 5 D M / 2], ≧ 90%). Can be dispersed to a degree of dispersion β ≧ 80% immediately after the collision of the collision plate 215 of the disperser 5-H2 using the collision plate which is the final dispersion process. Therefore, coating is started in a state where the degree of dispersion β ≧ 80%.

プラズマトーチ5−Aの上部に設けられたガス噴出口201に供給源202から20リ
ットル/分のアルゴンガスを供給する。このアルゴンガスは印加された高周波によってプラズマ化され、プラズマトーチ5−A内プラズマ室5−aでプラズマ焔を形成する。
被覆形成物質の原料の供給槽を備えた供給機215から0.5g/分で供給した被覆形成物質の原料である平均粒子径25μmのチタン金属粉末は、5リットル/分のキャリアガス203に担持されて、プラズマトーチ5−Aの下部に設けられた被覆形成物質の原料の投入口204から、プラズマ焔中に導入され、プラズマ焔の熱により蒸発して気相を経て、被覆形成物質前駆体生成室5−bで被覆形成物質前駆体となる。
芯粒子粉体の供給槽を備えた供給機214から2.5g/分で供給されるダイヤモンドの芯粒子は、撹拌式分散機5−F1により分散させ、20リットル/分の割合で供給されるキャリアガス205により担持され、細管分散機211を経て、被覆室中に設けた衝突板を利用した分散機5−H2によって、分散度β=89%に気中に分散させる。
高分散状態のダイヤモンド準微粒子は、被覆空間の5−L2の被覆開始領域5−L1において被覆形成物質前駆体とβ=89%の分散状態で接触及び/又は衝突し始める。
このようにして生成した、被覆形成物質で表面が被覆された被覆準微粒子は、気体と共に被覆準微粒子冷却室5−dを降下し、被覆準微粒子回収部5−Gに至る。この被覆準微粒子からなる製品は、フィルター210により気体と分離し、集められ取り出される。
Argon gas of 20 liters / min is supplied from a supply source 202 to a gas outlet 201 provided on the upper part of the plasma torch 5-A. This argon gas is turned into plasma by the applied high frequency and forms a plasma soot in the plasma chamber 5-a in the plasma torch 5-A.
Titanium metal powder with an average particle diameter of 25 μm, which is a raw material of the coating forming material supplied at 0.5 g / min from a feeder 215 equipped with a raw material supply tank for the coating forming material, is supported on a carrier gas 203 of 5 liter / min. Then, the coating forming material precursor 204 is introduced into the plasma soot from the coating material feed port 204 provided at the lower part of the plasma torch 5-A, evaporates by the heat of the plasma soot, passes through the gas phase, It becomes a coating-forming substance precursor in the generation chamber 5-b.
The diamond core particles supplied at 2.5 g / min from a supply machine 214 equipped with a core particle powder supply tank are dispersed by a stirring disperser 5-F1 and supplied at a rate of 20 liters / minute. It is carried by the carrier gas 205, passes through the thin tube disperser 211, and is dispersed in the air at a dispersity β = 89% by a disperser 5-H2 using a collision plate provided in the coating chamber.
The highly dispersed diamond quasi-fine particles begin to contact and / or collide with the coating-forming material precursor in a dispersion state of β = 89% in the coating start region 5-L1 of 5-L2 in the coating space.
The coated quasi-fine particles whose surface is coated with the coating-forming substance thus generated descend in the coated quasi-fine particle cooling chamber 5-d together with the gas, and reach the coated quasi-fine particle collecting unit 5-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 210 and collected and taken out.

得られた被覆準微粒子である、チタン金属で表面を被覆したダイヤモンド準微粒子を、走査型電子顕微鏡で観察したところ、個々の粒子は、いずれも、一様に0.005μm程度のチタン金属が超微粒子状に被覆したものであった。チタン金属の被覆量は、体積で10%であった。
このようにして得られたチタン金属被覆ダイヤモンド準微粒子を結合する結合材として、このチタン金属被覆ダイヤモンド準微粒子と略同様の条件でチタン金属による被覆を行って、粒径0.5〜2μm(平均粒子径1μm)の微粒子からなるダイヤモンド微粒子粉体にチタン体積で15%被覆した被覆ダイヤモンド粉体を用いた。上記の被覆ダイヤモンド準微粒子を体積で60%、また上記の粒径0.5〜2μm(平均粒子径1μm)の微粒子からなる被覆ダイヤモンド微粒子を体積で40%をアセトンを用いて湿式で混合し、これを外径6mm、高さ2mmに型押し成形し、その外側に六方晶窒化硼素(h−BN)成形体を配置した圧力媒体に埋め込み、200℃、10-3torrで一昼夜真空乾燥して、低沸点不純物を除去した。これをキュービック型超高圧装置にセットし、先ず、室温で5.5GPaまで昇圧し、その後1450℃に昇温し、30分保持後に降温し、圧力を下げた。
得られた焼結体をX線回折で調べたところ、ダイヤモンドと炭化チタンが認められダイヤモンド87%、炭化チタン13%であった。
この焼結体は実施例1の焼結体と同様、緻密で強固、且つ極めて高度に制御された微組織を形成した。
The obtained coated quasi-fine particles, which were diamond quasi-fine particles whose surface was coated with titanium metal, were observed with a scanning electron microscope. As a result, all the particles were uniformly made of titanium metal having a thickness of about 0.005 μm. It was coated in the form of fine particles. The coating amount of titanium metal was 10% by volume.
As a binder for binding the titanium metal-coated diamond quasi-fine particles obtained in this way, coating with titanium metal was performed under substantially the same conditions as the titanium metal-coated diamond quasi-fine particles, and the particle size was 0.5 to 2 μm (average A coated diamond powder obtained by coating a diamond fine particle powder made of fine particles having a particle diameter of 1 μm with a titanium volume of 15% was used. 60% by volume of the coated diamond quasi-fine particles, and 40% by volume of the coated diamond fine particles composed of fine particles having a particle diameter of 0.5 to 2 μm (average particle diameter of 1 μm) are mixed with acetone. This was stamped and molded to an outer diameter of 6 mm and a height of 2 mm, embedded in a pressure medium in which a hexagonal boron nitride (h-BN) molded body was placed outside, and vacuum dried at 200 ° C. and 10 −3 torr all day and night. Low boiling impurities were removed. This was set in a cubic type ultrahigh pressure apparatus. First, the pressure was raised to 5.5 GPa at room temperature, then the temperature was raised to 1450 ° C., the temperature was lowered after holding for 30 minutes, and the pressure was lowered.
When the obtained sintered body was examined by X-ray diffraction, diamond and titanium carbide were found to be 87% diamond and 13% titanium carbide.
Similar to the sintered body of Example 1, this sintered body formed a dense, strong, and extremely highly controlled microstructure.

実施例3
平均粒子径DMが17μmで、体積基準頻度分布が(〔DM/2,3DM/2〕,≧90%)のダイヤモンド準微粒子をジルコニウム金属で被覆した。
使用した装置は、図12およびその部分拡大図である図13に示したものであり、図5(b)に示した構成の具体例である。本例の被覆形成物質前駆体を生成する装置の構成は実施例1と同一である。準微粒子高分散処理手段群αは、供給槽を備えた供給機313、分散手段である撹拌式分散機6−F1、高分散芯粒子粉体の粒子・気体混合物選択手段であるサイクロン6−Iで構成されており、図2(b)のブロック図の構成の一例である。サイクロン6−Iの高分散芯粒子粉体の粒子・気体混合物の放出部は、搬送に不可避のパイプ307で狭義の被覆室6−cへ接続してあり、低分散芯粒子粉体部分の放出部は、ホッパー6−J、ロータリーバルブ6−Kを介して搬送管310で撹拌式分散機6−F1へ接続してある。本装置の準微粒子高分散処理手段群によれば、体積基準の粒度分布として、平均粒子径DMが17μmで、体積基準頻度分布が(〔DM/5,5DM〕,≧90%)の芯粒子粉体の粒子を、最終の処理手段であるサイクロン6−Iの高分散芯粒子粉体流の放出部
で、分散度β≧85%に分散できる。狭義の被覆室6−cに図のごとく被覆空間6−L2及び被覆空間の被覆開始領域6−L1が設けてある。6−Cと6−Dを結合せしめるフランジ部の制約による搬送に不可避のパイプ307による分散度βの低下は少なくとどめられる。したがって、被覆開始領域において、分散度β≧80%の状態で被覆が開始される。
Example 3
The average particle diameter D M is 17 .mu.m, volume-based frequency distribution ([D M / 2,3D M / 2], ≧ 90%) the diamond quasi microparticles coated with zirconium metal.
The apparatus used is shown in FIG. 12 and FIG. 13 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. The configuration of the apparatus for producing the coating forming material precursor of this example is the same as that of Example 1. The quasi-fine particle high dispersion treatment means group α includes a supply device 313 provided with a supply tank, an agitating disperser 6-F1 as a dispersion means, and a cyclone 6-I as a particle / gas mixture selection means of a highly dispersed core particle powder. This is an example of the configuration of the block diagram of FIG. The discharge part of the particle / gas mixture of the highly dispersed core particle powder of the cyclone 6-I is connected to the coating chamber 6-c in a narrow sense by a pipe 307 unavoidable for conveyance, and the discharge part of the low dispersion core particle powder part is discharged. The section is connected to the agitating disperser 6-F1 by a transport pipe 310 via a hopper 6-J and a rotary valve 6-K. According to the quasi-fine particle high dispersion processing means group of this apparatus, the volume-based particle size distribution has an average particle diameter D M of 17 μm and a volume-based frequency distribution ([D M / 5, 5 D M ], ≧ 90%). The core particle powder particles can be dispersed at a dispersion degree β ≧ 85% at the discharge part of the highly dispersed core particle powder flow of Cyclone 6-I as the final processing means. As shown in the figure, a coating space 6-L2 and a coating start region 6-L1 of the coating space are provided in a narrowly-defined coating chamber 6-c. The decrease in the degree of dispersion β due to the pipe 307, which is inevitable for conveyance due to the restriction of the flange portion that joins 6-C and 6-D, can be minimized. Therefore, in the coating start region, coating is started in a state where the degree of dispersion β ≧ 80%.

プラズマトーチ6−Aの上部に設けられたガス噴出口301に供給源302からアルゴンガスを20リットル/分で供給する。このアルゴンガスは印加された高周波によってプラズマ化され、プラズマトーチ6−A内プラズマ室6−aでプラズマ焔を形成する。
被覆形成物質の原料の供給槽を備えた供給機314から0.5g/分で供給した被覆形成物質の原料であるジルコニウム粉末は、5リットル/分のキャリアガス303に担持されて、プラズマトーチ6−Aの下部に設けられた被覆形成物質の原料の投入口304から、プラズマ焔中に導入され、プラズマ焔の熱により蒸発して気相を経て被覆形成物質前駆体生成室6−bで被覆形成物質前駆体となる。
芯粒子粉体の供給槽を備えた供給機313から2.0g/分で供給されるダイヤモンドの芯粒子は、撹拌式分散機6−F1により分散させ、15リットル/分のキャリアガス305により担持されパイプ306を介してサイクロン6−Iに搬送される。サイクロン6−Iは、微粉側の最大粒子径が20μmとなるように調節されており、単一粒子を主に含むβ=92%の分散状態の高分散芯粒子粉体の粒子・気体混合物を、搬送に不可避のパイプ307を介し放出口308から狭義の被覆室6−cに放出させる。一方、サイクロン6−Iにより選択分離した低分散芯粒子粉体部分は、ホッパー6−J、ロータリーバルブ6−Kを経て、10リットル/分のキャリアガス309によりパイプ310中を搬送され、撹拌式分散機6−F1へフィードバックする。
Argon gas is supplied at a rate of 20 liters / minute from a supply source 302 to a gas outlet 301 provided at the top of the plasma torch 6-A. The argon gas is turned into plasma by the applied high frequency and forms a plasma soot in the plasma chamber 6-a in the plasma torch 6-A.
Zirconium powder, which is a raw material of the coating forming material supplied at 0.5 g / min from a feeder 314 equipped with a raw material supply tank for the coating forming material, is supported on a carrier gas 303 of 5 liters / min. -It is introduced into the plasma soot from the coating material feed inlet 304 provided in the lower part of A, evaporated by the heat of the plasma soot and coated in the coating-former precursor generation chamber 6-b via the gas phase Forming material precursor.
Diamond core particles supplied at 2.0 g / min from a supply machine 313 equipped with a core particle powder supply tank are dispersed by a stirring disperser 6-F1 and supported by a carrier gas 305 at 15 liters / min. Then, it is conveyed to the cyclone 6-I through the pipe 306. Cyclone 6-I is adjusted so that the maximum particle size on the fine powder side is 20 μm, and a particle / gas mixture of highly dispersed core particle powder in a dispersed state of β = 92% mainly containing single particles. Then, it is discharged from the discharge port 308 through the pipe 307 unavoidable for conveyance into the narrowly-determined coating chamber 6-c. On the other hand, the low-dispersion core particle powder portion selectively separated by the cyclone 6-I is conveyed through the pipe 310 by the carrier gas 309 of 10 liters / minute through the hopper 6-J and the rotary valve 6-K. Feedback to the disperser 6-F1.

高分散状態のダイヤモンド準微粒子は、被覆空間6−L2の被覆開始領域6−L1において被覆形成物質前駆体とβ=89%の分散状態で接触及び/又は衝突し始める。
このようにして生成した、被覆形成物質で表面が被覆された被覆粒子は、気体と共に被覆準微粒子冷却室6−dを降下し、被覆準微粒子回収部6−Gに至る。この被覆準微粒子からなる製品は、フィルター312により気体と分離し、集められ取り出される。
得られた被覆準微粒子である、ジルコニウムで表面を被覆したダイヤモンド準微粒子を、走査型電子顕微鏡で観察したところ、個々の粒子は、いずれも、一様に0.005μm程度のジルコニウムが超微粒子状に被覆したものであった。ジルコニウムの被覆量は体積で10%であった。
Highly dispersed diamond quasi-fine particles begin to contact and / or collide with the coating-forming material precursor in a dispersion state of β = 89% in the coating start region 6-L1 of the coating space 6-L2.
The coated particles whose surface is coated with the coating-forming substance thus generated descends in the coated quasi-fine particle cooling chamber 6-d together with the gas and reaches the coated quasi-fine particle recovery unit 6-G. The product comprising the coated quasi-fine particles is separated from the gas by the filter 312 and collected and taken out.
The obtained coated quasi-fine particles, which are diamond quasi-fine particles whose surface is coated with zirconium, were observed with a scanning electron microscope. As a result, each of the particles was uniformly composed of approximately 0.005 μm of zirconium in the form of ultrafine particles. Was coated. The coating amount of zirconium was 10% by volume.

このようにして得られたジルコニウム被覆ダイヤモンド準微粒子を結合させる結合材として、このジルコニウム被覆ダイヤモンド準微粒子と略同様の条件で炭化チタンによる被覆を行って、粒径0.5〜2μm(平均粒子径1μm)の微粒子からなるダイヤモンド微粒子粉体に炭化チタンを体積で15%被覆した被覆ダイヤモンド粉体を用いた。上記の被覆ダイヤモンド準微粒子を体積で30%、また上記の粒径0.5〜2μm(平均粒子径1μm)の微粒子からなる被覆ダイヤモンド微粒子を体積で70%をアセトンを用いて湿式で混合し、これを外径6mm、高さ2mmに型押し成形し、その外側に六方晶窒化硼素(h−BN)成形体を配置した圧力媒体に埋め込み、200℃、10-3torrで一昼夜真空乾燥して、低沸点不純物を除去した。これをキュービック型超高圧装置にセットし、先ず、室温で5.5GPaまで昇圧し、その後1450℃に昇温し、30分保持後に降温し、圧力を下げた。
得られた焼結体をX線回折で調べたところ、ダイヤモンド、炭化ジルコニウム、および炭化チタンが認められたのみであった。
焼結体は相対密度99%以上に緻密に焼結出来た。
この焼結体は、X線定量分析によれば、ダイヤモンド、炭化ジルコニウム、炭化チタンの体積割合は、それぞれ約86%、3%及び11%であった。
焼結体は、緻密で強固、且つ極めて高度に制御された微組織を形成した。
As a binder for binding the thus obtained zirconium-coated diamond quasi-fine particles, coating with titanium carbide was performed under substantially the same conditions as those of the zirconium-coated diamond quasi-fine particles, and the particle size was 0.5-2 μm (average particle size) A coated diamond powder obtained by coating 15% by volume of titanium carbide on a diamond fine particle powder made of fine particles of 1 μm) was used. 30% by volume of the above-mentioned coated diamond quasi-fine particles, and 70% by volume of the coated diamond fine particles made of fine particles having the above-mentioned particle diameters of 0.5 to 2 μm (average particle diameter of 1 μm) are mixed by wet using acetone. This was stamped and molded to an outer diameter of 6 mm and a height of 2 mm, embedded in a pressure medium in which a hexagonal boron nitride (h-BN) molded body was placed outside, and vacuum dried at 200 ° C. and 10 −3 torr all day and night. Low boiling impurities were removed. This was set in a cubic type ultrahigh pressure apparatus. First, the pressure was raised to 5.5 GPa at room temperature, then the temperature was raised to 1450 ° C., the temperature was lowered after holding for 30 minutes, and the pressure was lowered.
When the obtained sintered body was examined by X-ray diffraction, only diamond, zirconium carbide, and titanium carbide were found.
The sintered body could be densely sintered to a relative density of 99% or more.
According to the X-ray quantitative analysis, the volume ratio of diamond, zirconium carbide, and titanium carbide was about 86%, 3%, and 11%, respectively.
The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

参考例1
実施例1の装置により、実施例1と略同様の条件で炭化チタンを体積で5%被覆して、更にアルミナを体積で50%を被覆した被覆ダイヤモンド準微粒子を直径8mm、厚さ5mmに型押し成形し、この成形体を、h−BN粉体を充填したパイレックス(R)ガラス製のカ
プセルに配置し、10-6torr、400℃、12時間脱気後封入した。
このカプセルを、アルゴンガスを圧力媒体とするHIP装置に配置し、焼結温度1200℃、焼結圧力150MPaで3時間保持して焼結した。しかる後、炉冷し、圧力を開放して、焼結体を取り出した。
粉末X線回折により焼結体の結晶相を調べたところ、ダイヤモンド、炭化チタン及びα−アルミナ以外の回折ピークは認められなかった。焼結体は相対密度99%以上に緻密に焼結できた。
焼結体は、緻密で強固、且つ極めて高度に制御された微組織を形成した。
Reference example 1
Using the apparatus of Example 1, coated diamond quasi-fine particles coated with 5% by volume of titanium carbide under the same conditions as in Example 1 and further coated with 50% by volume of alumina were molded to a diameter of 8 mm and a thickness of 5 mm. The molded body was pressed, placed in a Pyrex (R) glass capsule filled with h-BN powder, degassed at 10 −6 torr and 400 ° C. for 12 hours, and sealed.
The capsule was placed in a HIP apparatus using argon gas as a pressure medium, and sintered by holding at a sintering temperature of 1200 ° C. and a sintering pressure of 150 MPa for 3 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.
When the crystal phase of the sintered body was examined by powder X-ray diffraction, no diffraction peaks other than diamond, titanium carbide and α-alumina were observed. The sintered body could be densely sintered to a relative density of 99% or more.
The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

参考例2
実施例1の装置により、実施例1と略同様の条件で被覆を行って炭化チタンを体積で10%を被覆した被覆ダイヤモンド準微粒子を得た。この被覆ダイヤモンド準微粒子を、結合材として高純度で易焼結性のアルミナ(特開昭63−151616号公報に記載のアルミナ粉体)を用い、焼結した。すなわち、この被覆ダイヤモンド準微粒子を体積で40%、結合材として、特開昭63−151616号公報に記載の平均粒径が0.2μmの高純度・易焼結性アルミナ粉体を体積で53.4%、及びこのアルミナ粉体の焼結助剤としてマグネシア(MgO)及びチタニア(TiOx、x=1〜2)を体積でそれぞれ0.6%及び1.0%からなる混合物を調製し、これらをアルミナ製ボールミルを用い、アセトン中湿式で2時間混合した。その後、10-6torr、200℃でこの混合粉体を真空乾燥した。次いで、直径16mm、厚さ5mmの円盤状に型押し成形し、当該成形体を、h−BN粉体を充填したパイレックス(R)ガラス製のカプセルに配置し、10-6torr、400℃、12時間脱気後封入した。このカプセルをアルゴンガスを圧力媒体とするHIP装置に配置し、焼結温度1300℃、焼結圧力150MPaで3時間保持して焼結した。しかる後、炉冷し、圧力を開放して、焼結体を取り出した。
X線回折により実施例5の焼結体の結晶相を調べたところ、ダイヤモンド、炭化チタン及びα−アルミナ以外の回折ピークは認められなかった。
焼結体は相対密度99%以上に緻密に焼結出来た。
焼結体は、緻密で強固、且つ極めて高度に制御された微組織を形成した。
Reference example 2
Using the apparatus of Example 1, coating was performed under substantially the same conditions as in Example 1 to obtain coated diamond quasi-fine particles coated with 10% by volume of titanium carbide. The coated diamond quasi-fine particles were sintered using high-purity and easy-sintering alumina (alumina powder described in JP-A-63-151616) as a binder. That is, the coated diamond quasi-fine particles are 40% by volume, and a high purity, easily sinterable alumina powder having an average particle size of 0.2 μm described in JP-A No. 63-151616 is used as a binder. And a mixture of 0.6% and 1.0% by volume of magnesia (MgO) and titania (TiO x , x = 1 to 2) as sintering aids of this alumina powder, respectively. These were mixed by wet in acetone for 2 hours using an alumina ball mill. Thereafter, the mixed powder was vacuum-dried at 10 −6 torr and 200 ° C. Next, it was press-molded into a disk shape having a diameter of 16 mm and a thickness of 5 mm, and the molded body was placed in a Pyrex (R) glass capsule filled with h-BN powder, and 10 −6 torr, 400 ° C., Sealed after degassing for 12 hours. The capsule was placed in a HIP apparatus using argon gas as a pressure medium, and sintered by holding at a sintering temperature of 1300 ° C. and a sintering pressure of 150 MPa for 3 hours. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out.
When the crystal phase of the sintered body of Example 5 was examined by X-ray diffraction, no diffraction peaks other than diamond, titanium carbide, and α-alumina were observed.
The sintered body could be densely sintered to a relative density of 99% or more.
The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

本発明によれば、(1)体積基準頻度分布で平均粒子径が10μmを越え、20μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中の当該芯粒子粉体の粒子を、分散度βが80%以上である高い分散状態でか、又は(2)体積基準頻度分布で平均粒子径が20μmを越え、50μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉体の粒子を、分散度βで90%以上である高い分散状態でか、又は(3)体積基準頻度分布で平均粒子径が50μmを越え、300μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中の当該芯粒子粉体の粒子を、分散度βで95%以上である高い分散状態でか、又は(4)体積基準頻度分布で平均粒子径が300μmを越え、800μm以下の芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中の当該芯粒子粉体の粒子を、分散度βが97%以上である高い分散状態でか、又は(5)体積基準頻度分布で平均粒子径が800μmを越える芯粒子粉体の粒子が主に単一粒子状態で気中に存在する高分散芯粒子粉体の粒子・気体混合物中の当該芯粒子粉体の粒子を、分散度βで99%以上である高い分散状態で被覆形成物質前駆体と接触又は衝突させることによって、単一粒子状態でその表面を被覆形成物質で被覆した被覆ダイヤモンド準微粒子が得られる。そしてこの被覆ダイヤモンド準微粒子はこの準微粒子自体で、または結合材と共に高圧下に焼結することにより、実質的にグラファイト相を含まない、緻密で極めて高度に微組織が制御された被覆ダイヤモンド準微粒子焼結体が製造出来るようになった。特に、超高圧HIP装置或いは当該超高圧HIP装置を除くHIP装置を使用する場合は、更に複雑形状の焼結体の製造も可能である等、本発明は工業生産上のメリットが頗る大きい。   According to the present invention, (1) a highly dispersed core particle powder in which particles of a core particle powder having a volume-based frequency distribution with an average particle diameter of more than 10 μm and not more than 20 μm are present in the air mainly in a single particle state. The particles of the core particle powder in the particle / gas mixture are in a highly dispersed state with a dispersity β of 80% or more, or (2) the average particle diameter exceeds 20 μm and 50 μm or less in a volume-based frequency distribution The core particle powder particles in the gas mixture of the highly dispersed core particle powder in which the core particle powder particles are mainly present in the air in a single particle state have a dispersity β of 90% or more. Highly dispersed core particle powder in a highly dispersed state or (3) Core particle powder particles having an average particle diameter of more than 50 μm and 300 μm or less in a volume-based frequency distribution are mainly present in the air in a single particle state The core particle powder particles in the body particle / gas mixture are highly dispersed with a dispersity β of 95% or more. (4) Particles of highly dispersed core particle powder in which particles of core particle powder having an average particle diameter of more than 300 μm and 800 μm or less exist in the air mainly in a single particle state in a volume-based frequency distribution The particles of the core particle powder in the gas mixture are in a highly dispersed state with a dispersity β of 97% or more, or (5) the core particle powder having a volume-based frequency distribution with an average particle diameter exceeding 800 μm The particles of the highly dispersed core particle powder in which the particles are mainly present in the air in a single particle state are coated in a highly dispersed state with a dispersion degree β of 99% or more. By contacting or colliding with the forming material precursor, coated diamond quasi-fine particles whose surfaces are coated with the coating forming material in a single particle state are obtained. The coated diamond quasi-fine particles are fine and highly fine-structured coated diamond quasi-fine particles which are substantially free of graphite phase by sintering under high pressure with the quasi-fine particles themselves or with the binder. Sintered bodies can be manufactured. In particular, when an ultra-high pressure HIP device or an HIP device other than the ultra-high pressure HIP device is used, the present invention has a great merit in industrial production, for example, it is possible to manufacture a sintered body having a more complicated shape.

粉体粒子の分布図であり、(a)は本来の分散度βを表わし、(b)は粒径D1〜D2の範囲の粒子が体積で90%を占める粉体の粒径対体積基準頻度を表わす。It is a distribution diagram of powder particles, (a) represents the original degree of dispersion β, (b) is the particle size vs. volume of the powder in which particles in the range of particle size D 1 to D 2 occupy 90% by volume. Represents the reference frequency. (a)〜(c)は準微粒子高分散処理手段群の基本構成を示すブロック図。(a)-(c) is a block diagram which shows the basic composition of a semi-fine particle highly dispersed process means group. (a)〜(g)は準微粒子高分散処理手段群の構成をより詳細に説明するブロック図。(a)-(g) is a block diagram explaining the structure of a quasi-fine particle highly dispersed process means group in detail. (a)〜(e)は芯粒子粉体に被覆が開始される態様を示す図。(a)-(e) is a figure which shows the aspect by which coating | cover is started to core particle powder. (a)〜(g)は被覆されたダイヤモンド準微粒子を製造するための装置の構成を説明するブロック図。(a)-(g) is a block diagram explaining the structure of the apparatus for manufacturing the coated diamond quasi-fine particle. 実施例1で用いる装置を示す図。1 is a diagram illustrating an apparatus used in Embodiment 1. FIG. 実施例1で用いる装置の部分拡大図。1 is a partial enlarged view of an apparatus used in Example 1. FIG. 実施例1で得られた被覆準微粒子の走査型電子顕微鏡写真。2 is a scanning electron micrograph of the coated quasi-fine particles obtained in Example 1. FIG. 実施例1の焼結体の研磨面の電子顕微鏡写真。4 is an electron micrograph of the polished surface of the sintered body of Example 1. FIG. 実施例2で用いる装置を示す図。FIG. 6 shows a device used in Example 2. 実施例2で用いる装置の部分拡大図。FIG. 4 is a partially enlarged view of an apparatus used in Example 2. 実施例3で用いる装置を示す図。FIG. 10 shows an apparatus used in Example 3. 実施例3で用いる装置の部分拡大図。FIG. 9 is a partial enlarged view of an apparatus used in Example 3.

Claims (3)

ダイヤモンドの準微粒子からなる芯粒子粉体を被覆空間に投入し、気相を経て生成する被覆形成物質前駆体及び/又は気相状態の被覆形成物質前駆体を、この芯粒子粉体の粒子に接触及び/又は衝突させて、この芯粒子粉体の粒子の表面を被覆形成物質で被覆して得られる被覆ダイヤモンド準微粒子を製造し、当該被覆ダイヤモンド準微粒子を含む混合物を、ダイヤモンドが熱力学的に安定な超高圧下で焼結してなる被覆ダイヤモンド準微粒子焼結体であって、前記被覆ダイヤモンド準微粒子の製造は、
(A)分散手段として、この芯粒子粉体の粒子を気中に分散させる、撹拌式分散機、エジェクター式分散機、細管分散機よりなる分散手段を有する微粒子高分散処理手段群により、体積基準頻度分布で平均粒子径が10μmを越える準微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉体の粒子・気体混合物とする分散工程、並びに
(B)この分散工程で分散させた芯粒子粉体の粒子を、被覆空間の被覆開始領域に、その平均粒子径が10μmを越え20μm以下のときには全粒子の重量に対する見かけの一次粒子状態の粒子の重量の割合である分散度βが80%以上、
20μmを越え50μm以下のときには分散度βが90%以上、
50μmを越え300μm以下のときには分散度βが95%以上、
300μmを越え800μm以下のときは分散度βが97%以上、そして
800μmを越えるときは分散度βが99%以上
の分散状態で、被覆工程に直接放出し、被覆形成物質前駆体と接触及び/又は衝突させる被覆工程を備えた被覆準微粒子製造手段により製造してなる被覆ダイヤモンド準微粒子であり、さらに、
前記被覆ダイヤモンド準微粒子が炭化チタンを5体積%被覆してなる被覆ダイヤモンド準微粒子を60体積%、粒径0.5〜2μm(平均粒径1μm)の微粒子からなるダイヤモンド微粒子粉体に略同様の条件で炭化チタン15体積%を被覆してなる被覆ダイヤモンド微粒子40体積%とを混合してなる、
あるいは、
前記被覆ダイヤモンド準微粒子がチタン金属を10体積%被覆してなる被覆ダイヤモンド準微粒子を60体積%、粒径0.5〜2μm(平均粒径1μm)の微粒子からなるダイヤモンド微粒子粉体に略同様の条件でチタン金属15体積%を被覆してなる被覆ダイヤモンド微粒子40体積%とを混合してなる、
あるいは、
前記被覆ダイヤモンド準微粒子がジルコニウム金属を10体積%被覆してなる被覆ダイヤモンド準微粒子を30体積%、粒径0.5〜2μm(平均粒径1μm)の微粒子からなるダイヤモンド微粒子粉体に略同様の条件で炭化チタン15体積%を被覆してなる被覆ダイヤモンド微粒子70体積%とを混合してなる、
これらいずれかの被覆ダイヤモンド準微粒子と略同様の条件で被覆してなる被覆ダイヤモンド微粒子との混合物をダイヤモンドが熱力学的に安定な超高圧下で焼結してなる相対密度が99%以上でありダイヤモンド準微粒子およびダイヤモンド微粒子からなるダイヤモンドを85体積%以上含有する制御された微組織が形成されたことを特徴とする被覆ダイヤモンド準微粒子焼結体。
A core particle powder composed of quasi-fine particles of diamond is put into a coating space, and a coating forming material precursor and / or a coating forming material precursor in a gas phase state generated through a gas phase is added to the particles of the core particle powder. The coated diamond quasi-fine particles obtained by contacting and / or colliding to coat the surface of the particles of the core particle powder with the coating-forming material are produced, and the mixture containing the coated diamond quasi-fine particles is mixed with the thermodynamic diamond. A coated diamond quasi-fine particle sintered body that is sintered under an ultra-high pressure that is stable, and the production of the coated diamond quasi-fine particle,
(A) As a dispersion means, a volume-based high-dispersion treatment means group having a dispersion means comprising a stirring-type disperser, an ejector-type disperser, and a thin tube disperser for dispersing the particles of the core particle powder in the air. A particle / gas mixture of highly dispersed core particle powder in which particles of a quasi fine particle core particle powder having an average particle diameter exceeding 10 μm in a frequency distribution or a core particle powder mainly composed of quasi fine particles are dispersed in the air. And (B) when the average particle size of the core particle powder particles dispersed in this dispersion step is more than 10 μm and less than 20 μm in the coating start area of the coating space, the apparent weight relative to the weight of all particles The dispersity β, which is the ratio of the weight of particles in the primary particle state, is 80% or more,
When it exceeds 20 μm and is 50 μm or less, the dispersity β is 90% or more,
When it exceeds 50 μm and is 300 μm or less, the dispersity β is 95% or more,
When it exceeds 300 μm and 800 μm or less, the dispersity β is 97% or more, and when it exceeds 800 μm, the dispersity β is 99% or more in a dispersed state, and is directly discharged into the coating process. Or a coated diamond quasi-fine particle produced by means of a coated quasi-fine particle producing means provided with a coating step for collision,
The coated diamond quasi-fine particles are substantially the same as the diamond fine particle powder composed of 60 vol.% Coated diamond quasi-fine particles formed by coating 5% by volume of titanium carbide and particles having a particle diameter of 0.5 to 2 μm (average particle diameter of 1 μm). It is formed by mixing 40 volume% of coated diamond fine particles formed by coating 15 volume% of titanium carbide under the conditions.
Or
The coated diamond quasi-fine particles are substantially the same as the diamond fine particle powder composed of fine particles having 60% by volume of coated diamond quasi-fine particles obtained by coating 10% by volume of titanium metal and a particle size of 0.5 to 2 μm (average particle size 1 μm). It is formed by mixing 40 volume% of coated diamond fine particles formed by coating 15 volume% of titanium metal under conditions.
Or
The coated diamond quasi-fine particles are substantially the same as the diamond fine particle powder composed of fine particles having a coated diamond quasi-fine particle of 10% by volume coated with zirconium metal and 30% by volume and a particle size of 0.5-2 μm (average particle size 1 μm) It is formed by mixing 70% by volume of coated diamond fine particles formed by coating 15% by volume of titanium carbide under conditions.
The relative density obtained by sintering a mixture of any one of these coated diamond quasi-fine particles and coated diamond fine particles formed under substantially the same conditions under ultra-high pressure where the diamond is thermodynamically stable is 99% or more. A coated diamond quasi-fine particle sintered body in which a controlled microstructure containing 85 vol% or more of diamond quasi-fine particles and diamond fine particles is formed.
使用する芯粒子粉体の粒子の粒度分布が、平均粒子径をDMとしたとき、体積基準頻度分布で(〔DM/5,5DM〕,≧90%)であることを特徴とする、請求項1に記載の被覆ダイヤモンド準微粒子焼結体。 The particle size distribution of the core particle powder to be used is a volume-based frequency distribution ([D M / 5, 5 D M ], ≧ 90%) where the average particle diameter is D M. The coated diamond quasi-fine particle sintered body according to claim 1. 前記被覆ダイヤモンド準微粒子と略同様の条件で被覆してなる被覆ダイヤモンド微粒子との混合物が被覆ダイヤモンド準微粒子を30〜60体積%含有してなり、ダイヤモンドが熱力学的に安定な超高圧下で焼結してなる相対密度が99%以上でありダイヤモンド準微粒子およびダイヤモンド微粒子からなるダイヤモンドを85体積%以上含有する制御された微組織が形成されたことを特徴とする、請求項1または2に記載の被覆ダイヤモンド準微粒子焼結体。   The mixture of the coated diamond quasi-fine particles and the coated diamond fine particles coated under substantially the same conditions contains 30-60% by volume of the coated diamond quasi-fine particles, and the diamond is sintered under an ultra-high pressure where the diamond is thermodynamically stable. 3. A controlled microstructure is formed in which the relative density of the particles is 99% or more and the diamond is composed of 85% by volume or more of diamond composed of diamond quasi-fine particles and diamond fine particles. Coated diamond quasi-fine particle sintered body.
JP2003393214A 2003-11-25 2003-11-25 Coated diamond quasi-fine particle sintered body Expired - Lifetime JP4635215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393214A JP4635215B2 (en) 2003-11-25 2003-11-25 Coated diamond quasi-fine particle sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393214A JP4635215B2 (en) 2003-11-25 2003-11-25 Coated diamond quasi-fine particle sintered body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5219277A Division JPH0753205A (en) 1993-08-12 1993-08-12 Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production

Publications (2)

Publication Number Publication Date
JP2004182590A JP2004182590A (en) 2004-07-02
JP4635215B2 true JP4635215B2 (en) 2011-02-23

Family

ID=32768055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393214A Expired - Lifetime JP4635215B2 (en) 2003-11-25 2003-11-25 Coated diamond quasi-fine particle sintered body

Country Status (1)

Country Link
JP (1) JP4635215B2 (en)

Also Published As

Publication number Publication date
JP2004182590A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
US5536485A (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
US6024915A (en) Coated metal particles, a metal-base sinter and a process for producing same
JP3533459B2 (en) Manufacturing method of coated metal quasi-fine particles
EP0712941B1 (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
Hahn Gas phase synthesis of nanocrystalline materials
US6214079B1 (en) Triphasic composite and method for making same
US6024909A (en) Coated ceramic particles, a ceramic-base sinter and a process for producing the same
JP2009538814A (en) Phase powder and method for producing the phase powder
JP4970638B2 (en) Method of manufacturing a cemented carbide body with increased wear resistance
US6090343A (en) Triphasic composite and method for making same
JP2019529696A (en) Multi-material powder with composite particles for addition synthesis
JP3948631B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3948632B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3545783B2 (en) Method for producing coated particles
CN107531578A (en) Glomerocryst abrasive construction
JPH0753282A (en) Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof
JP3948633B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3533458B2 (en) Manufacturing method of coated metal fine particles
JPH0753205A (en) Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production
JP3960484B2 (en) Coated diamond sintered body and manufacturing method thereof
JP4635215B2 (en) Coated diamond quasi-fine particle sintered body
JP4016091B2 (en) Coated ceramic particles, ceramic-based sintered body and method for producing the same
JP3948634B2 (en) Coated diamond sintered body and manufacturing method thereof
JP3545784B2 (en) Method for producing coated quasi-fine particles
JPH0753272A (en) Coated ceramic semifine particles, ceramic-based sintered compact and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081210

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term