JPH0753282A - Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof - Google Patents

Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof

Info

Publication number
JPH0753282A
JPH0753282A JP5219276A JP21927693A JPH0753282A JP H0753282 A JPH0753282 A JP H0753282A JP 5219276 A JP5219276 A JP 5219276A JP 21927693 A JP21927693 A JP 21927693A JP H0753282 A JPH0753282 A JP H0753282A
Authority
JP
Japan
Prior art keywords
quasi
particles
dispersion
particle powder
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219276A
Other languages
Japanese (ja)
Inventor
Haruo Yoshida
晴男 吉田
Masaichi Kume
正市 粂
Yukiyoshi Yamada
幸良 山田
Tadashi Fuyuki
正 冬木
Satoshi Akiyama
聡 秋山
Yoshiaki Hamada
美明 濱田
Eisuke Kuroda
英輔 黒田
Tadakatsu Nabeya
忠克 鍋谷
Yukio Sumida
幸雄 隅田
Kenichi Kimura
健一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIDE KK
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
RIIDE KK
Agency of Industrial Science and Technology
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIDE KK, Agency of Industrial Science and Technology, Nisshin Seifun Group Inc filed Critical RIIDE KK
Priority to JP5219276A priority Critical patent/JPH0753282A/en
Priority to US08/288,947 priority patent/US5536485A/en
Publication of JPH0753282A publication Critical patent/JPH0753282A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high performance coated high pressure type boron nitride sintered body which has uniform, dense, firmly sintered and highly controlled fine structure and is formed from coated high pressure type boron nitride quasi-fine particles. CONSTITUTION:Powdery core particles consisting of quasi-fine particles of the high pressure type boron nitride having >10mum average particle size determined by using the frequency distribution on the volume basis are dispersed in air. This dispersed powdery core particles in such a dispersed state that the dispersity beta is >=80% are allowed to come into contact with or to collide with a coating film forming material precursor to coat the surface of each of the core particles with the coating film forming material. The coated high pressure type boron nitride particles thus obtained, alone or together with a binder, are sintered under such sintering conditions of pressure and temp. that the high pressure type boron nitride is thermodynamically stable, or under the sintering conditions of pressure and temp. of <2000MPa and and <=1850 deg.C respectively. Under the latter conditions, the high pressure type boron nitride is not thermodynamically stable, however it is metastable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高圧型窒化硼素準微粒
子からなる準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子に被覆形成物質で被覆を施し
た被覆された高圧型窒化硼素準微粒子、並びにこの被覆
された高圧型窒化硼素準微粒子を焼結した、緻密で高硬
度な、高度に微組織が制御された被覆高圧型窒化硼素準
微粒子焼結体及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating obtained by coating particles of quasi-fine particle core particle powder composed of high-pressure type boron nitride quasi-fine particles or particles of core particle powder mainly composed of quasi-fine particles with a coating forming substance. High-pressure type boron nitride quasi-fine particles, and a dense, high-hardness, highly controlled microstructure-controlled high-pressure type boron nitride quasi-fine particle sintered body obtained by sintering the coated high-pressure type boron nitride quasi-fine particles, and Regarding the manufacturing method.

【0002】[0002]

【従来の技術】近年、高圧型窒化硼素焼結体はその組織
の微細化や均質化を図った開発研究が精力的に進められ
てきているが、用途の明確な材料については、敢えて粒
子径が相対的に大きい、例えば粒子径が10μmを越え
る、高圧型窒化硼素準微粒子を使用することが大変効果
的となる。例えば、超高硬度な高圧型窒化硼素の特徴を
生かした耐摩耗性焼結体は、高圧型窒化硼素準微粒子を
比較的多量に分散させた準微粒子分散型の高圧型窒化硼
素準微粒子を焼結することで製造可能となるが、この場
合原材料の高圧型窒化硼素準微粒子が極めて重要であ
る。高圧型窒化硼素準微粒子を分散させた高圧型窒化硼
素準微粒子焼結体は、この高圧型窒化硼素準微粒子とそ
の周りの微組織との、欠陥や気孔のない緊密な焼結によ
り準微粒子分散効果が著しく発揮される。しかし高圧型
窒化硼素は超難焼結性のため、この高圧型窒化硼素準微
粒子とその周りの微組織との焼結を促進する焼結助剤や
結合材の存在が欠かせない。従来、このような焼結助剤
や結合材の添加は専ら粉体混合法により行われてきた。
しかし、粉体混合法は、混合時の不純物の混入が避けら
れないのみならず、原理的に組織の均一化に限度があ
り、焼結助剤や結合材の粒子が相対的に極めて微細であ
っても理想的な均一な混合、即ち高圧型窒化硼素準微粒
子に焼結助剤や結合材の粉体粒子がむらなく行き渡る均
一な分散は極めて困難である。仮にこの均一な分散が実
現されたとしても、この焼結助剤や結合材の粉体粒子が
粒子単位で混合されるために、均一の意味にも限界があ
る。特に相対的にその量が少ない場合、分布むらが必然
的に出来る。
2. Description of the Related Art In recent years, high pressure type boron nitride sintered bodies have been vigorously researched and developed with the aim of miniaturizing and homogenizing their structures. Is relatively large, for example, a high-pressure type boron nitride quasi-fine particle having a particle diameter of more than 10 μm is very effective. For example, a wear-resistant sintered body that takes advantage of the characteristics of ultra-high-hardness high-pressure boron nitride is used to burn quasi-fine-particle-dispersed high-pressure boron nitride quasi-fine particles in which a relatively large amount of high-pressure boron nitride quasi-fine particles are dispersed. It can be manufactured by binding, but in this case, the high-pressure boron nitride quasi-fine particles as the raw material are extremely important. The high-pressure type boron nitride quasi-fine particle sintered body in which the high-pressure type boron nitride quasi-fine particle is dispersed is a quasi-fine particle dispersion by the close sintering of the high-pressure type boron nitride quasi-fine particle and the microstructure around it without defects or pores. The effect is remarkable. However, since the high-pressure type boron nitride is extremely difficult to sinter, the presence of a sintering aid or a binder that promotes the sintering of the high-pressure type boron nitride quasi-fine particles and the surrounding microstructure is indispensable. Conventionally, the addition of such a sintering aid or binder has been carried out exclusively by the powder mixing method.
However, in the powder mixing method, mixing of impurities during mixing is inevitable, and in principle, there is a limit to homogenization of the structure, and the particles of the sintering aid and the binder are relatively extremely fine. Even if there is an ideal uniform mixing, that is, it is extremely difficult to uniformly disperse the powder particles of the sintering aid and the binder in the high-pressure type boron nitride quasi-fine particles. Even if this uniform dispersion is realized, the meaning of uniformity is limited because the powder particles of the sintering aid and the binder are mixed in particle units. Especially when the amount is relatively small, uneven distribution is inevitable.

【0003】現実には、多くの場合、高圧型窒化硼素準
微粒子が集中したり、焼結助剤や結合材の粉体粒子が凝
集して高圧型窒化硼素準微粒子焼結体中に塊状に存在し
たり、または高圧型窒化硼素準微粒子焼結体中で偏在し
て高圧型窒化硼素準微粒子焼結体の性能を著しく低下せ
しめることになる。従って、高圧型窒化硼素準微粒子一
個一個に確実に焼結助剤や結合材を分布させる必要があ
る。しかも、高圧型窒化硼素準微粒子と周りの微組織と
の緊密な焼結のために、高圧型窒化硼素準微粒子表面へ
の高度に制御された均一な被覆、即ち個々の高圧型窒化
硼素準微粒子の表面の未被覆部分が残らない均一な被覆
であって且つこの均一な被覆が個々の全ての高圧型窒化
硼素準微粒子に行われることが求められている。しか
も、この高度に制御された均一な被覆は、その粒子径が
大きければそれだけより一層未被覆部分がない均一な被
覆が求められる。このように高度に制御された均一な被
覆による被覆高圧型窒化硼素準微粒子の製造、及びこの
被覆高圧型窒化硼素準微粒子を用いた高性能な被覆高圧
型窒化硼素準微粒子焼結体の製造が強く望まれている。
この高圧型窒化硼素準微粒子への被覆形成物質の被覆法
としては気相法、湿式メッキ法など種々な方法が考慮さ
れうるが、中でも気相法により、粉体粒子表面に無機材
料や金属材料等の被覆形成物質を、膜を始めとする種々
の形態で被覆する方法は、原理的に、(1)雰囲気の制御
が容易である、(2)基本的に被覆形成物質の選択に制限
がなく、活性金属を始めとする金属単体物質、合金、窒
化物、炭化物、硼化物、酸化物など、いろいろな種類の
物質を被覆できる、(3)目的物質を、高純度に被覆でき
る、(4)被覆形成物質の被覆量を任意に制御できる等、
他の被覆法では成し得ない大きな特徴がある。
In reality, in many cases, high-pressure type boron nitride quasi-fine particles are concentrated or powder particles of a sintering aid or a binder are aggregated to form a lump in the high-pressure type boron nitride quasi-fine particle sintered body. It exists or is unevenly distributed in the high pressure type boron nitride quasi fine particle sintered body, and the performance of the high pressure type boron nitride quasi fine particle sintered body is significantly deteriorated. Therefore, it is necessary to surely distribute the sintering aid and the binder in each of the high-pressure type boron nitride quasi-fine particles. Moreover, because of the close sintering of the high-pressure type boron nitride quasi-fine particles and the surrounding microstructure, a highly controlled and uniform coating on the surface of the high-pressure type boron nitride quasi-fine particles, that is, the individual high-pressure type boron nitride quasi-fine particles It is required that all the high-pressure boron nitride quasi-fine particles have a uniform coating with no uncoated portion left on the surface of the above. Moreover, this highly controlled and uniform coating is required to have a uniform coating free from uncoated portions as long as the particle size is large. Thus, the production of coated high-pressure type boron nitride quasi-fine particles by the highly controlled and uniform coating, and the production of high-performance coated high-pressure type boron nitride quasi-fine particle sintered body using the coated high-pressure type boron nitride quasi-fine particles are possible. Strongly desired.
Various methods such as a vapor phase method and a wet plating method can be considered as a method of coating the high pressure type boron nitride quasi-fine particles with a coating forming substance. Among them, an inorganic material or a metal material is formed on the surface of the powder particles by the vapor phase method. In principle, the method of coating a coating-forming substance such as a film with various forms such as a film is (1) easy to control the atmosphere, and (2) there is basically a limitation in the selection of the coating-forming substance. However, it is possible to coat various kinds of substances such as simple metal substances including active metals, alloys, nitrides, carbides, borides and oxides. (3) The target substance can be coated with high purity. (4 ) It is possible to arbitrarily control the coating amount of the coating forming substance,
There are major features that cannot be achieved by other coating methods.

【0004】しかし、以下の理由により、公知の技術と
して提案されている種々の被覆装置や被覆方法では前記
高度に制御された均一な被覆が成し得なかった。例え
ば、特開昭58−31076号公報に開示されている装
置・方法によれば、PVD装置内に設置された容器の中
に芯粒子粉体の粒子を入れ、容器を電磁気的な方法によ
り振動させ、前記容器内の芯粒子を転動させながらPV
D法により被覆する。また、特開昭61−30663号
公報に開示されている装置によれば、PVD装置内に設
置された容器の中に芯粒子粉体の粒子を入れ、容器を機
械的な方法により振動させ、前記容器内の芯粒子を転動
させながらPVD法により被覆することができるとされ
ている。しかし、これらの容器の振動により芯粒子粉体
の粒子を転動させながら被覆する装置或いは方法では、
実際には、準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子は幾重にも互いに接触したま
ま重なった状態で転動するのみで単一粒子状態で被覆で
きなかった。 特開平3−153864号公報に開示されている装置及
び方法は、内面に障壁及び/又は凹凸を備えた回転容器
内に粒子を入れ、この回転容器を回転しながら蒸着法に
より芯粒子表面に被覆を行うことを目的とするものであ
るが、このような装置或いは方法においては、準微粒子
芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉体
の粒子は、幾重にも互いに接触したまま重なった状態で
変化はなく、多くの粒子が接触したまま軽く撹拌される
だけで、単一粒子状態で被覆できなかった。
However, due to the following reasons, the above-mentioned highly controlled and uniform coating cannot be achieved by various coating apparatuses and coating methods proposed as known techniques. For example, according to the apparatus / method disclosed in Japanese Patent Laid-Open No. 58-31076, particles of core particle powder are put in a container installed in a PVD apparatus and the container is vibrated by an electromagnetic method. The core particles in the container while rolling the PV
Cover by method D. Further, according to the device disclosed in JP-A-61-30663, particles of core particle powder are put into a container installed in a PVD device, and the container is vibrated by a mechanical method. It is said that the core particles in the container can be coated by the PVD method while rolling. However, in the apparatus or method for coating while rolling the particles of the core particle powder by the vibration of these containers,
Actually, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles roll in the overlapping state while being in contact with each other many times and cannot be coated in a single particle state. It was The apparatus and method disclosed in Japanese Patent Application Laid-Open No. 3-153864 discloses placing particles in a rotating container having a barrier and / or unevenness on the inner surface, and coating the surface of core particles by vapor deposition while rotating the rotating container. In such an apparatus or method, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of quasi-fine particles are in contact with each other in multiple layers. There was no change in the overlapping state, and many particles were only lightly stirred while in contact with each other, and could not be coated in the single particle state.

【0005】特開昭58−141375号公報には、反
応ガス雰囲気中に置かれた粉体を反応ガスの流れと重力
の作用とによって浮遊させて、反応ガスの化学反応によ
り生成される析出物質によって粉体の表面を被覆する装
置が開示されている。又、特開平2−43377号公報
には、粒子を減圧下において流動化させながら、熱化学
反応処理を行い被覆を行う方法が開示されている。又、
特開昭64−80437号公報には、低・高周波合成音
波により芯粒子粉体の凝集体を崩して流動化させ被覆す
る方法が開示されている。しかし、これらの気流や振動
により準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子の流動層利用する方法又は装置で
は、全ての芯粒子を同じ様に単一粒子状態で独立に流
動、浮遊させることは事実上不可能であり、粒子同士が
陰になってできる各粒子の被覆むらをなくすことができ
なかった。特開昭54−153789号公報には、金属
の蒸気を発生させた真空容器内を粉末材料を落下させ金
属を被覆する装置が開示されている。又、特開昭60−
47004号公報には真空槽中の高周波プラズマ領域に
モノマーガスと粉体粒子を導入し、プラズマ重合により
有機物の被覆膜を形成させる方法が開示されている。こ
れらの装置或いは方法の如く、単に導入するだけでは準
微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒
子粉体の粒子は、単一粒子状態でない凝集体を形成して
落下するだけで、粒子の陰ができてむらができたり、凝
集体の内部の粒子は全く被覆されなかったり、或いは単
一粒子に被覆されたものにくらべ被覆量の違いが生じて
しまった。
Japanese Patent Laid-Open No. 58-141375 discloses a depositing substance produced by a chemical reaction of a reaction gas by suspending a powder placed in a reaction gas atmosphere by the flow of the reaction gas and the action of gravity. Discloses a device for coating the surface of powder. Further, Japanese Patent Application Laid-Open No. 2-43377 discloses a method in which particles are fluidized under a reduced pressure while a thermochemical reaction treatment is performed to perform coating. or,
Japanese Unexamined Patent Publication (Kokai) No. 64-80437 discloses a method in which agglomerates of core particle powder are broken down and fluidized by low and high frequency synthetic sound waves to cover them. However, in the method or apparatus utilizing the fluidized bed of the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles by these air flows and vibrations, all the core particles are the same as a single particle. It is virtually impossible to independently flow and float in a state, and it was not possible to eliminate the uneven coating of each particle due to the shadow of the particles. Japanese Unexamined Patent Publication No. 54-153789 discloses an apparatus for coating a metal by dropping a powder material in a vacuum container in which vapor of metal is generated. Also, JP-A-60-
Japanese Patent Publication No. 47004 discloses a method in which a monomer gas and powder particles are introduced into a high-frequency plasma region in a vacuum chamber to form an organic coating film by plasma polymerization. Just by introducing them as in these devices or methods, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly consisting of the quasi-fine particles form an aggregate that is not in a single particle state and fall. Then, the shadows of the particles were formed and uneven, the particles inside the agglomerates were not coated at all, or a difference in the coating amount was caused as compared with those coated with a single particle.

【0006】特開昭62−250172号公報には、前
処理として、ジェットミル処理した粉体を、減圧加熱処
理室で滞留せしめ、ここで加熱処理を施した後、粉体フ
ィーダーでスパッタリング室に自然落下により導入せし
め、ターゲットを垂直に設けた円筒状のスパッタリング
室に自然落下させ被覆させる装置及び方法が開示されて
いる。又、特開平2−153068号公報には、前処理
として、ジェットミル処理した粉体を、減圧加熱処理室
で滞留せしめ、ここで加熱処理を施した後、粉体フィー
ダーでスパッタリング室のスパッタリング源を納めた回
転容器に粉体状に導入せしめ、容器を回転させた状態で
スパッタリングする装置及び方法が開示されている。こ
れら装置及び方法では、被覆前の加熱工程で、ジェット
ミル処理した準微粒子芯粒子粉体の粒子又は主に準微粒
子からなる芯粒子粉体の粒子を滞留せしめる工程があ
り、加熱工程でのこの粉体の滞留のため再び単一粒子状
態でない凝集体を形成し、結局被覆工程ではこの凝集体
は単一粒子状態にならない。以上のように、従来公知の
技術は、いずれも高圧型窒化硼素準微粒子である準微粒
子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子粉
体の粒子は、互いに接触したままで凝集体の状態で被覆
処理に供され、そのために各粒子に高度に制御された均
一な被覆が施された被覆された高圧型窒化硼素準微粒子
は製造できなかった。
In JP-A-62-250172, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced-pressure heat treatment chamber, where after heat treatment is performed, the powder is fed into a sputtering chamber with a powder feeder. An apparatus and a method are disclosed in which the target is introduced by natural falling and the target is naturally dropped into a vertically-arranged cylindrical sputtering chamber to cover the target. Further, in Japanese Patent Application Laid-Open No. 2-153068, as a pretreatment, powder subjected to jet mill treatment is retained in a reduced-pressure heat treatment chamber, where after heat treatment is performed, a sputtering source in a sputtering chamber is used with a powder feeder. There is disclosed an apparatus and a method in which a powder is introduced into a rotating container in which is charged and sputtering is performed in a state where the container is rotated. In these devices and methods, in the heating step before coating, there is a step of retaining the particles of the quasi-fine particle core particle powder subjected to jet mill treatment or the particles of the core particle powder mainly composed of quasi-fine particles. Due to the retention of the powder, agglomerates that are not in the single particle state are formed again, and eventually the agglomerates are not in the single particle state in the coating process. As described above, in all of the conventionally known techniques, the particles of the quasi-fine particle core particle powder which is a high-pressure type boron nitride quasi-fine particle or the particles of the core particle powder mainly composed of quasi-fine particles are coagulated while being in contact with each other. It was not possible to produce coated high-pressure boron nitride quasi-fine particles which were subjected to a coating treatment in the state of aggregates, and for this reason each particle was provided with a highly controlled and uniform coating.

【0007】即ち、高圧型窒化硼素準微粒子は、高圧型
窒化硼素微粒子程には凝集力は強くないが、それでも準
微粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒
子粉体の粒子が一個一個の単位で存在する単一粒子状態
が実現できなかった。このため、上記の気相法による高
圧型窒化硼素準微粒子表面への被覆形成物質の被覆は、
他の準微粒子により遮られたところではこの高圧型窒化
硼素準微粒子表面に未被覆部分を残存させた。そして上
記のように高度に制御された均一な被覆が求められてい
るにもかかわらず、高圧型窒化硼素準微粒子ではこの程
度の凝集力によっても影響が甚大で、大変深刻な問題と
なっていたというのが実状である。
That is, the high-pressure type boron nitride quasi-fine particles are not as strong in cohesive force as the high-pressure type boron nitride fine particles, but are still particles of the quasi-fine particle core particle powder or particles of the core particle powder mainly composed of quasi-fine particles. However, we could not realize the single particle state in which each of them exists as a unit. Therefore, the coating of the high-pressure type boron nitride quasi-fine particle surface with the coating forming substance by the above vapor phase method,
Where it was blocked by other quasi-fine particles, an uncoated portion was left on the surface of the high-pressure boron nitride quasi-fine particles. Despite the demand for highly controlled and uniform coating as described above, the high-pressure type boron nitride quasi-fine particles are greatly affected by this level of cohesive force, which is a very serious problem. That is the reality.

【0008】[0008]

【発明が解決しようとする課題】従って、現実に、被覆
されるべき高圧型窒化硼素準微粒子が10μmを越える
平均粒子径の、準微粒子芯粒子粉体の粒子又は主に準微
粒子からなる芯粒子粉体の粒子への、高度に制御された
均一な被覆、即ち個々の高圧型窒化硼素準微粒子の表面
の未被覆部分が残らない均一な被覆で、且つこの均一な
被覆が全ての高圧型窒化硼素準微粒子に成される被覆が
要求される。しかも、この高度に制御された均一な被覆
は、その粒子径が大きいものについては、より一層未被
覆部分がない均一なものである被覆高圧型窒化硼素準微
粒子の製造が強く求められている。本発明は、高圧型窒
化硼素準微粒子である準微粒子芯粒子粉体の粒子又は主
に準微粒子からなる芯粒子粉体の粒子に、結合材となる
物質及び/又は焼結助剤となる物質を被覆形成物質とし
て高度に制御された均一な被覆、即ち個々の高圧型窒化
硼素準微粒子の表面の未被覆部分が残らない均一な被覆
であって且つこの均一な被覆が個々の全ての高圧型窒化
硼素準微粒子に成されており、しかも、その粒子径が大
きいものについては、より一層未被覆部分が少ない均一
な被覆を施した被覆された高圧型窒化硼素準微粒子、並
びにこの被覆された高圧型窒化硼素準微粒子を用いた被
覆高圧型窒化硼素準微粒子焼結体及びその製造法を提供
することを目的とする。
Accordingly, in reality, the high-pressure type boron nitride quasi-fine particles to be coated have a mean particle size of more than 10 μm, and are particles of quasi-fine particle core particles or core particles mainly composed of quasi-fine particles. A highly controlled uniform coating of powder particles, that is, a uniform coating in which the uncoated portion of the surface of each high-pressure boron nitride quasi-fine particle does not remain, and this uniform coating is used for all high-pressure nitriding. A coating made of boron quasi-fine particles is required. Moreover, for this highly controlled and uniform coating, it is strongly demanded to produce coated high-pressure type boron nitride quasi-fine particles which have a larger particle size and are more uniform without an uncoated portion. The present invention relates to a substance that serves as a binder and / or a sintering aid for particles of quasi-fine particle core particle powder that is high-pressure type boron nitride quasi-fine particle or particles of core particle powder that mainly consists of quasi-fine particles. Is a highly controlled uniform coating, that is, a uniform coating in which the uncoated portion of the surface of the individual high-pressure boron nitride quasi-fine particles does not remain, and this uniform coating is used for all individual high-pressure types. For the particles made of quasi-fine particles of boron nitride and having a large particle diameter, coated high-pressure boron nitride quasi-fine particles having a uniform coating with less uncoated portion, and the coated high-pressure particles An object of the present invention is to provide a coated high-pressure type boron nitride quasi-fine particle sintered body using type boron nitride quasi-fine particles and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明者が鋭意研究を重ねた結果、高圧型窒化硼素
準微粒子である準微粒子芯粒子粉体の粒子又は主に準微
粒子からなる芯粒子粉体の粒子に、被覆形成物質を高度
に制御された均一な被覆、即ち個々の高圧型窒化硼素準
微粒子の表面の未被覆部分が残らない均一な被覆であっ
て、且つこの均一な被覆が個々の全ての高圧型窒化硼素
準微粒子に成されており、しかも、その粒子径が大きい
ものについては、より一層未被覆部分がない均一な被覆
をするためには、(1)体積基準頻度分布で平均粒子径
が10μmを越え、20μm以下の芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度
βが80%以上である高い分散状態の被覆空間の被覆開
始領域でか、又は(2)体積基準頻度分布で平均粒子径
が20μmを越え、50μm以下の芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物中のこの芯粒子粉体の粒子を、分散度
βが90%以上である高い分散状態の被覆空間の被覆開
始領域でか、又は(3)体積基準頻度分布で平均粒子径
が50μmを越え、300μm以下の芯粒子粉体の粒子
が主に単一粒子状態で気中に存在する高分散芯粒子粉体
の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散
度βが95%以上である高い分散状態の被覆空間の被覆
開始領域でか、又は(4)体積基準頻度分布で平均粒子
径が300μmを越え、800μm以下の芯粒子粉体の
粒子が主に単一粒子状態で気中に存在する高分散芯粒子
粉体の粒子・気体混合物中のこの芯粒子粉体の粒子を、
分散度βが97%以上である高い分散状態の被覆空間の
被覆開始領域でか、又は(5)体積基準頻度分布で平均
粒子径が800μmを越える芯粒子粉体の粒子が主に単
一粒子状態で気中に存在する高分散芯粒子粉体の粒子・
気体混合物中のこの芯粒子粉体の粒子を、分散度βが9
9%以上である高い分散状態の被覆空間の被覆開始領域
で被覆を開始しなければならないことを見い出した。
In order to solve the above-mentioned problems, as a result of intensive studies by the present inventor, it was found that high-pressure boron nitride quasi-fine particles are quasi-fine core particles, or mainly quasi-fine particles. The core-forming powder has a uniform coating with a highly controlled coating material, that is, a uniform coating in which no uncoated portion of the surface of each high-pressure boron nitride quasi-fine particle remains, and For all individual high-pressure type boron nitride quasi-fine particles with a large coating and a large particle diameter, in order to obtain a uniform coating with no uncoated portion, (1) volume High-dispersion core particles having an average particle size of more than 10 μm and particles of 20 μm or less in the air mainly in a single particle state in a standard frequency distribution. If the dispersity β is 80% or more, In the coating start region of the coating space in a highly dispersed state, or (2) in the volume standard frequency distribution, the average particle diameter exceeds 20 μm and the particles of the core particle powder of 50 μm or less are mainly in a single particle state in the air. Particles of the existing highly dispersed core particle powder / particles of this core particle powder in the gas mixture are added in the coating start region of the coating space in a highly dispersed state where the dispersity β is 90% or more, or (3) Highly-dispersed core particles having an average particle diameter of more than 50 μm and particles of 300 μm or less in the air mainly in a single particle state in a volume-based frequency distribution. The particles of the particle powder are provided in the coating start region of the coating space in a highly dispersed state where the dispersity β is 95% or more, or Particles Particles are mainly present in the air in the form of single particles. The core particles of the particle powder Chishin particle powder particle-gas mixture,
In the coating start region of the coating space in a highly dispersed state where the dispersity β is 97% or more, or (5) the core particle powder particles having an average particle diameter exceeding 800 μm in the volume standard frequency distribution are mainly single particles. Particles of highly dispersed core particles powder existing in the air in the state
The particles of this core particle powder in the gas mixture have a dispersity β of 9
It has been found that the coating must start in the coating start region of the coating space in the highly dispersed state, which is above 9%.

【0010】より詳しくは、(I)高圧型窒化硼素の粒
子が主に単一粒子状態で気中に存在する高分散芯粒子粉
体の粒子・気体混合物の状態の芯粒子粉体の粒子は、滞
留させなくとも、時間の経過と共に主に乱流凝集等によ
り再凝集する傾向にあり、一旦再凝集すると、前記分散
処理前の凝集体と同じく特別に高い分散性能を有する分
散処理手段により分散させなければこの再凝集の状態を
崩して高度に分散、即ち一個一個の単位の単一粒子状態
へ再分散させることが困難であり、このため、(1)体
積基準頻度分布で平均粒子径が10μmを越え、20μ
m以下の芯粒子粉体の粒子が主に単一粒子状態で気中に
存在する高分散芯粒子粉体の粒子・気体混合物中のこの
芯粒子粉体の粒子を、分散度βが80%以上である高い
分散状態でか、又は(2)体積基準頻度分布で平均粒子
径が20μmを越え、50μm以下の芯粒子粉体の粒子
が主に単一粒子状態で気中に存在する高分散芯粒子粉体
の粒子・気体混合物中のこの芯粒子粉体の粒子を、分散
度βが90%以上である高い分散状態でか、又は(3)
体積基準頻度分布で平均粒子径が50μmを越え、30
0μm以下の芯粒子粉体の粒子が主に単一粒子状態で気
中に存在する高分散芯粒子粉体の粒子・気体混合物中の
この芯粒子粉体の粒子を、分散度βが95%以上である
高い分散状態でか、又は(4)体積基準頻度分布で平均
粒子径が300μmを越え、800μm以下の芯粒子粉
体の粒子が主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物中のこの芯粒子粉体の粒子
を、分散度βが97%以上である高い分散状態の被覆空
間の被覆開始領域でか、又は(5)体積基準頻度分布で
平均粒子径が800μmを越える芯粒子粉体の粒子が主
に単一粒子状態で気中に存在する高分散芯粒子粉体の粒
子・気体混合物中のこの芯粒子粉体の粒子を、分散度β
が99%以上である高い分散状態で被覆空間の被覆開始
領域に導く必要があること、またそのためには、(II)
この芯粒子粉体の粒子からなる凝集体を崩し、且つ粒子
径に応じた非常に高い分散度で気中に分散させる、―以
上からなる特別に高い分散性能を有する分散処理手段群
が必要であることを見い出して本発明に至った。
More specifically, (I) the particles of the high-dispersion type boron nitride are mainly present in the air in the form of a single particle. However, even if it does not stay, it tends to reaggregate mainly due to turbulent agglomeration with the passage of time, and once reaggregated, it is dispersed by a dispersion treatment means having a particularly high dispersibility like the aggregate before the dispersion treatment. If this is not done, it is difficult to break this re-aggregation state and disperse it to a high degree, that is, to re-disperse it into a single particle state of each unit. Therefore, (1) in the volume standard frequency distribution, the average particle diameter is 20μ over 10μm
Particles of core particle powder having a particle diameter of m or less are mainly present in the air in the form of a single particle. In the high dispersion state as described above, or (2) a high dispersion in which particles of the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume standard frequency distribution are mainly present in the air in a single particle state. The particles of this core particle powder in the particle / gas mixture of the core particle powder are in a highly dispersed state with a dispersity β of 90% or more, or (3)
The volume-based frequency distribution has an average particle size of more than 50 μm
Particles of core particle powder having a particle size of 0 μm or less are mainly present in the air in a single particle state. Particles of highly dispersed core particle powder / particles of this core particle powder in a gas mixture have a dispersity β of 95%. In the high dispersion state as described above, or (4) the high dispersion in which particles of the core particle powder having an average particle size of more than 300 μm and 800 μm or less in the volume standard frequency distribution are mainly present in the air in a single particle state. Particles of this core particle powder in the particle / gas mixture of the core particle powder are either in the coating start region of the coating space in a highly dispersed state where the dispersity β is 97% or more, or (5) volume standard frequency distribution The particles of the core particle powder having an average particle size of more than 800 μm mainly exist in the air in the form of a single particle. The particles of the highly dispersed core particle powder and the particles of the core particle powder in the gas mixture are dispersed. Degree β
It is necessary to lead to the coating start region of the coating space in a highly dispersed state in which the ratio is 99% or more, and (II)
Disintegrating the agglomerates composed of the particles of the core particle powder and dispersing them in the air at a very high dispersity according to the particle diameter, -a dispersion treatment means group having the above particularly high dispersion performance is required. The present invention was discovered by finding out that there is.

【0011】すなわち、本発明は、高圧型窒化硼素の準
微粒子からなる芯粒子粉体を被覆空間に投入し、気相を
経て生成する被覆形成物質前駆体及び/又は気相状態の
被覆形成物質前駆体を、当該芯粒子粉体の粒子に接触及
び/又は衝突させて、この芯粒子粉体の粒子の表面を被
覆形成物質で被覆して得られる被覆高圧型窒化硼素準微
粒子であって、 (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) この芯粒子粉体の粒子を気中に分散させる分散
手段、及び(b) 芯粒子粉体の粒子を気中に分散させ
た芯粒子粉体の粒子と気体との混合物において低分散芯
粒子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒
子状態で気中に存在する高分散芯粒子粉体の粒子・気体
混合物を選択する高分散芯粒子粉体の粒子・気体混合物
選択手段とこの高分散芯粒子粉体の粒子・気体混合物選
択手段により選択分離された低分散芯粒子粉体部分を準
微粒子高分散処理手段群中の分散手段の内の最終分散手
段及び/又は最終分散手段以前の処理手段に搬送するフ
ィードバック手段とを備えた高分散芯粒子粉体の粒子・
気体混合物選択手段、から選ばれる準微粒子高分散処理
手段群により、体積基準頻度分布で平均粒子径が10μ
mを越える準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子を、気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とする分散工程、 (B) 分散工程で分散させた芯粒子粉体の粒子を、そ
の平均粒子径が10μmを越え20μm以下のときには
分散度βが80%以上、20μmを越え50μm以下の
ときには分散度βが90%以上、50μmを越え300
μm以下のときには分散度βが95%以上、300μm
を越え800μm以下のときは分散度βが97%以上、
そして800μmを越えるときは分散度βが99%以上
の分散状態で、被覆空間の被覆開始領域において被覆形
成物質前駆体と接触及び/又は衝突させて被覆を開始す
る被覆工程、からなる被覆手段によって調製された、被
覆高圧型窒化硼素準微粒子に関する。
That is, according to the present invention, a core-forming powder composed of quasi-fine particles of high-pressure boron nitride is charged into a coating space, and a precursor for forming a coating and / or a coating-forming substance in a vapor phase is produced through a gas phase. A coated high-pressure type boron nitride quasi-fine particle obtained by contacting and / or colliding with a particle of the core particle powder, and coating the surface of the particle of the core particle powder with a coating forming substance, (A) The final processing means of the semi-fine particle high dispersion processing means group is
(A) Dispersing means for dispersing the particles of the core particle powder in the air, and (b) Low dispersion in a mixture of the particles of the core particle powder and the gas in which the particles of the core particle powder are dispersed in the air. Highly dispersed core particle powder particles that separate the core particle powder part and select the particle / gas mixture of highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. The gas dispersion selection means and the particles of the highly dispersed core particle powder, and the low dispersion core particle powder portion selectively separated by the gas mixture selection means are the final dispersion means of the dispersion means in the quasi-fine particle high dispersion treatment means group. And / or feedback means for conveying to the processing means before the final dispersing means, particles of highly dispersed core particle powder,
The average particle diameter is 10 μm in the volume-based frequency distribution by means of the quasi-fine particle high dispersion treatment means group selected from the gas mixture selecting means.
a dispersion step of dispersing particles of the quasi-fine particle core particle powder exceeding m or particles of the core particle powder mainly consisting of quasi-fine particles into the air to form a particle / gas mixture of the highly dispersed core particle powder; ) The particles of the core particle powder dispersed in the dispersion step have a dispersity β of 80% or more when the average particle size is more than 10 μm and 20 μm or less, and a dispersity β of 90% or more when the average particle size is more than 20 μm and 50 μm or less, 300 over 50 μm
When it is less than μm, the dispersity β is 95% or more, 300 μm
When it exceeds 800 μm and the dispersity β is 97% or more,
When it exceeds 800 μm, the coating means comprises a coating step of starting the coating by contacting and / or colliding with the coating material precursor in the coating start region of the coating space in a dispersed state with the dispersity β of 99% or more. The present invention relates to prepared coated high pressure type boron nitride quasi-fine particles.

【0012】また本発明は、前記被覆された高圧型窒化
硼素準微粒子が、被覆された高圧型窒化硼素準微粒子の
被覆形成物質を介して接触状態で集合塊を形成した被覆
された高圧型窒化硼素準微粒子の集合塊を、解砕及び/
又は破砕する被覆された高圧型窒化硼素準微粒子集合塊
の解砕・破砕工程、及び/又は被覆高圧型窒化硼素準微
粒子集合塊と一次粒子単位の被覆された高圧型窒化硼素
準微粒子とを選択分離する選択分離工程を更に経て調製
されたものであることを特徴とする、被覆高圧型窒化硼
素準微粒子に関する。また本発明は、上記した被覆形成
物質で被覆するべき高圧型窒化硼素の準微粒子からなる
芯粒子粉体の粒子又は主に同準微粒子からなる芯粒子粉
体の粒子が、溶融塩浴を用いる浸漬法により、浸漬法に
由来する被覆物質で一層以上被覆された準微粒子芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
である被覆高圧型窒化硼素準微粒子に関する。
The present invention also provides a coated high-pressure type nitriding material, wherein the coated high-pressure type boron nitride quasi-fine particles form an agglomerate in a contact state via a coating material of the coated high-pressure type boron nitride quasi-fine particles. Crush and / or break up aggregates of boron quasi-fine particles
Alternatively, a step of crushing and crushing the coated high-pressure type boron nitride quasi-fine particle aggregates to be crushed, and / or selecting the coated high-pressure type boron nitride quasi-fine particle aggregates and the high-pressure type boron nitride quasi-fine particles coated with primary particle units The present invention relates to coated high-pressure boron nitride quasi-fine particles, characterized by being prepared through a selective separation step of separating. Further, the present invention uses a molten salt bath in which particles of core particle powder composed of quasi-fine particles of high pressure type boron nitride to be coated with the above-mentioned coating forming substance or particles of core particle powder mainly composed of quasi-fine particles are used. The present invention relates to high pressure type boron nitride quasi-fine particles which are particles of a quasi-fine particle core particle powder further coated with a coating material derived from the immersion method by a dipping method or particles of a core particle powder mainly composed of quasi-fine particles.

【0013】更に本発明は、被覆された高圧型窒化硼素
準微粒子が、体積基準頻度分布で平均粒子径が10μm
を越え20μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを80%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が20μmを越え50μm以下の芯粒子粉体を、準微
粒子高分散処理手段群の最終処理により気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とし、その芯粒
子粉体の粒子の分散度βを90%以上とする分散性能を
有する準微粒子高分散処理手段群、又は体積基準頻度分
布で平均粒子径が50μmを越え300μm以下の芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを95%以上と
する分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が300μmを越え80
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを97%以上とする分散性能を有する準微粒子高分散
処理手段群、又は体積基準頻度分布で平均粒子径が80
0μmを越える芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを99%以上とする分散性能を有する準微粒子高分
散処理手段群による分散工程を設け、準微粒子高分散処
理手段群により分散させた高分散芯粒子粉体の粒子・気
体混合物を被覆工程に直接放出するか、又は分散工程と
被覆工程の間に、準微粒子高分散処理手段群により分散
させた高分散芯粒子粉体の粒子・気体混合物を放出する
放出部から、搬送に不可避の、中空部材、中空を形成せ
しめる部材からなる中間部材、及びパイプから選択され
る一種類又はそれ以上の部材を介して搬送するか、及び
/又は、前記分散性能で気中に分散させた高分散芯粒子
粉体の粒子・気体混合物中の粒子の気中分散状態を維持
する気中分散維持手段、前記分散性能で気中に分散させ
た高分散芯粒子粉体の粒子・気体混合物中の粒子の気中
分散状態を高める気中分散促進手段、芯粒子粉体の粒子
と気体との混合物の内の、低分散芯粒子粉体部分を分離
し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物を選択する高
分散芯粒子粉体の粒子・気体混合物選択手段の一種類又
はそれ以上を介して搬送して調製されたものである被覆
高圧型窒化硼素準微粒子に関する。
Further, according to the present invention, the coated high-pressure type boron nitride quasi-fine particles have a volume-based frequency distribution and an average particle size of 10 μm.
The core particle powder having a diameter of more than 20 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion processing means group having a dispersion performance of making the degree β 80% or more, or the core particle powder having an average particle diameter of more than 20 μm and 50 μm or less in the volume-based frequency distribution, A group of quasi-fine particle high-dispersion treatment means having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is obtained by dispersing in the air by the final treatment and the degree of dispersion β of the particles of the core particle powder is 90% or more. , Or a particle / gas of a highly dispersed core particle powder, in which a core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a mixture, its core particles powder Beyond a quasi particle group of means for high dispersion treatment, or an average particle diameter of 300μm on a volume basis the frequency distribution having a dispersing performance that the dispersity β of the particles and 95% 80
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 97% or more of quasi-fine particle high-dispersion treatment means having a dispersion performance, or a volume-based frequency distribution with an average particle diameter of 80
The core particle powder exceeding 0 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder A dispersion process using a group of quasi-particulate high-dispersion treatment means having a dispersion performance of 99% or more is provided, and the particle-gas mixture of the highly-dispersed core particle powder dispersed by the quasi-fine particle high-dispersion treatment means group is directly applied to the coating step. A hollow member unavoidable for transportation from a discharging part that discharges or discharges a particle / gas mixture of highly dispersed core particle powder dispersed by a quasi-fine particle high dispersion treatment means group between the dispersing step and the coating step. , A high-dispersion core particle powder which is conveyed through one or more members selected from an intermediate member made of a member that forms a hollow and a pipe, and / or dispersed in the air with the above-mentioned dispersion performance. Body particle / gas mixture In-air dispersion maintaining means for maintaining the air-dispersed state of the particles in the compound, enhancing the air-dispersed state of the particles in the particles / gas mixture of the highly dispersed core particle powder dispersed in the air with the above-mentioned dispersion performance Air dispersion promoting means, separating low-dispersion core particle powder portion of a mixture of core particle powder particles and gas, and the core particle powder particles mainly exist in the air in a single particle state. High-dispersion core particle powder of high-dispersion core particle powder / gas mixture for selecting high-dispersion core particle powder particle / gas mixture selection prepared by transporting through one or more means It relates to boron quasi-fine particles.

【0014】更に本発明は、被覆された高圧型窒化硼素
準微粒子が、体積基準頻度分布で平均粒子径が10μm
を越え20μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを80%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が20μmを越え50μm以下の芯粒子粉体を、準微
粒子高分散処理手段群の最終処理により気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とし、その芯粒
子粉体の粒子の分散度βを90%以上とする分散性能を
有する準微粒子高分散処理手段群、又は体積基準頻度分
布で平均粒子径が50μmを越え300μm以下の芯粒
子粉体を、準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを95%以上と
する分散性能を有する準微粒子高分散処理手段群、又は
体積基準頻度分布で平均粒子径が300μmを越え80
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを97%以上とする分散性能を有する準微粒子高分散
処理手段群、又は体積基準頻度分布で平均粒子径が80
0μmを越える芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを99%以上とする分散性能を有する準微粒子高分
散処理手段群による分散工程の一部以上と前記被覆工程
の一部以上とを、空間を一部以上共有して行うことによ
り調製されたものである被覆高圧型窒化硼素準微粒子に
関する。
Further, according to the present invention, the coated high-pressure type boron nitride quasi-fine particles have a volume-based frequency distribution and an average particle size of 10 μm.
The core particle powder having a diameter of more than 20 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion processing means group having a dispersion performance of making the degree β 80% or more, or the core particle powder having an average particle diameter of more than 20 μm and 50 μm or less in the volume-based frequency distribution, A group of quasi-fine particle high-dispersion treatment means having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is obtained by dispersing in the air by the final treatment and the degree of dispersion β of the particles of the core particle powder is 90% or more. , Or a particle / gas of a highly dispersed core particle powder, in which a core particle powder having an average particle diameter of more than 50 μm and not more than 300 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a mixture, its core particles powder Beyond a quasi particle group of means for high dispersion treatment, or an average particle diameter of 300μm on a volume basis the frequency distribution having a dispersing performance that the dispersity β of the particles and 95% 80
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 97% or more of quasi-fine particle high-dispersion treatment means having a dispersion performance, or a volume-based frequency distribution with an average particle diameter of 80
The core particle powder exceeding 0 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Prepared by performing a part or more of the dispersion step and a part or more of the coating step by the quasi-fine particle high dispersion treatment means group having a dispersion performance of 99% or more with a part or more of the space shared. The present invention relates to coated high pressure type boron nitride quasi-fine particles.

【0015】更に本発明は、被覆された高圧型窒化硼素
準微粒子が、体積基準頻度分布で平均粒子径が、10μ
mを越え20μm以下の芯粒子粉体を、準微粒子高分散
処理手段群の最終処理により気中に分散させて高分散芯
粒子粉体の粒子・気体混合物とし、その芯粒子粉体の粒
子の分散度βを80%以上とする空間領域、体積基準頻
度分布で平均粒子径が、20μmを越え50μm以下の
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを90%以
上とする空間領域、体積基準頻度分布で平均粒子径が、
50μmを越え300μm以下の芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを95%以上とする空間領域、体
積基準頻度分布で平均粒子径が、300μmを越え80
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを97%以上とする空間領域、体積基準頻度分布で平
均粒子径が、800μmを越える芯粒子粉体を、準微粒
子高分散処理手段群の最終処理により気中に分散させて
高分散芯粒子粉体の粒子・気体混合物とし、その芯粒子
粉体の粒子の分散度βを99%以上とする空間領域の内
の高分散芯粒子粉体の粒子・気体混合物中の芯粒子粉体
の粒子の全ての粒子が通過する面を含む空間領域に、被
覆空間の被覆開始領域を位置せしめるか、又は体積基準
頻度分布で平均粒子径が、10μmを越え20μm以下
の芯粒子粉体を、準微粒子高分散処理手段群の最終処理
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とし、その芯粒子粉体の粒子の分散度βを80%
以上とする空間領域、体積基準頻度分布で平均粒子径が
20μmを越え50μm以下の芯粒子粉体を、準微粒子
高分散処理手段群の最終処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、芯粒子粉体の
粒子の分散度βを90%以上とする空間領域、体積基準
頻度分布で平均粒子径が、50μmを越え300μm以
下の芯粒子粉体を、準微粒子高分散処理手段群の最終処
理により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とし、その芯粒子粉体の粒子の分散度βを95
%以上とする空間領域、体積基準頻度分布で平均粒子径
が、300μmを越え800μm以下の芯粒子粉体を、
準微粒子高分散処理手段群の最終処理により気中に分散
させて高分散芯粒子粉体の粒子・気体混合物とし、芯粒
子粉体の粒子の分散度βを97%以上とする空間領域、
体積基準頻度分布で平均粒子径が、800μmを越える
芯粒子粉体を準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを99%以上
とする空間領域の内の、回収手段の回収部に回収する全
ての粒子が通過する面を含む空間領域に、被覆空間の被
覆開始領域を位置せしめて被覆したものである被覆高圧
型窒化硼素準微粒子に関する。
Further, according to the present invention, the coated high-pressure type boron nitride quasi-fine particles have a volume-based frequency distribution and an average particle size of 10 μm.
A core particle powder having a particle size of more than 20 μm and not more than m is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. A core particle powder having a spatial region with a dispersity β of 80% or more and a volume-based frequency distribution and an average particle size of more than 20 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a particle / gas mixture of highly-dispersed core particle powder, the average particle size in the spatial region where the dispersity β of the particles of the core particle powder is 90% or more, and the volume-based frequency distribution,
A core particle powder having a particle size of more than 50 μm and not more than 300 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Spatial region where the dispersity β is 95% or more, and the average particle size in the volume standard frequency distribution is more than 300 μm and 80
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of core particles having an average particle size of more than 800 μm in the spatial region and volume-based frequency distribution of 97% or more are dispersed in the air by the final treatment of the quasi-fine particle high-dispersion processing means group to obtain high-dispersion core particle powder. The particle / gas mixture of the body, and the degree of dispersion β of the particle of the core particle powder is 99% or more of the highly dispersed core particle powder in the space region / the particle of the core particle powder in the gas mixture. The coating start region of the coating space is located in the space region including the surface through which all particles pass, or the core particle powder having an average particle size of more than 10 μm and 20 μm or less in the volume standard frequency distribution is added to the quasi fine particle height. Disperse in the air by the final treatment of the dispersion treatment means group A particle-gas mixture highly dispersed core particles powder, the dispersity β of the particles in the powder of core particles 80%
Core particle powder having an average particle size of more than 20 μm and 50 μm or less in the above spatial region and volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion processing means group to obtain highly dispersed core particle powder. In a spatial region in which the degree of dispersion β of the particles of the core particle powder is 90% or more, and the average particle diameter in the volume standard frequency distribution is more than 50 μm and 300 μm or less, quasi-fine particles By the final treatment of the high-dispersion treatment means group, it is dispersed in the air to obtain a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95.
% Core particles having an average particle size of more than 300 μm and 800 μm or less in a spatial region and volume standard frequency distribution,
A space region in which the particles / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group, and the degree of dispersion β of the particles of the core particle powder is 97% or more,
A core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the core thereof. The coating start region of the coating space is located in a space region including a surface through which all the particles to be recovered by the recovery unit of the recovery means pass, within the space region in which the dispersity β of the particles of the particle powder is 99% or more. The present invention relates to coated high pressure type boron nitride quasi-fine particles which are at least coated.

【0016】更にまた本発明は、使用する、芯粒子粉体
の粒子の粒度分布が、平均粒子径をDMとしたとき、体
積基準頻度分布で(〔DM/5,5DM〕,≧90%)で
あることを特徴とする、被覆高圧型窒化硼素準微粒子に
関する。更にまた本発明は、上記の被覆された高圧型窒
化硼素準微粒子又は同粒子を含む混合物を、2000M
Pa以上の圧力および高温において焼結するか、又は上
記請求範囲に記載の被覆された高圧型窒化硼素準微粒子
又は同粒子を含む混合物を2000MPa未満の圧力及
び1850℃を越えない、高圧型窒化硼素が熱力学的に
安定ではないが準安定な圧力・温度の焼結条件において
焼結するか、又は上記請求項に記載の被覆された高圧型
窒化硼素準微粒子と結合材との体積で1〜90:99〜
10の割合の混合物であって、この結合材は2000M
Pa未満の圧力で1850℃を越えない高圧型窒化硼素
粒子が熱力学的に準安定な条件で密度85%以上に焼結
されるものである、上記混合物を2000MPa未満の
圧力及び1850℃を越えない高圧型窒化硼素が熱力学
的に安定ではないが準安定な圧力・温度の焼結条件にお
いて焼結する被覆高圧型窒化硼素準微粒子焼結体の製造
法にも関する。そして本発明は、上に記載の被覆高圧型
窒化硼素準微粒子焼結体の製造法により製造することを
特徴とする、被覆高圧型窒化硼素準微粒子焼結体に関す
るものである。
[0016] Furthermore, the present invention uses, the particle size distribution of the particles in the powder of core particles is, when the average particle diameter is D M, by volume frequency distribution ([D M / 5,5D M], ≧ 90%). Furthermore, the present invention provides the above coated high pressure type boron nitride quasi fine particles or a mixture containing the same at 2000 M
High-pressure boron nitride, which is sintered at a pressure of Pa or higher and at a high temperature, or the coated high-pressure boron nitride quasi-fine particles or a mixture containing the particles described in the above claims is pressurized at a pressure of less than 2000 MPa and does not exceed 1850 ° C. Is not thermodynamically stable, but sinters under a sintering condition of metastable pressure and temperature, or the volume of the coated high-pressure boron nitride quasi-fine particles and the binder is 1 to 1 90: 99 ~
A mixture of 10 parts, the binder is 2000M
High-pressure type boron nitride particles which do not exceed 1850 ° C. at a pressure of less than Pa are sintered to a density of 85% or more under thermodynamically metastable conditions. The above mixture is subjected to a pressure of less than 2000 MPa and a temperature of more than 1850 ° C. The present invention also relates to a method for producing a coated high-pressure type boron nitride quasi-fine particle sintered body which is not thermodynamically stable but is sintered under a metastable pressure / temperature sintering condition. The present invention also relates to a coated high-pressure type boron nitride quasi-fine particle sintered body produced by the method for producing a coated high-pressure type boron nitride quasi-fine particle sintered body described above.

【0017】而して、本発明によれば、高圧型窒化硼素
の準微粒子からなる芯粒子粉体の粒子又は主に同準微粒
子からなる芯粒子粉体の粒子であって、その表面が被覆
形成物質で被覆されたものまたは同粒子を含む混合物
を、2000MPa以上の圧力および高温度において焼
結するか、またはこれら粒子又は粒子を含む混合物を、
2000MPa未満の圧力及び1850℃を越えない、
高圧型窒化硼素が熱力学的に安定ではないが準安定な圧
力・温度の焼結条件において焼結するか、又はこの被覆
された高圧型窒化硼素準微粒子と結合材との体積で1〜
90:99〜10の割合の混合物であって、この結合材
は2000MPa未満の圧力で1850℃を越えない高
圧型窒化硼素粒子が熱力学的に準安定な条件で密度85
%以上に焼結されるものである、上記混合物を2000
MPa未満の圧力及び1850℃を越えない高圧型窒化
硼素が熱力学的に安定ではないが準安定な圧力・温度の
焼結条件において焼結して高圧型窒化硼素粒子の焼結体
を製造するに際して、上記した表面が被覆形成物質で被
覆された高圧型窒化硼素準微粒子として、気相法により
気相を経て生成する被覆形成物質前駆体及び/又は気相
状態の被覆形成物質前駆体と、準微粒子高分散処理手段
群の最終処理手段により気中に分散させた準微粒子から
なる高分散芯粒子粉体の粒子・気体混合物とを、被覆空
間の被覆開始領域で、高分散芯粒子粉体の粒子・気体混
合物中の芯粒子粉体の粒子の分散度を準微粒子の粒径に
応じて上記の値とした分散状態で合流させ、接触及び/
又は衝突させて高圧型窒化硼素準微粒子の表面を被覆形
成物質で被覆したものを用いることにより、これまでに
得られなかった高圧型窒化硼素の粒子表面の未焼結部の
ない、均一で、緻密で且つ強固に焼結された、高度に制
御された微組織を有する高性能な高圧型窒化硼素焼結体
を得ることができた。そして、上記した被覆芯粒子の調
製に際して、被覆形成物質前駆体は、原子、分子、イオ
ン、クラスター、原子クラスター、分子クラスター、ク
ラスターイオン等からなる気相状態の、或いは気相を経
て生成したばかりのもので、当該高分散状態の高圧型窒
化硼素準微粒子と接触及び/又は衝突を始めることによ
り、一次粒子状態の個々の芯粒子の表面に被覆形成物質
は強固に結合し、その結果、当該芯粒子粉体の表面を被
覆形成物質により単一粒子単位で被覆を施した被覆され
た高圧型窒化硼素準微粒子が製造できるのである。
Thus, according to the present invention, particles of core particle powder composed of high-pressure type boron nitride quasi-fine particles or particles of core particle powder mainly composed of quasi-fine particles, the surface of which is coated. The mixture coated with the forming material or a mixture containing the same particles is sintered at a pressure of 2000 MPa or higher and a high temperature, or the particles or a mixture containing the particles is
Pressure less than 2000 MPa and not exceeding 1850 ° C.,
Although the high-pressure type boron nitride is not thermodynamically stable, it is sintered under sintering conditions of metastable pressure and temperature, or the volume of the coated high-pressure type boron nitride quasi-fine particles and the binder is 1 to 1.
This binder is a mixture in the ratio of 90:99 to 10, and the binder has a density of 85 under the condition that the high pressure type boron nitride particles having a pressure of less than 2000 MPa and not exceeding 1850 ° C. are thermodynamically metastable.
% Of the above mixture, which is to be sintered to 2000% or more.
A high-pressure type boron nitride having a pressure of less than MPa and a temperature of not more than 1850 ° C. is not thermodynamically stable, but is sintered under a metastable pressure / temperature sintering condition to produce a sintered body of high-pressure type boron nitride particles. At that time, as the high-pressure type boron nitride quasi-fine particles whose surface is coated with a coating-forming substance, a coating-forming substance precursor and / or a vapor-forming coating-forming substance precursor produced through a gas phase by a gas phase method, The particle / gas mixture of the highly dispersed core particle powder consisting of the quasi-fine particles dispersed in the air by the final treatment means of the quasi-fine particle high dispersion treatment means group, in the coating start region of the coating space, the highly dispersed core particle powder Of the core particle powder in the particle / gas mixture of the above, the degree of dispersion of the particles is set to the above value according to the particle size of the quasi-fine particles, and the particles are joined and contacted and /
Or, by using a high-pressure type boron nitride quasi-fine particle surface coated with a coating forming substance by collision, there is no unsintered part of the high-pressure type boron nitride particle surface, which has not been obtained so far, and is uniform. It was possible to obtain a high-performance high-pressure boron nitride sintered body having a highly controlled microstructure that was densely and strongly sintered. Then, in the preparation of the above-mentioned coated core particles, the coating-forming substance precursor is in a gas phase state composed of atoms, molecules, ions, clusters, atomic clusters, molecular clusters, cluster ions, or has just been produced through a gas phase. By initiating contact and / or collision with the high-dispersion high-pressure boron nitride quasi-fine particles in the highly dispersed state, the coating forming substance is strongly bound to the surface of each core particle in the primary particle state, and as a result, It is possible to produce coated high pressure type boron nitride quasi-fine particles in which the surface of the core particle powder is coated with the coating forming substance in single particle units.

【0018】上記したように、本発明において、被覆さ
れた高圧型窒化硼素準微粒子を2000MPa以上の圧
力及び高温度である高圧型窒化硼素が熱力学的に安定で
ある焼結条件において焼結する場合には、この被覆され
た高圧型窒化硼素準微粒子は被覆を押し破って互いに接
触した高圧型窒化硼素粒子同志が直接に結合することに
なり、きわめて均一で緻密な焼結体となるものである。
また本発明において、被覆された高圧型窒化硼素準微粒
子をそれ自体でかまたは結合材と共に2000MPa未
満の圧力及び1850℃を越えない高圧型窒化硼素が熱
力学的に安定ではないが準安定な圧力・温度の焼結条件
において焼結する場合については、高圧型窒化硼素準微
粒子が互いに接触しても粒子同志が直接に結合すること
はないが、被覆高圧型窒化硼素準微粒子同志が直接に接
触している場所以外は必ずこの高圧型窒化硼素準微粒子
の周りには結合材または焼結助材となる被覆物質が存在
し、得られた焼結体は未焼結部分のない均一で、緻密で
且つ強固に焼結された極めて高度に制御された微組織を
有するものとなる。
As described above, in the present invention, the coated high-pressure type boron nitride quasi-fine particles are sintered under the pressure of 2000 MPa or more and at the high temperature under the sintering condition in which the high-pressure type boron nitride is thermodynamically stable. In this case, the coated high-pressure type boron nitride quasi-fine particles are the ones in which the high-pressure type boron nitride particles that are in contact with each other are directly bonded to each other by directly breaking through the coating, resulting in an extremely uniform and dense sintered body. is there.
Further, in the present invention, the coated high-pressure type boron nitride quasi-fine particles may be applied to the high-pressure type boron nitride itself or with a binder at a pressure of less than 2000 MPa and a high-pressure type boron nitride not exceeding 1850 ° C., which is not thermodynamically stable but metastable.・ In the case of sintering under the temperature sintering conditions, even if the high-pressure type boron nitride quasi-fine particles contact each other, the particles do not directly bond with each other, but the coated high-pressure type boron nitride quasi-fine particles directly contact each other. There is always a coating material that serves as a binder or a sintering aid around the high-pressure boron nitride quasi-fine particles except where it is used, and the obtained sintered body is uniform and dense with no unsintered parts. And has a highly sintered microstructure that is strongly sintered.

【0019】以下に本発明を詳細に説明する前に、本明
細書中に使用する用語をはじめに定義することにし、そ
して必要によってその用語の具体的内容を説明し、次い
で被覆形成物質で被覆された高圧型窒化硼素準微粒子の
調製がどのような技術的手段によって行われるものであ
るかの説明を行うことにする。
Before describing the present invention in detail below, the terms used in the present specification will first be defined, and if necessary, the specific contents of the terms will be explained, followed by coating with a coating-forming substance. The technical means for preparing the high pressure type boron nitride quasi-fine particles will be described.

【0020】被覆された高圧型窒化硼素準微粒子 被覆された高圧型窒化硼素準微粒子とは、被覆が施され
た下記する高圧型窒化硼素準微粒子をいう。例えば、具
体的には、被覆形成物質が、超微粒子状、島状、連続質
状、一様な膜状、突起物状等の内の一種以上の形態で芯
粒子として高圧型窒化硼素微粒子に被覆を施した被覆さ
れた準微粒子をいう。
Coated High-Pressure Type Boron Nitride Quasi-Fine Particles The coated high-pressure type boron nitride quasi-fine particles are the following high-pressure type boron nitride quasi-fine particles coated. For example, specifically, the coating material is a high-pressure boron nitride fine particle as a core particle in one or more forms of ultrafine particles, islands, continuous substances, uniform film, protrusions, and the like. It refers to coated quasi-fine particles that have been coated.

【0021】高圧型窒化硼素準微粒子用原料粉体粒子 本発明に係る、高圧型窒化硼素粉体準微粒子であってそ
の表面に、被覆形成物質を被覆した被覆高圧型窒化硼素
準微粒子を製造するための高圧型窒化硼素準微粒子の原
料粉体粒子には、立方晶窒化硼素準微粒子及び/又はウ
ルツ鉱型窒化硼素準微粒子が用いられる。被覆された高
圧型窒化硼素準微粒子用の原料粉体としては、高圧型窒
化硼素準微粒子が、10μmを越える平均粒子径であれ
ば特に制限はない。具体的には、高圧型窒化硼素準微粒
子は体積基準頻度分布で平均粒径DMが10μmを越え
る(〔DM/5,5DM〕,≧90%)分布で表すことの
できる高圧型窒化硼素準微粒子が適用される。しかし、
好ましくは、比較的分布の幅の狭い、体積基準頻度分布
で平均粒径DMが10μmを越える(〔DM/3,3
M〕,≧90%)分布の高圧型窒化硼素準微粒子が選
択可能である。より好適には、例えば篩い分級等により
高圧型窒化硼素準微粒子の粒径が管理された、体積基準
頻度分布で平均粒径DMが10μmを越える(〔DM
2,3DM/2〕,≧90%)分布の高圧型窒化硼素準
微粒子粉体を選択できる。
Raw Material Powder Particles for High-Pressure Boron Nitride Quasi-Fine Particles The high-pressure type boron nitride quasi-fine particles according to the present invention, which are coated high-pressure type boron nitride quasi-fine particles having a surface coated with a coating-forming substance, are produced. For the raw material powder particles of the high-pressure type boron nitride quasi-fine particles, cubic boron nitride quasi-fine particles and / or wurtzite type boron nitride quasi-fine particles are used. The raw material powder for the coated high-pressure type boron nitride quasi-fine particles is not particularly limited as long as the high-pressure type boron nitride quasi-fine particles have an average particle size of more than 10 μm. Specifically, the high-pressure type boron nitride quasi-fine particles can be expressed as a distribution in which the average particle size D M exceeds 10 μm ([D M / 5,5D M ], ≧ 90%) in a volume-based frequency distribution. Boron quasi-fine particles are applied. But,
Preferably, the average particle diameter D M exceeds 10 μm in a volume-based frequency distribution with a relatively narrow distribution ([D M / 3,3
D M ], ≧ 90%) high pressure type boron nitride quasi-fine particles can be selected. More preferably, the particle size of the high-pressure boron nitride quasi-fine particles is controlled by, for example, sieving classification, and the average particle size D M exceeds 10 μm in a volume-based frequency distribution ([D M /
2,3D M / 2], ≧ 90%) high-pressure type boron nitride quasi-fine particle powder can be selected.

【0022】被覆高圧型窒化硼素準微粒子焼結体用の原
料粉体粒子 被覆高圧型窒化硼素準微焼結体用の原料粉体粒子として
は、前記被覆高圧型窒化硼素粒子が適用される。この被
覆高圧型窒化硼素粉体準微粒子、又は被覆高圧型窒化硼
素粉体準微粒子を含む混合物を焼結することにより、被
覆形成物質を押し破って、被覆高圧型窒化硼素粉体準微
粒子の準微粒子同志が直接接して結合している所以外
は、必ず高圧型窒化硼素準微粒子の回りに結合材及び/
又は焼結助剤及び/又は表面改質が存在する。被覆高圧
型窒化硼素準微粒子焼結体中の高圧型窒化硼素の準微粒
子表面の未焼結部分のない、均一で、緻密で、且つ強固
に焼結された、極めて高度に制御された微組織を有する
高性能な被覆高圧型窒化硼素準微粒子焼結体が製造可能
である。高圧型窒化硼素は、グラファイト型相への相転
移を抑止するため、合成時に触媒作用のある物質を使用
した場合は、この物質を可能な限り取り除いたものが好
適である。最も好適な例として、例えば、物理蒸着法
(PVD法)或いは化学蒸着法(CVD法)による、気
相を介して合成される超高純度な立方晶窒化硼素が選択
可能である。薄膜状に合成される場合は、不純物による
汚染に注意しながら、粉砕して使用する。粒状、或いは
粉体状に合成される場合はその侭使用可能である。これ
以外の高純度な例としては、時間をかけて成長させた高
純度な単結晶からなるものが選択可能である。或いは積
極的に不純物を除去してなる立方晶窒化硼素粉体粒子も
選択できる。
Raw Material Powder Particles for Coated High-Pressure Type Boron Nitride Quasi-Fine Sintered Body As the raw material powder particles for the coated high-pressure type boron nitride quasi-fine sintered body, the above-mentioned coated high-pressure type boron nitride particles are applied. By sintering the coated high-pressure type boron nitride powder quasi-fine particles or a mixture containing the coated high-pressure type boron nitride powder quasi-fine particles, the coating forming substance is smashed to obtain the quasi-fine particles of the coated high-pressure type boron nitride powder quasi-fine particles. Except where the fine particles are in direct contact with each other and bonded together, the binder and /
Or there are sintering aids and / or surface modifications. An extremely highly controlled microstructure of a high-pressure type boron nitride quasi-fine particle sinter in a coated high-pressure type boron nitride quasi-fine particle sintered body, which has no unsintered portion and is uniformly, densely and strongly sintered. It is possible to manufacture a high-performance coated high-pressure boron nitride quasi-fine particle sintered body having Since the high-pressure type boron nitride suppresses the phase transition to the graphite type phase, when a substance having a catalytic action is used during the synthesis, it is preferable to remove this substance as much as possible. As the most preferable example, for example, ultra-high purity cubic boron nitride synthesized through a vapor phase by a physical vapor deposition method (PVD method) or a chemical vapor deposition method (CVD method) can be selected. When synthesized into a thin film, crush and use it while paying attention to contamination by impurities. When it is synthesized in the form of granules or powder, it can be used as a mask. As another high-purity example, a high-purity single crystal grown over time can be selected. Alternatively, cubic boron nitride powder particles obtained by actively removing impurities can be selected.

【0023】気相被覆法 気相被覆法とは、被覆形成物質の原料が、分子流、イオ
ン流、プラズマ、ガス、蒸気、エアロゾルの一種以上か
らなる気相状態を少なくとも一度は経て被覆する方法、
又は気相状態の被覆形成物質の原料により被覆する方法
をいう。
Vapor-phase coating method The vapor-phase coating method is a method in which the raw material of the coating-forming material is at least once in a vapor-phase state composed of one or more of molecular flow, ionic flow, plasma, gas, vapor and aerosol. ,
Alternatively, it refers to a method of coating with a raw material of a coating forming substance in a gas phase.

【0024】芯粒子 芯粒子とは、被覆を施す対象物となる粒子をいう。これ
はまた、母材粒子、種粒子或いは被覆される粒子ともい
う。この芯粒子は、高圧型窒化硼素準微粒子、具体例に
は立方晶窒化硼素準微粒子及び/又はウルツ鉱型窒化硼
素準微粒子からなる。
Core Particles Core particles are particles to be coated. This is also referred to as matrix particles, seed particles or coated particles. The core particles are composed of high-pressure boron nitride quasi-fine particles, specifically cubic boron nitride quasi-fine particles and / or wurtzite type boron nitride quasi-fine particles.

【0025】芯粒子粉体 芯粒子粉体とは、芯粒子からなる粉体をいう。芯粒子粉
体の粒子とは、芯粒子粉体を構成する粒子をいう。本発
明で用いる被覆に供する準微粒子芯粒子粉体の粒子又は
主に準微粒子からなる芯粒子粉体の粒子は、平均粒子径
が体積基準頻度分布で10μmを越えるものである。好
ましくは、平均粒子径をDMとしたとき、DMが10μm
を越えて、粒度分布が体積基準頻度分布で(〔DM/5,
5DM〕,≧90%)である。このような比較的分布の
幅の狭い粉体では、平均粒子径で粉体の分散特性又は凝
集特性が特徴付けられ、DMの値に適した条件で微粒子
高分散処理手段群を作動させれば分散できる。平均粒子
径が10μmを越える芯粒子粉体の粒子の粒度分布が、
幅広い分布又は互いに離れた複数のピークを持つ分布の
粉体では、好適には適当な選択分離処理、例えば分級処
理を行ってそれぞれ分級された粉体ごとに、本発明の被
覆処理を施す。これにより、それぞれ分級された粉体ご
とに上記条件の下で、被覆空間の被覆開始領域で分散度
が平均粒子径に応じて分散度βが80%以上、90%以
上、95%以上、97%以上又は99%以上の状態で被
覆が開始され、芯粒子粉体の粒子一つ一つの粒子に被覆
が可能となる。
Core particle powder The core particle powder is a powder composed of core particles. The particles of the core particle powder refer to particles constituting the core particle powder. The particles of the quasi-fine particle core particle powder to be used in the coating used in the present invention or the particles of the core particle powder mainly composed of quasi-fine particles have an average particle diameter of more than 10 μm in volume-based frequency distribution. Preferably, when the average particle diameter is D M , D M is 10 μm
, The particle size distribution is a volume-based frequency distribution ([D M / 5,
5D M ], ≧ 90%). In such a powder having a relatively narrow distribution, the dispersion property or agglomeration property of the powder is characterized by the average particle size, and the fine particle high dispersion treatment means group is operated under the conditions suitable for the value of D M. Can be dispersed. The particle size distribution of the particles of the core particle powder having an average particle size of more than 10 μm is
In the case of a powder having a wide distribution or a distribution having a plurality of peaks separated from each other, a suitable selective separation treatment, for example, classification treatment is preferably performed, and the coating treatment of the present invention is applied to each classified powder. As a result, under the above conditions for each classified powder, the dispersity β in the coating start region of the coating space is 80% or more, 90% or more, 95% or more, 97 depending on the average particle size. % Or 99% or more, the coating is started, and it becomes possible to coat each particle of the core particle powder.

【0026】被覆形成物質 被覆形成物質とは、被覆を施す対象物に被覆を形成する
物質をいう。例えば、具体的には、超微粒子状、島状、
連続質状、一様な膜状、突起物状等の一種以上からなる
形態で芯粒子粉体の粒子に被覆を形成する物質をいう。
特に、被覆形成物質の形態が超微粒子状の場合、超微粒
子の粒子径は、例えば0.005μm〜0.5μmの範囲
のものをいう。この被覆形成物質は、被覆形成物質自体
がそのままで被覆を形成するか、又は被覆形成物質と芯
粒子の高圧型窒化硼素とが反応して及び/又は高圧型窒
化硼素準微粒子に固溶して及び/又は2種類以上の被覆
形成物質同志が反応して及び/又は合金化して及び/又
は固溶して被覆を形成するための目的とする無機化合
物、合金、金属間化合物等の一種類又はそれ以上を生成
し、被覆された高圧型窒化硼素準微粒子の焼結を促進す
る焼結助剤及び/又は結合材となる単体物質及び/又は
高圧型窒化硼素準微粒子の表面改質剤となる単体物質及
び/又は化合物から選択される。
Coating-forming substance The coating-forming substance is a substance that forms a coating on an object to be coated. For example, specifically, ultrafine particles, islands,
It refers to a substance that forms a coating on the particles of the core particle powder in the form of one or more types such as a continuous substance, a uniform film, and protrusions.
Particularly, when the form of the coating forming material is ultrafine particles, the particle diameter of the ultrafine particles is, for example, in the range of 0.005 μm to 0.5 μm. This coating forming substance forms a coating as it is, or the coating forming substance reacts with the high-pressure type boron nitride of the core particles and / or forms a solid solution with the high-pressure type boron nitride quasi-fine particles. And / or one kind of an inorganic compound, an alloy, an intermetallic compound or the like which is a target for reacting and / or alloying and / or solid-solving two or more kinds of coating forming substances to form a coating It becomes a sintering aid that accelerates the sintering of the coated high pressure type boron nitride quasi fine particles and / or a simple substance that serves as a binder and / or a surface modifier of the high pressure type boron nitride quasi fine particles. It is selected from simple substances and / or compounds.

【0027】直接高圧型窒化硼素準微粒子に被覆する被
覆形成物質は、高圧型窒化硼素をグラファイト型相に相
転移を促進しない被覆形成物質が選択される。この高圧
型窒化硼素準微粒子粒界を制御する表面改質剤としても
被覆形成物質が選択可能である。必要に応じて、例え
ば、高圧型窒化硼素準微粒子と当該焼結助剤及び/又は
結合材との化学結合性を高めたり、又は個々の高圧型窒
化硼素準微粒子を任意の物質から隔離し、これにより、
高圧型窒化硼素のグラファイト型相への相転移を抑止し
たり或いは高圧型窒化硼素と任意の物質との反応を抑止
したりすることができる。これにより、焼結助剤及び/
又は結合材としての被覆形成物質の選択の幅が飛躍的に
大きく広がり好適である。
As the coating material for directly coating the high pressure type boron nitride quasi fine particles, a coating material which does not promote the phase transition of the high pressure type boron nitride to the graphite type phase is selected. A coating forming substance can be selected as a surface modifier for controlling the grain boundaries of the high-pressure boron nitride quasi-fine particles. If necessary, for example, to enhance the chemical bond between the high-pressure type boron nitride quasi-fine particles and the sintering aid and / or the binder, or to separate the individual high-pressure type boron nitride quasi-fine particles from any substance, This allows
It is possible to suppress the phase transition of the high pressure type boron nitride to the graphite type phase or to suppress the reaction between the high pressure type boron nitride and an arbitrary substance. Thereby, the sintering aid and / or
Alternatively, the range of selection of the coating forming material as the binder is greatly expanded and suitable.

【0028】これらの被覆形成物質は、周期律表1a、
2a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、5b、6b、7b、8族の金属、半導体、半
金属、希土類金属、非金属、及びその酸化物、窒化物、
炭化物、酸窒化物、酸炭化物、炭窒化物、酸炭窒化物、
硼化物、珪化物の一種類又はそれ以上、例えばAl、
B、Si、Fe、Ni、Co、Ti、Nb、V、Zr、
Hf、Ta、W、Re、Cr、Cu、Mo、Y、La、
TiAl、Ti3Al、TiAl3、TiNi、NiA
l、Ni3Al、SiC、TiC、ZrC、B4C、W
C、W2C、HfC、VC、TaC、Ta2C、NbC、
Mo2C、Cr32、Si34、TiN、ZrN、Si2
2O、AlN、HfN、VxN(x=1〜3)、Nb
N、TaN、Ta2N、TiB、TiB2、ZrB2、V
B、V32、VB2、NbB、NbB2、TaB、TaB
2、MoB、MoB2、MoB4、Mo2B、WB、W
2B、W25、LaB6、B132、MoSi2、BP、A
23、ZrO2、MgAl24(スピネル)、Al2
iO5(ムライト)の一種類又はそれ以上を含む物質で
あることができる。この被覆された高圧型窒化硼素準微
粒子表面を被覆する被覆形成物質の被覆による添加量
は、特に制限はないが、好適には被覆高圧型窒化硼準微
粒子焼結体を緻密化可能な程度の任意の量が選択され
る。
These coating-forming substances are listed in Periodic Table 1a,
2a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
b, 4b, 5b, 6b, 7b, group 8 metals, semiconductors, semimetals, rare earth metals, nonmetals, and oxides, nitrides thereof,
Carbide, oxynitride, oxycarbide, carbonitride, oxycarbonitride,
One or more of boride and silicide, such as Al,
B, Si, Fe, Ni, Co, Ti, Nb, V, Zr,
Hf, Ta, W, Re, Cr, Cu, Mo, Y, La,
TiAl, Ti 3 Al, TiAl 3 , TiNi, NiA
l, Ni 3 Al, SiC, TiC, ZrC, B 4 C, W
C, W 2 C, HfC, VC, TaC, Ta 2 C, NbC,
Mo 2 C, Cr 3 C 2 , Si 3 N 4 , TiN, ZrN, Si 2
N 2 O, AlN, HfN, V x N (x = 1 to 3), Nb
N, TaN, Ta 2 N, TiB, TiB 2 , ZrB 2 , V
B, V 3 B 2 , VB 2 , NbB, NbB 2 , TaB, TaB
2 , MoB, MoB 2 , MoB 4 , Mo 2 B, WB, W
2 B, W 2 B 5 , LaB 6 , B 13 P 2 , MoSi 2 , BP, A
l 2 O 3 , ZrO 2 , MgAl 2 O 4 (spinel), Al 2 S
It can be a substance containing one or more of iO 5 (mullite). The coating amount of the coating forming substance that coats the surface of the coated high-pressure type boron nitride quasi-fine particles is not particularly limited, but is preferably such that the coated high-pressure type boron nitride quasi-fine particle sintered body can be densified. Any amount is selected.

【0029】均一な被覆 一様な膜状の被覆形成物質の場合には、単一粒子におい
て被覆膜の厚さがいたるところで均一であることをい
う。被覆形成物質が超微粒子状、島状又は突起物状の場
合には、超微粒子、島状又は突起物状の被覆形成物質が
均一な分布で被覆することをいう。被覆形成物質の生成
過程で、避けられない不均一さは、均一の範疇に含まれ
るものである。
Uniform coating In the case of a uniform film-forming material, it means that the thickness of the coating film is uniform every single particle. When the coating forming substance is in the form of ultrafine particles, islands or protrusions, it means that the coating forming substance in the form of ultrafine particles, islands or protrusions is coated in a uniform distribution. Inevitable inhomogeneities in the process of producing coating-forming substances are included in the category of uniformity.

【0030】被覆空間に投入の定義 被覆空間に投入とは、例えば、自由落下等の落下によっ
て芯粒子粉体を被覆空間に導入することをいう。搬送ガ
スにより投入する場合には、芯粒子粉体を芯粒子粉体の
粒子・気体混合物の流れの方向に乗せて導入したり、気
体に乗せて流れの方向へ、或いは気体に乗り方向が変え
られて導入することをいう。または、搬送ガスの作用を
受けて導入することをもいう。例えば、搬送ガスの波動
現象、具体的には非線系波動によって導入することをも
いう。或いは、ガス中の音波、超音波、磁場、電子線等
によって被覆空間に導入することをもいう。また、外
場、例えば電場、磁場、電子線等により導入することを
もいう。具体的には、電場、磁場、電子線等により粉体
粒子を帯電させ、または帯磁させ引力又は斥力により被
覆空間に導入することをもいう。また、ガスの背圧や減
圧によって吸い込まれ、導入することも含む。
Definition of charging into the coating space The charging into the coating space means, for example, introducing the core particle powder into the coating space by falling such as free fall. In the case of charging with carrier gas, the core particle powder is introduced by carrying it in the flow direction of the particle / gas mixture of the core particle powder, or by carrying it on the gas in the flow direction, or by changing the riding direction of the gas. It means being introduced. Alternatively, it also means that the gas is introduced under the action of the carrier gas. For example, it also refers to introduction by a wave phenomenon of carrier gas, specifically, a non-linear wave. Alternatively, it also means introducing into the coating space by a sound wave in a gas, an ultrasonic wave, a magnetic field, an electron beam, or the like. It also means introduction by an external field such as an electric field, a magnetic field, or an electron beam. Specifically, it also means that the powder particles are charged or magnetized by an electric field, a magnetic field, an electron beam or the like and introduced into the coating space by an attractive force or a repulsive force. It also includes the introduction and introduction of gas by back pressure or pressure reduction.

【0031】被覆空間 被覆空間とは、被覆形成物質の原料から気相を経て生成
する被覆形成物質前駆体及び/又は気相状態の被覆形成
物質前駆体と芯粒子粉体の粒子が接触及び/又は衝突す
る空間をいう。あるいは、芯粒子粉体の粒子の表面を被
覆形成物質で被覆する空間領域をいう。
Coating Space In the coating space, the particles of the core-particle powder contact and / or the precursor of the coating-forming substance produced from the raw material of the coating-forming substance through the gas phase and / or the precursor of the coating-forming substance in the gas phase Or, it means the space where it collides. Alternatively, it refers to a space region in which the surface of the particles of the core particle powder is coated with the coating forming substance.

【0032】被覆室 被覆室とは、被覆空間を一部以上有する室をいう。より
具体的には、被覆室とは、被覆空間を含む仕切られた、
又は略仕切られた(略閉じた、半閉じた)室であって、
被覆空間を一部以上含む室である。
Coating Chamber The coating chamber is a chamber that has at least a part of the coating space. More specifically, the coating chamber is a partition including a coating space,
Or it is a room that is partitioned (generally closed, semi-closed),
This is a room that contains a part or more of the coated space.

【0033】気中 気中とは、真空又は気相状態の空間内をいう。ここで、
本発明において、気相状態とは、分子流、イオン流、プ
ラズマ、ガス、蒸気などの状態をいう。真空とは、技術
的には、減圧状態をさす。どんな減圧下でも、厳密には
ガス、分子、原子、イオン等が含まれる。
In the air, the air refers to the inside of a vacuum or a gas phase space. here,
In the present invention, the gas phase state means a state such as molecular flow, ion flow, plasma, gas and vapor. The vacuum is technically a reduced pressure state. Strictly speaking, gas, molecule, atom, ion, etc. are contained under any reduced pressure.

【0034】被覆形成物質前駆体 被覆形成物質前駆体とは、被覆形成物質の前駆体であ
る。より詳しくは、気相状態の被覆形成物質の原料がそ
のまま、又は被覆形成物質の原料から気相を経て形成及
び/又は合成され、被覆を施す対象物となる粒子である
芯粒子に被覆を形成する直前までの物質をいう。被覆形
成物質前駆体は、被覆形成物質の原料から気相を経て形
成及び/又は合成する限り、状態の制限はない。被覆形
成物質の原料が気相の場合、原料が被覆形成物質前駆体
にもなりうる。被覆形成物質前駆体そのものが気相であ
ってもよい。また、被覆形成物質前駆体が反応性物質の
場合は、反応前でも良く、反応中でもよく、反応後でも
よい。被覆形成物質前駆体の具体例としては、イオン、
原子、分子、クラスター、原子クラスター、分子クラス
ター、クラスターイオン、超微粒子、ガス、蒸気、エア
ロゾル等が挙げられる。
Coating Forming Substance Precursor A coating forming substance precursor is a precursor of a coating forming substance. More specifically, the raw material of the coating-forming substance in the vapor phase is formed as it is, or is formed and / or synthesized from the raw material of the coating-forming substance through the vapor phase to form a coating on the core particles which are particles to be coated. It refers to the substance until just before. The coating substance precursor is not limited in its state as long as it is formed and / or synthesized from the raw material of the coating substance via the gas phase. When the raw material of the coating forming substance is in the gas phase, the raw material can also be a coating forming substance precursor. The coating forming material precursor itself may be in the gas phase. When the coating-forming substance precursor is a reactive substance, it may be before the reaction, during the reaction, or after the reaction. Specific examples of the coating material precursor include ions,
Atoms, molecules, clusters, atomic clusters, molecular clusters, cluster ions, ultrafine particles, gases, vapors, aerosols and the like can be mentioned.

【0035】被覆形成物質の原料 被覆形成物質の原料とは、気相を経て被覆を形成する物
質となる原料物質をいう。被覆形成物質の原料の形態の
具体例として、塊状の固体、粉体粒子、気体、液体等が
挙げられる。
Raw Material of Coating Forming Material The raw material of the coating forming material means a raw material which becomes a material which forms a coating through a gas phase. Specific examples of the form of the raw material of the coating forming substance include lumpy solids, powder particles, gas and liquid.

【0036】分散度β 分散度βとは、粉体分散装置の分散性能を評価する指数
として増田、後藤らが提案(化学工学、第22回、秋季
大会研究発表講演要旨集、P349(1989)参照)
したように、全粒子の重量に対する、見かけの一次粒子
状態の粒子の重量の割合と定義する。ここで、見かけの
一次粒子状態の粒子とは、任意の分散状態の粉体粒子の
質量基準の頻度分布fm2と完全分散されていると粉体粒
子の質量基準の頻度分布fm1のオーバーラップしている
部分の割合を示し、次の式のβで表される。
Dispersity β Dispersity β is proposed by Masuda and Goto as an index for evaluating the dispersion performance of a powder disperser (Chemical Engineering, 22nd Autumn Meeting, Abstracts of Research Presentations, P349 (1989)). reference)
As described above, it is defined as the ratio of the weight of particles in the apparent primary particle state to the weight of all particles. Here, the apparent primary particle state particles, the overlap of the frequency distribution f m1 of mass of the powder particles and the frequency distribution f m2 of mass of the powder particles of any dispersed state is completely dispersed It indicates the ratio of the part that is being expressed and is represented by β in the following equation.

【0037】[0037]

【数1】 上式において、粒子径の単位(μm)は規定されるもの
ではない。上式は質量基準で表した粒度分布を基にして
分散度を評価しているが、本来分散度は体積基準で表し
た粒度分布を基にして評価されるべきものである。しか
し粉体粒子密度が同じである場合には質量基準で表した
粒度分布と体積基準で表した粒度分布は同じになる。そ
こで実用上測定が容易な質量基準の粒度分布を測定し、
それを体積基準の粒度分布として用いている。従って本
来の分散度βは次の式及び図1(a)の斜線部分の面積で
表される。
[Equation 1] In the above equation, the unit of particle diameter (μm) is not specified. In the above formula, the dispersity is evaluated based on the particle size distribution expressed on a mass basis, but the dispersity should be evaluated based on the particle size distribution expressed on a volume basis. However, when the powder particle densities are the same, the particle size distribution expressed by mass and the particle size distribution expressed by volume are the same. Therefore, the particle size distribution based on mass, which is practically easy to measure, is measured,
It is used as a volume-based particle size distribution. Therefore, the original dispersion degree β is expressed by the following equation and the area of the shaded portion in FIG.

【0038】[0038]

【数2】 上記において、粒子径の単位(μm)は規定されるもの
ではない。そして芯粒子粉体の分布及び平均粒子径は、
特に断らない限り基本的には体積基準を用いることとす
る。
[Equation 2] In the above, the unit of particle size (μm) is not specified. And the distribution and average particle size of the core particle powder are
Unless otherwise specified, the volume standard is basically used.

【0039】体積基準頻度分布 体積基準頻度分布とは、粒子径の分布をある粒子径に含
まれる体積割合をもって表したものをいう。
Volume-Based Frequency Distribution The volume-based frequency distribution refers to the distribution of particle diameters expressed by the volume ratio contained in a certain particle diameter.

【0040】(〔D1,D2〕,≧90%)の定義 (〔D1,D2〕,≧90%)分布とは、D1、D2を粒子
径、但しD1<D2とするとき、D1以上でD2以下の粒子
が体積で90%以上含まれる分布を表し、図2(b)のよ
うに斜線の部分の割合が90%以上である粒子からなる
粉体を表す。
[0040] ([D 1, D 2], ≧ 90%) Definition of ([D 1, D 2], ≧ 90%) and the distribution, D 1, the particle diameter D 2, where D 1 <D 2 , A distribution in which 90% or more by volume of particles of D 1 or more and D 2 or less is contained, and a powder composed of particles having a shaded portion ratio of 90% or more as shown in FIG. Represent

【0041】体積基準頻度分布(〔DM/5,5DM〕,
≧90%)の定義 粒度分布が、体積基準頻度分布で(〔DM/5,5
M〕,≧90%)分布とは、DMを体積基準の平均粒子
径とするとき、DMの1/5倍の粒子径以上、DMの5倍
の粒子径以下の粒子を体積で90%以上含む分布を表
す。例えば、平均粒子径DMが5μmで体積基準頻度分
布が(〔DM/5,5DM〕,≧90%)とは、体積基準
の平均粒子径が5μmで、1μm以上且つ25μm以下
の粒子径の粒子が体積で90%以上含まれるような分布
を表す。ここで、体積基準の平均粒子径DMは、
Volume-based frequency distribution ([D M / 5,5D M ],
≧ 90%) The particle size distribution is a volume-based frequency distribution ([D M / 5,5
D M], and is ≧ 90%) distribution, when the average particle diameter on a volume basis of D M, 1/5 times the particle size or less on the D M, volume 5 times under particle size or less particles of D M Represents a distribution containing 90% or more. For example, when the average particle size D M is 5 μm and the volume-based frequency distribution is ([D M / 5,5D M ], ≧ 90%), the volume-based average particle size is 5 μm and particles of 1 μm or more and 25 μm or less. The distribution is such that 90% or more by volume of particles are included. Here, the volume-based average particle diameter D M is

【数3】 又は技術的には、ある粒子径間隔をDi±△Di/2(△
iは区分の幅)内にある粒子群の体積をViとすると、 DM=Σ(vii)/Σvi と表される。
[Equation 3] Alternatively, technically, a certain particle size interval is set to D i ± ΔD i / 2 (Δ
D i is the volume of the particles that are within the width of the segment) and V i, is expressed by D M = Σ (v i D i) / Σv i.

【0042】被覆開始領域 微粒子高分散処理手段群の最終処理後、初めて被覆が開
始される領域を被覆開始領域という。従って、微粒子高
分散処理手段群の最終処理以前では、初めて被覆が開始
される領域でも、ここでいう被覆開始領域ではない。
Coating start region The region where coating is started for the first time after the final treatment of the group of means for high-dispersion fine particles is called the coating start region. Therefore, even before the final treatment of the fine particle high-dispersion treatment means group, the area where the coating is first started is not the coating start area here.

【0043】被覆開始領域での分散度β 本発明では、(1)体積基準頻度分布で平均粒子径が1
0μmを越え20μm以下の芯粒子粉体を準微粒子高分
散処理手段群の最終処理により気中に分散させて高分散
芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体の
粒子の分散度βを80%以上とするか、又は(2)体積
基準頻度分布で平均粒子径が20μmを越え50μm以
下の芯粒子粉体を準微粒子高分散処理手段群の最終処理
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とし、その芯粒子粉体の粒子の分散度βを90%
以上とするか、又は(3)体積基準頻度分布で平均粒子
径が50μmを越え300μm以下の芯粒子粉体を準微
粒子高分散処理手段群の最終処理により気中に分散させ
て高分散芯粒子粉体の粒子・気体混合物とし、その芯粒
子粉体の粒子の分散度βを95%以上とするか、又は
(4)体積基準頻度分布で平均粒子径が300μmを越
え800μm以下の芯粒子粉体を準微粒子高分散処理手
段群の最終処理により気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とし、その芯粒子粉体の粒子の分
散度βを97%以上とするか、又は(5)体積基準頻度
分布で平均粒子径が800μmを越える芯粒子粉体を、
準微粒子高分散処理手段群の最終処理により気中に分散
させて高分散芯粒子粉体の粒子・気体混合物とし、その
芯粒子粉体の粒子の分散度βを99%以上とした領域に
被覆空間の被覆開始領域を位置せしめた被覆室を設け
る。
Dispersion degree β in coating start region In the present invention, (1) the volume-based frequency distribution has an average particle size of 1
A core particle powder having a particle size of more than 0 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β is set to 80% or more, or (2) the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a particle / gas mixture of highly dispersed core particle powder, the degree of dispersion β of the core particle powder is 90%.
Or (3) core particle powder having an average particle size of more than 50 μm and 300 μm or less in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain highly dispersed core particles. A powder particle / gas mixture is used, and the dispersity β of the particles of the core particle powder is 95% or more, or (4) the core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in the volume standard frequency distribution. Whether the body is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 97% or more. Or (5) a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm,
By the final treatment of the quasi-fine particle high dispersion treatment means group, it is dispersed in the air to form a particle / gas mixture of highly dispersed core particle powder, and the area of the core particle powder with a dispersity β of 99% or more is covered. A coating chamber in which the coating start region of the space is located is provided.

【0044】上記した被覆空間の被覆開始領域における
分散度であれば、芯粒子粉体の粒子が、体積基準頻度分
布で平均粒子径が10μmを越える準微粒子芯粒子粉体
の粒子又は主に準微粒子からなる芯粒子粉体の粒子を、
実質的に気中に単一粒子状態に分散でき、被覆空間の被
覆開始領域を通過する全ての芯粒子粉体の粒子の表面
に、被覆形成物質前駆体が均等に接触及び/又は衝突す
るため、単一粒子に均一な量の被覆形成物質を付けるこ
とができる。平均粒子径が10μmを越える準微粒子に
おいて、上記分散度βは、芯粒子粉体の平均粒子径と共
に連続的に変化するが、表現困難なため便宜的に段階的
な表現とした。
As far as the dispersity is in the coating start region of the above-mentioned coating space, the particles of the core particle powder are quasi-fine particles having an average particle diameter of more than 10 μm in the volume-based frequency distribution, or mainly particles of the quasi-fine particles. Core particles consisting of fine particles
The coating material precursor can evenly contact and / or collide with the surface of all particles of the core particle powder that can be dispersed in the air into a single particle state and pass through the coating start region of the coating space. , A uniform amount of coating-forming material can be applied to a single particle. In the quasi-fine particles having an average particle size of more than 10 μm, the dispersity β changes continuously with the average particle size of the core particle powder, but since it is difficult to express, it is expressed stepwise for convenience.

【0045】好適には、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体を準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを90%以上とするか、又は
(2)体積基準頻度分布で平均粒子径が20μmを越え
50μmの芯粒子粉体を準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
95%以上とするか、又は(3)体積基準頻度分布で平
均粒子径が50μmを越え300μm以下の芯粒子粉体
を準微粒子高分散処理手段群の最終処理により気中に分
散させて高分散芯粒子粉体の粒子・基体混合物とし、そ
の芯粒子粉体の分散度βを97%以上とするか、又は
(4)体積基準頻度分布で平均粒子径が300μmを越
える芯粒子粉体を準微粒子高分散処理手段群の最終処理
により気中に分散させて高分散芯粒子粉体の粒子・基体
混合物とし、その芯粒子粉体の粒子の分散度βを99%
以上とした空間領域に被覆空間の被覆開始領域を位置せ
しめた被覆室を設けることである。被覆空間の被覆開始
領域をこのように位置せしめた被覆室であれば、芯粒子
粉体の粒子が、体積基準頻度分布で平均粒子径が10μ
mを越える準微粒子芯粒子粉体の粒子又は主に準微粒子
からなる芯粒子粉体の粒子に対して、単一粒子単位で被
覆形成物質をより均一に被覆でき、且つ各芯粒子ごとに
被覆量のより均一な被覆ができる。
Preferably, (1) a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 10 μm and 20 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion processing means group to obtain a highly dispersed core. A particle / gas mixture of particle powder, and the degree of particle dispersion β of the core particle powder is 90% or more, or (2) core particle powder having an average particle size of more than 20 μm and 50 μm in a volume-based frequency distribution. Whether the body is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of highly dispersed core particle powder, and the dispersity β of the particles of the core particle powder is 95% or more. Or (3) core particles having an average particle size of more than 50 μm and not more than 300 μm in a volume-based frequency distribution are dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to form particles of highly dispersed core particles powder・ Dispersion degree β of core particle powder as a base mixture 97% or more, or (4) core particle powder having an average particle size of more than 300 μm in the volume standard frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. As a mixture of body particles and substrate, the degree of dispersion β of the core particles is 99%.
A coating chamber in which the coating start region of the coating space is located in the above space region is provided. In the coating chamber in which the coating start region of the coating space is positioned as described above, the particles of the core particle powder have an average particle diameter of 10 μm in the volume standard frequency distribution.
Particles of quasi-fine particle core particle powder exceeding m or particles of core particle powder mainly composed of quasi-fine particles can be more uniformly coated with a coating forming substance in a single particle unit, and coated for each core particle. A more uniform amount of coating is possible.

【0046】体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子は、気中に於いては凝集作用が
働き、粒子同士で接触及び/又は衝突しあい高分散芯粒
子粉体の粒子・気体混合物中の芯粒子粉体の粒子の分布
が不均一になる。しかし、上記、芯粒子粉体の粒子の粒
径に応じた分散度のごとき分散状態で被覆を開始すれ
ば、準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子単一粒子単位により均一に被覆形成
物質を被覆でき、且つ各粒子ごとにより均一な量に被覆
形成物質を被覆できる。
Volume-based frequency distribution with an average particle size of 10 μm
Particles of quasi-fine particle core particles having a particle size of more than 50% or particles of core particle powder mainly composed of quasi-fine particles have an aggregating action in the air, and the particles are in contact with each other and / or collide with each other to obtain highly dispersed core particle powder. Non-uniform distribution of particles in the core particle powder in the body particle / gas mixture. However, if the coating is started in a dispersed state such as the degree of dispersion according to the particle size of the core particle powder, the particles of the quasi-fine particle core particle powder or the particles of the core particle powder mainly composed of quasi-fine particles The single particle unit can coat the coating forming material uniformly, and each particle can coat the coating forming material in a more uniform amount.

【0047】準微粒子高分散処理手段群 本発明に於いて、準微粒子高分散処理手段群とは、 (A) 少なくとも分散手段を1以上有し、 (B) 最終の処理手段として、(a)芯粒子粉体の粒子
を気中に分散させる分散手段、又は、(b)芯粒子粉体
の粒子を気中に分散させた芯粒子粉体の粒子と気体との
混合物において低分散芯粒子粉体部分を分離し、芯粒子
粉体の粒子が主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物を選択する高分散芯粒子
粉体の粒子・気体混合物選択手段と高分散芯粒子粉体の
粒子・気体混合物選択手段により分離された低分散芯粒
子粉体部分を準微粒子高分散処理手段群中の分散手段の
内の最終分散手段及び/又は最終分散手段以前の処理手
段に搬送するフィードバック手段とを備えた高分散芯粒
子粉体の粒子・気体混合物選択手段を有するものであ
る。
Semi-fine particle high dispersion treatment means group In the present invention, the semi-fine particle high dispersion treatment means group includes (A) at least one dispersion means and (B) a final treatment means (a) Dispersing means for dispersing particles of the core particle powder in the air, or (b) a low dispersion core particle powder in a mixture of particles of the core particle powder in which the particles of the core particle powder are dispersed in the air and gas. A particle / gas mixture of highly dispersed core particle powder that separates the body part and selects the particle / gas mixture of highly dispersed core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. The final dispersion means and / or the final dispersion of the dispersion means in the quasi-fine particle high dispersion treatment means group for the powder portion of the low dispersion core particles separated by the selection means and the particle / gas mixture selection means of the high dispersion core particle powder. High-dispersion core with feedback means for conveying to processing means before the means And it has a particle-gas mixture selection means child powder.

【0048】好適には、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体を当
該準微粒子高分散処理手段群の最終処理により気中に分
散させて高分散芯粒子粉体の粒子・気体混合物とし、そ
の芯粒子粉体の粒子の分散度βを80%以上とするか、
又は(2)体積基準頻度分布で平均粒子径が20μmを
越え50μm以下の芯粒子粉体を準微粒子高分散処理手
段群の最終処理により気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とし、その芯粒子粉体の粒子の分
散度βを90%以上とするか、又は(3)体積基準頻度
分布で平均粒子径が50μmを越え300μm以下の芯
粒子粉体を準微粒子高分散処理手段群の最終処理により
気中に分散させて高分散芯粒子粉体の粒子・気体混合物
とし、その芯粒子粉体の粒子の分散度βを95%以上と
するか、又は(4)体積基準頻度分布で平均粒子径が3
00μmを越え800μm以下の芯粒子粉体を準微粒子
高分散処理手段群の最終処理により気中に分散させて高
分散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉
体の粒子の分散度βを97%以上とするか、又は(5)
体積基準頻度分布で平均粒子径が800μmを越える芯
粒子粉体を、準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを99%以上
とする分散性能を有するものである。前記被覆開始領域
における種々の分散度に対応してそれらと同等以上の分
散性能の準微粒子高分散処理手段群を設けることによ
り、被覆開始領域において、各分散度に応じた高品位な
被覆を施すことができる。
Preferably, (1) core particle powder having a volume-based frequency distribution and an average particle size of more than 10 μm and 20 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group and highly dispersed. The particle / gas mixture of the core particle powder is used, and the degree of particle dispersion β of the core particle powder is 80% or more, or
Or (2) a core particle powder having an average particle diameter of more than 20 μm and not more than 50 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to form particles of the highly dispersed core particle powder. As a gas mixture, the degree of dispersion β of the particles of the core particle powder is 90% or more, or (3) the core particle powder having an average particle size of more than 50 μm and 300 μm or less in the volume standard frequency distribution is quasi-fine particle The final treatment of the dispersion treatment means group disperses in air to form a particle / gas mixture of highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder is 95% or more, or (4) Volume-based frequency distribution with an average particle size of 3
A core particle powder of more than 00 μm and 800 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. The degree β should be 97% or more, or (5)
A core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder. It has a dispersibility in which the dispersity β of the particles of the particle powder is 99% or more. Corresponding to various dispersities in the coating start region, by providing a group of quasi-fine particle high dispersion treatment means having a dispersion performance equivalent to or higher than those of the dispersion start regions, a high-quality coating corresponding to each dispersity is performed in the coating start region. be able to.

【0049】最終処理手段 準微粒子高分散処理手段群の最終の処理手段が分散手段
の場合、この分散処理手段を微粒子高分散処理手段群の
最終処理手段という。又、準微粒子高分散処理手段群の
最終の処理手段が、準微粒子高分散処理手段の最終の分
散手段へ、高分散芯粒子粉体の粒子・気体混合物選択処
理工程時に於いて低分散状態であったために選択分離さ
れた部分を搬送するフィードバック手段を備えた高分散
芯粒子粉体の粒子・気体混合物選択手段、又は最終の分
散手段より前の処理手段に、高分散芯粒子粉体の粒子・
気体混合物選択処理工程時に於いて低分散状態であった
ために選択分離された部分を搬送するフィードバック手
段を備えた高分散芯粒子粉体の粒子・気体混合物選択手
段の場合、この高分散芯粒子粉体の粒子・基体混合物選
択手段を準微粒子高分散処理手段群の最終処理手段とい
う。尚、準微粒子高分散処理手段群の最終処理手段であ
るフィードバック手段を備えた高分散芯粒子粉体の粒子
・気体混合物選択手段より前に設ける(例えば、フィー
ドバック手段を備えた高分散芯粒子粉体の粒子・気体混
合物選択手段と最終分散手段の間、或いは最終分散手段
より前)高分散芯粒子粉体の粒子・気体混合物選択手段
は、フィードバック手段の有無にかかわらず微粒子高分
散処理手段群の構成要素である。
Final Treatment Means When the final treatment means of the semi-fine particle high dispersion treatment means group is a dispersion means, this dispersion treatment means is referred to as the final treatment means of the fine particle high dispersion treatment means group. Also, the final processing means of the quasi-fine particle high dispersion processing means group is added to the final dispersion means of the quasi-fine particle high dispersion processing means in a low dispersion state at the time of the particle / gas mixture selective processing step of the highly dispersed core particle powder. The particles / gas mixture selection means of the highly dispersed core particle powder provided with the feedback means for conveying the selected and separated portion, or the treatment means before the final dispersion means, the particles of the highly dispersed core particle powder.・
In the case of the particle / gas mixture selecting means of the highly dispersed core particle powder, which is provided with the feedback means for conveying the selectively separated portion due to the low dispersion state in the gas mixture selection treatment step, this highly dispersed core particle powder The means for selecting the body particle / base mixture is referred to as the final processing means of the quasi-fine particle high dispersion processing means group. In addition, it is provided before the particle / gas mixture selecting means of the highly dispersed core particle powder having the feedback means which is the final treatment means of the quasi-fine particle highly dispersed treatment means group (for example, the highly dispersed core particle powder having the feedback means). Between the particle / gas mixture selecting means of the body and the final dispersing means, or before the final dispersing means) The highly dispersed core particle powder particle / gas mixture selecting means is a group of means for high-dispersion treatment of fine particles regardless of presence / absence of feedback means. Is a component of.

【0050】分散手段 準微粒子を分散するために用いる手段を分散手段とい
う。この分散手段は少しでも或いは僅かでも分散効果を
有するものは分散手段として使用可能であり、これを分
散手段とする。例えば、一般に供給手段として用いる空
気輸送用のロータリーフィーダーやインジェクションフ
ィーダー(粉体工学会編:“粉体工学便覧”、日刊工業
新聞社(1986)P568、P571)は、分散効果
も有するので、分散目的の手段として使用する場合は分
散手段である。後述の分散維持・促進手段も分散目的で
(βを高める目的で)使用する場合は分散手段となる。
そしてこの分散手段は単一の装置、機器である場合も、
複合された装置、機器である場合もあり、これらを総称
して準微粒子高分散処理手段群と呼ぶ。この準微粒子高
分散処理手段群は、芯粒子粉体の粒子の加速及び/又は
速度勾配に置く気流による分散、芯粒子粉体の粒子の静
止障害物及び/又は回転体でなる障害物への衝突による
分散、芯粒子粉体の粒子の流動層及び/又は脈流及び/
又は回転ドラム及び/又は振動及び/又は掻取りからな
る機械的解砕による分散等の選択された一種類以上の分
散の機構を備えたものをいう。
Dispersing Means The means used to disperse the quasi-fine particles is called a dispersing means. This dispersing means can be used as a dispersing means if it has a dispersing effect even if only a little or slightly. For example, a rotary feeder for air transportation and an injection feeder (edited by Japan Society of Powder Engineering: “Powder Engineering Handbook”, Nikkan Kogyo Shimbun (1986) P568, P571), which are generally used as a supply means, have a dispersing effect, and thus are dispersed. When used as a target means, it is a dispersion means. When the dispersion maintaining / promoting means described later is also used for the purpose of dispersion (to increase β), it becomes a dispersion means.
And even if this dispersion means is a single device or device,
It may be a combined device or device, and these are collectively referred to as a quasi-fine particle high dispersion treatment means group. This quasi-fine particle high dispersion treatment means group disperses particles of the core particle powder by an air flow that is placed in an acceleration and / or velocity gradient, and the particles of the core particle powder to stationary obstacles and / or obstacles composed of a rotating body. Dispersion by collision, fluidized bed of particles of core particle powder and / or pulsating flow and / or
Alternatively, it means one provided with a mechanism for one or more kinds of selected dispersion such as dispersion by mechanical disintegration consisting of a rotating drum and / or vibration and / or scraping.

【0051】具体的には、準微粒子高分散処理手段群
は、エジェクタ型分散機、ベンチュリ型分散機、細管、
撹拌機、気流中の障害物を利用した分散機、ジェットの
吹付けを利用した分散機、螺旋管、回転羽根を利用した
分散機、回転するピンを利用した分散機(ケージミ
ル)、流動層型分散機、脈流を利用した分散機、回転ド
ラムを利用した分散機、振動を利用した分散機、振動ふ
るい、スクレーパによる掻き取りを利用した分散機、SA
EI、Gonell式分散機、中条式分散機、Roller式分散機、
オリフィス型分散機、B.M式分散機、Timbrell式分散
機、Wright式分散機等の選択された一種以上からなる分
散手段を備えたものである(粉体工学会編:“粉体工学
便覧”、日刊工業新聞社(1986)P430)。
Specifically, the quasi-fine particle high dispersion treatment means group includes an ejector type dispersion machine, a Venturi type dispersion machine, a thin tube,
Stirrer, Disperser that uses obstacles in the air flow, Disperser that uses jet spraying, Spiral tube, Disperser that uses rotating blades, Disperser that uses rotating pins (cage mill), fluidized bed type Disperser, Disperser using pulsating flow, Disperser using rotating drum, Disperser using vibration, Vibration sieve, Disperser using scraping by scraper, SA
EI, Gonell type disperser, Nakajo type disperser, Roller type disperser,
Orifice type disperser, BM type disperser, Timbrell type disperser, Wright type disperser, etc. are provided with a dispersing means consisting of one or more types selected. Nikkan Kogyo Shimbun (1986) P430).

【0052】また、特開昭56−1336号に記載の撹
拌羽根を利用した分散機、特開昭58−163454号
に記載の高速気流と分散ノズルを利用した分散機、特開
昭59−199027号に記載の回転羽根による分散作
用とプラズマイオンによる分散作用を利用した分散機、
特開昭59−207319号に記載のプラズマイオンに
よる分散作用を利用した分散機、特開昭59−2166
16号に記載のエジェクタとプラズマイオンによる分散
作用を利用した分散機、特開昭59−225728号に
記載のエジェクタとイオン流の分散作用を利用した分散
機、特開昭59−183845号に記載のプラズマイオ
ンの分散作用を利用した分散機、特開昭63−1664
21号に記載の分散羽根と圧力気体による分散作用を利
用した分散機、特開昭62−176527号に記載のラ
イン状又はリング状スリット型噴出口を用いた分散機、
特開昭63−221829号に記載の網状羽根を利用し
た分散機、特開昭63−1629号に記載の噴射ノズル
からの高速気流による分散作用を利用した分散機、実開
昭63−9218号に記載の多数の細孔を利用した分散
機、実開昭62−156854号に記載のエジェクタ型
分散機、実開昭63−6034号に記載の細孔とオリフ
ィスを利用した分散機等の公報に記載のものも使用可能
である。準微粒子高分散処理手段群に好適な分散手段と
して、特願昭63−311358号、特願平1−710
71号、特願平2−218537号等に記載の装置が挙
げられる。
Further, a disperser utilizing a stirring blade described in JP-A-56-1336, a disperser utilizing a high-speed air stream and a dispersion nozzle described in JP-A-58-163454, and JP-A-59-199027. Disperser utilizing the dispersing action by the rotating blade and the dispersing action by plasma ions described in No.
A disperser utilizing the dispersing action of plasma ions described in JP-A-59-207319, and JP-A-59-2166.
No. 16, a disperser utilizing the dispersing action of an ejector and plasma ions, No. 59-225728, a disperser utilizing the dispersing action of an ejector and an ion flow, and No. 59-183845. Disperser utilizing the dispersing action of plasma ions of JP-A-63-1664
No. 21, a disperser utilizing a dispersing action by a dispersion blade and a pressure gas, a disperser using a line-shaped or ring-shaped slit type jet outlet described in JP-A-62-176527,
A disperser using a mesh blade described in JP-A No. 63-221829, a disperser using a dispersing action by a high-speed air stream from an injection nozzle described in JP-A No. 63-1629, No. Shokai 63-9218. And the ejector type disperser described in Japanese Utility Model Publication No. 62-156854, and the disperser using the micropores and orifices described in Japanese Utility Model Publication No. 63-6034. Those described in can also be used. Dispersing means suitable for a group of quasi-fine particle high-dispersion processing means include Japanese Patent Application No. 63-311358 and Japanese Patent Application No. 1-710.
71 and Japanese Patent Application No. 2-218537.

【0053】高分散芯粒子粉体の粒子・気体混合物選択
手段 高分散芯粒子粉体の粒子・気体混合物選択手段とは、芯
粒子粉体の粒子・気体混合物から、低分散芯粒子粉体の
粒子・気体混合物を分離し、主に単一粒子状態の粒子を
含む高分散芯粒子粉体の粒子・気体混合物を選択する手
段をいう。一次粒子の集合体である凝集粒子は、見かけ
の粒子径が一次粒子の粒子径に比べ大きくなることか
ら、例えば乾式分級手段により分離が可能である。高分
散芯粒子粉体の粒子・気体混合物選択手段の例として
は、重力を利用した分級手段、慣性力を利用した分級手
段、遠心力を利用した分級手段、静電気を利用した分級
手段、流動層を利用した分級手段等から一種以上選択さ
れた乾式分級手段が挙げられる。この高分散芯粒子粉体
の粒子・気体混合物選択手段の例としては、重力分級
機、慣性分級機、遠心分級機、サイクロン、エアセパレ
ータ、ミクロンセパレータ、ミクロプレックス、ムルチ
プレックス、ジグザグ分級機、アキュカット、コニカル
セパレータ、ターボクラシファイア、スーパセパレー
タ、ディスパージョンセパレータ、エルボジェット、流
動層分級機、バーチュアルインパクタ、O-Sepa、ふる
い、バイブレーティングスクリーン、シフタ(粉体工学
会編:“粉体工学便覧”日刊工業新聞社、P514(1
986))等が挙げられる。
Highly-dispersed core particle powder particle / gas mixture selection means Highly dispersed core particle powder particle / gas mixture selection means means a low-dispersion core particle powder from a core-particle powder particle / gas mixture. A means for separating a particle / gas mixture and selecting a particle / gas mixture of highly dispersed core particle powder mainly containing particles in a single particle state. Aggregated particles, which are aggregates of primary particles, have an apparent particle diameter larger than the particle diameter of primary particles, and therefore can be separated by, for example, a dry classification means. Examples of means for selecting a particle / gas mixture of highly dispersed core particle powder include classification means using gravity, classification means using inertial force, classification means using centrifugal force, classification means using static electricity, fluidized bed. Examples of the dry classification means include one or more selected from the classification means utilizing the. Examples of means for selecting a particle / gas mixture of this highly dispersed core particle powder include a gravity classifier, inertia classifier, centrifugal classifier, cyclone, air separator, micron separator, microplex, multiplex, zigzag classifier, accu classifier. Cut, conical separator, turbo classifier, super separator, dispersion separator, elbow jet, fluidized bed classifier, virtual impactor, O-Sepa, sieve, vibrating screen, shifter (Powder Engineering Handbook: “Powder Engineering Handbook”) Nikkan Kogyo Shimbun, P514 (1
986)) and the like.

【0054】芯粒子粉体の粒子・気体混合物 芯粒子粉体の粒子・気体混合物とは、(a)芯粒子粉体の
粒子が気中に一様に浮遊した均質流れ(一様な浮遊流
れ)、(b)芯粒子粉体の粒子が気中のある領域で非一様
な分布を示す不均質流れ(非均質浮遊流れ)、(c)芯粒
子粉体の粒子の摺動層を伴う流れ(摺動流れ)、又は
(d)芯粒子粉体の粒子の静止層を伴う流れをいう。
Particle / gas mixture of core particle powder A particle / gas mixture of core particle powder means (a) a homogeneous flow in which particles of the core particle powder are uniformly suspended in air (a uniform floating flow). ), (B) Inhomogeneous flow (non-homogeneous floating flow) in which particles of the core particle powder show a non-uniform distribution in a certain area in the air, (c) accompanied by a sliding layer of particles of the core particle powder Flow (sliding flow), or
(d) A flow with a stationary layer of particles of core particle powder.

【0055】低分散芯粒子粉体の粒子・気体混合物 低分散芯粒子粉体の粒子・気体混合物とは、芯粒子粉体
の粒子・気体混合物の内、芯粒子粉体の粒子が主に単一
粒子状態以外の状態で気中に存在する芯粒子粉体の粒子
・気体混合物をいう。
Particles / gas mixture of low-dispersion core particle powder The particles / gas mixture of low-dispersion core particle powder means particles of the core particle powder mainly in the particles / gas mixture of the core particle powder. A particle-gas mixture of core particle powder that exists in the air in a state other than a single particle state.

【0056】高分散芯粒子粉体の粒子・気体混合物 高分散芯粒子粉体の粒子・気体混合物とは、芯粒子粉体
の粒子が主に単一粒子状態で気中に存在する芯粒子粉体
の粒子・気体混合物をいう。高分散芯粒子粉体の粒子・
気体混合物は、極めて高分散であっても、実際には凝集
粒子を含む。低分散芯粒子粉体の粒子・気体混合物は、
実際には、凝集していない単粒子を含み、選択分離して
低分散芯粒子粉体の粒子・気体混合物と高分散芯粒子粉
体の粒子・気体混合物に分けられる。低分散芯粒子粉体
の粒子・気体混合物は、凝集粒子の選択分離及び/又は
再分散により、高分散芯粒子粉体の粒子・気体混合物と
なる。
Particle / gas mixture of highly dispersed core particle powder A particle / gas mixture of highly dispersed core particle powder is a core particle powder in which the particles of the core particle powder mainly exist in the air in a single particle state. A particle / gas mixture of the body. Highly dispersed core particles Powder particles
The gas mixture, even with a very high dispersion, actually contains agglomerated particles. The particle / gas mixture of low-dispersion core particle powder is
Actually, it contains unaggregated single particles, and is selectively separated into a particle / gas mixture of low-dispersion core particle powder and a particle / gas mixture of high-dispersion core particle powder. The particle / gas mixture of the low-dispersion core particle powder becomes a particle / gas mixture of the high-dispersion core particle powder by selectively separating and / or re-dispersing the agglomerated particles.

【0057】回収手段 被覆空間で被覆した被覆準微粒子を取り出す手段を回収
手段という。回収手段の内で回収処理の行われる部分を
回収部という。被覆空間の被覆開始領域を通過して被覆
した被覆準微粒子は、気中から直接取り出して回収する
か、又は気中から取り出して一時的に蓄えてから回収す
るか、又は、気体と共に回収される。回収手段の回収部
としては、隔壁(障害物)を利用した回収手段の回収
部、重力を利用した回収手段の回収部、慣性力を利用し
た回収手段の回収部、遠心力を利用した回収手段の回収
部、帯電による引力を利用した回収手段の回収部、熱泳
動力を利用した回収手段の回収部、ブラウン拡散を利用
した回収手段の回収部、ガスの背圧や減圧等による吸引
力を利用した回収手段の回収部等が利用可能である。こ
の回収手段の回収部の好適な例として、重力集塵機、慣
性集塵機、遠心力集塵機、濾過集塵機、電気集塵機、洗
浄集塵機、粒子充填層、サイクロン、バグフィルター、
セラミックスフィルター、スクラバー等が挙げられる。
Collecting Means The means for taking out the coated quasi-fine particles coated in the coating space is called collecting means. The part of the recovery means that performs the recovery process is called the recovery part. The coated quasi-fine particles coated by passing through the coating start region of the coating space are directly taken out from the air and collected, or taken out from the air and temporarily stored and then collected, or are collected together with the gas. . As the collecting unit of the collecting unit, a collecting unit of a collecting unit using a partition wall (obstacle), a collecting unit of a collecting unit using gravity, a collecting unit of a collecting unit using inertial force, a collecting unit using centrifugal force Collection part, collection part of collection means using attractive force due to electrification, collection part of collection means using thermophoretic force, collection part of collection means using Brownian diffusion, suction force by back pressure or decompression of gas, etc. It is possible to use the recovery unit of the recovery means used. As a preferred example of the recovery unit of this recovery means, gravity dust collector, inertial dust collector, centrifugal dust collector, filtration dust collector, electric dust collector, washing dust collector, particle packed bed, cyclone, bag filter,
Examples include ceramics filters and scrubbers.

【0058】結合材 本発明の被覆高圧型窒化硼素準微粒子焼結体の製造に用
いる結合材としては、圧力が2000MPa未満で、1
850℃を越えない温度で焼結することにより、密度8
5%以上に緻密に焼結される結合材が選択される。好適
には、更に、高圧型窒化硼素をグラファイト型相に相転
移するのを促進しない結合材が選択される。或いは、圧
力が2000MPa未満で、1850℃を越えない温度
で焼結することにより、窒化硼素と反応して生成する反
応生成物の密度が85%以上である緻密な結合材となる
ものが選択される。より好ましくは、圧力が2000M
Pa未満で、1850℃を越えない温度で焼結して、密
度が90%以上の緻密で、及び/又はビッカース硬度が
600以上の高硬度の結合材となるものが選択される。
圧力が2000MPa未満で、1850℃を越えない温
度で焼結することにより、密度85%以上の緻密な結合
材となる原料粉体は、周期律表1a、2a、3a、4
a、5a、6a、7a、1b、2b、3b、4b、5
b、6b、7b、8族金属、半導体、半金属、希土類金
属の内の一種類以上及び/又はこれらの内の一種類以上
を含む化合物の少なくとも一種類を含む粉体又は粒子か
ら選択される。より具体的には、この粉体又は粒子が、
B、Ti、Zr、Hf、Ta、Nb、V、SiC、Ti
C、ZrC、B4C、WC、HfC、TaC、NbC、
Si34、TiN、ZrN、AlN、HfN、TaN、
TiB、TiB2、ZrB2、HfB、HfB2、La
6、MoSi2、BP、Al23、Al2SiO5(ムラ
イト)、ZrO2(Y28、MgO又はCaO安定剤を
添加したジルコニア:PSZ又は正方晶ジルコニア多結
晶体:TZP)、MgAl24(スピネル)、の内の少
なくとも一種類から選ばれる粉体又は粒子でありうる。
好適な例として、例えばアルミナでは、高純度で易焼結
性の微細な原料、例えば、特開昭63−151616号
公報に記載のアンモニウム・アルミニウム炭酸塩熱分解
法によるアルミナであれば、常圧の普通焼結でも140
0℃程度の温度で緻密化するので好適である。更に、ア
ルミナの焼結を促進する効果のあるマグネシア(Mg
O)及び/又はチタニア(TiOx、x=1〜2)を体
積で10%まで含有する微細で高純度なアルミナ粉体で
あれば、前記特開昭63−151616号公報に記載の
アルミナ以外の高純度アルミナ、例えばバイヤー法、有
機アルミニウム加水分解法、及びアルミニウムミョウバ
ン熱分解法、エチレンクロルヒドリン法、水中火花放電
法等による、1μm以下の微細な粒子からなる純度99
%以上の高純度・易焼結性アルミナでも差し支えない。
Binder As the binder used in the production of the coated high-pressure boron nitride quasi-fine particle sintered body of the present invention, the pressure is less than 2000 MPa, and 1
By sintering at a temperature not exceeding 850 ° C, a density of 8
A binder that is densely sintered to 5% or more is selected. Preferably, furthermore, a binder is selected which does not promote the phase transition of the high pressure boron nitride to the graphite type phase. Alternatively, a dense binder having a density of 85% or more of a reaction product formed by reacting with boron nitride is selected by sintering at a pressure of less than 2000 MPa and a temperature not exceeding 1850 ° C. It More preferably, the pressure is 2000M
A material that is sintered at a temperature of less than Pa and does not exceed 1850 ° C. to be a dense binder having a density of 90% or more and / or a high hardness of Vickers hardness of 600 or more is selected.
By sintering at a pressure of less than 2000 MPa and a temperature of not exceeding 1850 ° C., the raw material powder to be a dense binder having a density of 85% or more can be obtained by the periodic table 1a, 2a, 3a, 4
a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5
b, 6b, 7b, group 8 metal, semiconductor, semimetal, rare earth metal, and / or powder or particles containing at least one kind of compound containing one or more kinds thereof. . More specifically, the powder or particles are
B, Ti, Zr, Hf, Ta, Nb, V, SiC, Ti
C, ZrC, B 4 C, WC, HfC, TaC, NbC,
Si 3 N 4 , TiN, ZrN, AlN, HfN, TaN,
TiB, TiB 2 , ZrB 2 , HfB, HfB 2 , La
B 6, MoSi 2, BP, Al 2 O 3, Al 2 SiO 5 ( mullite), ZrO 2 (zirconia was added Y 2 O 8, MgO or CaO Stabilizer: PSZ or tetragonal zirconia polycrystals: TZP) , MgAl 2 O 4 (spinel), at least one kind of powder or particles.
As a preferable example, for example, alumina is a fine raw material having high purity and easy sinterability. Normal sintering of 140
It is suitable because it is densified at a temperature of about 0 ° C. Furthermore, magnesia (Mg
O) and / or titania (TiO x , x = 1 to 2) up to 10% by volume, as long as it is a fine and highly pure alumina powder, other than the alumina described in JP-A-63-151616. High-purity alumina, such as Bayer method, organoaluminum hydrolysis method, aluminum alum pyrolysis method, ethylene chlorohydrin method, underwater spark discharge method, etc.
%, High-purity, easily-sinterable alumina may be used.

【0059】前記アルミナ以外ではジルコニウムの酸化
物、好適には、共沈法によって製造される易焼結性のイ
ットリア添加部分安定化ジルコニア(2−4mol%Y2
3−ZrO2)粉体、或いはアルミナ−ジルコニア系粉体
(FCレポート、1〔5〕(1983)13−17)
や、チタン酸化物であるチタニア粉体(TiO2:第1
5回高圧討論会講演要旨集、(1973)P174)が
選択される。また、チタンの窒化物として、窒化チタン
(TiN:山田外、窯業協会誌、89、(1981)6
21〜625)も選択可能である。次に、本発明で用い
る被覆された高圧型窒化硼素準微粒子を調製する場合に
採用される準微粒子高分散処理手段群を添付の図面に基
づいて説明することにする。
Other than the above-mentioned alumina, zirconium oxide, preferably yttria-added partially stabilized zirconia (2-4 mol% Y 2 O), which is easily sinterable and is produced by a coprecipitation method.
3- ZrO 2 ) powder or alumina-zirconia powder (FC report, 1 [5] (1983) 13-17)
Or titania powder that is titanium oxide (TiO 2 : first
5th High-Press Conference Discussion Lecture Collection, (1973) P174) is selected. Further, as a titanium nitride, titanium nitride (TiN: Yamada Soga, Ceramic Industry Association, 89, (1981) 6
21 to 625) can be selected. Next, a group of means for high-dispersion quasi-fine particles used for preparing coated high-pressure boron nitride quasi-fine particles used in the present invention will be described with reference to the accompanying drawings.

【0060】準微粒子高分散処理手段群の図の説明 図2(a)は被覆された高圧型窒化硼素準微粒子を調製す
る際の準微粒子高分散処理手段群の基本的な構成の一例
を表すブロック図である。芯粒子粉体の粒子を分散させ
る最終の分散手段A、最終の分散手段以前の分散処理手
段群の構成要素dで構成されている。εは、芯粒子粉体
の粒子の内、主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物である。構成要素dとし
ては、分散手段、供給手段、高分散芯粒子粉体の粒子・
気体混合物選択手段等任意の処理手段を単独又は組み合
わせて使用できる。構成要素dは、必ずしも設けなくと
も良い。準微粒子高分散処理手段群は、好適には、最終
の処理手段Aの処理後、(1)体積基準頻度分布で平均
粒子径が10μmを越え20μm以下の芯粒子粉体に対
し、分散度βが80%以上、又は(2)体積基準頻度分
布で平均粒子径が20μmを越え50μm以下の芯粒子
粉体に対し、分散度βが90%以上、又は(3)体積基
準頻度分布で平均粒子径が50μmを越え300μm以
下の芯粒子粉体に対し、分散度βが95%以上、又は
(4)体積基準頻度分布で平均粒子径が300μmを越
え800μm以下の芯粒子粉体に対し、分散度βが97
%以上、又は(5)体積基準頻度分布で平均粒子径が8
00μmを越える芯粒子粉体に対し、分散度βが99%
以上を実現できる構成のものである。
FIG. 2 (a) shows an example of the basic structure of the quasi-particulate high-dispersion processing means group when preparing coated high-pressure boron nitride quasi-fine particles. It is a block diagram. It is composed of the final dispersion means A for dispersing the particles of the core particle powder and the constituent element d of the dispersion processing means group before the final dispersion means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the component d, dispersing means, supplying means, particles of highly dispersed core particle powder,
Any processing means such as a gas mixture selecting means can be used alone or in combination. The component d does not necessarily have to be provided. After the final treatment by the treatment means A, the group of quasi-fine particles high dispersion treatment means preferably has (1) the degree of dispersion β with respect to the core particle powder having an average particle diameter of more than 10 μm and 20 μm or less in the volume standard frequency distribution. Is 80% or more, or (2) core particles having a volume-based frequency distribution with an average particle size of more than 20 μm and 50 μm or less, a dispersity β of 90% or more, or (3) an average particle with a volume-based frequency distribution. Dispersity β is 95% or more with respect to core particle powder having a diameter of more than 50 μm and 300 μm or less, or (4) dispersion with respect to core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in volume standard frequency distribution Degree β is 97
% Or more, or (5) the volume-based frequency distribution has an average particle size of 8
Dispersion degree β is 99% for core particle powder exceeding 00 μm
The configuration is capable of realizing the above.

【0061】図2(b)は、被覆された高圧型窒化硼素準
微粒子を調製する際の準微粒子高分散処理手段群の基本
的な構成の第2の例を表すブロック図である。芯粒子粉
体の粒子を分散させる最終の分散手段A、最終の分散手
段Aへ芯粒子粉体の粒子が、主に単一粒子状態で気中に
存在する高分散芯粒子粉体の粒子・気体混合物、以外の
低分散芯粒子粉体の粒子・気体混合物ηをフィードバッ
クさせるフィードバック手段Cを備えた最終の高分散芯
粒子粉体の粒子・気体混合物選択手段B、最終の分散手
段以前の分散処理手段群の構成要素d、最終分散手段と
最終選択手段の間の準微粒子高分散処理手段群の構成要
素eで構成されている。εは、芯粒子粉体の粒子の内、
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物である。構成要素dとしては、分散手
段、供給手段、選択手段等任意の処理手段を単独又は組
み合わせて使用できる。構成要素eとしては、分散手段
以外の処理手段、例えば供給手段、選択手段等任意の処
理手段を単独又は組み合わせて使用できる。構成要素d
及びeは、必ずしも設けなくとも良い。準微粒子高分散
処理手段群は、好適には最終の処理手段である選択手段
Bによる処理後、前記平均粒子径の芯粒子粉体に対し前
記分散度を実現できる構成である。
FIG. 2 (b) is a block diagram showing a second example of the basic constitution of the quasi-fine particle high dispersion treatment means group when preparing the coated high-pressure type boron nitride quasi-fine particles. The final dispersion means A for dispersing the particles of the core particle powder, and the particles of the core particle powder to the final dispersion means A are particles of the highly dispersed core particle powder in the air mainly in the form of a single particle. Other than the gas mixture, the particles / gas mixture selecting means B of the final high-dispersion core particle powder having the feedback means C for feeding back the particles / gas mixture η of the low-dispersion core particle powder, the dispersion before the final dispersion means It is composed of a constituent element d of the processing means group and a constituent element e of the quasi-fine particle high dispersion processing means group between the final dispersion means and the final selection means. ε is the particle of the core particle powder,
It is a particle-gas mixture of highly dispersed core particle powder that exists mainly in the air in the form of single particles. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the component e, a processing means other than the dispersion means, for example, an arbitrary processing means such as a supply means and a selection means can be used alone or in combination. Component d
And e do not necessarily need to be provided. The quasi-fine-particles high-dispersion treatment means group is preferably configured so that the degree of dispersion can be realized with respect to the core particle powder having the average particle diameter after the treatment by the selection means B which is the final treatment means.

【0062】図2(c)は、被覆された高圧型窒化硼素準
微粒子を調製する際の準微粒子高分散処理手段群の基本
的な構成の他の第3の例を表すブロック図である。芯粒
子粉体の粒子を分散させる最終の分散手段A、最終の分
散手段Aより前の処理手段へ芯粒子粉体の粒子が、主に
単一粒子状態で気中に存在する高分散芯粒子粉体の粒子
・気体混合物、以外の低分散芯粒子粉体の粒子・気体混
合物ηをフィードバックさせるフィードバック手段Cを
備えた最終の高分散芯粒子粉体の粒子・気体混合物選択
手段B、最終の分散手段以前の準微粒子高分散処理手段
群の構成要素d、最終の分散手段と最後の選択手段の間
の準微粒子高分散処理手段群の構成要素eで構成されて
いる。εは、芯粒子粉体の粒子の内、主に単一粒子状態
で気中に存在する高分散芯粒子粉体の粒子・気体混合物
である。構成要素dとしては、分散手段、供給手段、選
択手段等任意の処理手段を単独又は組み合わせて使用で
きる。構成要素eとしては、分散手段以外の処理手段、
例えば供給手段、選択手段等任意の処理手段を単独又は
組み合わせて使用できる。構成要素d及びeは、必ずし
も設けなくとも良い。準微粒子高分散処理手段群は、好
適には最終の処理手段である選択手段Bによる処理後、
前記平均粒子径の芯粒子粉体に対し前記分散度を実現で
きる構成である。
FIG. 2 (c) is a block diagram showing another third example of the basic constitution of the quasi-fine particle high dispersion treatment means group when preparing the coated high-pressure type boron nitride quasi-fine particles. Highly dispersed core particles in which particles of the core particle powder are mainly present in the air in a single particle state to the final dispersion means A for dispersing the particles of the core particle powder and the processing means prior to the final dispersion means A. Powder particles / gas mixture, other than low-dispersion core particle powder particles / gas mixture η with a feedback means C for feeding back final high-dispersion core particles powder particle / gas mixture selection means B, final It is composed of the constituent element d of the quasi fine particle high dispersion processing means group before the dispersing means and the constituent element e of the quasi fine particle high dispersion processing means group between the final dispersing means and the final selecting means. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder. As the constituent element d, any processing means such as a dispersing means, a supplying means, a selecting means can be used alone or in combination. As the component e, a processing means other than the distribution means,
For example, any processing means such as supply means and selection means can be used alone or in combination. The components d and e do not necessarily have to be provided. The quasi-fine particle high-dispersion treatment means group is preferably after the treatment by the selection means B, which is the final treatment means,
The dispersity can be realized with respect to the core particle powder having the average particle diameter.

【0063】なお、以上のような構成であるから、供給
槽、芯粒子生成手段等の粉体の供給源も本準微粒子高分
散処理手段群の構成に含めてもよい。例えば図2(c)の
場合、フィードバック手段Cのフィードバック先を供給
槽とする構成も高分散処理手段群の構成として良いこと
は言うまでもない。又、準微粒子高分散処理手段群の分
散工程の前に、芯粒子粉体の粒子を解砕及び/又は粉砕
する解砕工程を入れても良いことは言うまでもない。上
記した微粒子高分散処理手段群の基本的な構成の具体的
な代表例をより詳細にしたブロック図に基づいて更に詳
しく説明することにする。
Because of the above-mentioned structure, the powder supply sources such as the supply tank and the core particle generating means may be included in the structure of the semi-fine particle high dispersion processing means group. For example, in the case of FIG. 2C, it goes without saying that the configuration in which the feedback destination of the feedback means C is the supply tank may be the configuration of the high dispersion processing means group. Needless to say, a crushing step of crushing and / or crushing particles of the core particle powder may be added before the dispersing step of the quasi-fine particle high dispersion treatment means group. It will be described in more detail based on a more detailed block diagram of a specific representative example of the basic configuration of the group of means for highly dispersing fine particles.

【0064】構成1 図3(a)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群のだい1の構成を説
明するブロック図であって図2(a)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる最終分散手段
Aから構成されている。εは、芯粒子粉体の粒子の内、
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物である。
Structure 1 FIG. 3 (a) is a block diagram for explaining the structure 1 of the quasi-particulate high-dispersion processing means group for preparing coated high-pressure type boron nitride quasi-fine particles. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, the final dispersing means A for dispersing the core particle powder to be coated. ε is the particle of the core particle powder,
It is a particle-gas mixture of highly dispersed core particle powder that exists mainly in the air in the form of single particles.

【0065】構成2 図3(b)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群の第2の構成を説明
するブロック図であって図2(a)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
被覆される芯粒子粉体を分散させる最終分散手段Aから
構成されている。εは、芯粒子粉体の粒子の内、主に単
一粒子状態で気中に存在する高分散芯粒子粉体の粒子・
気体混合物である。
Structure 2 FIG. 3 (b) is a block diagram for explaining the second structure of the quasi-fine particle high dispersion treatment means group when preparing the coated high pressure type boron nitride quasi-fine particles. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
It comprises a final dispersion means A for dispersing the core particle powder to be coated. ε is the particle of the highly dispersed core particle powder that exists mainly in the air in the form of a single particle among the particles of the core particle powder.
It is a gas mixture.

【0066】構成3 図3(c)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群の第3の構成を説明
するブロック図であって図2(a)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
分散手段aで分散させた芯粒子粉体の粒子・気体混合物
のうちから主に単一粒子状態で気中に存在する高分散芯
粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉体
の粒子・気体混合物ηを分散手段aへフィードバックさ
せるフィードバック手段C、主に高分散芯粒子粉体の粒
子・気体混合物を最終の分散手段Aへ導入する高分散芯
粒子粉体の粒子・気体混合物選択手段b、被覆される芯
粒子粉体を分散させる最終分散手段A、から構成されて
いる。εは、芯粒子粉体の粒子の内、主に単一粒子状態
で気中に存在する高分散芯粒子粉体の粒子・気体混合物
である。
Structure 3 FIG. 3 (c) is a block diagram for explaining the third structure of the quasi-fine particle high dispersion treatment means group when preparing the coated high-pressure type boron nitride quasi-fine particles. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
Low-dispersion core particle powder other than particles / gas mixture of highly dispersed core particle powder mainly existing in the air in a single particle state from particles / gas mixture of core particle powder dispersed by dispersing means a Feedback means C for feeding back the particle / gas mixture η of the body to the dispersing means a, mainly particles / gas of the highly dispersed core particle powder for introducing the particle / gas mixture of the highly dispersed core particle powder into the final dispersing means A It comprises a mixture selecting means b and a final dispersing means A for dispersing the core particle powder to be coated. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0067】構成4 図3(d)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群の第4の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる最終分散手段
A、最終分散手段Aで分散させた芯粒子粉体の粒子・気
体混合物のうちから主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物、以外の低分散芯
粒子粉体の粒子・気体混合物ηを分散手段Aへフィード
バックするフィードバック手段C、高分散芯粒子粉体の
粒子・気体混合物を放出する最終の高分散芯粒子粉体の
粒子・気体混合物選択手段Bから構成されている。ε
は、芯粒子粉体の粒子の内、主に単一粒子状態で気中に
存在する高分散芯粒子粉体の粒子・気体混合物である。
Structure 4 FIG. 3 (d) is a block diagram for explaining a fourth structure of the quasi-particulate high dispersion treatment means group when preparing the coated high pressure type boron nitride quasi-fine particles, and FIG. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, the final dispersion means A for dispersing the core particle powder to be coated, and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A, which is mainly present in the air in a single particle state. The particle / gas mixture of the dispersed core particle powder, the feedback means C for feeding back the particle / gas mixture η of the low-dispersed core particle powder to the dispersion means A, and the particle / gas mixture of the highly dispersed core particle powder are discharged. The final high-dispersion core particle powder is composed of a particle / gas mixture selecting means B. ε
Is a particle / gas mixture of the highly dispersed core particle powder, which is mainly present in the air in the form of a single particle among the particles of the core particle powder.

【0068】構成5 図3(e)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群の第5の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
被覆される芯粒子粉体を分散させる最終分散手段A、最
終分散手段Aで分散させた芯粒子粉体の粒子・気体混合
物のうちから主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉
体の粒子・気体混合物ηを分散手段Aへフィードバック
するフィードバック手段C、高分散芯粒子粉体の粒子・
気体混合物を放出する最終の高分散芯粒子粉体の粒子・
気体混合物選択手段Bから構成されている。εは、芯粒
子粉体の粒子の内、主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物である。
Structure 5 FIG. 3 (e) is a block diagram for explaining the fifth structure of the quasi-particulate high dispersion treatment means group when preparing the coated high pressure type boron nitride quasi-fine particles. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
A high-dispersion core which exists mainly in the air in the form of a single particle from the final dispersion means A for dispersing the core particle powder to be coated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Particles of particle powder / gas mixture, other than low-dispersion core particle powder / feedback means C for feeding back gas mixture η to dispersing means A, particles of high-dispersion core particle powder
Particles of the final highly dispersed core particle powder that emits a gas mixture
It is composed of a gas mixture selecting means B. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0069】構成6 図3(f)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群の第6の構成を説明
するブロック図であって図2(b)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、芯粒子粉体の粒子・気体混合物のうちから主に低
分散芯粒子粉体の粒子・気体混合物を取り除き、主に高
分散芯粒子粉体の粒子・気体混合物を分散手段Aへ導入
する高分散芯粒子粉体の粒子・気体混合物選択手段b、
選択分離された芯粒子粉体の粒子を分散させる最終分散
手段A、最終分散手段Aで分散させた芯粒子粉体の粒子
・気体混合物のうちから主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物、以外の低分
散芯粒子粉体の粒子・気体混合物ηを分散手段Aへフィ
ードバックさせるフィードバック手段C、高分散芯粒子
粉体の粒子・気体混合物を放出する最終の高分散芯粒子
粉体の粒子・気体混合物選択手段Bから構成されてい
る。εは、芯粒子粉体の粒子の内、主に単一粒子状態で
気中に存在する高分散芯粒子粉体の粒子・気体混合物で
ある。
Structure 6 FIG. 3 (f) is a block diagram for explaining the sixth structure of the quasi-particulate high dispersion treatment means group when preparing the coated high-pressure type boron nitride quasi-fine particles. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, particles / gas mixture of low-dispersion core particle powder are mainly removed from particles / gas mixture of core particle powder, and particles / gas mixture of high-dispersion core particle powder are mainly introduced into dispersing means A. High-dispersion core particle powder particle / gas mixture selecting means b,
It exists mainly in the air in the form of a single particle from the final dispersion means A for dispersing the particles of the core particle powder selectively separated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Feedback means C for feeding back particles / gas mixture η of low-dispersion core particle powder other than particles / gas mixture of high-dispersion core particle powder, releasing particle / gas mixture of high-dispersion core particle powder The final high-dispersion core particle powder particle / gas mixture selecting means B is used. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0070】構成7 図3(g)は、被覆された高圧型窒化硼素準微粒子を調製
する際の準微粒子高分散処理手段群の第7の構成を説明
するブロック図であって図2(c)に対応するものであ
る。本例は、被覆される芯粒子粉体を供給する供給槽1
00、被覆される芯粒子粉体を分散させる分散手段a、
被覆される芯粒子粉体を分散させる最終分散手段A、最
終分散手段Aで分散させた芯粒子粉体の粒子・気体混合
物のうちから主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物、以外の低分散芯粒子粉
体の粒子・気体混合物ηを分散手段aへフィードバック
するフィードバック手段C、高分散芯粒子粉体の粒子・
気体混合物を放出する最終の高分散芯粒子粉体の粒子・
気体混合物選択手段Bから構成されている。εは、芯粒
子粉体の粒子の内、主に単一粒子状態で気中に存在する
高分散芯粒子粉体の粒子・気体混合物である。
Structure 7 FIG. 3 (g) is a block diagram for explaining the seventh structure of the quasi-particulate high dispersion treatment means group when preparing the coated high pressure type boron nitride quasi-fine particles. ). This example is a supply tank 1 for supplying core particle powder to be coated.
00, dispersing means a for dispersing the core particle powder to be coated,
A high-dispersion core mainly present in the air in a single particle state from the final dispersion means A for dispersing the core particle powder to be coated and the particle / gas mixture of the core particle powder dispersed by the final dispersion means A. Particles of particle powder / gas mixture, other than low-dispersion core particle powder / feedback means C for feeding back gas mixture η to dispersing means a, particles of high-dispersion core particle powder
Particles of the final highly dispersed core particle powder that emits a gas mixture
It is composed of a gas mixture selecting means B. [epsilon] is a particle / gas mixture of highly dispersed core particle powder, which exists in the air mainly in a single particle state among particles of the core particle powder.

【0071】このようにして達成された準微粒子の高分
散状態を維持するために、気中分散維持手段を準微粒子
高分散処理手段群に付加することもできる。ここでいう
気中分散維持手段とは、気中に分散担持された芯粒子粉
体の粒子の再凝集を防止して分散度βを維持する手段を
いう。又、このようにして達成された芯粒子の高分散状
態を促進するために、気中分散促進手段を微粒子高分散
処理手段群と被覆室の間に付加することもできる。ここ
でいう気中分散促進手段とは、気中に分散担持された芯
粒子粉体の粒子のうち主に再凝集した粒子の再分散を促
進し、分散状態の低下を鈍らせたり、一旦低下した分散
状態を元の高分散の状態まで回復するように再分散を促
す手段をいう。
In order to maintain the high-dispersion state of the quasi-fine particles thus achieved, the air dispersion maintaining means may be added to the quasi-fine particle high-dispersion processing means group. The term "in-air dispersion maintaining means" as used herein means means for preventing re-aggregation of particles of the core particle powder dispersed and carried in air to maintain the degree of dispersion β. Further, in order to promote the highly dispersed state of the core particles thus achieved, an air dispersion promoting means can be added between the fine particle high dispersion treatment means group and the coating chamber. The air dispersion promoting means here promotes redispersion of mainly reaggregated particles among particles of the core particle powder dispersed and carried in the air, and slows down the deterioration of the dispersed state, or once decreases It means a means for promoting re-dispersion so as to recover the dispersed state to the original highly dispersed state.

【0072】この気中分散状態維持手段又は気中分散促
進手段の好適な例としては、パイプ振動装置、パイプ加
熱装置、プラズマ発生装置、荷電装置等が挙げられる。
パイプ振動装置は、発振器を設置したパイプの振動によ
り、気中に分散している粒子に分散機とは言えない振動
を与えることで、再凝集を抑制し高分散状態を維持する
手段又は再凝集した粒子の分散を促進する手段である。
パイプ加熱装置は、加熱したパイプにより搬送気体の外
側から熱を加えて搬送気体を膨張させ、分散機とは言え
ないほどに流速を加速して再凝集を抑制し、再凝集した
粒子の分散を促進する手段である。プラズマ発生装置
は、芯粒子粉体を分散担持している気中にプラズマを発
生させ、そのプラズマイオンと芯粒子との衝突により、
再凝集を抑制し高分散状態を維持する手段又は再凝集し
た粒子の分散を促進する手段である。荷電装置は、芯粒
子粉体を分散担持している気中に、コロナ放電、電子ビ
ーム、放射線等の方法で単極イオンを発生させ、単極イ
オン雰囲気中を通過させることで粒子を単極に帯電さ
せ、静電気の斥力により再凝集を抑制し高分散状態を維
持する手段又は再凝集した粒子の分散を促進する手段で
ある。このようにして形成された準微粒子の高分散状態
の芯粒子粉体は粒子の表面を被覆形成物質で被覆するた
めに被覆室に送られる。この被覆室には被覆開始領域を
含む被覆空間が設けられている。
Suitable examples of the air dispersion state maintaining means or the air dispersion promoting means include a pipe vibrating device, a pipe heating device, a plasma generating device, a charging device and the like.
A pipe vibration device is a means for suppressing reaggregation and maintaining a high dispersion state by giving vibration that is not a disperser to particles dispersed in the air due to the vibration of a pipe equipped with an oscillator or reaggregation. It is a means of promoting the dispersion of the formed particles.
The pipe heating device expands the carrier gas by applying heat from the outside of the carrier gas by the heated pipe, accelerates the flow velocity so that it can not be called a disperser, suppresses reaggregation, and disperses the reaggregated particles. It is a means to promote. The plasma generator generates plasma in the air carrying the core particle powder in a dispersed manner, and by collision of the plasma ions with the core particles,
It is a means for suppressing reaggregation and maintaining a high dispersion state, or a means for promoting the dispersion of reaggregated particles. The charging device uses a method such as corona discharge, electron beam, or radiation to generate unipolar ions in the air carrying the core particle powder, and the particles are unipolar by passing through the unipolar ion atmosphere. It is a means for suppressing re-aggregation by repulsive force of static electricity to maintain a high dispersion state or a means for promoting dispersion of re-aggregated particles. The highly dispersed core particle powder of the quasi-fine particles thus formed is sent to the coating chamber for coating the surface of the particles with the coating forming substance. A coating space including a coating start area is provided in the coating chamber.

【0073】準微粒子高分散処理手段群と被覆室とは直
結することが望ましいが、搬送に不可避の中空部材及び
/又はパイプを使って接続しても良い。この場合にも、
被覆開始領域での分散度βを上記した範囲の値とするこ
とが不可欠である。準微粒子高分散処理手段群と被覆室
を別々に置いてその間を連結する場合は、芯粒子粉体を
その分散状態のまま被覆室へ導入してやれば良い。その
ためには、この間に芯粒子粉体の分散状態を維持するた
めの装置である気中分散維持手段及び/又は分散状態を
高めるための装置である気中分散促進手段及び/又は芯
粒子粉体の粒子・気体混合物から、低分散芯粒子粉体部
分を分離し、主に単一粒子状態の粒子を含む高分散芯粒
子粉体の粒子・気体混合物を選択する高分散芯粒子粉体
の粒子・気体混合物選択手段を設けることもできる。
又、被覆された高圧型窒化硼素準微粒子を調製するに際
して、準微粒子高分散処理手段群が、(1)被覆室、又は
(2)被覆空間、又は(3)被覆開始領域と一部以上空間を
共有することもできる。例えば、準微粒子高分散処理手
段群中の分散空間と被覆室とを、又は準微粒子高分散処
理手段群中の分散空間と被覆開始領域を有する被覆空間
とを、又は準微粒子高分散処理手段群中の分散空間と被
覆開始領域とを、空間的に共有することもできる。
It is desirable that the quasi-fine particle high dispersion treatment means group and the coating chamber are directly connected, but they may be connected by using a hollow member and / or a pipe which is inevitable for transportation. Also in this case,
It is indispensable to set the dispersion degree β in the coating start region to a value within the above range. When the quasi-fine particle high dispersion treatment means group and the coating chamber are separately placed and connected to each other, the core particle powder may be introduced into the coating chamber in the dispersed state. For that purpose, the air dispersion maintaining means and / or the air dispersion promoting means and / or the core particle powder which is an apparatus for maintaining the dispersed state of the core particle powder during this period. High-dispersion core particle powder particles that separate the low-dispersion core particle powder part from the particle-gas mixture and select the high-dispersion core particle powder particle / gas mixture that mainly contains particles in a single particle state -Gas mixture selection means can also be provided.
Further, in preparing the coated high-pressure type boron nitride quasi-fine particles, the quasi-fine particle high dispersion treatment means group is (1) a coating chamber, or
It is also possible to share a part or more of the space with (2) the coating space or (3) the coating start region. For example, the dispersion space and the coating chamber in the quasi-fine particle high dispersion treatment means group, or the dispersion space and the coating space having the coating start region in the quasi-fine particle high dispersion treatment means group, or the quasi-fine particle high dispersion treatment means group It is also possible to spatially share the dispersed space and the coating start region therein.

【0074】ここで被覆開始領域とは、(1)体積基準頻
度分布で平均粒径が10μmを越え20μm以下の芯粒
子粉体にあっては粒子の分散度βが80%以上、(2)体
積基準頻度分布で平均粒径が20μmを越え50μm以
下の芯粒子粉体にあっては粒子の分散度βが90%以
上、(3)体積基準頻度分布で平均粒径が50μmを越え
300μm以下の芯粒子粉体にあっては粒子の分散度β
が95%以上、(4)体積基準頻度分布で平均粒径が30
0μmを越え800μm以下の芯粒子粉体にあっては粒
子の分散度βが97%以上、(5)体積基準頻度分布で平
均粒径が800μmを越える芯粒子粉体にあっては粒子
の分散度βが99%以上である分散状態で搬送された高
分散状態の芯粒子粉体に気相を経て生成する被覆形成物
質前駆体及び/又は気相状態の被覆形成物質前駆体が接
触及び/又は衝突し、被覆を開始する領域を指し、次の
図4(a)〜(e)で示される態様が考慮される。すなわ
ち、図5(a)〜(e)において被覆開始領域は2で示され
る領域である。
Here, the coating start region means (1) the core particle powder having a volume-based frequency distribution and an average particle size of more than 10 μm and 20 μm or less has a particle dispersity β of 80% or more, (2) The core particle powder having a volume-based frequency distribution with an average particle size of more than 20 μm and 50 μm or less has a particle dispersity β of 90% or more, and (3) a volume-based frequency distribution with an average particle size of more than 50 μm and 300 μm or less. In the case of the core particle powder of
Is 95% or more, and (4) volume-based frequency distribution has an average particle size of 30
The degree of dispersion β of the particles is 97% or more in the core particle powder of more than 0 μm and 800 μm or less, and (5) the dispersion of the particles in the core particle powder of which the average particle size exceeds 800 μm in the volume standard frequency distribution. And / or a coating-forming substance precursor in a gas-phase state is brought into contact with the core particle powder in a highly-dispersed state conveyed in a dispersed state having a degree β of 99% or more and / or Alternatively, it refers to a region where collision occurs and coating is started, and the modes shown in the following FIGS. 4A to 4E are considered. That is, the coating start area is the area indicated by 2 in FIGS.

【0075】図4(a)において芯粒子の平均粒子径に応
じて上記した分散度βの分散状態で被覆を始める被覆空
間の被覆開始領域2を準微粒子高分散処理手段群又は準
微粒子高分散処理手段群の放出部1を覆って設ける。図
4(b)において準微粒子高分散処理手段群又は準微粒子
高分散処理手段群の放出部1から放出される芯粒子粉体
の粒子4が全て通る前記被覆空間の被覆開始領域2を設
ける。上記の構成により、全ての芯粒子粉体の粒子は上
記した分散度βの分散状態で被覆始められる。図4(c)
において準微粒子高分散処理手段群又は準微粒子高分散
処理手段群の放出部1から放出される芯粒子粉体の粒子
4の内、回収部5に入る粒子は必ず通過する前記被覆空
間の被覆開始領域2を設ける。
In FIG. 4 (a), the coating start region 2 of the coating space in which coating is started in the dispersed state of the dispersion degree β described above according to the average particle diameter of the core particles is the semi-fine particle high dispersion treatment means group or the semi-fine particle high dispersion. It is provided so as to cover the discharge part 1 of the processing means group. In FIG. 4B, the coating start region 2 of the coating space through which all the particles 4 of the core particle powder discharged from the discharge part 1 of the quasi-fine particle high dispersion treatment means group or the quasi-fine particle high dispersion treatment means group are provided. With the above configuration, all the particles of the core particle powder are started to be coated in the dispersed state of the degree of dispersion β described above. Figure 4 (c)
In the above, the particles entering the collecting section 5 among the particles 4 of the core particle powder discharged from the discharging section 1 of the quasi-fine particle high dispersion processing means group or the quasi-fine particle high dispersion processing means group always pass through the coating space. Area 2 is provided.

【0076】図4(d)において回収部5を囲む前記被覆
空間の被覆開始領域2を設ける。図4(e)において高分
散芯粒子粉体の粒子・気体混合物の粒子のみが到達可能
な位置に回収部5を設ける。従って、ここでの領域6は
重力を利用した選択手段となる。回収部に入る高分散芯
粒子粉体の粒子・気体混合物の粒子が、必ず通過する前
記被覆空間の被覆開始領域2を図の斜線部のように設け
る。このようにすることで上記した分散度βの分散状態
で被覆始めた芯粒子のみ回収でき、被覆開始領域を通っ
ていない芯粒子と被覆開始領域を通過した被覆準微粒子
とは混ざることはない。
In FIG. 4D, a coating start region 2 of the coating space surrounding the recovery section 5 is provided. In FIG. 4 (e), the recovery unit 5 is provided at a position where only the particles of the highly dispersed core particle powder and the particles of the gas mixture can reach. Therefore, the area 6 here is a selecting means utilizing gravity. The coating start region 2 of the coating space through which the particles of the highly dispersed core particle powder / particles of the gas mixture that enter the recovery section must pass is provided as shown by the hatched portion in the figure. By doing so, only the core particles that have begun to be coated in the dispersed state of the above-described dispersity β can be recovered, and the core particles that have not passed through the coating start region and the coated quasi-fine particles that have passed through the coating start region do not mix.

【0077】上記したところから、本発明を実施する装
置は、準微粒子高分散処理手段群と被覆室、又は準微粒
子高分散処理手段群と被覆室と回収手段から構成される
ものであるが、これらの装置の構成要素は、種々の組み
合わせ方をすることが可能で、これらの装置の構成例を
図面にもとづいて説明するとつぎのとおりである。
From the above, the apparatus for carrying out the present invention comprises the quasi-fine particle high dispersion treatment means group and the coating chamber, or the quasi-fine particle high dispersion treatment means group, the coating chamber and the recovery means. The components of these devices can be combined in various ways, and the configuration examples of these devices will be described below with reference to the drawings.

【0078】装置の構成1 図5(a)は、被覆された高圧型窒化硼素微粒子を製造す
るための第一の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1に直結してある。
Apparatus Configuration 1 FIG. 5 (a) is a block diagram illustrating the configuration of a first apparatus for producing coated high-pressure boron nitride fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is directly connected to the coating chamber 2-B1.

【0079】装置の構成2 図5(b)は、被覆された高圧型窒化硼素準微粒子を製造
するための第二の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、不可避
の中空部材2−C2、回収手段2−Dから構成されてい
る。準微粒子高分散処理手段群2−C1は、被覆室2−
B1に不可避の中空部材2−C2を介して接続してあ
る。
Apparatus Configuration 2 FIG. 5 (b) is a block diagram illustrating the configuration of a second apparatus for producing the coated high pressure type boron nitride quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, unavoidable hollow member 2-C2, and recovery means 2-D. . The quasi-fine particle high-dispersion processing means group 2-C1 includes a coating chamber 2-
It is connected to B1 via an unavoidable hollow member 2-C2.

【0080】装置の構成3 図5(c)は、被覆された高圧型窒化硼素準微粒子を製造
するための第三の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、気中分
散維持手段2−C3、回収手段2−Dから構成されてい
る。準微粒子高分散処理手段群2−C1は、被覆室2−
B1に気中分散維持手段2−C3を介して接続してあ
る。
Apparatus Configuration 3 FIG. 5 (c) is a block diagram illustrating the configuration of a third apparatus for producing the coated high pressure type boron nitride quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, air dispersion maintaining means 2-C3, and recovery means 2-D. There is. The quasi-fine particle high-dispersion processing means group 2-C1 includes a coating chamber 2-
It is connected to B1 via the air dispersion maintaining means 2-C3.

【0081】装置の構成4 図5(d)は、被覆された高圧型窒化硼素準微粒子を製造
するための第四の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1と空間を共有している。
Device Configuration 4 FIG. 5 (d) is a block diagram illustrating the configuration of a fourth device for producing the coated high-pressure boron nitride quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 shares a space with the coating chamber 2-B1.

【0082】装置の構成5 図5(e)は、被覆された高圧型窒化硼素準微粒子を製造
するための第五の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1は、被覆室2−B1中に設けている。
Device Configuration 5 FIG. 5 (e) is a block diagram illustrating the configuration of a fifth device for producing coated high pressure type boron nitride quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. The quasi-fine particle high dispersion treatment means group 2-C1 is provided in the coating chamber 2-B1.

【0083】装置の構成6 図5(f)は、被覆された高圧型窒化硼素準微粒子を製造
するための第六の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−Dから構成されている。準微粒子高分散処理手段
群2−C1の分散空間中に、被覆室2−B1を設けてい
る。
Device Configuration 6 FIG. 5 (f) is a block diagram illustrating the configuration of a sixth device for producing coated high pressure type boron nitride quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, a coating chamber 2-B1, a coating space 2-B2, a coating start region 2-B3, a quasi-fine particle high dispersion treatment means group 2-C1, and a recovery means 2-D. A coating chamber 2-B1 is provided in the dispersion space of the quasi-fine particle high dispersion treatment means group 2-C1.

【0084】装置の構成7 図5(g)は、被覆された高圧型窒化硼素準微粒子を製造
するための第七の装置の構成を説明するブロック図であ
る。本例のこの装置は、被覆装置の製造装置本体2−
A、被覆室2−B1、被覆空間2−B2、被覆開始領域
2−B3、準微粒子高分散処理手段群2−C1、回収手
段2−D、再被覆供給手段2−Eから構成されている。
回収手段2−Dから被覆後の被覆準微粒子を高分散処理
手段群2−C1に再被覆供給手段2−Eにより搬送し
て、繰り返して被覆処理が行える。かかる構成の装置の
いずれかにより、被覆された高圧型窒化硼素準微粒子が
製造されるものである。
Apparatus Configuration 7 FIG. 5 (g) is a block diagram illustrating the configuration of a seventh apparatus for producing coated high pressure type boron nitride quasi-fine particles. This apparatus of the present example is a manufacturing apparatus body 2 of a coating apparatus.
A, coating chamber 2-B1, coating space 2-B2, coating start region 2-B3, quasi-fine particle high dispersion treatment means group 2-C1, recovery means 2-D, re-coating supply means 2-E. .
The coated quasi-fine particles after coating are conveyed from the collection means 2-D to the high dispersion treatment means group 2-C1 by the re-coating supply means 2-E, and the coating treatment can be repeated. The coated high-pressure type boron nitride quasi-fine particles are produced by any of the apparatuses having such a constitution.

【0085】上記のようにして高圧型窒化硼素準微粒子
である芯粒子粉体を被覆形成物質で被覆を施した被覆準
微粒子について、再び被覆形成物質で被覆すること、ま
たはこの再被覆を反復することもできる。この場合、被
覆準微粒子は再被覆供給手段に送られる。ここで、再被
覆供給手段とは、再被覆を行うために被覆後の被覆準微
粒子を準微粒子高分散処理手段群へ搬送する手段をい
う。具体的には、(a)被覆準微粒子を回収する回収手
段、及び(b)この回収手段から準微粒子高分散処理手段
群に当該被覆準微粒子を搬送する被覆粒子搬送手段を備
えた手段である。または、(a)被覆準微粒子を回収する
回収手段、(b)この回収手段から準微粒子高分散処理手
段群に当該被覆準微粒子を搬送する被覆粒子搬送手段、
(c)及び被覆後の被覆準微粒子を分級する被覆粒子分級
手段を備えた手段である。被覆量が多い場合、被覆前の
芯粒子粉体の粒子の粒度分布と被覆後の被覆準微粒子の
粒度分布は変わってしまう。そこで、被覆後の被覆準微
粒子の粒度分布を被覆粒子分級手段により調整し、再被
覆処理を行えば効果的である。この再被覆処理は、必要
によって繰り返すことができ、そして被覆形成物質の被
覆量を所望のものに設定することができる。更に、この
被覆形成物質の種類を変えてこの被覆処理を繰り返すこ
とができ、このようにして複数成分の物質を被覆形成物
質として多重被覆することもできる。
The coated quasi-fine particles obtained by coating the core particle powder which is the high-pressure type boron nitride quasi-fine particles with the coating-forming substance as described above are coated with the coating-forming substance again, or this re-coating is repeated. You can also In this case, the coated quasi-fine particles are sent to the recoating supply means. Here, the re-coating supply means means for conveying the coated quasi-fine particles after coating to the quasi-fine particle high dispersion treatment means group for performing re-coating. Specifically, it is a means provided with (a) a collecting means for collecting the coated quasi-fine particles, and (b) a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion treatment means group. . Alternatively, (a) a collecting means for collecting the coated quasi-fine particles, (b) a coated particle conveying means for conveying the coated quasi-fine particles from the collecting means to the quasi-fine particle high dispersion treatment means group,
(c) and means for classifying the coated quasi-fine particles after coating to classify the coated particles. When the coating amount is large, the particle size distribution of the core particle powder before coating and the particle size distribution of the coated quasi-fine particles after coating change. Therefore, it is effective to adjust the particle size distribution of the coated quasi-fine particles after coating by the coated particle classification means and perform the recoating treatment. This recoating process can be repeated as necessary, and the coating amount of the coating forming substance can be set to a desired value. Further, this coating treatment can be repeated by changing the type of the coating forming substance, and in this way, it is also possible to multiply coat a substance of a plurality of components as a coating forming substance.

【0086】本発明で用いる被覆準微粒子粒子の製造装
置は、被覆形成物質が、気相を経る気相法によって、芯
粒子粉体の粒子表面に被覆される被覆準微粒子の製造装
置であれば制限はない。例えば、化学蒸着(CVD)装
置としては、熱CVD装置、プラズマCVD装置、電磁
波を利用したCVD(可視光線CVD、レーザCVD、
紫外線CVD、赤外線CVD、遠赤外線CVD)装置、
MOCVD装置等、或いは、物理蒸着(PVD)装置と
しては、真空蒸着装置、イオンスパックリング装置、イ
オンプレーティング装置等が適用可能である。より具体
的には、例えば、特開平3−75302号公報の超微粒
子で表面が被覆された粒子およびその製造方法に記載の
被覆粒子製造装置が好適である。
The apparatus for producing coated quasi-fine particles used in the present invention is an apparatus for producing coated quasi-fine particles in which the coating-forming substance is coated on the particle surface of the core particle powder by a vapor phase method in which a gas phase is passed. There is no limit. For example, as a chemical vapor deposition (CVD) apparatus, a thermal CVD apparatus, a plasma CVD apparatus, a CVD using an electromagnetic wave (visible light CVD, laser CVD,
UV CVD, infrared CVD, far infrared CVD) device,
As the MOCVD device or the like or the physical vapor deposition (PVD) device, a vacuum vapor deposition device, an ion sprinkling device, an ion plating device or the like can be applied. More specifically, for example, a particle whose surface is coated with ultrafine particles disclosed in JP-A-3-75302 and a coated particle manufacturing apparatus described in the manufacturing method thereof are suitable.

【0087】以上述べたとおり、本発明では高圧型窒化
硼素の準微粒子である芯粒子粉体、又は主に準微粒子か
らなる芯粒子粉体の粒子を被覆空間に投入し、気相を経
て生成する被覆形成物質前駆体及び/又は気相状態の被
覆形成物質前駆体をこの芯粒子粉体の粒子に接触及び/
又は衝突させてこの芯粒子粉体の粒子の表面を被覆形成
物質で被覆を施して被覆された高圧型窒化硼素準微粒子
が製造されるが、この準微粒子からなる芯粒子を被覆す
るための基本的な工程を要約するとつぎの通りである。
As described above, according to the present invention, the core particle powder which is the quasi-fine particles of high pressure type boron nitride, or the core particle powder which is mainly the quasi-fine particles is charged into the coating space and is produced through the gas phase. And / or contacting the coating substance precursor and / or the gas-phase coating substance precursor with the particles of the core particle powder.
Alternatively, high-pressure type boron nitride quasi-fine particles coated by coating the surfaces of the particles of the core particle powder with a coating material by collision are produced. The general process is as follows.

【0088】I (A) 準微粒子高分散処理手段群により、体積基準頻
度分布で平均粒子径が10μmを越える準微粒子芯粒子
粉体の粒子又は主に準微粒子からなる芯粒子粉体の粒子
芯粒子粉体の粒子を、気中に分散させて高分散芯粒子粉
体の粒子・気体混合物とする分散工程、(B) この分
散工程で分散させた高分散芯粒子粉体の粒子・気体混合
物の芯粒子粉体の粒子を、分散度βを上記した範囲の値
とする分散状態で、被覆空間の被覆開始領域において被
覆形成物質前駆体と接触及び/又は衝突させて被覆を開
始する被覆工程、を設けた被覆法。
I (A) Particles of a quasi-fine particle core particle powder having an average particle size of more than 10 μm in a volume-based frequency distribution or a core particle powder mainly composed of quasi-fine particles by means of a group of means for highly dispersing quasi-fine particles Dispersing step of dispersing particles of particle powder in air to obtain a particle / gas mixture of highly dispersed core particle powder, (B) Particle / gas mixture of highly dispersed core particle powder dispersed in this dispersing step A coating step of contacting and / or colliding the particles of the core particle powder with the coating forming material precursor in the coating start region of the coating space in a dispersed state in which the degree of dispersion β is a value in the above range. , The coating method provided.

【0089】II (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、分散度βを上記した範囲の値とする分散状
態で、被覆空間の被覆開始領域において被覆形成物質前
駆体と接触及び/又は衝突させて被覆を開始する被覆工
程、を設けた被覆法。
II (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in the volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means that realizes the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step A coating method including a coating step of starting coating by bringing particles into contact with and / or colliding with a coating-forming substance precursor in a coating start region of a coating space in a dispersion state in which the degree of dispersion β is a value in the above range. .

【0090】III (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する微粒子高分散処理手段群
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とする分散工程、(B) この分散工程で分散さ
せた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体
の粒子を、被覆工程に直接搬送する搬送工程、(C)
この搬送工程で搬送した高分散芯粒子粉体の粒子・気体
混合物の芯粒子粉体の粒子を、分散度βを上記した範囲
の値とする分散状態で、被覆空間の被覆開始領域におい
て被覆形成物質前駆体と接触及び/又は衝突させて被覆
を開始する被覆工程、を設けた被覆法。
III (A) Particles of quasi-fine particle core particle powder having an average particle size of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles By means of a group of fine particle high-dispersion processing means for realizing the dispersion degree β of the particles of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range Dispersing step of dispersing in air to form particles / gas mixture of highly dispersed core particle powder, (B) Particles of highly dispersed core particle powder / particles of core particle powder of gas mixture dispersed in this dispersing step Transporting step for directly transporting (C) to the coating step
Forming coating in the coating start region of the coating space in a dispersed state in which the degree of dispersion β is in the above range of values, the particles of the highly dispersed core particle powder and the particles of the core particle powder of the gas mixture transported in this transportation step A coating method including a coating step of contacting and / or colliding with a substance precursor to start coating.

【0091】IV (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、搬送に不可避の、中空部材、中空を形成す
る部材からなる中間部材、及びパイプから選択される1
種類又はそれ以上の部材を介して搬送する搬送工程、
(C) この搬送工程で搬送した高分散芯粒子粉体の粒
子・気体混合物の芯粒子粉体の粒子を、分散度βを上記
した範囲の値とする分散状態で、被覆空間の被覆開始領
域において被覆形成物質前駆体と接触及び/又は衝突さ
せて被覆を開始する被覆工程、を設けた被覆法。
IV (A) Particles of quasi-fine particle core particle powder having an average particle diameter of more than 10 μm in volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means that realizes the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step 1 is selected from a hollow member inevitable for transportation of particles, an intermediate member including a member forming a hollow, and a pipe.
A transporting process that transports through various types or more members,
(C) The coating start region of the coating space in the dispersed state in which the particles of the highly dispersed core particle powder and the core particle powder of the gas mixture of the gas mixture transported in this transportation step have the dispersity β within the above range. In the coating method, the coating step of contacting and / or colliding with the coating material precursor to start coating is performed.

【0092】V (A) 体積基準頻度分布で平均粒子径が10μmを越
える準微粒子芯粒子粉体の粒子又は主に準微粒子からな
る芯粒子粉体の粒子芯粒子粉体の粒子を、準微粒子高分
散処理手段群により分散させた高分散芯粒子粉体の粒子
・気体混合物の芯粒子粉体の粒子の分散度βを上記した
範囲の値とすることを実現する準微粒子高分散処理手段
群により気中に分散させて高分散芯粒子粉体の粒子・気
体混合物とする分散工程、(B) この分散工程で分散
させた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉
体の粒子を、この分散性能で気中に分散させた高分散芯
粒子粉体の粒子・気体混合物の芯粒子粉体の粒子の気中
分散状態を維持する気中分散維持手段、高分散芯粒子粉
体の粒子・気体混合物の芯粒子粉体の粒子の気中分散状
態を高める気中分散促進手段、芯粒子粉体の粒子と気体
との混合物において低分散芯粒子粉体の粒子・気体混合
物を分離し、芯粒子粉体の粒子が主に単一粒子状態で気
中に存在する高分散芯粒子粉体の粒子・気体混合物を選
択する高分散芯粒子粉体の粒子・気体混合物選択手段の
1種類又はそれ以上を介して被覆工程に搬送する搬送工
程、(C) この搬送工程で搬送した高分散芯粒子粉体
の粒子・気体混合物の芯粒子粉体の粒子を、分散度βを
上記した範囲の値とする分散状態で、被覆空間の被覆開
始領域において被覆形成物質前駆体と接触及び/又は衝
突させて被覆を開始する被覆工程、を設けた被覆法。
V (A) Particles of quasi-fine particle core particle powder having an average particle size of more than 10 μm in the volume-based frequency distribution or particles of core particle powder mainly composed of quasi-fine particles A group of quasi-particulate high-dispersion processing means that realizes the degree of dispersion β of the particles of the core-particle powder of the particle / gas mixture of the highly-dispersed core particle powder dispersed by the high-dispersion processing means group within the above range. A dispersion step of dispersing in air into a particle / gas mixture of highly dispersed core particle powder, (B) of a particle / gas mixture of highly dispersed core particle powder dispersed in this dispersion step High-dispersion core particle powder, high-dispersion core particle powder for maintaining the air-dispersed state of particles of highly dispersed core particle powder / gas mixture core particle powder in which particles are dispersed in the air with this dispersion performance Core particles of body particles / gas mixture In the air dispersion promoting means, the low-dispersion core-particle powder particles / gas mixture is separated in the mixture of the core-particle powder particles and the gas, and the core-particle powder particles are mainly dispersed in a single-particle state. A conveying step of conveying the particles / gas mixture of the highly dispersed core particle powder present therein to the coating step via one or more particles / gas mixture selecting means of the highly dispersed core particle powder, (C ) Coating the particles of the highly dispersed core particle powder / particles of the gas mixture core particle powder transported in this transportation step in the coating start region of the coating space in a dispersed state with the degree of dispersion β within the above range. A coating method, which comprises a coating step of contacting and / or colliding with a forming substance precursor to start coating.

【0093】以上、I〜Vの全てにおいて、好適には、
体積基準頻度分布で平均粒子径が10μmを越える準微
粒子芯粒子粉体の粒子又は主に準微粒子からなる芯粒子
粉体の粒子を、準微粒子高分散処理手段群により分散さ
せた高分散芯粒子粉体の粒子・気体混合物の芯粒子粉体
の粒子の分散度βを上記した範囲の値とすることを実現
する空間領域の内の、高分散芯粒子粉体の粒子・気体混
合物中の芯粒子粉体の粒子の全ての粒子が通過する面を
含む空間領域に、被覆空間の被覆開始領域を位置させる
か、又は、体積基準頻度分布で平均粒子径が10μmを
越える準微粒子芯粒子粉体の粒子又は主に準微粒子から
なる芯粒子粉体の粒子を、準微粒子高分散処理手段群に
より分散させた高分散芯粒子粉体の粒子・気体混合物の
芯粒子粉体の粒子の分散度βを上記した範囲の値とする
ことを実現する空間領域の内の、回収手段の回収部に回
収する全ての粒子が通過する面を含む空間領域に、被覆
空間の被覆開始領域を位置させるか、又は、前記I及び
IIにおいて、体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子を、準微粒子高分散処理手段群
により分散させた高分散芯粒子粉体の粒子・気体混合物
の芯粒子粉体の粒子の分散度βを上記した範囲の値とす
ることを実現する準微粒子高分散処理手段群により気中
に分散させて高分散芯粒子粉体の粒子・気体混合物とす
る分散工程の一部以上と前記被覆工程の一部以上とを、
空間を一部以上共有して行うものである。
In all of the above I to V, it is preferable that
Highly dispersed core particles obtained by dispersing particles of quasi-fine particle core particle powder having a volume-based frequency distribution of more than 10 μm or particles of core particle powder mainly composed of quasi-fine particles by a quasi-fine particle high dispersion treatment means group. Core particles of powder particles / gas mixture Core particles of highly dispersed core particles powder / gas mixture in the space region that realizes the degree of dispersion β of powder particles within the above range. The coating start region of the coating space is located in the space region including the surface through which all the particles of the particle powder pass, or the quasi-fine particle core particle powder whose average particle size exceeds 10 μm in the volume-based frequency distribution Particles or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by means of a quasi-fine particle high dispersion treatment means group. A space that realizes that Of the band, in the space region including a surface all particles passing through the recovery in the recovery of the recovery means, or to position the coating start region of the coating space, or the I and
In II, the volume-based frequency distribution has an average particle size of 10 μm
Particles of a highly dispersed core particle powder in which particles of a quasi-fine particle core particle powder or particles of a core particle powder mainly composed of quasi-fine particles are dispersed by a quasi-fine particle high dispersion treatment means group In the dispersion step of dispersing the particles in the air into a particle / gas mixture of highly dispersed core particles powder by a quasi-fine particle high-dispersion treatment means group that realizes the degree of dispersion β of the particles of the powder within the range described above. Part or more and part or more of the coating step,
This is done by sharing a part or more of the space.

【0094】上記、被覆された高圧型窒化硼素準微粒子
は、被覆された粒子の被覆形成物質を介して、接触状態
で集合塊を形成する場合がある。この被覆された高圧型
窒化硼素準微粒子からなる粉体は、単一粒子状態の被覆
された準微粒子と、この単一粒子状態の被覆された準微
粒子が数個から数十個接触した集合塊、更に多数個の単
一粒子状態の被覆された準微粒子が接触した集合塊から
構成され、その形状及び大きさが不均一で不規則にな
る。この単一粒子状態の被覆された準微粒子からなる集
合塊は、解砕及び/又は破砕してから成形又は焼結処理
に供するのが好ましい。この被覆された高圧型窒化硼素
準微粒子の集合塊の解砕及び/又は破砕には、種々の解
砕手段、例えば、ボールミル、振動ボールミル、乳鉢、
ジェットミル等が利用可能である。また、単一粒子状態
の被覆された準微粒子と、この単一粒子状態の被覆され
た粒子の集合塊とを選択分離して、単一粒子状態の被覆
された準微粒子のみを成形又は焼結処理に供してもよ
い。
The above-mentioned coated high-pressure type boron nitride quasi-fine particles may form aggregates in a contact state via the coating forming substance of the coated particles. The powder composed of the coated high-pressure boron nitride quasi-fine particles is an agglomerate in which the coated quasi-fine particles in the state of single particles and several to tens of the coated quasi-fine particles in the state of single particles are in contact with each other. Further, it is composed of aggregates in which a large number of coated quasi-fine particles in a single particle state are in contact with each other, and the shape and size thereof are nonuniform and irregular. It is preferable that the aggregated mass of the coated quasi-fine particles in a single particle state is crushed and / or crushed before being subjected to molding or sintering treatment. For crushing and / or crushing the coated aggregate of the high-pressure type boron nitride quasi-fine particles, various crushing means, for example, a ball mill, a vibrating ball mill, a mortar,
Jet mill etc. can be used. Further, the coated quasi-fine particles in the single particle state and the aggregate of the coated particles in the single particle state are selectively separated, and only the coated quasi-fine particles in the single particle state are molded or sintered. You may use for processing.

【0095】本発明によれば、上記のようにして得られ
た被覆された高圧型窒化硼素準微粒子又は同粒子を含む
混合物を、2000MPa以上の圧力および高温におい
て焼結するか、又はこの被覆された高圧型窒化硼素準微
粒子又は同粒子を含む混合物を2000MPa未満の圧
力及び1850℃を越えない、高圧型窒化硼素が熱力学
的に安定ではないが準安定な圧力・温度の焼結条件にお
いて焼結するか、又はこの被覆された高圧型窒化硼素準
微粒子と結合材との体積で1〜90:99〜10の割合
の混合物であって、この結合材は2000MPa未満の
圧力で1850℃を越えない高圧型窒化硼素粒子が熱力
学的に準安定な条件で密度85%以上に焼結されるもの
である、上記混合物を2000MPa未満の圧力及び1
850℃を越えない高圧型窒化硼素が熱力学的に安定で
はないが準安定な圧力・温度の焼成条件において焼結さ
れる。
According to the present invention, the coated high-pressure type boron nitride quasifine particles or a mixture containing the same obtained as described above is sintered at a pressure of 2000 MPa or more and at a high temperature, or is coated with this. The high-pressure type boron nitride quasi-fine particles or a mixture containing the particles are sintered under a pressure of less than 2000 MPa and a temperature of not more than 1850 ° C. under high-pressure type boron nitride, which is not thermodynamically stable but metastable at a pressure and temperature. Or a mixture of the coated high pressure type boron nitride quasi-fine particles and a binder in a volume ratio of 1 to 90:99 to 10, which is higher than 1850 ° C. at a pressure of less than 2000 MPa. No high-pressure type boron nitride particles are sintered to a density of 85% or more under thermodynamically metastable conditions.
High-pressure type boron nitride which does not exceed 850 ° C is not thermodynamically stable, but is sintered under the firing conditions of metastable pressure and temperature.

【0096】また他の機能を発現する物質を加える場合
についてはこの物質が粉体状、板状又は粒子状のもの
で、より具体的には、周期律表第1a、2a、3a、4
a、5a、6a、7a、1b、2b、3b、4b、5
b、6b、7b、8族の金属、半導体、半金属、希土類
金属、及びその酸化物、窒化物、炭化物、酸窒化物、酸
炭化物、炭窒化物、酸炭窒化物、硼化物、珪化物の内の
選択された一種類以上のもの、例えばAl、B、Si、
Fe、Ni、Co、Ti、Nb、V、Zr、Hf、T
a、W、Re、Cr、Cu、Mo、TiAl、Ti3
l、TiAl3、TiNi、NiAl、Ni3Al、Si
C、B4C、Cr32、TiC、ZrC、WC、W2C、
HfC、TaC、Ta2C、NbC、VC、Mo2C、S
34、TiN、ZrN、Si22O、AlN、Hf
N、VxN(x=1〜3)、NbN、TaN、Ta2N、
TiB、TiB2、ZrB2、VB、V32、VB2、N
bB、NbB2、TaB、TaB2、MoB、MoB2
MoB4、Mo2B、WB、W2B、W25、LaB6、B
P、B132、MoSi2、Al23、ZrO2(Y
23、MgO又はCaO安定剤を添加した部分安定化ジ
ルコニア:PSZ、又は正方晶ジルコニア多結晶体:T
ZP)、MgAl24(スピネル)、Al2SiO5(ム
ライト)の少なくとも一種類からなる粉体及び/又は粒
子等から選択されうる。
When a substance exhibiting another function is added, this substance is in the form of powder, plate, or particles, and more specifically, the periodic table 1a, 2a, 3a, 4
a, 5a, 6a, 7a, 1b, 2b, 3b, 4b, 5
Group b, 6b, 7b, and 8 metals, semiconductors, semimetals, rare earth metals, and oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides, borides, and silicides thereof One or more selected from, for example Al, B, Si,
Fe, Ni, Co, Ti, Nb, V, Zr, Hf, T
a, W, Re, Cr, Cu, Mo, TiAl, Ti 3 A
1, TiAl 3 , TiNi, NiAl, Ni 3 Al, Si
C, B 4 C, Cr 3 C 2 , TiC, ZrC, WC, W 2 C,
HfC, TaC, Ta 2 C, NbC, VC, Mo 2 C, S
i 3 N 4 , TiN, ZrN, Si 2 N 2 O, AlN, Hf
N, V x N (x = 1 to 3), NbN, TaN, Ta 2 N,
TiB, TiB 2 , ZrB 2 , VB, V 3 B 2 , VB 2 , N
bB, NbB 2 , TaB, TaB 2 , MoB, MoB 2 ,
MoB 4 , Mo 2 B, WB, W 2 B, W 2 B 5 , LaB 6 , B
P, B 13 P 2 , MoSi 2 , Al 2 O 3 , ZrO 2 (Y
2 O 3 , MgO or CaO stabilizer added partially stabilized zirconia: PSZ or tetragonal zirconia polycrystal: T
ZP), MgAl 2 O 4 (spinel), and Al 2 SiO 5 (mullite).

【0097】更にこの助剤が繊維状物質であっても良
い。この被覆高圧型窒化硼素準微粒子に混合する、繊維
状物質は短径が500μm以下で、短径に対する長径と
の比が2以上である形状の、金属又は化合物の少なくと
も一種類からなる物質で、短径が500μm以下で、短
径に対する長径との比が2以上である形状の棒状物質及
び/又は融解紡糸して繊維形状にした連続繊維である長
繊維及び/又は結晶自体が繊維形状をとる自形繊維であ
る短繊維及び/又は一方向に結晶成長させて繊維形状に
したウィスカー(wisker)からなる。このウィスカー
(ヒゲ結晶)には、その形成においては、相変化や体積
全体に及ぼす化学反応という現象は起こらないものと定
義されている真性のウィスカー及び/又は相変化とか体
積全体に及ぶ化学変化によって生成する結晶の一つの結
晶面のみを成長させることにより、長い針状晶となった
単結晶を指す広義のウィスカー及び/又は断面積が8×
10-5in2以下で、長さが平均直径の10倍以上の単結
晶であるウィスカーがある。
Further, the auxiliary may be a fibrous substance. The fibrous substance to be mixed with the coated high-pressure boron nitride quasi-fine particles is a substance composed of at least one kind of metal or compound having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, A rod-like substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more, and / or continuous fibers which are continuous fibers formed by melt spinning into fibers and / or crystals themselves have a fiber shape. It consists of short fibers that are self-supporting fibers and / or whiskers that are crystallized in one direction to form fibers. It is defined that whiskers (whisker crystals) do not undergo the phenomenon of phase change or chemical reaction affecting the entire volume in the formation of the whiskers and / or phase change or chemical changes affecting the entire volume. By growing only one crystal plane of the generated crystal, a whisker in a broad sense and / or a cross-sectional area that indicates a single crystal that has become a long needle crystal is 8 ×.
There are whiskers that are single crystals with a length of 10 −5 in 2 or less and a length of 10 times or more the average diameter.

【0098】繊維状物質として、周期律表第1a、2
a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、5b、6b、7b、8族の金属、半導体、半
金属、希土類金属、非金属の内の一種類以上を含む化合
物の少なくとも一種類を含む。短径が500μm以下
で、短径に対する長径との比が2以上である形状の繊維
状物質が用いられる。具体的には、周期律表第1a、2
a、3a、4a、5a、6a、7a、1b、2b、3
b、4b、8族の金属、半導体、半金属、希土類金属、
及びその酸化物、窒化物、炭化物、酸窒化物、酸炭化
物、炭窒化物、酸炭窒化物、硼化物、珪化物の少なくと
も一種類からなる、短径が500μm以下で、短径に対
する長径との比が2以上である形状の繊維状物質が使用
される。好適には、例えばAl、B、Si、Fe、N
i、Co、Ti、Nb、V、Zr、Hf、Ta、W、R
e、Cr、Cu、Mo、TiAl、Ti3Al、TiA
3、TiNi、NiAl、Ni3Al、SiC、B
4C、Cr32、TiC、ZrC、WC、W2C、Hf
C、TaC、Ta2C、NbC、VC、Mo2C、Si3
4、TiN、ZrN、Si22O、AlN、HfN、
xN(x=1〜3)、NbN、TaN、Ta2N、Ti
B、TiB2、ZrB2、VB、V32、VB2、Nb
B、NbB2、TaB、TaB2、MoB、MoB2、M
oB4、Mo2B、WB、W2B、W25、LaB6、B
P、B132、MoSi2、Al23、ZrO2(Y
23、MgO又はCaO安定剤を添加した部分安定化ジ
ルコニア:PSZ、又は正方晶ジルコニア多結晶体:T
ZP)、MgAl24(スピネル)、Al2SiO5(ム
ライト)の少なくとも一種類からなる、短径が500μ
m以下で、短径に対する長径との比が2以上である形状
の繊維状物質が選択されうる。
As the fibrous substance, the periodic table 1a, 2
a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
At least one kind of compound containing at least one kind selected from the group consisting of b, 4b, 5b, 6b, 7b, and 8 metals, semiconductors, semimetals, rare earth metals, and nonmetals is included. A fibrous substance having a minor axis of 500 μm or less and a ratio of the major axis to the minor axis of 2 or more is used. Specifically, the periodic table 1a, 2
a, 3a, 4a, 5a, 6a, 7a, 1b, 2b, 3
b, 4b, group 8 metals, semiconductors, semi-metals, rare earth metals,
And its oxides, nitrides, carbides, oxynitrides, oxycarbides, carbonitrides, oxycarbonitrides, borides, and silicides, with a minor axis of 500 μm or less and a major axis relative to the minor axis. A fibrous material having a shape having a ratio of 2 or more is used. Suitably, for example, Al, B, Si, Fe, N
i, Co, Ti, Nb, V, Zr, Hf, Ta, W, R
e, Cr, Cu, Mo, TiAl, Ti 3 Al, TiA
l 3 , TiNi, NiAl, Ni 3 Al, SiC, B
4 C, Cr 3 C 2 , TiC, ZrC, WC, W 2 C, Hf
C, TaC, Ta 2 C, NbC, VC, Mo 2 C, Si 3
N 4 , TiN, ZrN, Si 2 N 2 O, AlN, HfN,
V x N (x = 1 to 3), NbN, TaN, Ta 2 N, Ti
B, TiB 2 , ZrB 2 , VB, V 3 B 2 , VB 2 , Nb
B, NbB 2 , TaB, TaB 2 , MoB, MoB 2 , M
oB 4 , Mo 2 B, WB, W 2 B, W 2 B 5 , LaB 6 , B
P, B 13 P 2 , MoSi 2 , Al 2 O 3 , ZrO 2 (Y
2 O 3 , MgO or CaO stabilizer added partially stabilized zirconia: PSZ or tetragonal zirconia polycrystal: T
ZP), MgAl 2 O 4 (spinel), Al 2 SiO 5 (mullite), with a minor axis of 500μ
A fibrous substance having a shape of m or less and a ratio of the major axis to the minor axis of 2 or more can be selected.

【0099】本発明で用いる被覆された高圧型窒化硼素
準微粒子は、上記したように気相法によりその表面を被
覆するので基本的に被覆形成物質に制限はない。被覆高
圧型窒化硼素準微粒子焼結体を、用途に応じて任意に材
料設計する上で必要に応じて、この被覆を施す前に、高
圧型窒化硼素準微粒子表面に事前に、同種及び/又は異
種の被覆形成物質を同種及び/又は異種の被覆方法によ
り被覆を施してもよい。例えば、高圧型窒化硼素準微粒
子表面に、目的とする金属の炭化物からなる被覆を形成
する場合、事前に炭素を被覆した被覆高圧型窒化硼素準
微粒子を使用すればよい。事前に物質を被覆する方法
は、特に制限するものではないが、例えば、特開平2−
252660号公報に記載の溶融塩浸漬法、特開平1−
207380号公報に記載の溶融塩不均化反応法を始
め、電気メッキ法、無電解メッキ法、クラッド法、物理
蒸着法(スパッタリング法、イオンプレーティング法
等)や化学蒸着法等が好適である。目的とする金属化合
物の金属の種類は、本発明の結合材及び/又は焼結助剤
として適用可能の範囲であれば特に制限されない。
The coated high-pressure type boron nitride quasi-fine particles used in the present invention coat the surface thereof by the vapor phase method as described above, so that basically there is no limitation on the coating forming substance. If necessary, in designing the material of the coated high-pressure type boron nitride quasi-fine particle sintered body arbitrarily according to the application, before applying this coating, the surface of the high-pressure type boron nitride quasi-fine particle may be of the same type and / or in advance. Different types of coating-forming substances may be coated by the same and / or different coating methods. For example, when forming a coating made of a carbide of a target metal on the surface of the high-pressure type boron nitride quasi-fine particles, the coated high-pressure type boron nitride quasi-fine particles coated with carbon in advance may be used. The method of coating the substance in advance is not particularly limited, but, for example, JP-A-2-
Molten salt dipping method described in JP-A-252660, JP-A-1-
The molten salt disproportionation reaction method described in JP-A-207380, electroplating method, electroless plating method, cladding method, physical vapor deposition method (sputtering method, ion plating method, etc.), chemical vapor deposition method and the like are preferable. . The type of metal of the target metal compound is not particularly limited as long as it is a range applicable as the binder and / or the sintering aid of the present invention.

【0100】上記溶融塩を用いる浸漬法により形成され
る被覆膜は、緻密な高硬度高融点物質であり、高圧型窒
化硼素準微粒子を他の物質から隔離する作用を有し、結
合材の選択の幅が飛躍的に広がる。この溶融塩を用いる
浸漬法により被覆膜を設けた、被覆された高圧型窒化硼
素準微粒子は、従来の圧力が2000MPa未満で、高
圧型窒化硼素が熱力学的に準安定な圧力・温度の焼結条
件による高圧型窒化硼素含有高硬度高密度複合焼結体の
製造法では緻密に焼結することが困難であるが、この溶
融塩を用いる浸漬法により形成された高硬度高融点物質
の被覆膜で被覆された高圧型窒化硼素準微粒子に、更に
一層以上の、本発明の気相法による被覆法により、十分
緻密で高硬度に焼結可能な結合材として適用可能な物質
を適量被覆すると焼結促進により好適である。
The coating film formed by the dipping method using the above-mentioned molten salt is a dense, high-hardness, high-melting-point substance, has a function of separating the high-pressure type boron nitride quasi-fine particles from other substances, and is a binder material. The range of choice expands dramatically. The coated high-pressure type boron nitride quasi-fine particles provided with a coating film by the dipping method using this molten salt have a conventional pressure of less than 2000 MPa, and the high-pressure type boron nitride has a thermodynamically metastable pressure and temperature. It is difficult to sinter densely in the manufacturing method of high-pressure type boron nitride-containing high-hardness and high-density composite sintered body depending on the sintering conditions. To the high-pressure type boron nitride quasi-fine particles coated with the coating film, an appropriate amount of a substance that can be applied as a binder that is sufficiently dense and can be sintered to a high hardness by the coating method by the vapor phase method of the present invention is further added. The coating is more suitable for promoting the sintering.

【0101】本発明によれば高圧型窒化硼素準微粒子表
面に、気相法により、被覆形成物質を被覆させた被覆高
圧型窒化硼素準微粒子を結合材と混合して、又は被覆高
圧型窒化硼素準微粒子と結合材との混合物と、残部が前
記粉体、板状物質、粒子等及び/又は前記短径が500
μm以下で、短径に対する長径との比が2以上である形
状の繊維状物質を混合した混合物を、粉体状で、若しく
は成形後焼結することも可能である。
According to the present invention, the surface of the high-pressure type boron nitride quasi-fine particles is coated with a coating material on the surface of the high-pressure type boron nitride quasi-fine particles by mixing with the binder, or the high-pressure type boron nitride quasi-fine particles are mixed. The mixture of the quasi-fine particles and the binder, with the balance being the powder, plate-like substance, particles, etc. and / or the minor axis being 500.
It is also possible to sinter a mixture of a fibrous substance having a shape of not more than μm and having a ratio of the major axis to the minor axis of 2 or more in the powder form or after molding.

【0102】高圧型窒化硼素は、熱力学的には超高圧力
下のみ安定で、高温下では圧力が不十分な場合にはグラ
ファイト型相の六方晶窒化硼素(h−BN)に相転移す
る。そこで高圧型窒化硼素を含有する高圧型窒化硼素焼
結体は、高圧型窒化硼素のグラファイト型相(h−B
N)への相移転を防止し、且つこの高圧型窒化硼素焼結
体を緻密に焼結するために、高圧型窒化硼素が熱力学的
に安定な2000MPaを越える超高圧力及び高温度下
で製造される。従って圧力が2000MPa以上で、高
圧型窒化硼素が熱力学的に安定な圧力・温度の焼結条件
を選択する場合、高圧型窒化硼素の相図の熱力学的平衡
線により圧力に対応して温度は限定される。しかし、圧
力が2000MPa以上で、高圧型窒化硼素が熱力学的
に安定ではないが準安定な圧力・温度の焼結条件を選択
する場合、高圧型窒化硼素の相図の熱力学的平衡線によ
り圧力に対応して限定される領域から若干外れる温度で
も差し支えない。
The high-pressure type boron nitride is thermodynamically stable only under an ultrahigh pressure, and when the pressure is insufficient at a high temperature, it undergoes a phase transition to a graphite type hexagonal boron nitride (h-BN). . Therefore, a high-pressure type boron nitride sintered body containing high-pressure type boron nitride is used as a graphite type phase (h-B) of high-pressure type boron nitride.
In order to prevent the phase transfer to N) and to sinter the high-pressure boron nitride sintered body densely, the high-pressure boron nitride is thermodynamically stable under an ultrahigh pressure and high temperature exceeding 2000 MPa. Manufactured. Therefore, when the pressure is 2000 MPa or more and the pressure and temperature of the high-pressure boron nitride are thermodynamically stable, the thermodynamic equilibrium line of the phase diagram of the high-pressure boron nitride corresponds to the temperature. Is limited. However, when the pressure is 2000 MPa or more and the high-pressure type boron nitride is not thermodynamically stable, but when metastable pressure and temperature sintering conditions are selected, the thermodynamic equilibrium line of the phase diagram of the high-pressure type boron nitride is used. Temperatures that deviate from the limited region corresponding to the pressure may be acceptable.

【0103】一方、圧力が2000MPa未満で、高圧
型窒化硼素が熱力学的に安定ではないが準安定な圧力・
温度の焼結条件を選択する場合、高圧型窒化硼素が熱力
学的に準安定な領域に、当該圧力に対応して限定される
温度があるので注意を要する。つまり、圧力が2000
MPa未満で、高圧型窒化硼素が熱力学的に安定ではな
いが準安定な圧力・温度の焼結条件を選択する場合、高
圧型窒化硼素粒子の品質に応じて焼結温度の上限が異な
る。例えば立方晶窒化硼素では、若槻らの超高圧力下で
の実験によると、立方晶窒化硼素が熱力学的には安定な
状態でなくとも、熱力学的に準安定である場合、相転移
に要する時間が極めて長いために事実上安定に存在し、
その事実上安定に存在する温度の上限として1200℃
を示して報告している(若槻、市瀬、青木、前田、第1
4回高圧討論会講演要旨集(1972)P78)。
On the other hand, when the pressure is less than 2000 MPa, the high-pressure type boron nitride is not thermodynamically stable, but is metastable.
When selecting the sintering conditions of temperature, it should be noted that the high-pressure type boron nitride is in a thermodynamically metastable region because there is a temperature limited corresponding to the pressure. That is, the pressure is 2000
When the sintering condition is selected such that the pressure is less than MPa and the high-pressure type boron nitride is not thermodynamically stable but is metastable, the upper limit of the sintering temperature varies depending on the quality of the high-pressure type boron nitride particles. For example, in the case of cubic boron nitride, according to an experiment under super high pressure by Wakatsuki et al., When cubic boron nitride is thermodynamically metastable even if it is not thermodynamically stable, a phase transition occurs. Since it takes a very long time, it exists in a stable manner,
1200 ° C as the upper limit of the temperature at which it is stable
(Wakatsuki, Ichise, Aoki, Maeda, No. 1
Proceedings of the 4th High-Volume Debate Conference (1972) P78).

【0104】特に高純度の高圧型窒化硼素、例えばPV
D法或いはCVD法による気相を介して合成される超高
純度の立方晶窒化硼素、或いは長時間かけて超高圧合成
した超高純度の立方晶窒化硼素を用いれば、圧力を伝達
可能なカプセルに脱気封入して超高圧HIP(熱間静水
圧加圧)焼結又はHIP焼結を行うか或いは真空若しく
は不活性ガス中でPC(ピストン・シリンダー)による
焼結又はHP(ホットプレス)焼結を行うことにより、
熱力学的に安定な状態ではなくとも、前記若槻らの報告
の1200℃よりも遥かに高い1850℃まで立方晶窒
化硼素が現実上安定に存在する。しかし、1850℃を
越えると短時間でグラファイト型相に相転移する。ま
た、従来公知の立方晶窒化硼素で積極的に不純物を除去
した高純度の立方晶窒化硼素を用いれば、同様の焼結方
法により、1700℃まで立方晶窒化硼素が存在する。
或いは、従来公知の立方晶窒化硼素で微粒子を含まな
い、好適には3μm以上の立方晶窒化硼素を用いれば、
同様の焼結方法により、1600℃まで立方晶窒化硼素
が存在する。若しくは、従来公知の比較的高純度の立方
晶窒化硼素の場合は、同様の焼結方法により、1500
℃まで立方晶窒化硼素が存在する。しかし、従来公知の
一般的な立方晶窒化硼素やウルツ鉱型窒化硼素を含む場
合は、1400℃までが好適である。
Particularly, high-purity high-pressure boron nitride such as PV
Capsule capable of transmitting pressure by using ultra-high purity cubic boron nitride synthesized through a gas phase by D method or CVD method or ultra-high purity cubic boron nitride synthesized by ultra-high pressure for a long time Ultra-high pressure HIP (hot isostatic pressing) sintering or HIP sintering by degassing and encapsulating in PC, or sintering by PC (piston / cylinder) or HP (hot press) firing in vacuum or an inert gas. By concluding,
Even if it is not in a thermodynamically stable state, cubic boron nitride actually exists stably up to 1850 ° C., which is much higher than 1200 ° C. reported by Wakatsuki et al. However, when it exceeds 1850 ° C., it undergoes a phase transition to a graphite type phase in a short time. Further, if high-purity cubic boron nitride in which impurities have been positively removed by conventionally known cubic boron nitride is used, cubic boron nitride exists up to 1700 ° C. by the same sintering method.
Alternatively, if cubic cubic boron nitride, which is conventionally known cubic cubic nitride and does not contain fine particles, preferably 3 μm or more, is used,
By the same sintering method, cubic boron nitride is present up to 1600 ° C. Alternatively, in the case of a conventionally known relatively high-purity cubic boron nitride, 1500
Cubic boron nitride is present up to ° C. However, up to 1400 ° C. is preferable in the case of containing the conventionally known general cubic boron nitride or wurtzite type boron nitride.

【0105】従って、圧力が2000MPa未満で、高
圧型窒化硼素が熱力学的に安定でないが準安定な圧力・
温度の焼結条件を選択する場合、焼結温度の上限は18
50℃である。尚、前記の通り、高圧型窒化硼素が熱力
学的に安定な状態でなくて事実上安定に存在する温度
は、使用する高圧型窒化硼素の品質により異なるので、
高圧型窒化硼素原料の品質に応じた焼結温度を設定する
必要がある。前記高圧型窒化硼素の原料の品質に応じた
温度に近い焼結温度を設定する必要がある場合は、綿密
に当該焼結温度を制御する必要がある。
Therefore, when the pressure is less than 2000 MPa, the high pressure type boron nitride is not thermodynamically stable, but a metastable pressure.
When selecting the temperature sintering conditions, the upper limit of the sintering temperature is 18
It is 50 ° C. As described above, the temperature at which the high-pressure type boron nitride is not in a thermodynamically stable state and is actually stable depends on the quality of the high-pressure type boron nitride used.
It is necessary to set the sintering temperature according to the quality of the high-pressure boron nitride raw material. When it is necessary to set the sintering temperature close to the temperature corresponding to the quality of the raw material of the high-pressure boron nitride, it is necessary to carefully control the sintering temperature.

【0106】本発明の被覆高圧型窒化硼素準微粒子焼結
体は、圧力が異なる2種類の焼結条件の製造法により製
造される。圧力が2000MPa以上の超高圧力下で且
つ高温下で適宜時間焼結する被覆高圧型窒化硼素準微粒
子焼結体の製造装置は、キュービック型、テトラ型、ガ
ードル型、ベルト型超高圧力装置等が適用可能で、特に
制限はない。再現性良く試料を加圧するための加圧装置
及び圧力は、前記キュービック型超高圧力装置を初めと
する各種超高圧力装置を使用し、2000MPa以上と
する。焼結温度は、前記立方晶窒化硼素の熱力学的安定
領域から若干外れた条件でも差し支えない。しかし、よ
り好適には高圧型窒化硼素の熱力学的安定領域で200
0MPa以上の超高圧力・高温下で焼結せしめる。圧力
が2000MPa未満で、温度が1850℃を越えな
い、高圧型窒化硼素が熱力学的に安定ではないが準安定
な圧力・温度の焼結条件で適宜時間焼結する被覆高圧型
窒化硼素準微粒子焼結体の製造装置は、PC(ピストン
・シリンダー)型超高圧力装置、又は超高圧HIP(熱
間静水圧加圧)装置、或いはHIP装置、若しくはHP
(ホットプレス)装置等が適用可能で、特に制限はな
い。
The coated high-pressure type boron nitride quasi-fine particle sintered body of the present invention is manufactured by a manufacturing method under two kinds of sintering conditions under different pressures. The apparatus for producing a coated high-pressure type boron nitride quasi-fine particle sintered body, which is sintered at an ultrahigh pressure of 2000 MPa or more and at a high temperature for an appropriate time, is a cubic type, tetra type, girdle type, belt type ultrahigh pressure apparatus, etc. Is applicable and there is no particular limitation. The pressurizing device and pressure for pressurizing the sample with good reproducibility are 2000 MPa or more using various ultrahigh pressure devices such as the cubic ultrahigh pressure device. The sintering temperature may be a little outside the thermodynamically stable region of the cubic boron nitride. However, it is more preferable that the high pressure type boron nitride has a thermodynamic stability range of 200.
Sinter under ultra high pressure of 0 MPa or more and high temperature. Coated high-pressure type boron nitride quasi-fine particles which are sintered at a pressure of less than 2000 MPa and a temperature not exceeding 1850 ° C., and the high-pressure type boron nitride is not thermodynamically stable but is metastable for a suitable time under a sintering condition of pressure and temperature. The sintered body manufacturing apparatus is a PC (piston / cylinder) type ultra-high pressure apparatus, an ultra-high pressure HIP (hot isostatic pressing) apparatus, a HIP apparatus, or an HP.
A (hot press) device or the like can be applied, and there is no particular limitation.

【0107】PC型超高圧力装置を使用する場合は、圧
力は2000MPa未満を適用しても差し支えないが、
このPC型超高圧力装置の耐久性を考慮すると1500
MPaを越えないことが好ましい。圧力発生に関する従
来公知の技術としては、超高圧HIP装置の場合100
0MPaまでHIP圧力を作用可能であり、この超高圧
HIP装置を除くHIP装置及びHP装置の場合は、2
00MPaまでそれぞれ作動可能である。
When the PC type ultra high pressure device is used, the pressure may be less than 2000 MPa,
1500 considering the durability of this PC type ultra high pressure device.
It is preferable not to exceed MPa. As a conventionally known technique relating to pressure generation, an ultra-high pressure HIP device is 100
It is possible to apply HIP pressure up to 0 MPa. In the case of HIP equipment and HP equipment excluding this ultra-high pressure HIP equipment, it is 2
Each can be operated up to 00 MPa.

【0108】以上の方法により焼結させた被覆高圧型窒
化硼素準微粒子焼結体は、高度に微組織が制御された高
性能な焼結体である。用途として最も一般的な機械部材
用に、被覆高圧型窒化硼素準微粒子焼結体でそのビッカ
ース硬度が好適には600以上の高硬度で、その密度が
85%以上の緻密な被覆高圧型窒化硼素準微粒子焼結体
が製造出来る。好適には、被覆高圧型窒化硼素準微粒子
焼結体でそのビッカース硬度が好適には800以上の高
硬度で、及び/又は、その密度が90%以上の緻密な被
覆高圧型窒化硼素準微粒子焼結体が製造出来る。より好
ましくは、例えば、耐摩耗性の高い機械部材への適用を
考慮すると、相対的に高圧型窒化硼素の含有量を増し、
且つ緻密に焼結することにより、ビッカース硬度は10
00以上の高硬度の被覆高圧型窒化硼素準微粒子焼結体
が製造出来る。より一層耐摩耗性を要求される工具用等
には、更に高圧型窒化硼素の含有量を増し、且つ緻密に
焼結することにより、ビッカース硬度2000以上の被
覆高圧型窒化硼素準微粒子焼結体が製造出来る。
The coated high-pressure boron nitride quasi-fine particle sintered body sintered by the above method is a high-performance sintered body having a highly controlled microstructure. Dense coated high pressure type boron nitride having a Vickers hardness of preferably 600 or more and a density of 85% or more in a coated high pressure type boron nitride quasi fine particle sintered body for the most general use as a mechanical member. A quasi-fine particle sintered body can be manufactured. Preferably, the coated high-pressure type boron nitride quasi-fine particle sintered body has a Vickers hardness of 800 or more and / or a dense high-pressure type boron nitride quasi-fine particle sintered body having a density of 90% or more. We can manufacture ties. More preferably, for example, considering the application to a mechanical member having high wear resistance, the content of relatively high-pressure boron nitride is increased,
Moreover, the Vickers hardness is 10 due to the dense sintering.
A coated high-pressure type boron nitride quasi-fine particle sintered body having a hardness of 00 or higher can be manufactured. For tools and the like that require even higher wear resistance, a high-pressure type boron nitride quasi-fine particle sintered body having a Vickers hardness of 2000 or more is obtained by further increasing the content of the high-pressure type boron nitride and performing dense sintering. Can be manufactured.

【0109】以下、本発明の被覆高圧型窒化硼素準微粒
子、並びに被覆高圧型窒化硼素準微粒子焼結体及びその
製造法を実施例により説明する。 実施例1 高圧型窒化硼素準微粒子として、平均粒子径DMが17
μmで、体積基準頻度分布が(〔DM/2,3DM
2〕,≧90%)の立方晶窒化硼素準微粒子をチタン金
属の窒化物である窒化チタンを被覆した。使用した装置
は、図6およびその部分拡大図である図7に示したもの
であり、図5(a)に示した構成の具体例である。本例の
装置は、プラズマトーチ3−A、プラズマ室3−a、被
覆形成物質前駆体生成室の冷却槽3−B、被覆形成物質
前駆体生成室3−b、狭義の被覆室冷却槽3−C、狭義
の被覆室3−c、被覆準微粒子冷却室の冷却槽3−D、
被覆準微粒子冷却室3−d、被覆形成物質の原料の供給
側に、供給装置3−E1、芯粒子粉体の供給側に、撹拌
式分散機3−F1とエジェクター式分散機3−H1、細
管分散機107及び被覆準微粒子回収部3−Gより成
る。供給装置3−E1は被覆形成物質の原料粉体の供給
槽112に、撹拌式分散機3−F1は芯粒子粉体の供給
槽を備えた供給機111にそれぞれ結合される。本例に
おける被覆室は、定義ではプラズマ室3−a、被覆形成
物質前駆体生成室3−b、狭義の被覆室3−c、被覆準
微粒子冷却室3−dから構成されており、ここではこれ
らを広義の被覆室と称する。当該広義の被覆室の内、主
に被覆処理の行われる室3−cを狭義の被覆室と称す
る。
The coated high-pressure type boron nitride quasi-fine particles, the coated high-pressure type boron nitride quasi-fine particle sintered body and the method for producing the same according to the present invention will be described below with reference to examples. Example 1 As high pressure type boron nitride quasi fine particles, the average particle size D M was 17
μm, the volume-based frequency distribution is ([D M / 2,3D M /
2], ≧ 90%) cubic boron nitride quasi-fine particles were coated with titanium nitride, which is a nitride of titanium metal. The apparatus used is that shown in FIG. 6 and FIG. 7 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. The apparatus of this example includes a plasma torch 3-A, a plasma chamber 3-a, a cooling bath 3-B for a coating forming substance precursor production chamber, a coating forming substance precursor production chamber 3-b, and a coating chamber cooling bath 3 in a narrow sense. -C, the coating chamber 3-c in a narrow sense, the cooling tank 3-D of the coating quasi-fine particle cooling chamber,
A coating quasi-fine particle cooling chamber 3-d, a supply device 3-E1 on the supply side of the raw material of the coating forming substance, a stirring dispersion machine 3-F1 and an ejector dispersion machine 3-H1 on the supply side of the core particle powder, It is composed of a capillary disperser 107 and a coated quasi-fine particle recovery unit 3-G. The supply device 3-E1 is connected to the supply tank 112 for the raw material powder of the coating-forming substance, and the stirring-type disperser 3-F1 is connected to the supply device 111 equipped with the supply tank for the core particle powder. By definition, the coating chamber in this example is composed of a plasma chamber 3-a, a coating forming substance precursor generation chamber 3-b, a coating chamber 3-c in a narrow sense, and a coating quasi-fine particle cooling chamber 3-d. These are called a coating room in a broad sense. Of the coating chambers in the broad sense, the chamber 3-c in which the coating process is mainly performed is referred to as the coating chamber in the narrow sense.

【0110】本例における準微粒子高分散処理手段群α
は、供給槽を備えた供給機111、撹拌式分散機3−F
1とエジェクター式分散機3−H1及び内径4mmのステ
ンレス製細管分散機107で構成されており、図2(a)
に示したものであり、図3(b)に示した構成に属する準
微粒子高分散処理手段群の具体例である。準微粒子高分
散処理手段群は、DM=17μmの(〔DM/5,5
M〕,≧90%)分布の高圧型窒化硼素準微粒子の芯
粒子粉体に対して出力時β≧80%を実現できるように
構成されている。準微粒子高分散処理手段群の最終処理
手段である細管107は被覆室3−Cに直結してあり、
被覆空間の3−L2の被覆開始領域3−L1においてβ
≧80%を実現できるように構成されている。
Semi-fine particle high dispersion treatment means group α in this example
Is a feeder 111 having a feed tank, a stirring type dispersing machine 3-F
1 and an ejector type disperser 3-H1 and a stainless steel capillary disperser 107 having an inner diameter of 4 mm, as shown in FIG.
3B, which is a specific example of the quasi-fine particle high dispersion treatment means group belonging to the configuration shown in FIG. 3B. The quasi-fine particle high dispersion treatment means group has a D M of 17 μm ([D M / 5,5
D M ], ≧ 90%), and β ≧ 80% at the time of output can be realized with respect to the core particle powder of the high pressure type boron nitride quasi-fine particles. The thin tube 107 which is the final processing means of the quasi-fine particle high dispersion processing means group is directly connected to the coating chamber 3-C,
Β in the coating start region 3-L1 of 3-L2 of the coating space
It is configured so that ≧ 80% can be realized.

【0111】プラズマトーチ3−Aの上部に設けられた
ガス噴出口101に供給源102からアルゴンガスを2
0リットル/分の割合で供給する。このアルゴンガスは
印加された高周波によってプラズマ化され、プラズマト
ーチ3−A内プラズマ室3−aでプラズマ焔を形成す
る。被覆形成物質の原料の供給槽を備えた供給機112
から供給した被覆形成物質の原料である平均粒子径2μ
mの窒化チタン粉末は、5リットル/分のキャリアガス
103に担持されて、プラズマトーチ3−Aの下部に設
けられた被覆形成物質の原料の投入口104から、プラ
ズマ焔中に0.3g/分の割合で導入され、プラズマ焔
の熱により蒸発して気相を経て、被覆形成物質前駆体生
成室3−bで被覆形成物質前駆体となる。芯粒子粉体の
供給槽を備えた供給機111から3.0g/分で供給さ
れる平均粒子径17μmの立方晶窒化硼素の芯粒子を、
撹拌式分散機3−F1により分散させ、5リットル/分
の割合で供給されるキャリアガス105により担持さ
れ、10リットル/分の流量の分散ガス106によるエ
ジェクター式分散機3−H1及び細管分散機107によ
り分散度β=89%の分散状態に分散させ、被覆室に導
入する。高分散状態の立方晶窒化硼素準微粒子は、被覆
空間の3−L2の被覆開始領域3−L1において被覆形
成物質前駆体とβ=89%の分散状態で接触及び/又は
衝突し始める。
Argon gas is supplied from the supply source 102 to the gas jet port 101 provided on the upper part of the plasma torch 3-A.
Supply at a rate of 0 liters / minute. The argon gas is turned into plasma by the applied high frequency, and forms a plasma flame in the plasma chamber 3-a in the plasma torch 3-A. Feeder 112 equipped with a feed tank for the raw material of the coating forming substance
Average particle size of 2μ which is the raw material of the coating forming material supplied from
The titanium nitride powder of m is carried in a carrier gas 103 of 5 liters / minute, and is introduced into the plasma flame through an inlet 104 of a raw material of a coating forming material provided in a lower portion of the plasma torch 3-A. It is introduced at a rate of minutes, evaporates by the heat of the plasma flame, passes through the gas phase, and becomes a coating material precursor in the coating material precursor production chamber 3-b. Cubic boron nitride core particles having an average particle diameter of 17 μm, which are supplied at 3.0 g / min from a feeder 111 equipped with a core particle powder supply tank,
An ejector-type disperser 3-H1 and a thin-tube disperser, which are dispersed by a stirring-type disperser 3-F1 and carried by a carrier gas 105 supplied at a rate of 5 liters / minute, and by a dispersion gas 106 having a flow rate of 10 liters / minute. It is dispersed into a dispersed state with a degree of dispersion β = 89% by 107 and is introduced into the coating chamber. The cubic boron nitride quasi-fine particles in a highly dispersed state start to contact and / or collide with the coating material precursor in the coating start region 3-L1 of the coating space 3-L2 in a dispersed state of β = 89%.

【0112】このようにして生成した、被覆形成物質で
表面に被覆を施された被覆準微粒子は、気体と共に被覆
準微粒子冷却室3−dを降下し、被覆準微粒子回収部3
−Gに至る。この被覆準微粒子からなる製品は、フィル
ター110により気体と分離し、集められ取り出され
る。得られた被覆準微粒子である、窒化チタンで表面に
被覆を施した立方晶窒化硼素準微粒子を走査型電子顕微
鏡で観察したところ、図8に示す通り、個々の粒子は、
いずれも、一様に0.005μm程度の窒化チタンが超
微粒子状に被覆したものであった。窒化チタンの被覆量
は、体積で5%であった。このようにして得られた窒化
チタンで被覆された立方晶窒化硼素準微粒子を結合する
結合材として、この窒化チタン被覆立方晶窒化硼素準微
粒子と略同様の条件で被覆を行って、粒径0.5〜2μ
m(平均粒子径1μm)の微粒子からなる立方晶窒化硼
素微粒子粉体に窒化チタンを体積で15%被覆した被覆
立方晶窒化硼素粉体を用いた。上記の被覆された立方晶
窒化硼素準微粒子を体積で60%、また上記の粒径0.
5〜2μm(平均粒子径1μm)の微粒子からなる被覆
された立方晶窒化硼素微粒子を体積で40%をアセトン
を用いて湿式で混合し、これを外径6mm、高さ2mmに型
押し成形し、その外側に六方晶窒化硼素(h−BN)成
形体を配置した圧力媒体に埋め込み、200℃、10-3
torrで一昼夜真空乾燥して、低沸点不純物を除去した。
これをキュービック型超高圧装置にセットし、先ず、室
温で5.5GPaまで昇圧し、その後1450℃に昇温し、
30分保持後に降温し、圧力を下げた。
The thus-produced coated quasi-fine particles whose surface is coated with the coating-forming substance descends together with the gas in the coated quasi-fine particle cooling chamber 3-d, and the coated quasi-fine particle recovery section 3
-Go to G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 110, collected, and taken out. The obtained coated quasi-fine particles, which are cubic boron nitride quasi-fine particles whose surfaces are coated with titanium nitride, are observed with a scanning electron microscope, and as shown in FIG.
In each case, titanium nitride with a thickness of about 0.005 μm was uniformly coated in the form of ultrafine particles. The coating amount of titanium nitride was 5% by volume. As a binder for bonding the cubic boron nitride quasi-fine particles coated with titanium nitride thus obtained, coating was performed under substantially the same conditions as those of the titanium nitride-coated cubic boron nitride quasi-fine particles, and the grain size was 0. 0.5-2μ
A cubic boron nitride fine particle powder composed of fine particles of m (average particle diameter 1 μm) was coated with 15% by volume of titanium nitride to form a coated cubic boron nitride powder. The coated cubic boron nitride quasi-fine particles are 60% by volume, and the particle size is 0.1%.
Cubic boron nitride fine particles coated with fine particles of 5 to 2 μm (average particle diameter 1 μm) were wet mixed with acetone in an amount of 40% by volume, and the mixture was embossed to have an outer diameter of 6 mm and a height of 2 mm. Embedded in a pressure medium having a hexagonal boron nitride (h-BN) compact formed on the outside thereof, at 200 ° C. for 10 −3
Vacuum drying was performed overnight at torr to remove low boiling point impurities.
This was set in a cubic type ultra-high pressure apparatus, first, the pressure was raised to 5.5 GPa at room temperature, and then the temperature was raised to 1450 ° C.
After holding for 30 minutes, the temperature was lowered and the pressure was lowered.

【0113】得られた焼結体をX線回折で調べたとこ
ろ、立方晶窒化硼素と窒化チタンが認められたのみであ
った。実施例1の焼結体の研摩面に、観察のための通常
の金蒸着を施してなる当該研摩面の電子顕微鏡写真(×
5000)を図9に示す。図中、暗部は立方晶窒化硼素
であり、明部は窒化チタンである。図9から明らかなよ
うに、焼結体中には気孔が全く存在せず、相対密度99
%以上に焼結出来た。しかも、未焼結な部分が全然なか
った。被覆形成物質が薄くなって、立方晶窒化硼素準微
粒子及び/又は微粒子からなる立方晶窒化硼素微粒子同
志が接触しているところは、当該立方晶窒化硼素準微粒
子及び/又は立方晶窒化硼素微粒子同士が被覆を押し破
り、焼結して直接結合している。これ以外では、窒化チ
タンが立方晶窒化硼素準微粒子を均一に取り巻いて分布
し、被覆立方晶窒化硼素準微粒子が緻密で、均一な、極
めて高度に制御された分布を有する特徴的な焼結体であ
ることが分かる。しかも、立方晶窒化硼素粒子は、原料
の立方晶窒化硼素粉体と比べ、粒成長がないという特徴
もある。このような、極めて高度に制御された微組織を
有する焼結体は従来は製造できなかった。以上のよう
に、立方晶窒化硼素は、本来極めて難焼結性であるにも
かかわらず、本発明の被覆高圧型窒化硼素準微粒子は、
工業レベルの超高圧力・高温下において、恰も比較的焼
結し易い粒子のごとく振る舞い、緻密で強固、且つ極め
て高度に制御された微組織を形成した。
When the obtained sintered body was examined by X-ray diffraction, only cubic boron nitride and titanium nitride were found. An electron micrograph of the polished surface obtained by subjecting the polished surface of the sintered body of Example 1 to ordinary gold vapor deposition for observation (×
5000) is shown in FIG. In the figure, the dark part is cubic boron nitride and the light part is titanium nitride. As is clear from FIG. 9, there are no pores in the sintered body and the relative density is 99
It was possible to sinter to over%. Moreover, there were no unsintered parts at all. Where the coating forming material becomes thin and the cubic boron nitride quasi fine particles and / or the cubic boron nitride fine particles composed of the fine particles are in contact with each other, the cubic boron nitride quasi fine particles and / or the cubic boron nitride fine particles are in contact with each other. Broke through the coating, sinter and bond directly. Other than this, titanium nitride is uniformly distributed around cubic boron nitride quasi-fine particles, and coated cubic boron nitride quasi-fine particles are dense and have a uniform and extremely highly controlled distribution characteristic. It turns out that Moreover, the cubic boron nitride particles are also characterized in that they have no grain growth as compared with the cubic boron nitride powder as the raw material. Such a sintered body having an extremely highly controlled microstructure could not be produced in the past. As described above, although cubic boron nitride is originally extremely difficult to sinter, the coated high-pressure boron nitride quasi-fine particles of the present invention are
Under industrial-level ultra-high pressure and high temperature, it behaves like particles that are relatively easy to sinter, and forms a fine structure that is dense, strong, and extremely highly controlled.

【0114】実施例2 平均粒子径DMが17μmで、体積基準頻度分布が
(〔DM/2,3DM/2〕,≧90%)の立方晶窒化硼
素準微粒子をチタン金属で被覆した。使用した装置は、
図10およびその部分拡大図である図11に示したもの
であり、図5(d)に示した構成の具体例である。本例の
被覆形成物質前駆体を生成する装置の構成は実施例1と
同一である。準微粒子高分散処理手段群αは、供給槽を
備えた供給機214、撹拌式分散機5−F1、細管分散
機211及び衝突板を利用した分散機5−H2で構成さ
れており、図2(a)に示したものであり、図3(b)に示
した構成に属する準微粒子高分散処理手段群の具体例で
ある。細管分散機211は、内径4mmのステンレス製で
ある。準微粒子高分散処理手段群αの最終分散手段であ
る衝突板を利用した分散機5−H2は、SiC製の衝突板
213がステンレス製のホルダー212により設置され
た構成である。この衝突板を利用した分散機5−H2は
狭義の被覆室5−cの中に設けられており、準微粒子高
分散処理手段群αと狭義の被覆室5−cは共有の空間を
有している。また、被覆空間5−L1及び被覆空間の被
覆開始領域5−L2は、狭義の被覆室5−c内に設けて
ある。本装置の準微粒子高分散処理手段群は、平均粒子
径DMが17μmで、体積基準頻度分布が(〔DM/5,
5DM〕,≧90%)の芯粒子粉体の粒子を、最終の分
散処理である衝突板を利用した分散機5−H2の衝突板
215を衝突直後、分散度β≧80%に分散できる。し
たがって、分散度β≧80%の状態で被覆が開始され
る。
Example 2 Cubic boron nitride quasi-fine particles having an average particle size D M of 17 μm and a volume-based frequency distribution of ([D M / 2,3D M / 2], ≧ 90%) were coated with titanium metal. . The equipment used is
FIG. 10 and FIG. 11 which is a partially enlarged view of FIG. 10 are specific examples of the configuration shown in FIG. The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high dispersion treatment means group α is composed of a feeder 214 having a feed tank, a stirring type dispersing machine 5-F1, a narrow tube dispersing machine 211, and a dispersing machine 5-H2 using a collision plate. FIG. 3A is a specific example of the quasi-fine particle high dispersion treatment means group belonging to the configuration shown in FIG. 3B. The thin tube disperser 211 is made of stainless steel having an inner diameter of 4 mm. The disperser 5-H2 using the collision plate, which is the final dispersion means of the quasi-fine particle high dispersion treatment means group α, has a structure in which a collision plate 213 made of SiC is installed by a holder 212 made of stainless steel. The disperser 5-H2 using this collision plate is provided in the narrowly-defined coating chamber 5-c, and the quasi-fine particle high dispersion treatment means group α and the narrowly-defined coating chamber 5-c have a common space. ing. Further, the coating space 5-L1 and the coating start region 5-L2 of the coating space are provided in the coating chamber 5-c in a narrow sense. The quasi-fine particle high dispersion treatment means group of this device has an average particle diameter D M of 17 μm and a volume-based frequency distribution of ([D M / 5,
5D M ], ≧ 90%) of the core particle powder can be dispersed at a dispersity β ≧ 80% immediately after collision with the collision plate 215 of the disperser 5-H2 using the collision plate which is the final dispersion treatment. . Therefore, the coating is started in the state where the degree of dispersion β ≧ 80%.

【0115】プラズマトーチ5−Aの上部に設けられた
ガス噴出口201に供給源202から20リットル/分
のアルゴンガスを供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ5
−A内プラズマ室5−aでプラズマ焔を形成する。被覆
形成物質の原料の供給槽を備えた供給機215から0.
4g/分で供給した被覆形成物質の原料である平均粒子
径25μmのチタン金属の粉末は、5リットル/分のキ
ャリアガス203に担持されて、プラズマトーチ5−A
の下部に設けられた被覆形成物質の原料の投入口204
から、プラズマ焔中に導入され、プラズマ焔の熱により
蒸発して気相を経て、被覆形成物質前駆体生成室5−b
で被覆形成物質前駆体となる。芯粒子粉体の供給槽を備
えた供給機214から2.0g/分で供給される立方晶
窒化硼素の芯粒子は、撹拌式分散機5−F1により分散
させ、20リットル/分の割合で供給されるキャリアガ
ス205により担持され、細管分散機211を経て、被
覆室中に設けた衝突板を利用した分散機5−H2によっ
て、分散度β=89%に気中に分散させる。高分散状態
の立方晶窒化硼素準微粒子は、被覆空間5−L2の被覆
開始領域5−L1において被覆形成物質前駆体とβ=8
9%の分散状態で接触及び/又は衝突し始める。
20 l / min of argon gas is supplied from the supply source 202 to the gas ejection port 201 provided on the upper part of the plasma torch 5-A. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 5
-A plasma flame is formed in the plasma chamber 5-a in A. From a feeder 215 equipped with a feed tank for the raw material of the coating-forming substance.
The powder of titanium metal having an average particle diameter of 25 μm, which is the raw material of the coating forming material supplied at 4 g / min, was carried by the carrier gas 203 at 5 liters / min and the plasma torch 5-A.
Feeding port 204 for the raw material of the coating forming material provided at the bottom of
Is introduced into the plasma flame, vaporized by the heat of the plasma flame and passes through the gas phase, and then the coating forming substance precursor generation chamber 5-b.
It becomes a coating material precursor. Cubic boron nitride core particles supplied at 2.0 g / min from a feeder 214 equipped with a core particle powder supply tank were dispersed by a stirring disperser 5-F1 at a rate of 20 liters / min. The carrier gas 205 supplied supplies the carrier gas 205, and after passing through the narrow tube disperser 211, it is dispersed in the air to a dispersity β = 89% by the disperser 5-H2 using a collision plate provided in the coating chamber. The highly dispersed cubic boron nitride quasi-fine particles and β = 8 with the coating substance precursor in the coating start region 5-L1 of the coating space 5-L2.
Start contact and / or collision at 9% dispersion.

【0116】このようにして生成した、被覆形成物質で
表面に被覆を施された被覆準微粒子は、気体と共に被覆
準微粒子冷却室5−dを降下し、被覆準微粒子回収部5
−Gに至る。この被覆準微粒子からなる製品は、フィル
ター210により気体と分離し、集められ取り出され
る。得られた被覆準微粒子である、チタン金属で表面を
被覆された立方晶窒化硼素準微粒子を、走査型電子顕微
鏡で観察したところ、個々の粒子は、いずれも、一様に
0.005μm程度のチタン金属が超微粒子状に被覆し
たものであった。チタン金属の被覆量は体積で10%で
あった。このようにして得られたチタンで被覆された立
方晶窒化硼素準微粒子を結合する結合材として、このチ
タン被覆立方晶窒化硼素準微粒子と略同様の条件で窒化
チタンによる被覆を行って、粒径0.5〜2μm(平均
粒子径1μm)の微粒子からなる立方晶窒化硼素微粒子
粉体に窒化チタンを体積で15%被覆を施した被覆され
た立方晶窒化硼素粉体を用いた。上記の被覆立方晶窒化
硼素準微粒子を体積で60%、また上記の粒径0.5〜
2μm(平均粒子径1μm)の微粒子からなる被覆され
た立方晶窒化硼素微粒子を体積で40%をアセトンを用
いて湿式で混合し、これを外径6mm、高さ2mmに型押し
成形し、その外側に六方晶窒化硼素(h−BN)成形体
を配置した圧力媒体に埋め込み、200℃、10-3torr
で一昼夜真空乾燥して、低沸点不純物を除去した。これ
をキュービック型超高圧装置にセットし、先ず、室温で
5.5GPaまで昇圧し、その後1450℃に昇温し、30
分保持後に降温し、圧力を下げた。
The thus-produced coated quasi-fine particles having their surfaces coated with the coating-forming substance descend together with the gas in the coating quasi-fine particle cooling chamber 5-d, and the coated quasi-fine particle recovery section 5
-Go to G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 210 and collected and taken out. The obtained coated quasi-fine particles, which were cubic boron nitride quasi-fine particles whose surfaces were coated with titanium metal, were observed by a scanning electron microscope. As a result, all the individual particles are uniformly about 0.005 μm. The titanium metal was coated in the form of ultrafine particles. The titanium metal coating amount was 10% by volume. As a binder for binding the cubic boron nitride quasi-fine particles coated with titanium thus obtained, titanium nitride coating was performed under substantially the same conditions as the titanium-coated cubic boron nitride quasi-fine particles, and the grain size A cubic boron nitride fine particle powder consisting of fine particles having a particle size of 0.5 to 2 μm (average particle diameter 1 μm) was coated with 15% by volume of titanium nitride, and a coated cubic boron nitride powder was used. 60% by volume of the above-mentioned coated cubic boron nitride quasi-fine particles, and the above grain size of 0.5-0.5%.
Cubic boron nitride fine particles coated with fine particles of 2 μm (average particle diameter 1 μm) were wet mixed with acetone in an amount of 40% by volume, and the mixture was embossed into an outer diameter of 6 mm and a height of 2 mm. Embedded in a pressure medium with hexagonal boron nitride (h-BN) compacts placed outside, 200 ° C, 10 -3 torr
Vacuum drying was carried out for 24 hours to remove low boiling point impurities. This was set in a cubic type ultra-high pressure apparatus, first, the pressure was raised to 5.5 GPa at room temperature, and then the temperature was raised to 1450 ° C.
After holding for minutes, the temperature was lowered and the pressure was lowered.

【0117】得られた焼結体をX線回折で調べたとこ
ろ、立方晶窒化硼素とTiN及びTiB2が認められた
のみであった。焼結体は相対密度99%以上に緻密に焼
結出来た。この焼結体は、X線定量分析によれば、立方
晶窒化硼素、TiN及びTiB2の体積割合は、それぞ
れ約87%、10%及び3%であった。この焼結体は実
施例1の焼結体と同様、緻密で強固、且つ極めて高度に
制御された微組織を形成した。
When the obtained sintered body was examined by X-ray diffraction, only cubic boron nitride and TiN and TiB 2 were found. The sintered body could be densely sintered to a relative density of 99% or more. According to X-ray quantitative analysis, this sintered body had a volume ratio of cubic boron nitride, TiN and TiB 2 of about 87%, 10% and 3%, respectively. Similar to the sintered body of Example 1, this sintered body formed a dense, strong and extremely highly controlled microstructure.

【0118】実施例3 平均粒子径DMが17μmで、体積基準頻度分布が
(〔DM/2,3DM/2〕,≧90%)の立方晶窒化硼
素準微粒子をジルコニウム金属で被覆した。使用した装
置は、図12およびその部分拡大図である図13に示し
たものであり、図5(b)に示した構成の具体例である。
本例の被覆形成物質前駆体を生成する装置の構成は実施
例1と同一である。準微粒子高分散処理手段群αは、供
給槽を備えた供給機313、分散手段である撹拌式分散
機6−F1、高分散芯粒子粉体の粒子・気体混合物選択
手段であるサイクロン6−Iで構成されており、図2
(b)に示したものであり、図3(d)に示した構成の具体
例である。サイクロン6−Iの高分散芯粒子粉体の粒子
・気体混合物の放出部は、搬送に不可避のパイプ307
で狭義の被覆室6−cへ接続してあり、低分散芯粒子粉
体部分の放出部は、ホッパー6−J、ロータリーバルブ
6−Kを介して搬送管310で撹拌式分散機6−F1へ
接続してある。本装置の準微粒子高分散処理手段群によ
れば、体積基準の粒度分布として、平均粒子径DMが1
7μmで、体積基準頻度分布が(〔DM/5,5DM〕,
≧90%)の芯粒子粉体の粒子を、最終の処理手段であ
るサイクロン6−Iの高分散芯粒子粉体流の放出部で、
分散度β≧85%に分散できる。狭義の被覆室6−cに
図12及び図13のごとく被覆空間6−L2及び被覆空
間の被覆開始領域6−L1が設けてある。6−Cと6−
Dを結合せしめるフランジ部の制約による搬送に不可避
のパイプ307による分散度βの低下は少なくとどめら
れる。したがって、被覆開始領域において、分散度β≧
80%の状態で被覆が開始される。
Example 3 Cubic boron nitride quasi-fine particles having an average particle diameter D M of 17 μm and a volume-based frequency distribution of ([D M / 2,3D M / 2], ≧ 90%) were coated with zirconium metal. . The apparatus used is that shown in FIG. 12 and FIG. 13 which is a partially enlarged view thereof, and is a specific example of the configuration shown in FIG. 5 (b).
The configuration of the apparatus for producing the coating material precursor of this example is the same as that of the first embodiment. The quasi-fine particle high dispersion treatment means group α includes a feeder 313 having a supply tank, a stirring type dispersing machine 6-F1 which is a dispersing means, and a cyclone 6-I which is a means for selecting a particle / gas mixture of highly dispersed core particle powder. It consists of
FIG. 3B shows a specific example of the configuration shown in FIG. The cyclone 6-I highly dispersed core particle powder particle / gas mixture discharge portion is a pipe 307 inevitable for transportation.
Is connected to the coating chamber 6-c in a narrow sense, and the discharge part of the low-dispersion core particle powder portion is a stirring pipe disperser 6-F1 with a conveying pipe 310 through a hopper 6-J and a rotary valve 6-K. Connected to. According to the quasi-fine particle high dispersion treatment means group of the present apparatus, the average particle diameter D M is 1 as the volume-based particle size distribution.
At 7 μm, the volume-based frequency distribution is ([D M / 5,5D M ],
≧ 90%) of the particles of the core particle powder at the discharge portion of the cyclone 6-I high-dispersion core particle powder flow, which is the final processing means.
The degree of dispersion β can be dispersed to ≧ 85%. A coating space 6-L2 and a coating start region 6-L1 of the coating space are provided in the coating chamber 6-c in a narrow sense as shown in FIGS. 6-C and 6-
The decrease in the dispersion degree β due to the pipe 307, which is unavoidable for the transportation due to the restriction of the flange portion for coupling D, can be kept small. Therefore, the degree of dispersion β ≧
The coating starts at 80%.

【0119】プラズマトーチ6−Aの上部に設けられた
ガス噴出口301に供給源302からアルゴンガスを2
0リットル/分で供給する。このアルゴンガスは印加さ
れた高周波によってプラズマ化され、プラズマトーチ6
−A内プラズマ室6−aでプラズマ焔を形成する。被覆
形成物質の原料の供給槽を備えた供給機314から0.
5g/分で供給した被覆形成物質の原料であるジルコニ
ウム粉末は、5リットル/分のキャリアガス303に担
持されて、プラズマトーチ6−Aの下部に設けられた被
覆形成物質の原料の投入口304から、プラズマ焔中に
導入され、プラズマ焔の熱により蒸発して気相を経て、
被覆形成物質前駆体生成室6−bで被覆形成物質前駆体
となる。芯粒子粉体の供給槽を備えた供給機313から
2.0g/分で供給される立方晶窒化硼素の芯粒子は、
撹拌式分散機6−F1により分散させ、15リットル/
分のキャリアガス305により担持されパイプ306を
介してサイクロン6−Iに搬送される。サイクロン6−
Iは、微粉側の最大粒子径が20μmとなるように調節
されており、主に単一粒子からなるβ=92%の分散状
態の高分散芯粒子粉体の粒子・気体混合物を、搬送に不
可避のパイプ307を介し放出口308から狭義の被覆
室6−cに放出させる。一方、サイクロン6−Iにより
選択分離した低分散芯粒子粉体部分は、ホッパー6−
J、ロータリーバルブ6−Kを経て、10リットル/分
のキャリアガス309によりパイプ310中を搬送さ
れ、撹拌式分散機6−F1へフィードバックする。
Argon gas is supplied from the supply source 302 to the gas outlet 301 provided on the upper part of the plasma torch 6-A.
Supply at 0 l / min. This argon gas is turned into plasma by the applied high frequency, and the plasma torch 6
-A plasma flame is formed in the plasma chamber 6-a in A. From a feeder 314 equipped with a feed tank for the raw material of the coating forming material.
The zirconium powder, which is the raw material of the coating forming material supplied at 5 g / min, is carried by the carrier gas 303 of 5 liters / min, and the raw material inlet 304 of the coating forming material provided in the lower part of the plasma torch 6-A. Is introduced into the plasma flame, evaporates due to the heat of the plasma flame, passes through the gas phase,
It becomes a coating material precursor in the coating material precursor production chamber 6-b. Cubic boron nitride core particles supplied at 2.0 g / min from a feeder 313 equipped with a core particle powder supply tank are:
Disperse with a stirring type disperser 6-F1 to obtain 15 liters /
The carrier gas 305 is carried by the carrier gas 305 and is conveyed to the cyclone 6-I through the pipe 306. Cyclone 6-
I was adjusted so that the maximum particle size on the fine powder side was 20 μm, and a particle-gas mixture of highly dispersed core particle powder in a dispersed state of β = 92% mainly composed of single particles was used for transportation. The gas is discharged from the discharge port 308 to the coating chamber 6-c in a narrow sense through the inevitable pipe 307. On the other hand, the low dispersion core particle powder portion selectively separated by the cyclone 6-I is
After passing through J and the rotary valve 6-K, the carrier gas 309 of 10 liter / min conveys the inside of the pipe 310, and feeds it back to the stirring type dispersing machine 6-F1.

【0120】高分散状態の立方晶窒化硼素準微粒子は、
被覆空間6−L2の被覆開始領域6−L1において被覆
形成物質前駆体とβ=89%の分散状態で接触及び/又
は衝突し始める。このようにして生成した、当該被覆形
成物質で表面に被覆を施された被覆準微粒子は、気体と
共に被覆準微粒子冷却室6−dを降下し、被覆準微粒子
回収部6−Gに至る。この被覆準微粒子からなる製品
は、フィルター312により気体と分離し、集められ取
り出される。得られた被覆準微粒子である、ジルコニウ
ムで表面に被覆を施した被覆された立方晶窒化硼素準微
粒子を、走査型電子顕微鏡で観察したところ、個々の粒
子は、いずれも、一様に0.005μm程度のジルコニ
ウムが超微粒子状に被覆したものであった。ジルコニウ
ムの被覆量は体積で10%であった。
The highly dispersed cubic boron nitride quasi-fine particles are
In the coating start region 6-L1 of the coating space 6-L2, contact and / or collision start with the coating material precursor in a dispersed state of β = 89%. The coated quasi-fine particles, the surfaces of which have been coated with the coating-forming substance, thus generated, descend in the coating quasi-fine particle cooling chamber 6-d together with the gas and reach the coated quasi-fine particle recovery unit 6-G. The product composed of the coated quasi-fine particles is separated from the gas by the filter 312, collected and taken out. The obtained coated quasi-fine particles, which are coated cubic boron nitride quasi-fine particles having a surface coated with zirconium, are observed by a scanning electron microscope, and all the individual particles are uniformly 0. Zirconium of about 005 μm was coated in the form of ultrafine particles. The zirconium coverage was 10% by volume.

【0121】このようにして得られたジルコニウム被覆
立方晶窒化硼素準微粒子を結合する結合材として、この
窒化チタン被覆立方晶窒化硼素準微粒子と略同様の条件
で窒化チタンによる被覆を行って、粒径0.5〜2μm
(平均粒子径1μm)の微粒子からなる立方晶窒化硼素
微粒子粉体に窒化チタンを体積で15%被覆した被覆さ
れた立方晶窒化硼素粉体を用いた。上記の被覆された立
方晶窒化硼素準微粒子を体積で30%、また上記の粒径
0.5〜2μm(平均粒子径1μm)の微粒子からなる
被覆された立方晶窒化硼素微粒子を体積で70%をアセ
トンを用いて湿式で混合し、これを外径6mm、高さ2mm
に型押し成形し、その外側に六方晶窒化硼素(h−B
N)成形体を配置した圧力媒体に埋め込み、200℃、
10-3torrで一昼夜真空乾燥して、低沸点不純物を除去
した。これをキュービック型超高圧装置にセットし、先
ず、室温で5.5GPaまで昇圧し、その後1450℃に昇
温し、30分保持後に降温し、圧力を下げた。得られた
焼結体をX線回折で調べたところ、立方晶窒化硼素、Z
rN、ZrB2、TiNが認められたのみであった。焼
結体は相対密度99%以上に緻密に焼結出来た。この焼
結体は、X線定量分析によれば、立方晶窒化硼素、Zr
N、ZrB2、TiNの体積割合は、それぞれ約86
%、2%、1%及び11%であった。焼結体は、緻密で
強固、且つ極めて高度に制御された微組織を形成した。
As a binder for bonding the zirconium-coated cubic boron nitride quasi-fine particles thus obtained, titanium nitride coating was performed under substantially the same conditions as those of the titanium nitride-coated cubic boron nitride quasi-fine particles, Diameter 0.5-2 μm
A cubic cubic boron nitride fine particle powder composed of fine particles (average particle diameter 1 μm) was used, and a cubic cubic boron nitride powder coated with 15% by volume of titanium nitride was used. The above-mentioned coated cubic boron nitride quasi-fine particles are 30% by volume, and the coated cubic boron nitride fine particles composed of the above-mentioned fine particles having a particle size of 0.5 to 2 μm (average particle diameter 1 μm) are 70% by volume. Is wet mixed with acetone and the outer diameter is 6 mm and the height is 2 mm.
, And hexagonal boron nitride (h-B
N) Embedded in a pressure medium in which the molded body is placed,
Vacuum drying was carried out at 10 −3 torr for one day to remove low boiling impurities. This was set in a cubic type ultra-high pressure apparatus, first, the pressure was raised to 5.5 GPa at room temperature, then the temperature was raised to 1450 ° C., the temperature was held for 30 minutes, and then the temperature was lowered to lower the pressure. When the obtained sintered body was examined by X-ray diffraction, cubic boron nitride, Z
Only rN, ZrB 2 , and TiN were found. The sintered body could be densely sintered to a relative density of 99% or more. According to the X-ray quantitative analysis, this sintered body is cubic boron nitride, Zr
The volume ratio of N, ZrB 2 , and TiN is about 86, respectively.
%, 2%, 1% and 11%. The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

【0122】実施例4 実施例1の装置により、実施例1と略同様の条件で被覆
を行って得た、アルミナを体積で50%の被覆を施した
被覆された立方晶窒化硼素準微粒子を直径8mm、厚さ5
mmに型押し成形し、この成形体を、h−BN粉体を充填
したパイレックスガラス製のカプセルに配置し、10-6
torr、400℃、12時間脱気後封入した。このカプセ
ルを、アルゴンガスを圧力媒体とするHIP装置に配置
し、焼結温度1200℃、焼結圧力150MPaで3時
間保持して焼結した。しかる後、炉冷し、圧力を開放し
て、焼結体を取り出した。粉末X線回折により焼結体の
結晶相を調べたところ、立方晶窒化硼素及びα−アルミ
ナ以外の回折ピークは認められなかった。焼結体は、緻
密で強固、且つ極めて高度に制御された微組織を形成し
た。
Example 4 The coated cubic boron nitride quasi-fine particles obtained by coating with the apparatus of Example 1 under substantially the same conditions as in Example 1 and having a coating of 50% by volume of alumina were obtained. Diameter 8 mm, thickness 5
Molded to a size of 10 mm, the molded body was placed in a capsule made of Pyrex glass filled with h-BN powder, and 10 −6
After degassing at torr, 400 ° C. for 12 hours, it was sealed. This capsule was placed in a HIP device using argon gas as a pressure medium, and sintered at a sintering temperature of 1200 ° C. and a sintering pressure of 150 MPa for 3 hours for sintering. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. When the crystal phase of the sintered body was examined by powder X-ray diffraction, diffraction peaks other than those of cubic boron nitride and α-alumina were not recognized. The sintered body formed a microstructure that was dense, strong, and extremely highly controlled.

【0123】実施例5 実施例1の装置により、実施例1と略同様の条件で被覆
を行って窒化チタンを体積で10%の被覆を施した被覆
された立方晶窒化硼素準微粒子を得た。この被覆立方晶
窒化硼素準微粒子の結合材として、高純度で易焼結性の
アルミナ(特開昭63−151616号公報に記載のア
ルミナ粉体)を用い、焼結した。すなわち、この被覆さ
れた立方晶窒化硼素準微粒子を体積で40%、結合材と
して、特開昭63−151616号公報に記載の平均粒
径が0.2μmの高純度・易焼結性アルミナ粉体を体積
で53.4%、及びこのアルミナ粉体の焼結助剤として
マグネシア(MgO)及びチタニア(TiOx、x=1
〜2)を体積でそれぞれ0.6%及び1.0%からなる混
合物を調製し、これらをアルミナ製ボールミルを用い、
アセトン中湿式で2時間混合した。その後、10-6tor
r、200℃でこの混合粉体を真空乾燥した。次いで、
直径16mm、厚さ5mmの円盤状に型押し成形し、この成
形体を、h−BN粉体を充填したパイレックスガラス製
のカプセルに配置し、10-6torr、400℃、12時間
脱気後封入した。このカプセルをアルゴンガスを圧力媒
体とするHIP装置に配置し、焼結温度1300℃、焼
結圧力150MPaで3時間保持して焼結した。しかる
後、炉冷し、圧力を開放して、焼結体を取り出した。X
線回折により実施例5の焼結体の結晶相を調べたとこ
ろ、立方晶窒化硼素、窒化チタン及びα−アルミナ以外
の回折ピークは認められなかった。焼結体は相対密度9
9%以上に緻密に焼結出来た。焼結体は、緻密で強固、
且つ極めて高度に制御された微組織を形成した。
Example 5 Using the apparatus of Example 1, coating was performed under substantially the same conditions as in Example 1 to obtain coated cubic boron nitride quasi-fine particles coated with 10% by volume of titanium nitride. . As the binder for the coated cubic boron nitride quasi-fine particles, high-purity and easily-sinterable alumina (alumina powder described in JP-A-63-151616) was used and sintered. That is, 40% by volume of the coated cubic boron nitride quasi-fine particles, as a binder, a high-purity and easily-sinterable alumina powder having an average particle size of 0.2 μm described in JP-A-63-151616. 53.4% by volume, and magnesia (MgO) and titania (TiO x , x = 1) as a sintering aid for this alumina powder.
~ 2) are prepared in a volume ratio of 0.6% and 1.0%, respectively, and these are mixed in an alumina ball mill.
Mix wet in acetone for 2 hours. Then 10 -6 tor
The mixed powder was vacuum dried at r and 200 ° C. Then
It is stamped and molded into a disk shape with a diameter of 16 mm and a thickness of 5 mm, and this molded body is placed in a Pyrex glass capsule filled with h-BN powder and degassed at 10 -6 torr, 400 ° C. for 12 hours. Enclosed. This capsule was placed in a HIP device using argon gas as a pressure medium, and sintered at a sintering temperature of 1300 ° C. and a sintering pressure of 150 MPa for 3 hours for sintering. Thereafter, the furnace was cooled, the pressure was released, and the sintered body was taken out. X
When the crystal phase of the sintered body of Example 5 was examined by line diffraction, no diffraction peaks other than those of cubic boron nitride, titanium nitride and α-alumina were observed. Sintered body has a relative density of 9
It could be sintered finely to 9% or more. The sintered body is dense and strong,
And formed a very highly controlled microstructure.

【0124】[0124]

【発明の効果】本発明によれば、(1)体積基準頻度分布
で平均粒子径が10μmを越え、20μm以下の芯粒子
粉体の粒子が主に単一粒子状態で気中に存在する高分散
芯粒子粉体の粒子・気体混合物中の当該芯粒子粉体の粒
子を、分散度βが80%以上である高い分散状態でか、
又は(2)体積基準頻度分布で平均粒子径が20μmを越
え、50μm以下の芯粒子粉体の粒子が主に単一粒子状
態で気中に存在する高分散芯粒子粉体の粒子・気体混合
物中の芯粒子粉体の粒子を、分散度βで90%以上であ
る高い分散状態でか、又は(3)体積基準頻度分布で平均
粒子径が50μmを越え、300μm以下の芯粒子粉体
の粒子が主に単一粒子状態で気中に存在する高分散芯粒
子粉体の粒子・気体混合物中の当該芯粒子粉体の粒子
を、分散度βで95%以上である高い分散状態でか、又
は(4)体積基準頻度分布で平均粒子径が300μmを越
え、800μm以下の芯粒子粉体の粒子が主に単一粒子
状態で気中に存在する高分散芯粒子粉体の粒子・気体混
合物中の当該芯粒子粉体の粒子を、分散度βが97%以
上である高い分散状態でか、又は(5)体積基準頻度分布
で平均粒子径が800μmを越える芯粒子粉体の粒子が
主に単一粒子状態で気中に存在する高分散芯粒子粉体の
粒子・気体混合物中の芯粒子粉体の粒子を、分散度βで
99%以上である高い分散状態で被覆形成物質前駆体と
接触又は衝突させることによって、単一粒子状態でその
表面を被覆形成物質で被覆を施した被覆された高圧型窒
化硼素準微粒子が得られる。そしてこの被覆高圧型窒化
硼素準微粒子はこの準微粒子自体で、または結合材と共
に高圧下に焼結することにより、実質的にグラファイト
型相を含まない、緻密で極めて高度に微組織が制御され
た被覆高圧型窒化硼素準微粒子焼結体が製造出来るよう
になった。特に、超高圧HIP装置或いは超高圧HIP
装置を除くHIP装置を使用する場合は、更に複雑形状
の焼結体の製造も可能である等、本発明は工業生産上の
メリットが頗る大きい。
EFFECTS OF THE INVENTION According to the present invention, (1) the core particle powder having an average particle size of more than 10 μm and 20 μm or less in the volume standard frequency distribution is mainly present in the air in the form of a single particle. Whether the particles of the core particle powder in the particle / gas mixture of the dispersed core particle powder are in a highly dispersed state with a dispersity β of 80% or more,
Or (2) A particle / gas mixture of highly dispersed core particle powder in which particles of the core particle powder having an average particle size of more than 20 μm and 50 μm or less in the volume-based frequency distribution mainly exist in the air in a single particle state. The particles of the core particle powder are in a highly dispersed state having a dispersity β of 90% or more, or (3) the core particle powder having an average particle diameter of more than 50 μm and 300 μm or less in the volume standard frequency distribution. Particles of high-dispersion core particle powder that are mainly present in the air in the form of a single particle-The particles of the core particle powder in the gas mixture are in a highly dispersed state with a dispersity β of 95% or more. Or (4) Particles / gas of highly dispersed core particle powder in which particles in the core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in the volume standard frequency distribution are mainly present in the air in a single particle state. Whether the particles of the core particle powder in the mixture are in a highly dispersed state with a dispersity β of 97% or more, Is (5) Core particles with a volume-based frequency distribution and an average particle size of more than 800 μm. The particles of the powder are mainly in the form of a single particle in the air. Highly dispersed core particles The particles of the powder / core particles in the gas mixture. By contacting or colliding the particles of the powder with the coating substance precursor in a highly dispersed state having a dispersity β of 99% or more, the surface of the powder is coated with the coating substance in a single particle state. High-pressure type boron nitride quasi-fine particles are obtained. The coated high-pressure type boron nitride quasi-fine particles were sintered under high pressure with the quasi-fine particles themselves or together with the binder, whereby the microstructure was dense and extremely highly controlled, containing substantially no graphite type phase. A high-pressure coated boron nitride quasi-fine particle sintered body can be manufactured. In particular, ultra-high pressure HIP device or ultra-high pressure HIP
When the HIP device other than the device is used, it is possible to manufacture a sintered body having a more complicated shape, and the present invention has a great advantage in industrial production.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉体粒子の分布図であり、(a)はの分散度βを
表わし、(b)は粒径D1〜D2の範囲の粒子が体積で90
%を占める粉体の粒径対体積基準頻度を表わす。
FIG. 1 is a distribution chart of powder particles, (a) shows a dispersion degree β of, and (b) shows a volume of particles having a particle size of D 1 to D 2 of 90.
The particle size vs. volume standard frequency of the powder is shown.

【図2】(a)〜(c)は準微粒子高分散処理手段群の基本
構成を示すブロック図。
2A to 2C are block diagrams showing a basic configuration of a quasi-fine particle high dispersion treatment means group.

【図3】(a)〜(g)は準微粒子高分散処理手段群の構成
をより詳細に説明するブロック図。
3 (a) to 3 (g) are block diagrams for explaining the configuration of a quasi-fine particle high dispersion treatment means group in more detail.

【図4】(a)〜(e)は芯粒子粉体に被覆が開始される態
様を示す図。
FIGS. 4A to 4E are views showing a mode in which coating of core particle powder is started. FIG.

【図5】(a)〜(g)は被覆された高圧型窒化硼素準微粒
子を製造するための装置の構成を説明するブロック図。
5 (a) to (g) are block diagrams illustrating the configuration of an apparatus for producing coated high-pressure boron nitride quasi-fine particles.

【図6】実施例1で用いる装置を示す図。FIG. 6 is a diagram showing an apparatus used in Example 1.

【図7】実施例1で用いる装置の部分拡大図。FIG. 7 is a partially enlarged view of the device used in the first embodiment.

【図8】実施例1で得られた被覆準微粒子の走査型電子
顕微鏡写真。
FIG. 8 is a scanning electron micrograph of the coated quasi-fine particles obtained in Example 1.

【図9】実施例1の焼結体の研磨面の電子顕微鏡写真。9 is an electron micrograph of a polished surface of the sintered body of Example 1. FIG.

【図10】実施例2で用いる装置を示す図。FIG. 10 is a diagram showing an apparatus used in Example 2.

【図11】実施例2で用いる装置の部分拡大図。FIG. 11 is a partially enlarged view of the device used in the second embodiment.

【図12】実施例3で用いる装置を示す図。FIG. 12 is a diagram showing an apparatus used in Example 3;

【図13】実施例3で用いる装置の部分拡大図。FIG. 13 is a partially enlarged view of the device used in the third embodiment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 19/00 N 8822−4G C01B 21/064 Z C04B 35/626 C23C 14/06 J 9271−4K (72)発明者 吉田 晴男 愛知県名古屋市北区尾上町1番地の2 尾 上団地第5号棟第1406号室 (72)発明者 粂 正市 愛知県津島市鹿伏兎町字二之割150番地の 2 (72)発明者 山田 幸良 埼玉県比企郡川島町八幡3丁目6番18号 (72)発明者 冬木 正 埼玉県入間郡大井町緑ヶ丘2丁目23番16号 (72)発明者 秋山 聡 埼玉県川越市稲荷町17番22号 (72)発明者 濱田 美明 埼玉県川越市末広町3丁目4番8号 (72)発明者 黒田 英輔 埼玉県川越市西小仙波町2丁目16番4号 (72)発明者 鍋谷 忠克 神奈川県鎌倉市山ノ内1095−21 (72)発明者 隅田 幸雄 宮城県亘理郡亘理町吉田字中原55−520 (72)発明者 木村 健一 宮城県仙台市太白区八木山本町2−33−5 グレイス八木山502号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 19/00 N 8822-4G C01B 21/064 Z C04B 35/626 C23C 14/06 J 9271-4K (72) Inventor Haruo Yoshida 2 Onoue-cho, Kita-ku, Nagoya, Aichi, No. 2 Room No. 1406, No. 5 Onoue Danchi (72) Inventor, Masayoshi Kasu, Ninowari 150, Shikafushi-cho, Tsushima City, Aichi Prefecture 2 (72) Inventor Yuki Yamada 3-6-18 Hachiman, Kawashima-cho, Hiki-gun, Saitama Prefecture (72) Tadashi Fuyuki 2-23-16 Midorigaoka, Oi-cho, Iruma-gun, Saitama Prefecture (72) Satoshi Akiyama Kawagoe, Saitama Prefecture 17-22 Inari-cho, Inari-shi (72) Inventor Miaki Hamada 3-4-8 Suehiro-cho, Kawagoe-shi, Saitama (72) Inventor Eisuke Kuroda 2-16-4 Nishi-senba-cho, Kawagoe-shi, Saitama (72 ) Inventor Tadakatsu Nabeya Kana 1095-21 Yamanouchi, Kamakura, Japan (72) Inventor Yukio Sumida 55-520 Nakahara, Yoshida, Watari-cho, Watari-gun, Miyagi Prefecture (72) Kenichi Kimura 2-33-5, Yagiyama-honmachi, Taishiro-ku, Sendai, Miyagi Prefecture Grace Yagiyama No. 502

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高圧型窒化硼素の準微粒子からなる芯粒
子粉体を被覆空間に投入し、気相を経て生成する被覆形
成物質前駆体及び/又は気相状態の被覆形成物質前駆体
を、この芯粒子粉体の粒子に接触及び/又は衝突させ
て、この芯粒子粉体の粒子の表面を被覆形成物質で被覆
して得られる被覆高圧型窒化硼素準微粒子であって、 (A) 準微粒子高分散処理手段群の最終処理手段が、
(a) 芯粒子粉体の粒子を気中に分散させる分散手
段、及び(b) 芯粒子粉体の粒子を気中に分散させた
芯粒子粉体の粒子と気体との混合物において低分散芯粒
子粉体部分を分離し、芯粒子粉体の粒子が主に単一粒子
状態で気中に存在する高分散芯粒子粉体の粒子・気体混
合物を選択する高分散芯粒子粉体の粒子・気体混合物選
択手段とこの高分散芯粒子粉体の粒子・気体混合物選択
手段により選択分離された低分散芯粒子粉体部分を準微
粒子高分散処理手段群中の分散手段の内の最終分散手段
及び/又は最終分散手段以前の処理手段に搬送するフィ
ードバック手段とを備えた高分散芯粒子粉体の粒子・気
体混合物選択手段、から選ばれる準微粒子高分散処理手
段群により、体積基準頻度分布で平均粒子径が10μm
を越える準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子を、気中に分散させて高分散芯
粒子粉体の粒子・気体混合物とする分散工程、 (B) この分散工程で分散させた芯粒子粉体の粒子
を、 その平均粒子径が10μmを越え20μm以下のときに
は分散度βが80%以上、 20μmを越え50μm以下のときには分散度βが90
%以上、 50μmを越え300μm以下のときには分散度βが9
5%以上、 300μmを越え800μm以下のときは分散度βが9
7%以上、そして800μmを越えるときは分散度βが
99%以上の分散状態で、被覆空間の被覆開始領域にお
いて被覆形成物質前駆体と接触及び/又は衝突させて被
覆を開始する被覆工程、からなる被覆手段によって調製
された、被覆高圧型窒化硼素準微粒子。
1. A coating forming substance precursor and / or a coating forming substance precursor in a vapor phase state produced by introducing a core particle powder composed of quasi-fine particles of high-pressure type boron nitride into a coating space to generate a gas phase. Coated high-pressure boron nitride quasi-fine particles obtained by contacting and / or colliding with the particles of the core particle powder to coat the surface of the particles of the core particle powder with a coating-forming substance, The final treatment means of the fine particle high dispersion treatment means group is
(A) Dispersing means for dispersing particles of core particle powder in air, and (b) Low dispersion core in a mixture of particles of core particle powder and gas in which particles of core particle powder are dispersed in air. Particles of highly dispersed core particle powder that separates the particle powder portion and particles of the core particle powder are mainly present in the air in a single particle state. Particles of highly dispersed core particle powder that selects a gas mixture. The gas mixture selection means and the low-dispersion core particle powder portion selectively separated by the particle / gas mixture selection means of the high-dispersion core particle powder are the final dispersion means of the dispersion means in the quasi-fine particle high-dispersion processing means group, and And / or a means for selecting a particle / gas mixture of a highly dispersed core particle powder, which comprises a feedback means for conveying to a processing means before the final dispersing means, and a means for quasi-fine particle high dispersion processing means selected from the average of volume-based frequency distributions. Particle size is 10 μm
A dispersing step of dispersing particles of the quasi-fine particle core particle powder exceeding the above or particles of the core particle powder mainly consisting of quasi-fine particles into the air to form a particle / gas mixture of the highly dispersed core particle powder, (B) When the average particle size of the core particle powder dispersed in this dispersion step is more than 10 μm and less than 20 μm, the dispersity β is 80% or more, and when the average particle size is more than 20 μm and less than 50 μm, the dispersity β is 90%.
% And more than 50 μm and less than 300 μm, the dispersity β is 9
When it is 5% or more and exceeds 300 μm and 800 μm or less, the dispersity β is 9
A coating step of contacting and / or colliding with the coating forming material precursor in the coating starting region of the coating space in a dispersed state having a dispersity β of 99% or more when it is 7% or more and 800 μm or more; Coated high-pressure type boron nitride quasi-fine particles prepared by the following coating means.
【請求項2】 前記被覆された高圧型窒化硼素準微粒子
が、 被覆された高圧型窒化硼素準微粒子の被覆形成物質を介
して接触状態で集合塊を形成した被覆された高圧型窒化
硼素準微粒子の集合塊を、解砕及び/又は破砕する被覆
された高圧型窒化硼素準微粒子集合塊の解砕・破砕工
程、及び/又はこの被覆高圧型窒化硼素準微粒子集合塊
と一次粒子単位の被覆された高圧型窒化硼素準微粒子と
を選択分離する選択分離工程を更に経て調製されたもの
であることを特徴とする、請求項1に記載の被覆高圧型
窒化硼素準微粒子。
2. Coated high-pressure type boron nitride quasi-fine particles in which the coated high-pressure type boron nitride quasi-fine particles form aggregates in contact with each other through a coating material of the coated high-pressure type boron nitride quasi-fine particles. Crushing and / or crushing the agglomerates of high pressure type boron nitride quasi fine particles, and / or coating the high pressure type boron nitride quasi fine particles agglomerates with primary particle units. The coated high pressure type boron nitride quasi-fine particles according to claim 1, which is prepared by further performing a selective separation step of selectively separating the high pressure type boron nitride quasi-fine particles.
【請求項3】 被覆形成物質で被覆するべき高圧型窒化
硼素の準微粒子からなる芯粒子粉体の粒子又は主に同準
微粒子からなる芯粒子粉体の粒子が、溶融塩浴を用いる
浸漬法により、浸漬法に由来する被覆物質で一層以上被
覆された準微粒子芯粒子粉体の粒子又は主に準微粒子か
らなる芯粒子粉体の粒子であることを特徴とする、請求
項1又は請求項2に記載の被覆高圧型窒化硼素準微粒
子。
3. Particles of core particle powder consisting of quasi-fine particles of high-pressure boron nitride to be coated with a coating-forming substance, or particles of core particle powder consisting mainly of quasi-fine particles, are immersed in a molten salt bath. According to claim 1 or claim 2, the particles are particles of quasi-fine particle core particles which are coated with one or more coating materials derived from the dipping method, or particles of core particle powder mainly composed of quasi-fine particles. 2. The coated high-pressure type boron nitride quasi-fine particle as described in 2.
【請求項4】 被覆された高圧型窒化硼素準微粒子が、 体積基準頻度分布で平均粒子径が10μmを越え20μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
80%以上とする分散性能を有する準微粒子高分散処理
手段群、又は体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを90%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が50μmを越え300μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを95%以上とする分散性能
を有する準微粒子高分散処理手段群、又は 体積基準頻度分布で平均粒子径が300μmを越え80
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを97%以上とする分散性能を有する準微粒子高分散
処理手段群、又は体積基準頻度分布で平均粒子径が80
0μmを越える芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを99%以上とする分散性能を有する準微粒子高分
散処理手段群による分散工程を設け、準微粒子高分散処
理手段群により分散させた高分散芯粒子粉体の粒子・気
体混合物を被覆工程に直接放出するか、又は分散工程と
被覆工程の間に、準微粒子高分散処理手段群により分散
させた高分散芯粒子粉体の粒子・気体混合物を放出する
放出部から、搬送に不可避の、中空部材、中空を形成せ
しめる部材からなる中間部材、及びパイプから選択され
る一種類又はそれ以上の部材を介して搬送するか、及び
/又は、前記分散性能で気中に分散させた高分散芯粒子
粉体の粒子・気体混合物中の粒子の気中分散状態を維持
する気中分散維持手段、前記分散性能で気中に分散させ
た高分散芯粒子粉体の粒子・気体混合物中の粒子の気中
分散状態を高める気中分散促進手段、芯粒子粉体の粒子
と気体との混合物の内の、低分散芯粒子粉体部分を分離
し、芯粒子粉体の粒子が主に単一粒子状態で気中に存在
する高分散芯粒子粉体の粒子・気体混合物を選択する高
分散芯粒子粉体の粒子・気体混合物選択手段の一種類又
はそれ以上を介して搬送して調製されたものであること
を特徴とする、請求項1に記載の被覆高圧型窒化硼素準
微粒子。
4. The coated high-pressure type boron nitride quasi-fine particles have an average particle size of more than 10 μm and 20 μm in a volume-based frequency distribution.
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of high-dispersion quasi-fine particles having a dispersion performance of 80% or more, or a volume-based frequency distribution with an average particle diameter of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion treatment means group having a dispersion performance of making the degree β 90% or more, or the core particle powder having an average particle diameter exceeding 50 μm and 300 μm or less in the volume standard frequency distribution A quasi-particulate high dispersion treatment means group having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment, and the degree of dispersion β of the particles of the core particle powder is 95% or more. Or, the volume-based frequency distribution has an average particle size of more than 300 μm and 80
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 97% or more of quasi-fine particle high-dispersion treatment means having a dispersion performance, or a volume-based frequency distribution with an average particle diameter of 80
The core particle powder exceeding 0 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder A dispersion process using a group of quasi-particulate high-dispersion treatment means having a dispersion performance of 99% or more is provided, and the particle-gas mixture of the highly-dispersed core particle powder dispersed by the quasi-fine particle high-dispersion treatment means group is directly applied to the coating step. A hollow member unavoidable for transportation from a discharging part that discharges or discharges a particle / gas mixture of highly dispersed core particle powder dispersed by a quasi-fine particle high dispersion treatment means group between the dispersing step and the coating step. , A high-dispersion core particle powder which is conveyed through one or more members selected from an intermediate member made of a member that forms a hollow and a pipe, and / or dispersed in the air with the above-mentioned dispersion performance. Body particle / gas mixture In-air dispersion maintaining means for maintaining the air-dispersed state of the particles in the compound, enhancing the air-dispersed state of the particles in the particles / gas mixture of the highly dispersed core particle powder dispersed in the air with the above-mentioned dispersion performance Air dispersion promoting means, separating low-dispersion core particle powder portion of a mixture of core particle powder particles and gas, and the core particle powder particles mainly exist in the air in a single particle state. Characterized in that it is prepared by transporting the particles / gas mixture of the highly dispersed core particle powder through one or more means for selecting the particles / gas mixture of the highly dispersed core particle powder. The coated high-pressure boron nitride quasi-fine particles according to claim 1.
【請求項5】 被覆された高圧型窒化硼素準微粒子が、 体積基準頻度分布で平均粒子径が10μmを越え20μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
80%以上とする分散性能を有する準微粒子高分散処理
手段群、又は体積基準頻度分布で平均粒子径が20μm
を越え50μm以下の芯粒子粉体を、準微粒子高分散処
理手段群の最終処理により気中に分散させて高分散芯粒
子粉体の粒子・気体混合物とし、その芯粒子粉体の粒子
の分散度βを90%以上とする分散性能を有する準微粒
子高分散処理手段群、又は体積基準頻度分布で平均粒子
径が50μmを越え300μm以下の芯粒子粉体を、準
微粒子高分散処理手段群の最終処理により気中に分散さ
せて高分散芯粒子粉体の粒子・気体混合物とし、その芯
粒子粉体の粒子の分散度βを95%以上とする分散性能
を有する準微粒子高分散処理手段群、又は体積基準頻度
分布で平均粒子径が300μmを越え800μm以下の
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを97%以
上とする分散性能を有する準微粒子高分散処理手段群、
又は体積基準頻度分布で平均粒子径が800μmを越え
る芯粒子粉体を、準微粒子高分散処理手段群の最終処理
により気中に分散させて高分散芯粒子粉体の粒子・気体
混合物とし、その芯粒子粉体の粒子の分散度βを99%
以上とする分散性能を有する準微粒子高分散処理手段群
による分散工程の一部以上と前記被覆工程の一部以上と
を、空間を一部以上共有して行うことにより調製された
ものであることを特徴とする、請求項1に記載の被覆高
圧型窒化硼素準微粒子。
5. The coated high-pressure type boron nitride quasi-fine particles have a volume-based frequency distribution with an average particle size exceeding 10 μm and 20 μm.
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of high-dispersion quasi-fine particles having a dispersion performance of 80% or more, or a volume-based frequency distribution with an average particle diameter of 20 μm
The core particle powder having a diameter of more than 50 μm and not more than 50 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the dispersion of the particles of the core particle powder. Of the quasi-fine particle high-dispersion treatment means group having a dispersion performance of making the degree β 90% or more, or the core particle powder having an average particle diameter exceeding 50 μm and 300 μm or less in the volume standard frequency distribution A quasi-particulate high dispersion treatment means group having a dispersibility in which a particle / gas mixture of highly dispersed core particle powder is dispersed in the air by the final treatment, and the degree of dispersion β of the particles of the core particle powder is 95% or more. , Or a particle / gas of a highly dispersed core particle powder, in which a core particle powder having an average particle diameter of more than 300 μm and 800 μm or less in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group. As a mixture, the core particles Quasi particle group of means for high dispersion treatment with a dispersing performance of the body of the dispersity β of the particles and 97% or more,
Alternatively, a core particle powder having a volume-based frequency distribution and an average particle diameter of more than 800 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, Particle dispersity β of core particle powder is 99%
It is prepared by performing a part or more of the dispersion step and a part or more of the coating step by the group of quasi-particulate high-dispersion processing means having the above-mentioned dispersion performance by sharing a part or more of the space. The coated high-pressure type boron nitride quasi-fine particles according to claim 1.
【請求項6】 被覆された高圧型窒化硼素準微粒子が、 体積基準頻度分布で平均粒子径が、10μmを越え20
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を80%以上とする空間領域、 体積基準頻度分布で平均粒子径が、20μmを越え50
μm以下の芯粒子粉体を、準微粒子高分散処理手段群の
最終処理により気中に分散させて高分散芯粒子粉体の粒
子・気体混合物とし、その芯粒子粉体の粒子の分散度β
を90%以上とする空間領域、 体積基準頻度分布で平均粒子径が、50μmを越え30
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを95%以上とする空間領域、 体積基準頻度分布で平均粒子径が、300μmを越え8
00μm以下の芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを97%以上とする空間領域、 体積基準頻度分布で平均粒子径が、800μmを越える
芯粒子粉体を、準微粒子高分散処理手段群の最終処理に
より気中に分散させて高分散芯粒子粉体の粒子・気体混
合物とし、その芯粒子粉体の粒子の分散度βを99%以
上とする空間領域の内の当該高分散芯粒子粉体の粒子・
気体混合物中の芯粒子粉体の粒子の全ての粒子が通過す
る面を含む空間領域に、被覆空間の被覆開始領域を位置
せしめるか、又は体積基準頻度分布で平均粒子径が、1
0μmを越え20μm以下の芯粒子粉体を、準微粒子高
分散処理手段群の最終処理により気中に分散させて高分
散芯粒子粉体の粒子・気体混合物とし、その芯粒子粉体
の粒子の分散度βを80%以上とする空間領域、 体積基準頻度分布で平均粒子径が20μmを越え50μ
m以下の芯粒子粉体を、準微粒子高分散処理手段群の最
終処理により気中に分散させて高分散芯粒子粉体の粒子
・気体混合物とし、その芯粒子粉体の粒子の分散度βを
90%以上とする空間領域、 体積基準頻度分布で平均粒子径が、50μmを越え30
0μm以下の芯粒子粉体を、準微粒子高分散処理手段群
の最終処理により気中に分散させて高分散芯粒子粉体の
粒子・気体混合物とし、その芯粒子粉体の粒子の分散度
βを95%以上とする空間領域、 体積基準頻度分布で平均粒子径が、300μmを越え8
00μm以下の芯粒子粉体を、準微粒子高分散処理手段
群の最終処理により気中に分散させて高分散芯粒子粉体
の粒子・気体混合物とし、その芯粒子粉体の粒子の分散
度βを97%以上とする空間領域、 体積基準頻度分布で平均粒子径が、800μmを越える
芯粒子粉体を準微粒子高分散処理手段群の最終処理によ
り気中に分散させて高分散芯粒子粉体の粒子・気体混合
物とし、その芯粒子粉体の粒子の分散度βを99%以上
とする空間領域の内の、回収手段の回収部に回収する全
ての粒子が通過する面を含む空間領域に、被覆空間の被
覆開始領域を位置せしめることを特徴とする、請求項
1、2又は3に記載の被覆高圧型窒化硼素準微粒子。
6. The coated high-pressure type boron nitride quasi-fine particles have a volume-based frequency distribution with an average particle size of more than 10 μm and 20.
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Is 80% or more, and the average particle size exceeds 50 μm in the volume standard frequency distribution.
The core particle powder having a particle size of μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particle of the core particle powder
Of 90% or more, the average particle size exceeds 50 μm in the volume-based frequency distribution, and 30
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 95% or more, the volume-based frequency distribution has an average particle size of more than 300 μm and 8
The core particle powder having a particle size of 00 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 97% or more in a space region, and a core particle powder having an average particle size of more than 800 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high-dispersion treatment means group to obtain a highly dispersed core particle powder. Particles of the high-dispersion core particle powder in a space region where the particle dispersity β of the core particle powder is 99% or more as a body particle / gas mixture.
The coating start region of the coating space is located in the space region including the surface through which all the particles of the core particle powder in the gas mixture pass, or the average particle size is 1 in the volume standard frequency distribution.
A core particle powder having a particle size of more than 0 μm and not more than 20 μm is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder. Spatial region with dispersity β of 80% or more, volume-based frequency distribution with average particle size exceeding 20 μm and 50 μm
The core particle powder having a particle size of m or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 90% or more, the average particle size exceeds 50 μm in the volume-based frequency distribution, and 30
The core particle powder having a particle size of 0 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 95% or more, the volume-based frequency distribution has an average particle size of more than 300 μm and 8
The core particle powder having a particle size of 00 μm or less is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to form a particle / gas mixture of the highly dispersed core particle powder, and the degree of dispersion β of the particles of the core particle powder Of 90% or more in a spatial region, and a core particle powder having an average particle size of more than 800 μm in a volume-based frequency distribution is dispersed in the air by the final treatment of the quasi-fine particle high dispersion treatment means group to obtain a highly dispersed core particle powder. In the space area including the surface through which all particles to be recovered by the recovery unit of the recovery means pass, in the space area in which the degree of dispersion β of the particles of the core particle powder is 99% or more. The coated high pressure type boron nitride quasi-fine particles according to claim 1, 2 or 3, wherein a coating start region of the coating space is located.
【請求項7】 使用する、芯粒子粉体の粒子の粒度分布
が、平均粒子径をDMとしたとき、体積基準頻度分布で
(〔DM/5,5DM〕,≧90%)であることを特徴と
する、請求項1、請求項4、請求項5又は請求項6に記
載の被覆高圧型窒化硼素準微粒子。
7. The particle size distribution of the particles of the core particle powder used is a volume standard frequency distribution ([D M / 5,5D M ], ≧ 90%) when the average particle size is D M. The coated high pressure type boron nitride quasi-fine particles according to claim 1, claim 4, claim 5 or claim 6, characterized in that they are present.
【請求項8】 請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6又は請求項7に記載の被覆され
た高圧型窒化硼素準微粒子又は同粒子を含む混合物を、
2000MPa以上の圧力および高温において焼結する
か、又は上記請求範囲に記載の被覆された高圧型窒化硼
素準微粒子又は同粒子を含む混合物を2000MPa未
満の圧力及び1850℃を越えない、高圧型窒化硼素が
熱力学的に安定ではないが準安定な圧力・温度の焼結条
件において焼結するか、又は上記請求項に記載の被覆さ
れた高圧型窒化硼素準微粒子と結合材との体積で1〜9
0:99〜10の割合の混合物であって、この結合材は
2000MPa未満の圧力で1850℃を越えない高圧
型窒化硼素粒子が熱力学的に準安定な条件で密度85%
以上に焼結されるものである、上記混合物を2000M
Pa未満の圧力及び1850℃を越えない高圧型窒化硼
素が熱力学的に安定ではないが準安定な圧力・温度の焼
結条件において焼結することを特徴とする、被覆高圧型
窒化硼素準微粒子焼結体の製造法。
8. The coated high-pressure boron nitride quasi-fine particles according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6 or claim 7, or a mixture containing the same. To
High-pressure boron nitride, which is sintered at a pressure of 2000 MPa or higher and at a high temperature, or the coated high-pressure boron nitride quasi-fine particles or the mixture containing the particles according to the above-mentioned claims is kept at a pressure of less than 2000 MPa and not higher than 1850 ° C. Is not thermodynamically stable, but sinters under sintering conditions of metastable pressure and temperature, or the volume of the coated high-pressure boron nitride quasi-fine particles and the binder is 1 to 9
This binder is a mixture in a ratio of 0:99 to 10, and the binder has a density of 85% at a thermodynamically metastable condition in which high pressure type boron nitride particles which do not exceed 1850 ° C. at a pressure of less than 2000 MPa.
2000M of the above mixture, which is to be sintered above
Coated high-pressure type boron nitride quasi-fine particles characterized in that high-pressure type boron nitride having a pressure of less than Pa and a temperature of not more than 1850 ° C. is not thermodynamically stable, but is sintered under sintering conditions of metastable pressure and temperature. Manufacturing method of sintered body.
【請求項9】 請求項8に記載の被覆高圧型窒化硼素準
微粒子焼結体の製造法により製造することを特徴とす
る、被覆高圧型窒化硼素準微粒子焼結体。
9. A coated high pressure type boron nitride quasi fine particle sintered body produced by the method for producing a coated high pressure type boron nitride quasi fine particle sintered body according to claim 8.
JP5219276A 1993-08-12 1993-08-12 Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof Pending JPH0753282A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5219276A JPH0753282A (en) 1993-08-12 1993-08-12 Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof
US08/288,947 US5536485A (en) 1993-08-12 1994-08-11 Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219276A JPH0753282A (en) 1993-08-12 1993-08-12 Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof

Publications (1)

Publication Number Publication Date
JPH0753282A true JPH0753282A (en) 1995-02-28

Family

ID=16732987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219276A Pending JPH0753282A (en) 1993-08-12 1993-08-12 Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof

Country Status (1)

Country Link
JP (1) JPH0753282A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517869A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2011110663A (en) * 2009-11-27 2011-06-09 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011115866A (en) * 2009-12-01 2011-06-16 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011121133A (en) * 2009-12-10 2011-06-23 Mitsubishi Materials Corp Surface-coated cutting tool
US8961719B2 (en) 2011-05-27 2015-02-24 Element Six Limited Super-hard structure, tool element and method of making same
WO2024048375A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Boron nitride powder and resin composition
WO2024048376A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Boron nitride particle, boron nitride particle production method, and resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517869A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
US8318082B2 (en) 2004-10-29 2012-11-27 Element Six Abrasives S.A. Cubic boron nitride compact
JP2011110663A (en) * 2009-11-27 2011-06-09 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011115866A (en) * 2009-12-01 2011-06-16 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011121133A (en) * 2009-12-10 2011-06-23 Mitsubishi Materials Corp Surface-coated cutting tool
US8961719B2 (en) 2011-05-27 2015-02-24 Element Six Limited Super-hard structure, tool element and method of making same
WO2024048375A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Boron nitride powder and resin composition
WO2024048376A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Boron nitride particle, boron nitride particle production method, and resin composition

Similar Documents

Publication Publication Date Title
US5536485A (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JP3533459B2 (en) Manufacturing method of coated metal quasi-fine particles
US6024915A (en) Coated metal particles, a metal-base sinter and a process for producing same
EP0712941B1 (en) Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JP5101605B2 (en) Phase powder and method for producing the phase powder
Hahn Gas phase synthesis of nanocrystalline materials
KR101410154B1 (en) Polycrystalline abrasive compacts
US5876683A (en) Combustion flame synthesis of nanophase materials
JP4970638B2 (en) Method of manufacturing a cemented carbide body with increased wear resistance
SE459100B (en) HEAVY METAL BODY WITH BINDING ENRICHED SURFACE AND FOE REFERENCES FOR ITS PREPARATION
US6024909A (en) Coated ceramic particles, a ceramic-base sinter and a process for producing the same
JPH0753282A (en) Coated high pressure type boron nitride quasi-fine particle, sintered body of the same and production thereof
JP3948631B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3948632B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
EP0663456B1 (en) Method of producing coated particles
JPH0753205A (en) Coated-diamond quasi-fine particle, coated-diamond quasi-fine particle sintered compact and its production
JP3533458B2 (en) Manufacturing method of coated metal fine particles
JP3948633B2 (en) Coated high-pressure boron nitride sintered body and method for producing the same
JP3960484B2 (en) Coated diamond sintered body and manufacturing method thereof
JPH0753272A (en) Coated ceramic semifine particles, ceramic-based sintered compact and its production
JP3948634B2 (en) Coated diamond sintered body and manufacturing method thereof
JP4635215B2 (en) Coated diamond quasi-fine particle sintered body
JP4016091B2 (en) Coated ceramic particles, ceramic-based sintered body and method for producing the same
JP3948635B2 (en) Coated diamond sintered body and manufacturing method thereof
JP3545784B2 (en) Method for producing coated quasi-fine particles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070122