JP2017210686A - Silver-coated copper alloy powder and production method therefor - Google Patents

Silver-coated copper alloy powder and production method therefor Download PDF

Info

Publication number
JP2017210686A
JP2017210686A JP2017147833A JP2017147833A JP2017210686A JP 2017210686 A JP2017210686 A JP 2017210686A JP 2017147833 A JP2017147833 A JP 2017147833A JP 2017147833 A JP2017147833 A JP 2017147833A JP 2017210686 A JP2017210686 A JP 2017210686A
Authority
JP
Japan
Prior art keywords
silver
alloy powder
copper alloy
coated copper
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017147833A
Other languages
Japanese (ja)
Inventor
井上 健一
Kenichi Inoue
健一 井上
江原 厚志
Atsushi Ebara
厚志 江原
彰宏 浅野
Akihiro Asano
彰宏 浅野
山田 雄大
Takehiro Yamada
雄大 山田
英幸 藤本
Hideyuki Fujimoto
英幸 藤本
孝造 尾木
Kozo Ogi
孝造 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2017147833A priority Critical patent/JP2017210686A/en
Publication of JP2017210686A publication Critical patent/JP2017210686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silver-coated copper alloy powder excellent in storage stability (reliability) and enabling a conductive film having a low volume resistivity to be formed.SOLUTION: A copper alloy powder having a composition containing at least one of zinc of 1 to 50 mass% and nickel and the balance copper with inevitable impurities is coated with a layer (a layer composed of silver or a silver compound) containing silver of 7 to 50 mass% based on a silver-coated copper alloy powder, then the silver-containing layer-coated copper alloy powder is surface-treated with a surface treatment agent to obtain a silver-coated copper alloy powder having a carbon content of 0.1 to 5 mass%, a tap density of 3.8 g/cmor more and a percentage of the tap density to real density of 42 to 55%.SELECTED DRAWING: None

Description

本発明は、銀被覆銅合金粉末およびその製造方法に関し、特に、導電ペーストなどに使用する銀被覆銅合金粉末およびその製造方法に関する。   The present invention relates to a silver-coated copper alloy powder and a method for producing the same, and more particularly to a silver-coated copper alloy powder used for a conductive paste and the like and a method for producing the same.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電ペーストが使用されている。   Conventionally, in order to form electrodes and wiring of electronic parts by printing methods, etc., conductive pastes prepared by blending a conductive metal powder such as silver powder or copper powder with a solvent, resin, dispersant, etc. have been used. .

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。   However, although silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, and thus costs are high. On the other hand, copper powder has a low volume resistivity and is a good conductive material. However, since it is easily oxidized, it has poor storage stability (reliability) compared to silver powder.

これらの問題を解消するために、導電ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉(例えば、特許文献1〜2参照)や、銅合金の表面を銀で被覆した銀被覆銅合金粉が提案されている(例えば、特許文献3〜4参照)。   In order to solve these problems, as the metal powder used for the conductive paste, silver-coated copper powder (for example, see Patent Documents 1 and 2) in which the surface of the copper powder is coated with silver, or the surface of the copper alloy is silver. A coated silver-coated copper alloy powder has been proposed (see, for example, Patent Documents 3 to 4).

特開2010−174311号公報(段落番号0003)JP 2010-174411 A (paragraph number 0003) 特開2010−077495号公報(段落番号0006)JP 2010-077745 (paragraph number 0006) 特開平08−311304号公報(段落番号0006)JP 08-311304 A (paragraph number 0006) 特開平10−152630号公報(段落番号0006)JP-A-10-152630 (paragraph number 0006)

しかし、特許文献1〜2の銀被覆銅粉では、銅粉の表面に銀で被覆されていない部分が存在すると、その部分から酸化が進行してしまうため、保存安定性(信頼性)が不十分になる。また、特許文献3〜4の銀被覆銅合金粉では、導電膜に使用した場合にその導電膜の体積抵抗率が高く(導電性が低く)なるという問題がある。   However, in the silver-coated copper powders of Patent Documents 1 and 2, if there is a part that is not coated with silver on the surface of the copper powder, oxidation proceeds from that part, and thus storage stability (reliability) is unsatisfactory. It will be enough. Further, the silver-coated copper alloy powders of Patent Documents 3 to 4 have a problem that when used in a conductive film, the volume resistivity of the conductive film is high (conductivity is low).

したがって、本発明は、このような従来の問題点に鑑み、保存安定性(信頼性)に優れるとともに体積抵抗率が低い導電膜を形成することができる銀被覆銅合金粉末およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides a silver-coated copper alloy powder capable of forming a conductive film having excellent storage stability (reliability) and low volume resistivity, and a method for producing the same. The purpose is to do.

本発明者らは、上記課題を解決するために鋭意研究した結果、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7〜50質量%の銀含有層により被覆した後、銀含有層で被覆した銅合金粉末を表面処理剤で表面処理することにより、保存安定性(信頼性)に優れるとともに体積抵抗率が低い導電膜を形成することができる銀被覆銅合金粉末を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that a copper alloy powder containing at least one of 1 to 50% by mass of nickel and zinc and having the balance of copper and inevitable impurities having a composition of 7 to 7 After coating with a 50% by mass silver-containing layer, the copper alloy powder coated with the silver-containing layer is surface-treated with a surface treatment agent, whereby a conductive film having excellent storage stability (reliability) and low volume resistivity is obtained. The inventors have found that a silver-coated copper alloy powder that can be formed can be produced, and have completed the present invention.

すなわち、本発明による銀被覆銅合金粉末の製造方法は、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7〜50質量%の銀含有層により被覆した後、銀含有層で被覆した銅合金粉末を表面処理剤で表面処理することを特徴とする。   That is, the method for producing a silver-coated copper alloy powder according to the present invention comprises 7 to 50% by mass of a copper alloy powder having a composition comprising 1 to 50% by mass of nickel and zinc and the balance consisting of copper and inevitable impurities. After the coating with the silver-containing layer, the copper alloy powder coated with the silver-containing layer is surface-treated with a surface treatment agent.

この銀被覆銅合金粉末の製造方法において、銀含有層が銀または銀化合物からなる層であるのが好ましい。表面処理剤は、脂肪酸またはベンゾトリアゾールであるのが好ましく、脂肪酸は、パルミチン酸、ステアリン酸およびオレイン酸からなる群から選ばれる1種以上であるのが好ましい。表面処理剤の量は、銀被覆銅合金粉末に対して0.1〜7質量%であるのが好ましい。表面処理は、銀含有層で被覆した銅合金粉末と表面処理剤とを混合して行ってもよいし、銀含有層で被覆した銅合金粉末のスラリーに表面処理剤を添加して行ってもよい。銅合金粉末は、アトマイズ法により製造するのが好ましく、銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであるのが好ましい。 In this method for producing a silver-coated copper alloy powder, the silver-containing layer is preferably a layer made of silver or a silver compound. The surface treatment agent is preferably a fatty acid or benzotriazole, and the fatty acid is preferably at least one selected from the group consisting of palmitic acid, stearic acid, and oleic acid. The amount of the surface treatment agent is preferably 0.1 to 7% by mass with respect to the silver-coated copper alloy powder. The surface treatment may be performed by mixing the copper alloy powder coated with the silver-containing layer and the surface treatment agent, or by adding the surface treatment agent to the slurry of the copper alloy powder coated with the silver-containing layer. Good. The copper alloy powder is preferably produced by an atomizing method, and the cumulative 50% particle diameter (D50 diameter) of the copper alloy powder measured by a laser diffraction particle size distribution device is preferably 0.1 to 15 μm.

また、本発明による銀被覆銅合金粉末は、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7〜50質量%の銀含有層により被覆され、炭素の含有量が0.1〜5質量%であることを特徴とする。   Further, the silver-coated copper alloy powder according to the present invention contains 1 to 50% by mass of nickel and zinc, and the copper alloy powder having a composition consisting of copper and inevitable impurities is 7 to 50% by mass of silver. It is covered with a containing layer, and the carbon content is 0.1 to 5% by mass.

この銀被覆銅合金粉末において、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、銀被覆銅合金粉末のタップ密度が3.8g/cm以上であり、真密度に対するタップ密度の割合が42〜55%であるのが好ましい。また、銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであるのが好ましい。 In this silver-coated copper alloy powder, the silver-containing layer is preferably a layer made of silver or a silver compound. The tap density of the silver-coated copper alloy powder is preferably 3.8 g / cm 3 or more, and the ratio of the tap density to the true density is preferably 42 to 55%. The 50% cumulative particle diameter measured by a laser diffraction type particle size distribution apparatus of the copper alloy powder (D 50 diameter) is preferably a 0.1-15.

さらに、本発明による導電ペーストは、溶剤および樹脂を含み、導電性粉体として上記の銀被覆銅合金粉末を含むことを特徴とする。また、本発明による導電膜は、この導電ペーストが硬化または乾燥して形成されていることを特徴とする。   Furthermore, the conductive paste according to the present invention includes a solvent and a resin, and includes the above silver-coated copper alloy powder as a conductive powder. The conductive film according to the present invention is characterized in that the conductive paste is formed by curing or drying.

本発明によれば、保存安定性(信頼性)に優れるとともに体積抵抗率が低い導電膜を形成することができる銀被覆銅合金粉末およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the silver covering copper alloy powder which can form the electrically conductive film which is excellent in storage stability (reliability) and low volume resistivity, and its manufacturing method can be provided.

本発明による銀被覆銅合金粉末の製造方法の実施の形態では、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を(銀被覆銅合金粉末に対して)7〜50質量%の銀含有層(銀または銀化合物からなる層)により被覆した後、銀含有層で被覆した銅合金粉末を表面処理剤で表面処理する。   In the embodiment of the method for producing a silver-coated copper alloy powder according to the present invention, a copper alloy powder having a composition comprising at least one of nickel and zinc at 1 to 50% by mass and the balance consisting of copper and inevitable impurities (silver coated) After coating with 7 to 50% by mass of a silver-containing layer (a layer made of silver or a silver compound) with respect to the copper alloy powder, the copper alloy powder coated with the silver-containing layer is surface-treated with a surface treatment agent.

銅合金粉末は、湿式還元法、電解法、気相法などにより製造してもよいが、合金成分を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅合金粉末を得ることができるので、銅合金粉末を導電ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。   The copper alloy powder may be manufactured by a wet reduction method, an electrolytic method, a gas phase method, etc., but the alloy components are dissolved at a melting temperature or higher and collided with high-pressure gas or high-pressure water while dropping from the lower part of the tundish. It is preferable to produce by a so-called atomizing method (such as a gas atomizing method or a water atomizing method) to obtain a fine powder by rapid solidification. In particular, copper alloy powder with a small particle size can be obtained by manufacturing by the so-called water atomization method in which high-pressure water is sprayed. Therefore, when copper alloy powder is used in a conductive paste, conductivity due to an increase in contact points between particles is obtained. Can be improved.

銅合金粉末を銀含有層で被覆する方法として、銅と銀の置換反応を利用した還元法や、還元剤を用いる還元法により、銅合金粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅合金粉末と銀または銀化合物を含む溶液を攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法や、溶媒中に銅合金粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。   As a method of coating the copper alloy powder with the silver-containing layer, a method of depositing silver or a silver compound on the surface of the copper alloy powder by a reduction method using a substitution reaction between copper and silver or a reduction method using a reducing agent is used. For example, a method of precipitating silver or a silver compound on the surface of a copper alloy powder while stirring a solution containing the copper alloy powder and silver or a silver compound in a solvent, or a method of depositing a copper alloy powder and an organic substance in a solvent. A method of precipitating silver or a silver compound on the surface of a copper alloy powder while mixing and stirring a solution containing silver or a solution containing a silver compound and an organic substance in a solvent can be used.

この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。   As this solvent, water, an organic solvent, or a solvent in which these are mixed can be used. When using a mixed solvent of water and organic solvent, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.). The mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately. In addition, as water used as a solvent, distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.

銀含有層の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銅合金粉末を銀含有層で被覆する反応(銀被覆反応)をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層の量に応じて決定することができる。   Since silver ions need to be present in the solution as the raw material for the silver-containing layer, it is preferable to use silver nitrate having high solubility in water and many organic solvents. In addition, in order to carry out the reaction of covering the copper alloy powder with the silver-containing layer (silver coating reaction) as uniformly as possible, silver nitrate was dissolved in a solvent (water, an organic solvent or a mixed solvent thereof) instead of solid silver nitrate. It is preferred to use a silver nitrate solution. The amount of silver nitrate solution used, the concentration of silver nitrate in the silver nitrate solution, and the amount of organic solvent can be determined according to the amount of the target silver-containing layer.

銀含有層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅合金粉末のコアとなる銅合金粉末は主構成要素として銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。   In order to form the silver-containing layer more uniformly, a chelating agent may be added to the solution. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions or the like by-produced by substitution reaction between silver ions and metallic copper do not reprecipitate. . In particular, since the copper alloy powder serving as the core of the silver-coated copper alloy powder contains copper as a main component, it is preferable to select a chelating agent while paying attention to the complex stability constant with copper. Specifically, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。   In order to perform the silver coating reaction stably and safely, a pH buffer may be added to the solution. As this pH buffering agent, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中に銅合金粉末を入れて攪拌し、銅合金粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは20〜80℃、さらに好ましくは25〜70℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。   In the silver coating reaction, before adding the silver salt, the copper alloy powder is put in the solution and stirred, and the solution containing the silver salt is added while the copper alloy powder is sufficiently dispersed in the solution. It is preferable to do this. The reaction temperature during the silver coating reaction may be a temperature at which the reaction solution is solidified or evaporated, but is preferably set in the range of 20 to 80 ° C, more preferably 25 to 70 ° C. Moreover, although reaction time changes with the coating amount of silver or a silver compound, and reaction temperature, it can set in the range of 1 minute-5 hours.

表面処理剤は、脂肪酸またはベンゾトリアゾールであるのが好ましい。この脂肪酸として、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸などを使用することができるが、パルミチン酸、ステアリン酸またはオレイン酸を使用するのが好ましい。   The surface treatment agent is preferably a fatty acid or benzotriazole. These fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid , Linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, melicic acid, etc. Although it is possible, it is preferred to use palmitic acid, stearic acid or oleic acid.

表面処理剤の添加量は、銀被覆銅合金粉末に対して0.1〜7質量%であるのが好ましく、0.3〜6質量%であるのがさらに好ましく、0.3〜5質量%であるのが最も好ましい。表面処理は、銀含有層で被覆した銅合金粉末と表面処理剤とを混合して行ってもよいし、銀含有層で被覆した銅合金粉末のスラリーに表面処理剤を添加して行ってもよい。このように銀被覆銅合金粉末を表面処理剤(好ましくは0.1〜7質量%の表面処理剤)で表面処理することにより、タップ密度を高めて分散性を向上させて、導電膜の体積抵抗率を低下させるとともに、耐酸化性を付与して、体積抵抗率の変化率を低下させることができる。   The addition amount of the surface treatment agent is preferably 0.1 to 7% by mass, more preferably 0.3 to 6% by mass, and 0.3 to 5% by mass with respect to the silver-coated copper alloy powder. Most preferably. The surface treatment may be performed by mixing the copper alloy powder coated with the silver-containing layer and the surface treatment agent, or by adding the surface treatment agent to the slurry of the copper alloy powder coated with the silver-containing layer. Good. In this way, by surface-treating the silver-coated copper alloy powder with a surface treatment agent (preferably 0.1 to 7% by mass of a surface treatment agent), the tap density is increased to improve dispersibility, and the volume of the conductive film is increased. The resistivity can be lowered and oxidation resistance can be imparted to reduce the rate of change in volume resistivity.

本発明による銀被覆銅合金粉末の実施の形態では、1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、(銀被覆銅合金粉末に対して)7〜50質量%の銀含有層(銀または銀化合物からなる層)により被覆され、炭素の含有量が0.1〜5質量%である。   In the embodiment of the silver-coated copper alloy powder according to the present invention, a copper alloy powder having a composition comprising at least one of 1 to 50% by mass of nickel and zinc and the balance consisting of copper and unavoidable impurities is (silver-coated copper alloy). It is covered with a silver content layer (layer consisting of silver or a silver compound) of 7 to 50% by mass (based on the powder), and the carbon content is 0.1 to 5% by mass.

この銀被覆銅合金粉末の銅合金粉末中のニッケルおよび亜鉛の少なくとも一種の含有量は、1〜50質量%であり、1〜20質量%であるのが好ましい。ニッケルおよび亜鉛の少なくとも一種の含有量が1質量%未満では、銅合金粉末中の銅の酸化が著しく、耐酸化性に問題が生じるので好ましくない。一方、50質量%を超えると、銀被覆銅合金粉末の導電性に悪影響を及ぼすので好ましくない。   The content of at least one of nickel and zinc in the copper alloy powder of the silver-coated copper alloy powder is 1 to 50% by mass, and preferably 1 to 20% by mass. If the content of at least one kind of nickel and zinc is less than 1% by mass, copper in the copper alloy powder is significantly oxidized, which causes a problem in oxidation resistance. On the other hand, if it exceeds 50% by mass, the conductivity of the silver-coated copper alloy powder is adversely affected.

銀含有層の被覆量は、7〜50質量%であり、8〜45質量%であるのが好ましく、9〜40質量%であるのがさらに好ましい。銀含有層の被覆量が7質量%未満では、銀被覆銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。   The coating amount of the silver-containing layer is 7 to 50% by mass, preferably 8 to 45% by mass, and more preferably 9 to 40% by mass. If the coating amount of the silver-containing layer is less than 7% by mass, the conductivity of the silver-coated copper alloy powder is adversely affected. On the other hand, if it exceeds 50 mass%, the cost increases due to an increase in the amount of silver used, which is not preferable.

この銀被覆銅合金粉末のタップ密度が3.8g/cm以上であるのが好ましく、3.9〜4.9cmであるのがさらに好ましい。また、銀被覆銅合金粉末の真密度に対するタップ密度の割合が42〜55%であるのが好ましい。銀被覆銅合金粉末の真密度に対するタップ密度の割合が42〜55%であれば、この銀被覆銅合金粉末を導電性粉体として含む導電性ペーストを硬化して形成される導電膜中の粉末充填性が高く、銀被覆銅合金粒子間の接触確率が高くなり、導通パスを形成し易くなり、導電膜の体積抵抗率を低くすることができる。 Is preferably the tap density of the silver-coated copper alloy powder is 3.8 g / cm 3 or more, more preferably, it is 3.9~4.9cm 3. Moreover, it is preferable that the ratio of the tap density to the true density of the silver-coated copper alloy powder is 42 to 55%. If the ratio of the tap density to the true density of the silver-coated copper alloy powder is 42 to 55%, the powder in the conductive film formed by curing a conductive paste containing this silver-coated copper alloy powder as the conductive powder The filling property is high, the contact probability between the silver-coated copper alloy particles is high, it is easy to form a conduction path, and the volume resistivity of the conductive film can be lowered.

銅合金粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであるのが好ましく、0.3〜10μmであるのがさらに好ましく、1〜5μmであるのが最も好ましい。累積50%粒子径(D50径)が0.1μm未満では、銀被覆銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、微細な配線の形成が困難になるので好ましくない。 Particle size of the copper alloy powder (by Heroes method) 50% cumulative particle diameter measured by a laser diffraction type particle size distribution apparatus (D 50 diameter) is preferably in the range of 0.1-15, in 0.3~10μm More preferably, it is most preferably 1 to 5 μm. The cumulative 50% particle diameter (D 50 diameter) of less than 0.1 [mu] m, since an adverse effect on the conductivity of the silver-coated copper alloy powder is not preferable. On the other hand, if it exceeds 15 μm, it is not preferable because formation of fine wiring becomes difficult.

以下、本発明による銀被覆銅合金粉末およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the silver-coated copper alloy powder and the method for producing the same according to the present invention will be described in detail.

[実施例1]
銅7.2kgと亜鉛0.8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−亜鉛合金粉末)を得た。
[Example 1]
While dropping molten metal heated to 7.2 kg of copper and 0.8 kg of zinc from the bottom of the tundish, high pressure water is sprayed and rapidly solidified. The resulting alloy powder is filtered, washed with water, dried and crushed. Classification was performed to obtain a copper alloy powder (copper-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末の組成および粒度分布を求めたところ、銅合金粉末中の銅(Cu)の含有量は90.2質量%、亜鉛(Zn)の含有量は9.8質量%であり、銅合金粉末はCu90Zn10合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.7μm、累積90%粒子径(D90)は3.2μmであった。なお、銅合金粉末中の銅および亜鉛の含有量は、銅合金粉末(約2.5g)を塩化ビニル製リング(内径3.2mm×厚さ4mm)内に敷き詰めた後、錠剤型の成型圧縮機(株式会社前川試験製作所製の型番BRE−50)により100kNの荷重をかけて、銅合金粉末のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求め、ナトリウム未満の軽元素を除いた成分の比率を算出した。また、銅合金粉末の粒度分布は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定して、累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)を求めた。 When the composition and particle size distribution of the copper alloy powder thus obtained (before silver coating) were determined, the copper (Cu) content in the copper alloy powder was 90.2% by mass, and zinc (Zn) The content was 9.8% by mass, and the copper alloy powder was a Cu 90 Zn 10 alloy powder. The cumulative 10% particle size (D 10 ) of the copper alloy powder was 0.6 μm, the cumulative 50% particle size (D 50 ) was 1.7 μm, and the cumulative 90% particle size (D 90 ) was 3.2 μm. . The content of copper and zinc in the copper alloy powder was determined by placing the copper alloy powder (about 2.5 g) in a vinyl chloride ring (inner diameter: 3.2 mm × thickness: 4 mm) and then compressing the tablet mold. A copper alloy powder pellet was produced by applying a load of 100 kN using a machine (model number BRE-50 manufactured by Maekawa Test Co., Ltd.), and this pellet was placed in a sample holder (opening diameter: 3.0 cm) and subjected to fluorescent X-ray analysis. Software attached to the device from the measurement results set in the measurement position in the device (RIX2000 manufactured by Rigaku Co., Ltd.), the measurement atmosphere under reduced pressure (8.0 Pa), and the X-ray output of 50 kV and 50 mA. It calculated | required by calculating automatically and calculated the ratio of the component except the light element less than sodium. The particle size distribution of the copper alloy powder is measured by a laser diffraction type particle size distribution device (Hellos particle size distribution measuring device (HELOS & RODOS) manufactured by SYMPATEC), and the cumulative particle size is 10% (D 10 ) and the cumulative particle size is 50%. (D 50 ), cumulative 90% particle diameter (D 90 ) was determined.

また、EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物136.5gと炭酸アンモニウム68.2gを純水544gに溶解した溶液に、硝酸銀22.7gを純水70gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。   Further, a solution (solution 1) in which 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate were dissolved in 720 g of pure water, 136.5 g of EDTA-2Na dihydrate and 68.2 g of ammonium carbonate were purified. A solution obtained by adding a solution obtained by dissolving 22.7 g of silver nitrate in 70 g of pure water to a solution dissolved in 544 g of water was prepared (solution 2).

次に、窒素雰囲気下において、得られた銅合金粉末(銅−亜鉛合金粉末)130gを溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅合金粉末(銅−亜鉛合金粉末)が分散した溶液に溶液2を加えて1時間攪拌した後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper alloy powder (copper-zinc alloy powder) was added to the solution 1 in a nitrogen atmosphere, and the temperature was raised to 35 ° C. while stirring. The solution 2 is added to the solution in which the copper alloy powder (copper-zinc alloy powder) is dispersed, and the mixture is stirred for 1 hour, then filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper-zinc alloy powder). )

次に、得られた銀被覆銅合金粉末80gとパルミチン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅合金粉末を得た。   Next, 80 g of the obtained silver-coated copper alloy powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) are put into a cutter mill, and pulverized for 20 seconds twice. A silver-coated copper alloy powder surface-treated with palmitic acid was obtained.

このようにして得られた銀被覆銅合金粉末の組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めた。   The composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content of the silver-coated copper alloy powder thus obtained were determined.

銀被覆銅合金粉末中の銅および亜鉛の含有量は、銀被覆前の銅合金粉末中の銅および亜鉛の含有量と同様の方法により、銀被覆銅合金粉末のペレットを作製して求めた。また、銀被覆銅合金粉末の断面を集束イオンビーム(FIB)加工観察装置(日本電子株式会社製のJEM−9310FIB)によって加工した後、電界放出形走査電子顕微鏡(FE−SEM)(日本電子株式会社製のJSM−6700F)によって観察したところ、銅合金粉末の表面が銀で被覆されていることが確認された。また、銀被覆銅合金粉末の銀(Ag)の被覆量も、銀被覆銅合金粉末中の銅および亜鉛の含有量と同様の方法により求めた。その結果、銀被覆銅合金粉末の銀の被覆量は10.9質量%、銅の含有量は81.6質量%、亜鉛の含有量は7.5質量%であった。   The contents of copper and zinc in the silver-coated copper alloy powder were determined by preparing pellets of silver-coated copper alloy powder by the same method as the contents of copper and zinc in the copper alloy powder before silver coating. Further, after processing the cross section of the silver-coated copper alloy powder with a focused ion beam (FIB) processing observation apparatus (JEM-9310FIB manufactured by JEOL Ltd.), a field emission scanning electron microscope (FE-SEM) (JEOL Ltd.) Observation with JSM-6700F) made by the company confirmed that the surface of the copper alloy powder was coated with silver. The silver (Ag) coating amount of the silver-coated copper alloy powder was also determined by the same method as the copper and zinc contents in the silver-coated copper alloy powder. As a result, the silver coating amount of the silver-coated copper alloy powder was 10.9% by mass, the copper content was 81.6% by mass, and the zinc content was 7.5% by mass.

銀被覆銅合金粉末の粒度分布は、銀被覆前の銅合金粉末の粒度分布と同様の方法により求めた。その結果、銀被覆銅合金粉末の累積10%粒子径(D10)は0.9μm、累積50%粒子径(D50)は2.4μm、累積90%粒子径(D90)は4.2μmであった。 The particle size distribution of the silver-coated copper alloy powder was determined by the same method as the particle size distribution of the copper alloy powder before silver coating. As a result, the silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 0.9 μm, a cumulative 50% particle diameter (D 50 ) of 2.4 μm, and a cumulative 90% particle diameter (D 90 ) of 4.2 μm. Met.

銀被覆銅合金粉末のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めた。その結果、銀被覆銅合金粉末のBET比表面積は0.54m/gであった。 The BET specific surface area of the silver-coated copper alloy powder was determined by the BET method using a BET specific surface area measuring apparatus (4 Sorb US manufactured by Yours IONICS Inc.). As a result, the BET specific surface area of the silver-coated copper alloy powder was 0.54 m 2 / g.

銀被覆銅合金粉末のタップ密度は、特開2007−263860号公報に記載された方法と同様に、銀被覆銅合金粉末を内径6mmの有底円筒形の容器に充填して銀被覆銅合金粉末層を形成し、この銀被覆銅合金粉末層に上部から0.16N/mの圧力を加えた後、銀被覆銅合金粉末層の高さを測定し、この銀被覆銅合金粉末層の高さの測定値と、充填された銀被覆銅合金粉末の重量とから、銀被覆銅合金粉末の密度を求めて、銀被覆銅合金粉末のタップ密度とした。その結果、銀被覆銅合金粉末のタップ密度は4.2g/cmであった。また、この銀被覆銅合金粉末の真密度を算出すると8.97g/cmであり、真密度に対するタップ密度の比は47%であった。 The tap density of the silver-coated copper alloy powder is the same as the method described in Japanese Patent Application Laid-Open No. 2007-263860, and the silver-coated copper alloy powder is filled into a bottomed cylindrical container having an inner diameter of 6 mm. After forming a layer and applying a pressure of 0.16 N / m 2 from the top to the silver-coated copper alloy powder layer, the height of the silver-coated copper alloy powder layer is measured, and the height of the silver-coated copper alloy powder layer is measured. From the measured value of the thickness and the weight of the filled silver-coated copper alloy powder, the density of the silver-coated copper alloy powder was determined and used as the tap density of the silver-coated copper alloy powder. As a result, the tap density of the silver-coated copper alloy powder was 4.2 g / cm 3 . Further, the true density of the silver-coated copper alloy powder was calculated to be 8.97 g / cm 3 , and the ratio of the tap density to the true density was 47%.

銀被覆銅合金粉末中の酸素含有量は、酸素・窒素分析装置(LECO社製のTC−436型)により測定した。その結果、銀被覆銅合金粉末中の酸素含有量は0.15質量%であった。   The oxygen content in the silver-coated copper alloy powder was measured by an oxygen / nitrogen analyzer (TC-436 type manufactured by LECO). As a result, the oxygen content in the silver-coated copper alloy powder was 0.15% by mass.

銀被覆銅合金粉末中の炭素含有量は、炭素・硫黄分析装置(堀場製作所製のEMIA−220V)により測定した。その結果、銀被覆銅合金粉末中の炭素含有量は0.23質量%であった。   The carbon content in the silver-coated copper alloy powder was measured with a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.). As a result, the carbon content in the silver-coated copper alloy powder was 0.23% by mass.

次に、得られた銀被覆銅合金粉末8.92gと、熱硬化型樹脂としてビスフェノールF型エポキシ樹脂(株式会社ADEKA製のアデカレジンEP−4901E)0.79gと、三フッ化ホウ素モノエチルアミン0.04gと、溶媒としてブチルカルビトールアセテート0.24gと、オレイン酸0.01gとを混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電ペーストを得た。   Next, 8.92 g of the obtained silver-coated copper alloy powder, 0.79 g of bisphenol F type epoxy resin (Adeka Resin EP-4901E manufactured by ADEKA Corporation) as a thermosetting resin, and 0.73 g of boron trifluoride monoethylamine. 04 g, 0.24 g of butyl carbitol acetate as a solvent, and 0.01 g of oleic acid were mixed by a kneading defoaming machine, and then a three-roll was passed five times to uniformly disperse to obtain a conductive paste. .

この導電ペーストをスクリーン印刷法によってアルミナ基板上に(線幅500μm、線長37.5mmのパターンに)印刷した後、大気中において200℃で40分間焼成して硬化させることによって導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   This conductive paste is printed on an alumina substrate by a screen printing method (in a pattern having a line width of 500 μm and a line length of 37.5 mm), and then baked and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film. The volume resistivity of the obtained conductive film was calculated and the storage stability (reliability) was evaluated.

導電膜の体積抵抗率は、得られた導電膜のライン抵抗を二端子型抵抗率計(日置電機株式会社製の3540ミリオームハイテスタ)により測定し、膜厚を表面粗さ形状測定機(株式会社東京精密製のサーフコム1500DX型)により測定して、体積抵抗率(Ω・cm)=ライン抵抗(Ω)×膜厚(cm)×線幅(cm)/線長(cm)により算出した。その結果、導電膜の体積抵抗率は106μΩ・cmであった。   For the volume resistivity of the conductive film, the line resistance of the obtained conductive film was measured with a two-terminal type resistivity meter (3540 mOhm HiTester manufactured by Hioki Electric Co., Ltd.), and the film thickness was measured with a surface roughness shape measuring instrument (stock) It was measured by a surfcom 1500DX type manufactured by Tokyo Seimitsu Co., Ltd., and calculated by volume resistivity (Ω · cm) = line resistance (Ω) × film thickness (cm) × line width (cm) / line length (cm). As a result, the volume resistivity of the conductive film was 106 μΩ · cm.

導電膜の保存安定性(信頼性)は、一定温度(150℃)に保たれた試験室内において1週間保存した導電膜の体積抵抗率(1週間保存後の体積抵抗率)を算出し、体積抵抗率の変化率(%)={(1週間保存後の体積抵抗率)−(初期の体積抵抗率)}×100/(初期の体積抵抗率)によって評価した。その結果、1週間保存後の体積抵抗率は121μΩ・cmであり、体積抵抗率の変化率は14%であった。同様に2週間保存後の体積抵抗率を算出して、2週間の保存安定性(信頼性)を評価したところ、2週間保存後の体積抵抗率は137μΩ・cmであり、体積抵抗率の変化率は29%であった。   The storage stability (reliability) of the conductive film is calculated by calculating the volume resistivity (volume resistivity after storage for one week) of the conductive film stored for one week in a test chamber maintained at a constant temperature (150 ° C.). Resistivity change rate (%) = {(Volume resistivity after 1 week storage) − (Initial volume resistivity)} × 100 / (Initial volume resistivity) As a result, the volume resistivity after storage for 1 week was 121 μΩ · cm, and the rate of change in volume resistivity was 14%. Similarly, the volume resistivity after storage for 2 weeks was calculated and the storage stability (reliability) for 2 weeks was evaluated. The volume resistivity after storage for 2 weeks was 137 μΩ · cm, and the volume resistivity changed. The rate was 29%.

これらの結果を表1〜表4に示す。なお、表1において、銀含有層で被覆した銅合金粉末と表面処理剤とを混合して行った表面処理を「方式1」、銀含有層で被覆した銅合金粉末のスラリーに表面処理剤を添加して行った表面処理を「方式2」で示している。   These results are shown in Tables 1 to 4. In Table 1, the surface treatment performed by mixing the copper alloy powder coated with the silver-containing layer and the surface treatment agent is “method 1”, and the surface treatment agent is applied to the slurry of the copper alloy powder coated with the silver-containing layer. The surface treatment performed by the addition is indicated by “Method 2”.

Figure 2017210686
Figure 2017210686

Figure 2017210686
Figure 2017210686

Figure 2017210686
Figure 2017210686

Figure 2017210686
Figure 2017210686

[実施例2]
窒素雰囲気下において、実施例1と同様の銅合金粉末(銅−亜鉛合金粉末)130gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−亜鉛合金粉末が分散した溶液に実施例1と同様の溶液2を加えて30分間攪拌することにより、銀により被覆された銅−亜鉛合金粒子(銀被覆銅合金粒子)を含むスラリーを得た。
[Example 2]
Under a nitrogen atmosphere, 130 g of the same copper alloy powder (copper-zinc alloy powder) as in Example 1 was added to the same solution 1 as in Example 1, and the temperature was raised to 35 ° C. while stirring. A solution containing copper-zinc alloy particles (silver-coated copper alloy particles) coated with silver is prepared by adding the same solution 2 as in Example 1 to the solution in which the copper-zinc alloy powder is dispersed and stirring for 30 minutes. Obtained.

このスラリーに、パルミチン酸をアルコールに溶解させて得られた溶液8.7g(パルミチン酸濃度5質量%)を添加し、さらに30分間攪拌した後、ろ過し、水洗し、乾燥して、得られた粉末80gをカッターミルに入れ、20秒間の解砕を2回行うことによって、(銀被覆銅合金粉末に対して0.3質量%の)パルミチン酸で表面処理された銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   To this slurry, 8.7 g of a solution obtained by dissolving palmitic acid in alcohol (palmitic acid concentration 5 mass%) was added, stirred for another 30 minutes, filtered, washed with water, and dried. The silver-coated copper alloy powder surface-treated with palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) was put into a cutter mill and pulverized for 20 seconds twice. Silver-coated copper-zinc alloy powder) was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は10.3質量%、銅の含有量は82.2質量%、亜鉛の含有量は7.5質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は5.0μmであった。また、銀被覆銅合金粉末のBET比表面積は0.42m/g、タップ密度は4.9g/cm、真密度(計算値8.96g/cm)に対するタップ密度の比は55%であった。また、銀被覆銅合金粉末中の酸素含有量は0.11質量%、炭素含有量は0.19質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は97μΩ・cmであった。また、1週間保存後の体積抵抗率は105μΩ・cmであり、体積抵抗率の変化率は8%であった。さらに、2週間保存後の体積抵抗率は113μΩ・cmであり、体積抵抗率の変化率は16%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 10.3% by mass, the copper content was 82.2% by mass, and the zinc content was 7.5% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.2 μm, a cumulative 50% particle diameter (D 50 ) of 2.9 μm, and a cumulative 90% particle diameter (D 90 ) of 5.0 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.42 m 2 / g, a tap density of 4.9 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 8.96 g / cm 3 ) is 55%. there were. The oxygen content in the silver-coated copper alloy powder was 0.11% by mass, and the carbon content was 0.19% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 97 μΩ · cm. The volume resistivity after storage for 1 week was 105 μΩ · cm, and the rate of change in volume resistivity was 8%. Furthermore, the volume resistivity after storage for 2 weeks was 113 μΩ · cm, and the rate of change in volume resistivity was 16%. These results are shown in Tables 1 to 4.

[比較例1]
表面処理を行わなかった以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 1]
The silver-coated copper alloy powder obtained by the same method as in Example 1 except that the surface treatment was not performed, the composition, the particle size distribution, the BET specific surface area, the tap density, the true density by the same method as in Example 1. The ratio of tap density to oxygen, the oxygen content, and the carbon content were determined, and the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は10.8質量%、銅の含有量は81.4質量%、亜鉛の含有量は7.8質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は2.1μm、累積90%粒子径(D90)は3.6μmであった。また、銀被覆銅合金粉末のBET比表面積は0.79m/g、タップ密度は3.7g/cm、真密度(計算値8.97g/cm)に対するタップ密度の比は41%であった。また、銀被覆銅合金粉末中の酸素含有量は0.15質量%、炭素含有量は0.02質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は190μΩ・cmであった。また、1週間保存後の体積抵抗率は233μΩ・cmであり、体積抵抗率の変化率は23%であった。さらに、2週間保存後の体積抵抗率は266μΩ・cmであり、体積抵抗率の変化率は40%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 10.8% by mass, the copper content was 81.4% by mass, and the zinc content was 7.8% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 0.8 μm, a cumulative 50% particle diameter (D 50 ) of 2.1 μm, and a cumulative 90% particle diameter (D 90 ) of 3.6 μm. there were. Further, the BET specific surface area of the silver-coated copper alloy powder is 0.79 m 2 / g, the tap density is 3.7 g / cm 3 , and the ratio of the tap density to the true density (calculated value 8.97 g / cm 3 ) is 41%. there were. The oxygen content in the silver-coated copper alloy powder was 0.15% by mass, and the carbon content was 0.02% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 190 μΩ · cm. The volume resistivity after storage for 1 week was 233 μΩ · cm, and the rate of change in volume resistivity was 23%. Further, the volume resistivity after storage for 2 weeks was 266 μΩ · cm, and the rate of change in volume resistivity was 40%. These results are shown in Tables 1 to 4.

[実施例3]
EDTA−2Na二水和物61.9gと炭酸アンモニウム61.9gを純水720gに溶解した溶液(溶液1)と、EDTA−2Na二水和物307.1gと炭酸アンモニウム153.5gを純水1223gに溶解した溶液に、硝酸銀51.2gを純水158gに溶解した溶液を加えて得られた溶液(溶液2)を用意し、窒素雰囲気下において、実施例1と同様の銅合金粉末(銅−亜鉛合金粉末)130gを実施例1と同様の溶液1に加えた以外は、実施例1と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Example 3]
A solution (solution 1) of 61.9 g of EDTA-2Na dihydrate and 61.9 g of ammonium carbonate dissolved in 720 g of pure water, 307.1 g of EDTA-2Na dihydrate and 153.5 g of ammonium carbonate, 1223 g of pure water A solution obtained by adding 51.2 g of silver nitrate in 158 g of pure water to the solution dissolved in (a solution 2) was prepared, and the same copper alloy powder (copper- The silver-coated copper alloy powder obtained by the same method as in Example 1 except that 130 g of the zinc alloy powder) was added to the same solution 1 as in Example 1, the composition and particle size by the same method as in Example 1. The distribution, the BET specific surface area, the tap density, the ratio of the tap density to the true density, the oxygen content and the carbon content are obtained, and the volume resistivity of the conductive film is calculated and maintained in the same manner as in Example 1. Were evaluated for stability (reliability).

その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は71.6質量%、亜鉛の含有量は6.6質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.7μm、累積50%粒子径(D50)は4.1μm、累積90%粒子径(D90)は7.2μmであった。また、銀被覆銅合金粉末のBET比表面積は0.46m/g、タップ密度は3.9g/cm、真密度(計算値9.16g/cm)に対するタップ密度の比は43%であった。また、銀被覆銅合金粉末中の酸素含有量は0.24質量%、炭素含有量は0.20質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は70μΩ・cmであった。また、1週間保存後の体積抵抗率は74μΩ・cmであり、体積抵抗率の変化率は6%であった。さらに、2週間保存後の体積抵抗率は78μΩ・cmであり、体積抵抗率の変化率は11%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 71.6% by mass, and the zinc content was 6.6% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.7 μm, a cumulative 50% particle diameter (D 50 ) of 4.1 μm, and a cumulative 90% particle diameter (D 90 ) of 7.2 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.46 m 2 / g, a tap density of 3.9 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.16 g / cm 3 ) of 43%. there were. The oxygen content in the silver-coated copper alloy powder was 0.24% by mass, and the carbon content was 0.20% by mass. Moreover, the volume resistivity (initial volume resistivity) of the conductive film was 70 μΩ · cm. The volume resistivity after storage for 1 week was 74 μΩ · cm, and the rate of change in volume resistivity was 6%. Furthermore, the volume resistivity after storage for 2 weeks was 78 μΩ · cm, and the rate of change in volume resistivity was 11%. These results are shown in Tables 1 to 4.

[比較例2]
表面処理を行わなかった以外は、実施例3と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 2]
The silver-coated copper alloy powder obtained by the same method as in Example 3 except that the surface treatment was not performed, the composition, the particle size distribution, the BET specific surface area, the tap density, the true density by the same method as in Example 1. The ratio of tap density to oxygen, the oxygen content, and the carbon content were determined, and the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は22.5質量%、銅の含有量は71.0質量%、亜鉛の含有量は6.5質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は5.3μmであった。また、銀被覆銅合金粉末のBET比表面積は0.68m/g、タップ密度は3.5g/cm、真密度(計算値9.17g/cm)に対するタップ密度の比は38%であった。また、銀被覆銅合金粉末中の酸素含有量は0.20質量%、炭素含有量は0.04質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は98μΩ・cmであった。また、1週間保存後の体積抵抗率は109μΩ・cmであり、体積抵抗率の変化率は11%であった。さらに、2週間保存後の体積抵抗率は119μΩ・cmであり、体積抵抗率の変化率は21%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.5% by mass, the copper content was 71.0% by mass, and the zinc content was 6.5% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.0 μm, and a cumulative 90% particle diameter (D 90 ) of 5.3 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.68 m 2 / g, a tap density of 3.5 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.17 g / cm 3 ) of 38%. there were. The oxygen content in the silver-coated copper alloy powder was 0.20% by mass, and the carbon content was 0.04% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 98 μΩ · cm. The volume resistivity after storage for 1 week was 109 μΩ · cm, and the rate of change in volume resistivity was 11%. Further, the volume resistivity after storage for 2 weeks was 119 μΩ · cm, and the rate of change in volume resistivity was 21%. These results are shown in Tables 1 to 4.

[実施例4]
銅7.6kgと亜鉛0.4kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−亜鉛合金粉末)を得た。
[Example 4]
While dropping molten metal heated from 7.6 kg of copper and 0.4 kg of zinc from the bottom of the tundish, high-pressure water is sprayed and rapidly solidified. The resulting alloy powder is filtered, washed with water, dried, crushed, Classification was performed to obtain a copper alloy powder (copper-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めたところ、銅合金粉末中の銅の含有量は95.1質量%、亜鉛の含有量は4.9質量%であり、銅合金粉末はCu95Zn合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は2.0μm、累積90%粒子径(D90)は3.6μmであった。 With respect to the copper alloy powder thus obtained (before silver coating), the composition and the particle size distribution were determined in the same manner as in Example 1. The copper content in the copper alloy powder was 95.1 masses. %, The zinc content was 4.9% by mass, and the copper alloy powder was a Cu 95 Zn 5 alloy powder. Further, the cumulative 10% particle diameter (D 10 ) of the copper alloy powder was 0.7 μm, the cumulative 50% particle diameter (D 50 ) was 2.0 μm, and the cumulative 90% particle diameter (D 90 ) was 3.6 μm. .

次に、窒素雰囲気下において、得られた銅−亜鉛合金粉末130gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−亜鉛合金粉末が分散した溶液に実施例3と同様の溶液2を加えて1時間攪拌して後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper-zinc alloy powder was added to the same solution 1 as in Example 1 and heated to 35 ° C. with stirring in a nitrogen atmosphere. The same solution 2 as in Example 3 was added to the solution in which the copper-zinc alloy powder was dispersed, stirred for 1 hour, filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper-zinc Alloy powder) was obtained.

次に、得られた銀被覆銅合金粉末80gとパルミチン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅合金粉末を得た。   Next, 80 g of the obtained silver-coated copper alloy powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) are put into a cutter mill, and pulverized for 20 seconds twice. A silver-coated copper alloy powder surface-treated with palmitic acid was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は21.6質量%、銅の含有量は75.2質量%、亜鉛の含有量は3.2質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は2.8μm、累積90%粒子径(D90)は4.7μmであった。また、銀被覆銅合金粉末のBET比表面積は0.46m/g、タップ密度は4.9g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は53%であった。また、銀被覆銅合金粉末中の酸素含有量は0.27質量%、炭素含有量は0.25質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は69μΩ・cmであった。また、1週間保存後の体積抵抗率は78μΩ・cmであり、体積抵抗率の変化率は13%であった。さらに、2週間保存後の体積抵抗率は88μΩ・cmであり、体積抵抗率の変化率は28%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.6% by mass, the copper content was 75.2% by mass, and the zinc content was 3.2% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.2 μm, a cumulative 50% particle diameter (D 50 ) of 2.8 μm, and a cumulative 90% particle diameter (D 90 ) of 4.7 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.46 m 2 / g, a tap density of 4.9 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.22 g / cm 3 ) is 53%. there were. The oxygen content in the silver-coated copper alloy powder was 0.27% by mass, and the carbon content was 0.25% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 69 μΩ · cm. The volume resistivity after storage for 1 week was 78 μΩ · cm, and the rate of change in volume resistivity was 13%. Furthermore, the volume resistivity after storage for 2 weeks was 88 μΩ · cm, and the rate of change in volume resistivity was 28%. These results are shown in Tables 1 to 4.

[実施例5]
銀被覆銅合金粉末80gをパルミチン酸2.4g(銀被覆銅合金粉末に対して3質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Example 5]
The silver-coated copper alloy powder obtained by the same method as in Example 4 except that 80 g of the silver-coated copper alloy powder was surface-treated with 2.4 g of palmitic acid (3 mass% with respect to the silver-coated copper alloy powder) The composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were determined by the same method as in Example 1, and the conductivity was determined by the same method as in Example 1. The volume resistivity of the film was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は22.2質量%、銅の含有量は74.8質量%、亜鉛の含有量は3.0質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は5.6μmであった。また、銀被覆銅合金粉末のBET比表面積は0.65m/g、タップ密度は4.1g/cm、真密度(計算値9.23g/cm)に対するタップ密度の比は44%であった。また、銀被覆銅合金粉末中の酸素含有量は0.70質量%、炭素含有量は2.09質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は49μΩ・cmであった。また、1週間保存後の体積抵抗率は51μΩ・cmであり、体積抵抗率の変化率は4%であった。さらに、2週間保存後の体積抵抗率は55μΩ・cmであり、体積抵抗率の変化率は12%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.2% by mass, the copper content was 74.8% by mass, and the zinc content was 3.0% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.0 μm, and a cumulative 90% particle diameter (D 90 ) of 5.6 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.65 m 2 / g, a tap density of 4.1 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.23 g / cm 3 ) is 44%. there were. The oxygen content in the silver-coated copper alloy powder was 0.70% by mass, and the carbon content was 2.09% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 49 μΩ · cm. The volume resistivity after storage for 1 week was 51 μΩ · cm, and the rate of change in volume resistivity was 4%. Furthermore, the volume resistivity after storage for 2 weeks was 55 μΩ · cm, and the rate of change in volume resistivity was 12%. These results are shown in Tables 1 to 4.

[実施例6]
銀被覆銅合金粉末80gをパルミチン酸4g(銀被覆銅合金粉末に対して5質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Example 6]
The silver-coated copper alloy powder obtained in the same manner as in Example 4 except that 80 g of the silver-coated copper alloy powder was surface-treated with 4 g of palmitic acid (5% by mass with respect to the silver-coated copper alloy powder). 1, the composition, the particle size distribution, the BET specific surface area, the tap density, the ratio of the tap density to the true density, the oxygen content, and the carbon content were obtained. The volume resistivity was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は22.3質量%、銅の含有量は74.8質量%、亜鉛の含有量は2.9質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は5.6μmであった。また、銀被覆銅合金粉末のBET比表面積は0.73m/g、タップ密度は3.9g/cm、真密度(計算値9.23g/cm)に対するタップ密度の比は42%であった。また、銀被覆銅合金粉末中の酸素含有量は0.94質量%、炭素含有量は3.43質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は70μΩ・cmであった。また、1週間保存後の体積抵抗率は67μΩ・cmであり、体積抵抗率の変化率は−4%であった。さらに、2週間保存後の体積抵抗率は70μΩ・cmであり、体積抵抗率の変化率は0%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.3% by mass, the copper content was 74.8% by mass, and the zinc content was 2.9% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.2 μm, a cumulative 50% particle diameter (D 50 ) of 2.9 μm, and a cumulative 90% particle diameter (D 90 ) of 5.6 μm. there were. Further, the BET specific surface area of the silver-coated copper alloy powder is 0.73 m 2 / g, the tap density is 3.9 g / cm 3 , and the ratio of the tap density to the true density (calculated value 9.23 g / cm 3 ) is 42%. there were. The oxygen content in the silver-coated copper alloy powder was 0.94% by mass, and the carbon content was 3.43% by mass. Moreover, the volume resistivity (initial volume resistivity) of the conductive film was 70 μΩ · cm. The volume resistivity after storage for 1 week was 67 μΩ · cm, and the rate of change in volume resistivity was −4%. Further, the volume resistivity after storage for 2 weeks was 70 μΩ · cm, and the rate of change in volume resistivity was 0%. These results are shown in Tables 1 to 4.

[比較例3]
表面処理を行わなかった以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 3]
The silver-coated copper alloy powder obtained by the same method as in Example 4 except that the surface treatment was not performed, the composition, the particle size distribution, the BET specific surface area, the tap density, the true density by the same method as in Example 1. The ratio of tap density to oxygen, the oxygen content, and the carbon content were determined, and the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は21.6質量%、銅の含有量は75.2質量%、亜鉛の含有量は3.2質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は5.0μmであった。また、銀被覆銅合金粉末のBET比表面積は0.64m/g、タップ密度は3.7g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は40%であった。また、銀被覆銅合金粉末中の酸素含有量は0.24質量%、炭素含有量は0.06質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は108μΩ・cmであった。また、1週間保存後の体積抵抗率は126μΩ・cmであり、体積抵抗率の変化率は17%であった。さらに、2週間保存後の体積抵抗率は138μΩ・cmであり、体積抵抗率の変化率は28%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.6% by mass, the copper content was 75.2% by mass, and the zinc content was 3.2% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.0 μm, and a cumulative 90% particle diameter (D 90 ) of 5.0 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.64 m 2 / g, a tap density of 3.7 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.22 g / cm 3 ) of 40%. there were. The oxygen content in the silver-coated copper alloy powder was 0.24% by mass, and the carbon content was 0.06% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 108 μΩ · cm. The volume resistivity after storage for 1 week was 126 μΩ · cm, and the rate of change in volume resistivity was 17%. Further, the volume resistivity after storage for 2 weeks was 138 μΩ · cm, and the rate of change in volume resistivity was 28%. These results are shown in Tables 1 to 4.

[比較例4]
銀被覆銅合金粉末80gをパルミチン酸0.04g(銀被覆銅合金粉末に対して0.05質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 4]
Silver-coated copper alloy powder obtained by the same method as in Example 4 except that 80 g of silver-coated copper alloy powder was surface-treated with 0.04 g of palmitic acid (0.05% by mass with respect to silver-coated copper alloy powder). In the same manner as in Example 1, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were determined, and in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は22.2質量%、銅の含有量は74.9質量%、亜鉛の含有量は2.9質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は5.4μmであった。また、銀被覆銅合金粉末のBET比表面積は0.59m/g、タップ密度は3.5g/cm、真密度(計算値9.23g/cm)に対するタップ密度の比は38%であった。また、銀被覆銅合金粉末中の酸素含有量は0.26質量%、炭素含有量は0.08質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は74μΩ・cmであった。また、1週間保存後の体積抵抗率は88μΩ・cmであり、体積抵抗率の変化率は19%であった。さらに、2週間保存後の体積抵抗率は100μΩ・cmであり、体積抵抗率の変化率は35%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.2% by mass, the copper content was 74.9% by mass, and the zinc content was 2.9% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 2.9 μm, and a cumulative 90% particle diameter (D 90 ) of 5.4 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.59 m 2 / g, a tap density of 3.5 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.23 g / cm 3 ) of 38%. there were. The oxygen content in the silver-coated copper alloy powder was 0.26% by mass, and the carbon content was 0.08% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 74 μΩ · cm. The volume resistivity after storage for 1 week was 88 μΩ · cm, and the rate of change in volume resistivity was 19%. Further, the volume resistivity after storage for 2 weeks was 100 μΩ · cm, and the rate of change in volume resistivity was 35%. These results are shown in Tables 1 to 4.

[比較例5]
銀被覆銅合金粉末80gをパルミチン酸8g(銀被覆銅合金粉末に対して10質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 5]
The silver-coated copper alloy powder obtained by the same method as in Example 4 except that 80 g of the silver-coated copper alloy powder was surface-treated with 8 g of palmitic acid (10% by mass with respect to the silver-coated copper alloy powder). 1, the composition, the particle size distribution, the BET specific surface area, the tap density, the ratio of the tap density to the true density, the oxygen content, and the carbon content were obtained. The volume resistivity was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は22.4質量%、銅の含有量は74.6質量%、亜鉛の含有量は3.0質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は5.9μmであった。また、銀被覆銅合金粉末のBET比表面積は0.88m/g、タップ密度は3.0g/cm、真密度(計算値9.23g/cm)に対するタップ密度の比は33%であった。また、銀被覆銅合金粉末中の酸素含有量は1.70質量%、炭素含有量は6.53質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は1130μΩ・cmであった。また、1週間保存後の体積抵抗率は400μΩ・cmであり、体積抵抗率の変化率は−65%であった。さらに、2週間保存後の体積抵抗率は366μΩ・cmであり、体積抵抗率の変化率は−68%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.4% by mass, the copper content was 74.6% by mass, and the zinc content was 3.0% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.0 μm, and a cumulative 90% particle diameter (D 90 ) of 5.9 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.88 m 2 / g, a tap density of 3.0 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.23 g / cm 3 ) of 33%. there were. The oxygen content in the silver-coated copper alloy powder was 1.70% by mass, and the carbon content was 6.53% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 1130 μΩ · cm. The volume resistivity after storage for 1 week was 400 μΩ · cm, and the rate of change in volume resistivity was −65%. Furthermore, the volume resistivity after storage for 2 weeks was 366 μΩ · cm, and the rate of change in volume resistivity was −68%. These results are shown in Tables 1 to 4.

[実施例7]
パルミチン酸の代わりにステアリン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Example 7]
A silver-coated copper alloy powder (silver) obtained by the same method as in Example 4 except that 0.24 g of stearic acid (0.3% by mass based on the silver-coated copper alloy powder) was used instead of palmitic acid. For coated copper-zinc alloy powder), the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were determined in the same manner as in Example 1. By the same method as in Example 1, the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は21.6質量%、銅の含有量は75.3質量%、亜鉛の含有量は3.1質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は4.9μmであった。また、銀被覆銅合金粉末のBET比表面積は0.40m/g、タップ密度は4.4g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は48%であった。また、銀被覆銅合金粉末中の酸素含有量は0.29質量%、炭素含有量は0.30質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は93μΩ・cmであった。また、1週間保存後の体積抵抗率は106μΩ・cmであり、体積抵抗率の変化率は14%であった。さらに、2週間保存後の体積抵抗率は118μΩ・cmであり、体積抵抗率の変化率は27%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.6% by mass, the copper content was 75.3% by mass, and the zinc content was 3.1% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.0 μm, and a cumulative 90% particle diameter (D 90 ) of 4.9 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.40 m 2 / g, a tap density of 4.4 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.22 g / cm 3 ) of 48%. there were. The oxygen content in the silver-coated copper alloy powder was 0.29% by mass, and the carbon content was 0.30% by mass. Moreover, the volume resistivity (initial volume resistivity) of the conductive film was 93 μΩ · cm. The volume resistivity after storage for 1 week was 106 μΩ · cm, and the rate of change in volume resistivity was 14%. Further, the volume resistivity after storage for 2 weeks was 118 μΩ · cm, and the rate of change in volume resistivity was 27%. These results are shown in Tables 1 to 4.

[実施例8]
パルミチン酸の代わりにオレイン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Example 8]
The silver-coated copper alloy powder obtained by the same method as in Example 4 except that 0.24 g of oleic acid (0.3% by mass with respect to the silver-coated copper alloy powder) was surface-treated instead of palmitic acid. The composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were determined by the same method as in Example 1, and the conductivity was determined by the same method as in Example 1. The volume resistivity of the film was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は21.7質量%、銅の含有量は75.2質量%、亜鉛の含有量は3.1質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は5.0μmであった。また、銀被覆銅合金粉末のBET比表面積は0.46m/g、タップ密度は4.5g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は49%であった。また、銀被覆銅合金粉末中の酸素含有量は0.28質量%、炭素含有量は0.25質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は81μΩ・cmであった。また、1週間保存後の体積抵抗率は89μΩ・cmであり、体積抵抗率の変化率は10%であった。さらに、2週間保存後の体積抵抗率は98μΩ・cmであり、体積抵抗率の変化率は21%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.7% by mass, the copper content was 75.2% by mass, and the zinc content was 3.1% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 3.0 μm, and a cumulative 90% particle diameter (D 90 ) of 5.0 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.46 m 2 / g, a tap density of 4.5 g / cm 3 , and a tap density ratio of 49% to a true density (calculated value of 9.22 g / cm 3 ). there were. The oxygen content in the silver-coated copper alloy powder was 0.28% by mass, and the carbon content was 0.25% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 81 μΩ · cm. Further, the volume resistivity after storage for 1 week was 89 μΩ · cm, and the rate of change in volume resistivity was 10%. Furthermore, the volume resistivity after storage for 2 weeks was 98 μΩ · cm, and the rate of change in volume resistivity was 21%. These results are shown in Tables 1 to 4.

[実施例9]
パルミチン酸の代わりにベンゾトリアゾール(BTA)0.08g(銀被覆銅合金粉末に対して0.1質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Example 9]
A silver-coated copper alloy obtained by the same method as in Example 4 except that 0.08 g of benzotriazole (BTA) (0.1% by mass based on the silver-coated copper alloy powder) was used instead of palmitic acid. For the powder, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were determined by the same method as in Example 1, and the same method as in Example 1 Thus, the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は21.6質量%、銅の含有量は75.6質量%、亜鉛の含有量は2.8質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は4.9μmであった。また、銀被覆銅合金粉末のBET比表面積は0.63m/g、タップ密度は4.1g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は44%であった。また、銀被覆銅合金粉末中の酸素含有量は0.23質量%、炭素含有量は0.12質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は106μΩ・cmであった。また、1週間保存後の体積抵抗率は101μΩ・cmであり、体積抵抗率の変化率は−5%であった。さらに、2週間保存後の体積抵抗率は101μΩ・cmであり、体積抵抗率の変化率は−5%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.6% by mass, the copper content was 75.6% by mass, and the zinc content was 2.8% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 2.9 μm, and a cumulative 90% particle diameter (D 90 ) of 4.9 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.63 m 2 / g, a tap density of 4.1 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.22 g / cm 3 ) of 44%. there were. The oxygen content in the silver-coated copper alloy powder was 0.23% by mass, and the carbon content was 0.12% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 106 μΩ · cm. The volume resistivity after storage for 1 week was 101 μΩ · cm, and the rate of change in volume resistivity was −5%. Furthermore, the volume resistivity after storage for 2 weeks was 101 μΩ · cm, and the rate of change in volume resistivity was −5%. These results are shown in Tables 1 to 4.

[実施例10]
窒素雰囲気下において、実施例4と同様の銅合金粉末(銅−亜鉛合金粉末)130gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−亜鉛合金粉末が分散した溶液に実施例3と同様の溶液2を加えて30分間攪拌することにより、銀により被覆された銅−亜鉛合金粒子(銀被覆銅合金粒子)を含むスラリーを得た。
[Example 10]
Under a nitrogen atmosphere, 130 g of the same copper alloy powder (copper-zinc alloy powder) as in Example 4 was added to the same solution 1 as in Example 1, and the temperature was raised to 35 ° C. while stirring. A solution containing copper-zinc alloy particles coated with silver (silver-coated copper alloy particles) is prepared by adding the same solution 2 as in Example 3 to the solution in which the copper-zinc alloy powder is dispersed and stirring for 30 minutes. Obtained.

このスラリーに、パルミチン酸をアルコールに溶解させて得られた溶液16.3g(パルミチン酸濃度3質量%)を添加し、さらに30分間攪拌した後、ろ過し、水洗し、乾燥して、得られた粉末80gをカッターミルに入れ、20秒間の解砕を2回行うことによって、(銀被覆銅合金粉末に対して0.3質量%の)パルミチン酸で表面処理された銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   To this slurry was added 16.3 g of a solution obtained by dissolving palmitic acid in alcohol (palmitic acid concentration 3% by mass), and the mixture was further stirred for 30 minutes, filtered, washed with water, and dried. The silver-coated copper alloy powder surface-treated with palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) was put into a cutter mill and pulverized for 20 seconds twice. Silver-coated copper-zinc alloy powder) was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は21.6質量%、銅の含有量は75.3質量%、亜鉛の含有量は3.1質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.8μm、累積50%粒子径(D50)は4.1μm、累積90%粒子径(D90)は7.2μmであった。また、銀被覆銅合金粉末のBET比表面積は0.44m/g、タップ密度は4.0g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は43%であった。また、銀被覆銅合金粉末中の酸素含有量は0.21質量%、炭素含有量は0.20質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は63μΩ・cmであった。また、1週間保存後の体積抵抗率は66μΩ・cmであり、体積抵抗率の変化率は5%であった。さらに、2週間保存後の体積抵抗率は73μΩ・cmであり、体積抵抗率の変化率は16%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.6% by mass, the copper content was 75.3% by mass, and the zinc content was 3.1% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.8 μm, a cumulative 50% particle diameter (D 50 ) of 4.1 μm, and a cumulative 90% particle diameter (D 90 ) of 7.2 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.44 m 2 / g, a tap density of 4.0 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.22 g / cm 3 ) of 43%. there were. The oxygen content in the silver-coated copper alloy powder was 0.21% by mass, and the carbon content was 0.20% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 63 μΩ · cm. The volume resistivity after storage for 1 week was 66 μΩ · cm, and the rate of change in volume resistivity was 5%. Further, the volume resistivity after storage for 2 weeks was 73 μΩ · cm, and the rate of change in volume resistivity was 16%. These results are shown in Tables 1 to 4.

[比較例6]
パルミチン酸の代わりにイミダゾール0.08g(銀被覆銅合金粉末に対して0.1質量%)で表面処理した以外は、実施例4と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 6]
For silver-coated copper alloy powder obtained by the same method as in Example 4 except that surface treatment was performed with 0.08 g of imidazole (0.1% by mass based on silver-coated copper alloy powder) instead of palmitic acid. The composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained by the same method as in Example 1, and the conductive film was obtained by the same method as in Example 1. The volume resistivity was calculated and the storage stability (reliability) was evaluated.

その結果、銀被覆銅合金粉末の銀の被覆量は21.4質量%、銅の含有量は75.8質量%、亜鉛の含有量は2.8質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は4.8μmであった。また、銀被覆銅合金粉末のBET比表面積は0.64m/g、タップ密度は3.7g/cm、真密度(計算値9.22g/cm)に対するタップ密度の比は40%であった。また、銀被覆銅合金粉末中の酸素含有量は0.25質量%、炭素含有量は0.09質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は217μΩ・cmであった。また、1週間保存後の体積抵抗率は256μΩ・cmであり、体積抵抗率の変化率は18%であった。さらに、2週間保存後の体積抵抗率は279μΩ・cmであり、体積抵抗率の変化率は29%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.4% by mass, the copper content was 75.8% by mass, and the zinc content was 2.8% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.2 μm, a cumulative 50% particle diameter (D 50 ) of 2.9 μm, and a cumulative 90% particle diameter (D 90 ) of 4.8 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.64 m 2 / g, a tap density of 3.7 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.22 g / cm 3 ) of 40%. there were. The oxygen content in the silver-coated copper alloy powder was 0.25% by mass, and the carbon content was 0.09% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 217 μΩ · cm. The volume resistivity after storage for 1 week was 256 μΩ · cm, and the rate of change in volume resistivity was 18%. Further, the volume resistivity after storage for 2 weeks was 279 μΩ · cm, and the rate of change in volume resistivity was 29%. These results are shown in Tables 1 to 4.

[実施例11]
銅7.84kgと亜鉛0.16kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−亜鉛合金粉末)を得た。
[Example 11]
While dropping molten metal heated to 7.84 kg of copper and 0.16 kg of zinc from the lower part of the tundish, high pressure water was sprayed and rapidly solidified, and the resulting alloy powder was filtered, washed with water, dried and crushed. Classification was performed to obtain a copper alloy powder (copper-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めたところ、銅合金粉末中の銅の含有量は98.1質量%、亜鉛の含有量は1.9質量%であり、銅合金粉末はCu98Zn合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.5μm、累積50%粒子径(D50)は1.6μm、累積90%粒子径(D90)は3.1μmであった。 The copper alloy powder thus obtained (before silver coating) was determined for its composition and particle size distribution by the same method as in Example 1. The copper content in the copper alloy powder was 98.1 masses. %, The zinc content was 1.9% by mass, and the copper alloy powder was a Cu 98 Zn 2 alloy powder. The cumulative 10% particle diameter (D 10 ) of the copper alloy powder was 0.5 μm, the cumulative 50% particle diameter (D 50 ) was 1.6 μm, and the cumulative 90% particle diameter (D 90 ) was 3.1 μm. .

次に、窒素雰囲気下において、得られた銅−亜鉛合金粉末130gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−亜鉛合金粉末が分散した溶液に実施例3と同様の溶液2を加えて1時間攪拌して後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper-zinc alloy powder was added to the same solution 1 as in Example 1 and heated to 35 ° C. with stirring in a nitrogen atmosphere. The same solution 2 as in Example 3 was added to the solution in which the copper-zinc alloy powder was dispersed, stirred for 1 hour, filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper-zinc Alloy powder) was obtained.

次に、得られた銀被覆銅合金粉末80gとパルミチン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅合金粉末を得た。   Next, 80 g of the obtained silver-coated copper alloy powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) are put into a cutter mill, and pulverized for 20 seconds twice. A silver-coated copper alloy powder surface-treated with palmitic acid was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は77.1質量%、亜鉛の含有量は1.1質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.5μm、累積50%粒子径(D50)は3.2μm、累積90%粒子径(D90)は5.2μmであった。また、銀被覆銅合金粉末のBET比表面積は0.50m/g、タップ密度は4.1g/cm、真密度(計算値9.26g/cm)に対するタップ密度の比は44%であった。また、銀被覆銅合金粉末中の酸素含有量は0.38質量%、炭素含有量は0.25質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は126μΩ・cmであった。また、1週間保存後の体積抵抗率は147μΩ・cmであり、体積抵抗率の変化率は17%であった。さらに、2週間保存後の体積抵抗率は164μΩ・cmであり、体積抵抗率の変化率は30%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.8% by mass, the copper content was 77.1% by mass, and the zinc content was 1.1% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.5 μm, a cumulative 50% particle diameter (D 50 ) of 3.2 μm, and a cumulative 90% particle diameter (D 90 ) of 5.2 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.50 m 2 / g, a tap density of 4.1 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.26 g / cm 3 ) is 44%. there were. The oxygen content in the silver-coated copper alloy powder was 0.38% by mass, and the carbon content was 0.25% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 126 μΩ · cm. The volume resistivity after storage for 1 week was 147 μΩ · cm, and the rate of change in volume resistivity was 17%. Further, the volume resistivity after storage for 2 weeks was 164 μΩ · cm, and the rate of change in volume resistivity was 30%. These results are shown in Tables 1 to 4.

[実施例12]
窒素雰囲気下において、実施例11と同様の銅合金粉末(銅−亜鉛合金粉末)130gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−亜鉛合金粉末が分散した溶液に実施例3と同様の溶液2を加えて30分間攪拌することにより、銀により被覆された銅−亜鉛合金粒子(銀被覆銅合金粒子)を含むスラリーを得た。
[Example 12]
Under a nitrogen atmosphere, 130 g of the same copper alloy powder (copper-zinc alloy powder) as in Example 11 was added to the same solution 1 as in Example 1, and the temperature was raised to 35 ° C. while stirring. A solution containing copper-zinc alloy particles coated with silver (silver-coated copper alloy particles) is prepared by adding the same solution 2 as in Example 3 to the solution in which the copper-zinc alloy powder is dispersed and stirring for 30 minutes. Obtained.

このスラリーに、パルミチン酸をアルコールに溶解させて得られた溶16.3g(パルミチン酸濃度3質量%)を添加し、さらに30分間攪拌した後、ろ過し、水洗し、乾燥して、得られた粉末80gをカッターミルに入れ、20秒間の解砕を2回行うことによって、(銀被覆銅合金粉末に対して0.3質量%の)パルミチン酸で表面処理された銀被覆銅合金粉末(銀被覆銅−亜鉛合金粉末)を得た。   To this slurry was added 16.3 g (palmitic acid concentration 3 mass%) obtained by dissolving palmitic acid in alcohol, and the mixture was further stirred for 30 minutes, filtered, washed with water, and dried. The silver-coated copper alloy powder surface-treated with palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) was put into a cutter mill and pulverized for 20 seconds twice. Silver-coated copper-zinc alloy powder) was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は21.6質量%、銅の含有量は77.4質量%、亜鉛の含有量は1.0質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は2.2μm、累積50%粒子径(D50)は4.9μm、累積90%粒子径(D90)は8.2μmであった。また、銀被覆銅合金粉末のBET比表面積は0.43m/g、タップ密度は3.9g/cm、真密度(計算値9.26g/cm)に対するタップ密度の比は42%であった。また、銀被覆銅合金粉末中の酸素含有量は0.30質量%、炭素含有量は0.20質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は102μΩ・cmであった。また、1週間保存後の体積抵抗率は112μΩ・cmであり、体積抵抗率の変化率は10%であった。さらに、2週間保存後の体積抵抗率は123μΩ・cmであり、体積抵抗率の変化率は21%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 21.6% by mass, the copper content was 77.4% by mass, and the zinc content was 1.0% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 2.2 μm, a cumulative 50% particle diameter (D 50 ) of 4.9 μm, and a cumulative 90% particle diameter (D 90 ) of 8.2 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.43 m 2 / g, a tap density of 3.9 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.26 g / cm 3 ) is 42%. there were. The oxygen content in the silver-coated copper alloy powder was 0.30% by mass, and the carbon content was 0.20% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 102 μΩ · cm. The volume resistivity after storage for 1 week was 112 μΩ · cm, and the rate of change in volume resistivity was 10%. Furthermore, the volume resistivity after storage for 2 weeks was 123 μΩ · cm, and the rate of change in volume resistivity was 21%. These results are shown in Tables 1 to 4.

[比較例7]
表面処理を行わなかった以外は、実施例11と同様の方法により得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 7]
The silver-coated copper alloy powder obtained by the same method as in Example 11 except that the surface treatment was not performed, the composition, the particle size distribution, the BET specific surface area, the tap density, the true density by the same method as in Example 1. The ratio of tap density to oxygen, the oxygen content, and the carbon content were determined, and the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は22.1質量%、銅の含有量は76.7質量%、亜鉛の含有量は1.2質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は4.8μmであった。また、銀被覆銅合金粉末のBET比表面積は0.91m/g、タップ密度は3.6g/cm、真密度(計算値9.26g/cm)に対するタップ密度の比は39%であった。また、銀被覆銅合金粉末中の酸素含有量は0.37質量%、炭素含有量は0.05質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は157μΩ・cmであった。また、1週間保存後の体積抵抗率は196μΩ・cmであり、体積抵抗率の変化率は25%であった。さらに、2週間保存後の体積抵抗率は231μΩ・cmであり、体積抵抗率の変化率は47%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 22.1% by mass, the copper content was 76.7% by mass, and the zinc content was 1.2% by mass. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.3 μm, a cumulative 50% particle diameter (D 50 ) of 2.9 μm, and a cumulative 90% particle diameter (D 90 ) of 4.8 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.91 m 2 / g, a tap density of 3.6 g / cm 3 and a ratio of the tap density to the true density (calculated value of 9.26 g / cm 3 ) of 39%. there were. The oxygen content in the silver-coated copper alloy powder was 0.37% by mass, and the carbon content was 0.05% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 157 μΩ · cm. Further, the volume resistivity after storage for 1 week was 196 μΩ · cm, and the rate of change in volume resistivity was 25%. Furthermore, the volume resistivity after storage for 2 weeks was 231 μΩ · cm, and the rate of change in volume resistivity was 47%. These results are shown in Tables 1 to 4.

[実施例13]
銅6.4kgとニッケル0.8kgと亜鉛0.8kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−ニッケル−亜鉛合金粉末)を得た。
[Example 13]
While dropping molten metal heated from 6.4 kg of copper, 0.8 kg of nickel and 0.8 kg of zinc from the bottom of the tundish, it is rapidly solidified by spraying high pressure water, and the resulting alloy powder is filtered, washed with water and dried. And then pulverized and classified to obtain a copper alloy powder (copper-nickel-zinc alloy powder).

このようにして得られた(銀被覆前の)銅合金粉末の組成および粒度分布を求めたところ、銅合金粉末中の銅の含有量は82.9質量%、ニッケル(Ni)の含有量は10.2質量%、亜鉛の含有量は6.9質量%であり、銅合金粉末はCu80Ni10Zn10合金の粉末であった。また、銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は3.3μmであった。なお、銅合金粉末中の銅、ニッケルおよび亜鉛の含有量は、実施例1において銅合金粉末中の銅および亜鉛の含有量を求めた方法と同様の方法により求め、銅合金粉末の粒度分布は、実施例1と同様の方法により求めた。 When the composition and particle size distribution of the copper alloy powder thus obtained (before silver coating) were determined, the copper content in the copper alloy powder was 82.9% by mass, and the nickel (Ni) content was The content of zinc was 10.2% by mass, and the content of zinc was 6.9% by mass. The copper alloy powder was a Cu 80 Ni 10 Zn 10 alloy powder. The cumulative 10% particle size (D 10 ) of the copper alloy powder was 0.7 μm, the cumulative 50% particle size (D 50 ) was 1.8 μm, and the cumulative 90% particle size (D 90 ) was 3.3 μm. . The contents of copper, nickel and zinc in the copper alloy powder were determined by the same method as the method for determining the contents of copper and zinc in the copper alloy powder in Example 1, and the particle size distribution of the copper alloy powder was It was determined by the same method as in Example 1.

次に、窒素雰囲気下において、得られた銅−ニッケル−亜鉛合金粉末130gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅−ニッケル−亜鉛合金粉末が分散した溶液に実施例1と同様の溶液2を加えて1時間攪拌して後、ろ過し、水洗し、乾燥して、銀被覆銅合金粉末(銀被覆銅−ニッケル−亜鉛合金粉末)を得た。   Next, 130 g of the obtained copper-nickel-zinc alloy powder was added to the same solution 1 as in Example 1 and heated to 35 ° C. with stirring in a nitrogen atmosphere. A solution 2 similar to that of Example 1 was added to the solution in which the copper-nickel-zinc alloy powder was dispersed, stirred for 1 hour, filtered, washed with water, and dried to obtain a silver-coated copper alloy powder (silver-coated copper). -Nickel-zinc alloy powder).

次に、得られた銀被覆銅合金粉末80gとパルミチン酸0.24g(銀被覆銅合金粉末に対して0.3質量%)をカッターミルに入れ、20秒間の解砕を2回行うことによって、パルミチン酸で表面処理された銀被覆銅合金粉末を得た。   Next, 80 g of the obtained silver-coated copper alloy powder and 0.24 g of palmitic acid (0.3% by mass with respect to the silver-coated copper alloy powder) are put into a cutter mill, and pulverized for 20 seconds twice. A silver-coated copper alloy powder surface-treated with palmitic acid was obtained.

このようにして得られた銀被覆銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例1と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   For the silver-coated copper alloy powder thus obtained, the composition, particle size distribution, BET specific surface area, tap density, ratio of tap density to true density, oxygen content and carbon content were obtained in the same manner as in Example 1. The volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 1.

その結果、銀被覆銅合金粉末の銀の被覆量は11.0質量%、銅の含有量は75.0質量%、ニッケルの含有量は9.1質量%、亜鉛の含有量は4.9質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.1μm、累積50%粒子径(D50)は2.6μm、累積90%粒子径(D90)は4.5μmであった。また、銀被覆銅合金粉末のBET比表面積は0.50m/g、タップ密度は4.3g/cm、真密度(計算値9.02g/cm)に対するタップ密度の比は48%であった。また、銀被覆銅合金粉末中の酸素含有量は0.17質量%、炭素含有量は0.32質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は252μΩ・cmであった。また、1週間保存後の体積抵抗率は249μΩ・cmであり、体積抵抗率の変化率は−1%であった。さらに、2週間保存後の体積抵抗率は249μΩ・cmであり、体積抵抗率の変化率は−1%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 11.0% by mass, the copper content was 75.0% by mass, the nickel content was 9.1% by mass, and the zinc content was 4.9. It was mass%. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.1 μm, a cumulative 50% particle diameter (D 50 ) of 2.6 μm, and a cumulative 90% particle diameter (D 90 ) of 4.5 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.50 m 2 / g, a tap density of 4.3 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.02 g / cm 3 ) of 48%. there were. The oxygen content in the silver-coated copper alloy powder was 0.17% by mass, and the carbon content was 0.32% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 252 μΩ · cm. The volume resistivity after storage for 1 week was 249 μΩ · cm, and the rate of change in volume resistivity was −1%. Furthermore, the volume resistivity after storage for 2 weeks was 249 μΩ · cm, and the rate of change in volume resistivity was −1%. These results are shown in Tables 1 to 4.

[比較例8]
表面処理を行わなかった以外は、実施例13と同様の方法により得られた銀被覆銅合金粉末について、実施例13と同様の方法により、組成、粒度分布、BET比表面積、タップ密度、真密度に対するタップ密度の比、酸素含有量および炭素含有量を求めるとともに、実施例13と同様の方法により、導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。
[Comparative Example 8]
Except that the surface treatment was not performed, the composition, particle size distribution, BET specific surface area, tap density, true density of the silver-coated copper alloy powder obtained by the same method as in Example 13 were the same as in Example 13. The ratio of the tap density to oxygen, the oxygen content, and the carbon content were determined, and the volume resistivity of the conductive film was calculated and the storage stability (reliability) was evaluated by the same method as in Example 13.

その結果、銀被覆銅合金粉末の銀の被覆量は11.1質量%、銅の含有量は74.9質量%、ニッケルの含有量は9.2質量%、亜鉛の含有量は4.8質量%であった。また、銀被覆銅合金粉末の累積10%粒子径(D10)は1.0μm、累積50%粒子径(D50)は2.4μm、累積90%粒子径(D90)は4.0μmであった。また、銀被覆銅合金粉末のBET比表面積は0.75m/g、タップ密度は3.5g/cm、真密度(計算値9.02g/cm)に対するタップ密度の比は39%であった。また、銀被覆銅合金粉末中の酸素含有量は0.16質量%、炭素含有量は0.03質量%であった。また、導電膜の体積抵抗率(初期の体積抵抗率)は331μΩ・cmであった。また、1週間保存後の体積抵抗率は345μΩ・cmであり、体積抵抗率の変化率は4%であった。さらに、2週間保存後の体積抵抗率は339μΩ・cmであり、体積抵抗率の変化率は2%であった。これらの結果を表1〜表4に示す。 As a result, the silver coating amount of the silver-coated copper alloy powder was 11.1% by mass, the copper content was 74.9% by mass, the nickel content was 9.2% by mass, and the zinc content was 4.8%. It was mass%. The silver-coated copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.0 μm, a cumulative 50% particle diameter (D 50 ) of 2.4 μm, and a cumulative 90% particle diameter (D 90 ) of 4.0 μm. there were. The silver-coated copper alloy powder has a BET specific surface area of 0.75 m 2 / g, a tap density of 3.5 g / cm 3 , and a ratio of the tap density to the true density (calculated value of 9.02 g / cm 3 ) of 39%. there were. The oxygen content in the silver-coated copper alloy powder was 0.16% by mass, and the carbon content was 0.03% by mass. Further, the volume resistivity (initial volume resistivity) of the conductive film was 331 μΩ · cm. The volume resistivity after storage for 1 week was 345 μΩ · cm, and the rate of change in volume resistivity was 4%. Furthermore, the volume resistivity after storage for 2 weeks was 339 μΩ · cm, and the rate of change in volume resistivity was 2%. These results are shown in Tables 1 to 4.

表1〜表4からわかるように、実施例1〜2と比較例1、実施例3と比較例2、実施例4〜6と比較例3、実施例11〜12と比較例7、実施例13と比較例8を比較すると、銀被覆銅合金粉末を表面処理剤で表面処理することにより、タップ密度を高めて分散性を向上させて、導電膜の体積抵抗率を低下させるとともに、体積抵抗率の変化率を低下させることができる。また、実施例4〜6と比較例4〜5を比較すると、表面処理剤の添加量は、銀被覆銅合金粉末に対して0.05質量%では少な過ぎ、10質量%では多過ぎるのがわかる。さらに、実施例7〜10と比較例6との比較からわかるように、表面処理剤としてイミダゾールを使用するよりも、パルミチン酸、ステアリン酸、オレイン酸、ベンゾトリアゾール(BTA)などを使用した方が、タップ密度を高めて分散性を向上させて、導電膜の体積抵抗率を低下させるとともに、体積抵抗率の変化率を低下させることができる。   As can be seen from Tables 1 to 4, Examples 1 and 2 and Comparative Example 1, Example 3 and Comparative Example 2, Examples 4 to 6 and Comparative Example 3, Examples 11 to 12 and Comparative Example 7, Example 13 and Comparative Example 8 are compared, surface treatment of the silver-coated copper alloy powder with a surface treatment agent increases the tap density and improves dispersibility, lowers the volume resistivity of the conductive film, and reduces the volume resistance. The rate of change of rate can be reduced. Further, when Examples 4 to 6 and Comparative Examples 4 to 5 are compared, the amount of the surface treatment agent added is too small at 0.05% by mass relative to the silver-coated copper alloy powder, and it is excessive at 10% by mass. Recognize. Furthermore, as can be seen from the comparison between Examples 7 to 10 and Comparative Example 6, it is better to use palmitic acid, stearic acid, oleic acid, benzotriazole (BTA), etc. than to use imidazole as the surface treatment agent. In addition to increasing the tap density and improving dispersibility, the volume resistivity of the conductive film can be reduced, and the rate of change in volume resistivity can be reduced.

Claims (15)

1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末を7〜50質量%の銀含有層により被覆した後、銀含有層で被覆した銅合金粉末を表面処理剤で表面処理することを特徴とする、銀被覆銅合金粉末の製造方法。 A copper alloy powder having a composition comprising at least one of nickel and zinc of 1 to 50% by mass and the balance consisting of copper and inevitable impurities was coated with a silver containing layer of 7 to 50% by mass, and then coated with a silver containing layer. A method for producing a silver-coated copper alloy powder, wherein the copper alloy powder is surface-treated with a surface treatment agent. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項1に記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to claim 1, wherein the silver-containing layer is a layer made of silver or a silver compound. 前記表面処理剤が脂肪酸またはベンゾトリアゾールであることを特徴とする、請求項1または2に記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to claim 1 or 2, wherein the surface treatment agent is a fatty acid or benzotriazole. 前記脂肪酸がパルミチン酸、ステアリン酸およびオレイン酸からなる群から選ばれる1種以上であることを特徴とする、請求項3に記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to claim 3, wherein the fatty acid is at least one selected from the group consisting of palmitic acid, stearic acid, and oleic acid. 前記表面処理剤の量が前記銀被覆銅合金粉末に対して0.1〜7質量%であることを特徴とする、請求項1乃至4のいずれかに記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to any one of claims 1 to 4, wherein the amount of the surface treatment agent is 0.1 to 7% by mass with respect to the silver-coated copper alloy powder. . 前記表面処理が、前記銀含有層で被覆した銅合金粉末と前記表面処理剤とを混合して行われることを特徴とする、請求項1乃至5のいずれかに記載の銀被覆銅合金粉末の製造方法。 The silver-coated copper alloy powder according to any one of claims 1 to 5, wherein the surface treatment is performed by mixing the copper alloy powder coated with the silver-containing layer and the surface treatment agent. Production method. 前記表面処理が、前記銀含有層で被覆した銅合金粉末のスラリーに前記表面処理剤を添加して行われることを特徴とする、請求項1乃至5のいずれかに記載の銀被覆銅合金粉末の製造方法。 The silver-coated copper alloy powder according to any one of claims 1 to 5, wherein the surface treatment is performed by adding the surface treatment agent to a slurry of a copper alloy powder coated with the silver-containing layer. Manufacturing method. 前記銅合金粉末をアトマイズ法により製造することを特徴とする、請求項1乃至7のいずれかに記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to any one of claims 1 to 7, wherein the copper alloy powder is produced by an atomizing method. 前記銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであることを特徴とする、請求項1乃至8のいずれかに記載の銀被覆銅合金粉末の製造方法。 9. The silver according to claim 1, wherein a cumulative 50% particle diameter (D 50 diameter) of the copper alloy powder measured by a laser diffraction particle size distribution device is 0.1 to 15 μm. A method for producing a coated copper alloy powder. 1〜50質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末が、7〜50質量%の銀含有層により被覆され、炭素の含有量が0.1〜5質量%であることを特徴とする、銀被覆銅合金粉末。 A copper alloy powder having a composition comprising at least one of nickel and zinc in an amount of 1 to 50% by mass and the balance consisting of copper and inevitable impurities is coated with a silver-containing layer of 7 to 50% by mass, and the carbon content is 0. Silver-coated copper alloy powder characterized by being 1 to 5% by mass. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項10に記載の銀被覆銅合金粉末。 The silver-coated copper alloy powder according to claim 10, wherein the silver-containing layer is a layer made of silver or a silver compound. タップ密度が3.8g/cm以上であり、真密度に対するタップ密度の割合が42〜55%であることを特徴とする、請求項10または11に記載の銀被覆銅合金粉末。 12. The silver-coated copper alloy powder according to claim 10, wherein the tap density is 3.8 g / cm 3 or more, and the ratio of the tap density to the true density is 42 to 55%. 前記銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.1〜15μmであることを特徴とする、請求項10乃至12のいずれかに記載の銀被覆銅合金粉末。 13. The silver according to claim 10, wherein a cumulative 50% particle diameter (D 50 diameter) of the copper alloy powder measured by a laser diffraction particle size distribution device is 0.1 to 15 μm. Coated copper alloy powder. 溶剤および樹脂を含み、導電性粉体として請求項10乃至13のいずれかの銀被覆銅合金粉末を含むことを特徴とする、導電ペースト。 A conductive paste comprising a solvent and a resin, and containing the silver-coated copper alloy powder according to claim 10 as a conductive powder. 請求項14の導電ペーストが硬化または乾燥して形成されていることを特徴とする、導電膜。 The conductive paste according to claim 14 is formed by curing or drying.
JP2017147833A 2017-07-31 2017-07-31 Silver-coated copper alloy powder and production method therefor Pending JP2017210686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147833A JP2017210686A (en) 2017-07-31 2017-07-31 Silver-coated copper alloy powder and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147833A JP2017210686A (en) 2017-07-31 2017-07-31 Silver-coated copper alloy powder and production method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013147953A Division JP6186197B2 (en) 2013-07-16 2013-07-16 Silver-coated copper alloy powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2017210686A true JP2017210686A (en) 2017-11-30

Family

ID=60476073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147833A Pending JP2017210686A (en) 2017-07-31 2017-07-31 Silver-coated copper alloy powder and production method therefor

Country Status (1)

Country Link
JP (1) JP2017210686A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179566A (en) * 1986-01-31 1987-08-06 Toyobo Co Ltd Electrically conductive resin composition
JPH0378906A (en) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The Conductive paste
JP2012167337A (en) * 2011-02-15 2012-09-06 Dowa Electronics Materials Co Ltd Method of manufacturing silver coated flake copper powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179566A (en) * 1986-01-31 1987-08-06 Toyobo Co Ltd Electrically conductive resin composition
JPH0378906A (en) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The Conductive paste
JP2012167337A (en) * 2011-02-15 2012-09-06 Dowa Electronics Materials Co Ltd Method of manufacturing silver coated flake copper powder

Similar Documents

Publication Publication Date Title
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6154507B2 (en) Silver-coated copper alloy powder and method for producing the same
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
KR20100096111A (en) Copper powder for electrically conductive paste, and electrically conductive paste
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP2019065386A (en) Silver powder and manufacturing method therefor
JPWO2010004852A1 (en) Copper powder for conductive paste and conductive paste
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP7272834B2 (en) Silver powder and its manufacturing method
JP3687745B2 (en) Highly dispersible metal powder, method for producing the same, and conductive paste containing the metal powder
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
JP6688659B2 (en) Silver coated copper powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP2016084487A (en) Metal powder and manufacturing method thereof
JP7313195B2 (en) Method for producing metal powder and method for producing silver-coated metal powder
WO2019065341A1 (en) Silver powder and production method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181112