JP7272834B2 - Silver powder and its manufacturing method - Google Patents

Silver powder and its manufacturing method Download PDF

Info

Publication number
JP7272834B2
JP7272834B2 JP2019049828A JP2019049828A JP7272834B2 JP 7272834 B2 JP7272834 B2 JP 7272834B2 JP 2019049828 A JP2019049828 A JP 2019049828A JP 2019049828 A JP2019049828 A JP 2019049828A JP 7272834 B2 JP7272834 B2 JP 7272834B2
Authority
JP
Japan
Prior art keywords
silver powder
diameter
particle diameter
cumulative
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019049828A
Other languages
Japanese (ja)
Other versions
JP2019183268A (en
Inventor
良幸 道明
昌弘 吉田
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Publication of JP2019183268A publication Critical patent/JP2019183268A/en
Application granted granted Critical
Publication of JP7272834B2 publication Critical patent/JP7272834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銀粉およびその製造方法に関し、特に、導電性ペーストの材料に適した銀粉およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to silver powder and a method for producing the same, and more particularly to silver powder suitable as a material for conductive paste and a method for producing the same.

従来、太陽電池の電極、低温焼成セラミック(LTCC)を使用した電子部品や積層セラミックインダクタ(MLCI)などの積層セラミック電子部品の内部電極、積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成する導電性ペーストの材料として、銀粉などの金属粉末が使用されている。 Conventionally, electrodes of solar cells, internal electrodes of multilayer ceramic electronic components such as electronic components and multilayer ceramic inductors (MLCI) using low temperature co-fired ceramics (LTCC), external electrodes of multilayer ceramic capacitors and multilayer ceramic inductors, etc. are formed. Metal powder such as silver powder is used as a material for the conductive paste.

このような導電性ペーストの材料として使用される銀粉として、銀イオンを含有する水性反応系に、銅などの種粒子の存在下で、還元剤を添加して銀粒子を還元析出させる、銀粉の製造方法が提案されている(例えば、特許文献1参照)。 As a silver powder used as a material for such a conductive paste, a reducing agent is added to an aqueous reaction system containing silver ions in the presence of seed particles such as copper to reduce and precipitate silver particles. A manufacturing method has been proposed (see, for example, Patent Document 1).

また、硝酸銀などの銀水溶液に、ステアリン酸塩などの凝集抑制剤を添加した後、還元剤を添加して銀粒子を還元析出させる、銀粉の製造方法も提案されている(例えば、特許文献2参照)。 A method for producing silver powder has also been proposed, in which an aggregation inhibitor such as stearate is added to an aqueous solution of silver such as silver nitrate, and then a reducing agent is added to reduce and deposit silver particles (for example, Patent Document 2). reference).

特開2009-235474号公報(段落番号0012-0014)JP 2009-235474 (paragraph number 0012-0014) 特開2013-14790号公報(段落番号0023~0027)JP 2013-14790 A (paragraph numbers 0023 to 0027)

しかし、特許文献1~2に記載された銀粉の製造方法のように、湿式還元法によって銀粉を製造する方法では、製造中に銀粉の粒子の内部に不純物として炭素含有化合物を取り込んでしまう。そのため、このような方法により製造された銀粉を焼成型導電性ペーストの材料として使用し、この焼成型導電性ペーストを基板に塗布した後に焼成して導電膜を形成すると、焼成の際に炭素分から二酸化炭素などのガスが発生し、このガスによって導電膜にクラックが生じて、導電膜と基板との密着性が悪くなるという問題がある。 However, in the method of producing silver powder by a wet reduction method, such as the method of producing silver powder described in Patent Documents 1 and 2, a carbon-containing compound is incorporated as an impurity inside the particles of silver powder during production. Therefore, if the silver powder produced by such a method is used as a material for a firing type conductive paste, and this firing type conductive paste is applied to a substrate and then fired to form a conductive film, carbon will be separated during firing. A gas such as carbon dioxide is generated, and the gas causes cracks in the conductive film, resulting in a problem of poor adhesion between the conductive film and the substrate.

このような問題を解消するため、炭素などの不純物の含有量が極めて少ない銀粉を安価に製造する方法として、銀を溶解した溶湯を落下させながら高圧水を吹き付けて急冷凝固させる、所謂水アトマイズ法によって銀粉を製造する方法が知られている。しかし、従来の水アトマイズ法による銀粉の製造方法により製造された銀粉は、凝集して二次粒子径が大きくなり易く、このように凝集した銀粉を導電性ペーストの材料として使用すると、表面が平滑な薄い導電膜を形成するのが困難になる。 In order to solve such a problem, as a method for inexpensively producing silver powder with an extremely low content of impurities such as carbon, a so-called water atomization method is used, in which molten metal in which silver is dissolved is dropped and rapidly cooled and solidified by spraying high-pressure water. are known to produce silver powder. However, the silver powder produced by the conventional method for producing silver powder by water atomization tends to aggregate and have a large secondary particle size. It becomes difficult to form a thin conductive film.

特に、近年、積層セラミックインダクタ(MLCI)などの電子部品の内部電極などの小型化により、導電性ペーストに使用する銀粉として、粒子径の小さい銀粉が求められているが、銀粉の粒子径が小さくなると、銀粉が凝集し易くなる。 In particular, in recent years, due to the miniaturization of internal electrodes of electronic components such as multilayer ceramic inductors (MLCI), silver powder with a small particle size is required as a silver powder used in conductive paste. Then, the silver powder tends to aggregate.

したがって、本発明は、このような従来の問題点に鑑み、凝集し難く且つ導電性ペーストの材料として使用して導電膜を形成する場合に焼成の際に炭素分から二酸化炭素などのガスが発生するのを抑制することができる銀粉およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention is a material that is difficult to agglomerate and generates gases such as carbon dioxide from carbon during firing when used as a material for a conductive paste to form a conductive film. An object of the present invention is to provide a silver powder and a method for producing the same that can suppress the

本発明者らは、上記課題を解決するために鋭意研究した結果、20ppm以上の銅を含む銀粉であって、この銀粉を大気雰囲気中において150℃で10時間加熱したときの炭素含有量が0.05質量%以下である銀粉を製造すれば、凝集し難く且つ導電性ペーストの材料として使用して導電膜を形成する場合に焼成の際に炭素分から二酸化炭素などのガスが発生するのを抑制することができる銀粉を提供することができることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have found that silver powder containing 20 ppm or more of copper has a carbon content of 0 when heated at 150 ° C. for 10 hours in an air atmosphere. If silver powder with a content of 0.05% by mass or less is produced, it is difficult to agglomerate, and when it is used as a material for a conductive paste to form a conductive film, it suppresses the generation of gases such as carbon dioxide from the carbon content during firing. The inventors have found that it is possible to provide a silver powder that can be used, and have completed the present invention.

すなわち、本発明による銀粉は、20ppm以上の銅を含む銀粉であって、この銀粉を大気雰囲気中において150℃で10時間加熱したときの炭素含有量が0.05質量%以下であることを特徴とする。 That is, the silver powder according to the present invention is silver powder containing 20 ppm or more of copper, and has a carbon content of 0.05% by mass or less when the silver powder is heated at 150°C for 10 hours in an air atmosphere. and

上記の銀粉中の銅の含有量は20~10000ppmであるのが好ましい。また、上記の銀粉は、レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が1~15μmであるのが好ましく、銀粉の累積50%粒子径(D50径)に対する、電界放出型走査電子顕微鏡によって観測した単体粒子の平均粒子径(SEM径)の比(SEM径/D50径)が0.3~1.0であるのが好ましい。また、銀粉の累積50%粒子径(D50径)に対するタップ密度の比(タップ密度/D50径)が0.45~3.6g/(cm・μm)であるのが好ましい。また、銀粉中の酸素含有量は0.1質量%以下であるのが好ましい。さらに、銀粉のBET比表面積は0.1~1.0m/gであるのが好ましく、タップ密度は2~8g/cmであるのが好ましい。また、上記の銀粉は、表面に有機化合物が付着している銀粉でもよい。 The content of copper in the silver powder is preferably 20 to 10000 ppm. In addition, the above-mentioned silver powder preferably has a volume-based cumulative 50% particle diameter ( D50 diameter) measured by a laser diffraction particle size distribution analyzer of 1 to 15 μm, and the cumulative 50% particle diameter ( D50 The ratio of the average particle diameter (SEM diameter) of single particles observed by a field emission scanning electron microscope (SEM diameter/ D50 diameter) to the diameter) is preferably 0.3 to 1.0. Also, the ratio of the tap density to the cumulative 50% particle diameter ( D50 diameter) of the silver powder (tap density/ D50 diameter) is preferably 0.45 to 3.6 g/(cm 3 ·μm). Moreover, it is preferable that the oxygen content in silver powder is 0.1 mass % or less. Furthermore, the silver powder preferably has a BET specific surface area of 0.1 to 1.0 m 2 /g and a tap density of 2 to 8 g/cm 3 . Further, the silver powder described above may be silver powder having an organic compound attached to its surface.

また、本発明による銀粉の製造方法は、20ppm以上の銅を含む銀を溶解した溶湯を落下させながら、高圧水を吹き付けて急冷凝固させ、得られた銀粒子の表面を有機化合物で表面処理することを特徴とする。この銀粉の製造方法において、溶湯中の銅の含有量が20~10000ppmであるのが好ましい。 Further, in the method for producing silver powder according to the present invention, a molten metal containing silver containing 20 ppm or more of copper is dropped and rapidly cooled and solidified by spraying high-pressure water, and the surface of the obtained silver particles is surface-treated with an organic compound. It is characterized by In this silver powder production method, the copper content in the molten metal is preferably 20 to 10000 ppm.

また、本発明による導電性ペーストは、上記の銀粉が有機成分中に分散していることを特徴とする。 Also, the conductive paste according to the present invention is characterized in that the silver powder is dispersed in an organic component.

さらに、本発明による導電膜の製造方法は、上記の導電性ペーストを基板上に塗布した後に焼成して導電膜を製造することを特徴とする。 Furthermore, a method for producing a conductive film according to the present invention is characterized in that the conductive film is produced by coating the above-described conductive paste on a substrate and then baking the paste.

本発明によれば、凝集し難く且つ導電性ペーストの材料として使用して導電膜を形成する場合に焼成の際に炭素分から二酸化炭素などのガスが発生するのを抑制することができる銀粉を製造することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a silver powder that is hard to agglomerate and that can suppress the generation of gas such as carbon dioxide from carbon during firing when used as a material for a conductive paste to form a conductive film is produced. can do.

実施例10で得られた銀粉を5000倍で観察した電界放出型走査電子顕微鏡(FE-SEM)写真を示す図である。FIG. 10 is a field emission scanning electron microscope (FE-SEM) photograph of the silver powder obtained in Example 10 observed at 5000 times. 実施例11で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 11 observed at 5000 magnifications. 実施例12で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 12 observed at 5000 magnifications. 実施例13で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 13 observed at 5000 magnifications. 実施例14で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 14 observed at 5000 magnifications. 実施例15で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 15 observed at 5000 magnifications. 実施例16で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 16 observed at 5000 magnifications. 実施例17で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a view showing an FE-SEM photograph of the silver powder obtained in Example 17 observed at 5000 times; 実施例18で得られた銀粉を5000倍で観察したFE-SEM写真を示す図である。FIG. 10 is a FE-SEM photograph of the silver powder obtained in Example 18 observed at 5000 magnifications. 実施例15で得られた銀粉についてレーザー回折式粒度分布測定装置により測定した体積基準の粒度分布を示す図である。FIG. 10 is a diagram showing the volume-based particle size distribution of the silver powder obtained in Example 15, measured by a laser diffraction particle size distribution analyzer. 実施例16で得られた銀粉についてレーザー回折式粒度分布測定装置により測定した体積基準の粒度分布を示す図である。FIG. 10 is a diagram showing the volume-based particle size distribution of the silver powder obtained in Example 16, measured by a laser diffraction particle size distribution analyzer. 実施例17で得られた銀粉についてレーザー回折式粒度分布測定装置により測定した体積基準の粒度分布を示す図である。FIG. 10 is a diagram showing the volume-based particle size distribution of the silver powder obtained in Example 17, measured by a laser diffraction particle size distribution analyzer. 実施例18で得られた銀粉についてレーザー回折式粒度分布測定装置により測定した体積基準の粒度分布を示す図である。FIG. 10 is a diagram showing the volume-based particle size distribution of the silver powder obtained in Example 18, measured by a laser diffraction particle size distribution analyzer.

本発明による銀粉の実施の形態では、20ppm以上の銅を含む銀粉であって、この銀粉を大気雰囲気中において150℃で10時間加熱したときの炭素含有量が0.05質量%以下である。 In an embodiment of the silver powder according to the present invention, the silver powder contains 20 ppm or more of copper, and has a carbon content of 0.05% by mass or less when heated at 150° C. for 10 hours in an air atmosphere.

この銀粉中の銅の含有量は、(銀粉の凝集を防止する観点から)20ppm以上であり、銀粉の耐酸化性や導電性を向上させる観点から、20~10000ppmであるのが好ましく、40~2000ppmであるのがさらに好ましく、40~800ppmであるのがさらに好ましく、230~750ppmであるのが最も好ましい。 The content of copper in the silver powder is 20 ppm or more (from the viewpoint of preventing aggregation of the silver powder), and from the viewpoint of improving the oxidation resistance and conductivity of the silver powder, it is preferably 20 to 10000 ppm, and 40 to 40 ppm. More preferably 2000 ppm, more preferably 40-800 ppm, most preferably 230-750 ppm.

この銀粉を大気雰囲気中において150℃で10時間加熱したときの炭素含有量は、0.05質量%以下であり、0.03質量%以下であるのが好ましく、0.007質量%以下であるのがさらに好ましい。このような炭素含有量が低い銀粉を材料として使用した焼成型導電性ペーストを基板に塗布した後に焼成して導電膜を形成すると、焼成の際に炭素分から発生する二酸化炭素などのガスの量が少なく、ガスによる導電膜のクラックが生じ難くなり、基板との密着性に優れた導電膜を形成することができる。 The carbon content when this silver powder is heated at 150° C. for 10 hours in an air atmosphere is 0.05% by mass or less, preferably 0.03% by mass or less, and 0.007% by mass or less. is more preferred. When a conductive film is formed by applying a sintering type conductive paste that uses silver powder with a low carbon content to a substrate and then sintering it, the amount of gas such as carbon dioxide generated from the carbon during sintering is reduced. It is less likely to crack the conductive film due to the gas, and a conductive film having excellent adhesion to the substrate can be formed.

また、銀粉中の酸素含有量は、0.1質量%以下であるのが好ましく、0.01~0.07質量%であるのがさらに好ましい。このように銀粉中の酸素含有量が低ければ、十分に焼結して高い導電性の導電膜を形成することができる。 Also, the oxygen content in the silver powder is preferably 0.1% by mass or less, more preferably 0.01 to 0.07% by mass. If the oxygen content in the silver powder is thus low, it can be sufficiently sintered to form a highly conductive conductive film.

この銀粉の(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)は、1~15μmであるのが好ましく、銀粉をさらに小型化した電子部品の内部電極などを形成する導電性ペーストの材料として使用する場合には、1~8μmであるのがさらに好ましく、1.2~7μmであるのが最も好ましい。また、この銀粉の電界放出型走査電子顕微鏡(SEM)によって観測した単体粒子の平均粒子径(SEM径)は、銀粉をさらに小型化した電子部品の内部電極などを形成する導電性ペーストの材料として使用する場合には、1~8μmであるのが好ましく、1~5μmであるのがさらに好ましく、1.2~4μmであるのが最も好ましい。また、この銀粉の累積50%粒子径(D50径)に対する、電界放出型走査電子顕微鏡によって観測した単体粒子の平均粒子径(SEM径)の比(SEM径/D50径)は、0.3~1.0であるのが好ましく、0.35~1.0であるのがさらに好ましく、0.5~1.0であるのがさらに一層好ましく、0.65~1.0であるのが最も好ましい。この比(SEM径/D50径)(一次粒子径/二次粒子径)が大きいほど、銀粉の凝集が少ないといえる。 The volume-based cumulative 50% particle diameter ( D50 diameter) of this silver powder measured by a laser diffraction particle size distribution analyzer (by the Heros method) is preferably 1 to 15 μm. When used as a conductive paste material for forming internal electrodes, the thickness is more preferably 1 to 8 μm, most preferably 1.2 to 7 μm. In addition, the average particle diameter (SEM diameter) of the single particles observed by a field emission scanning electron microscope (SEM) of this silver powder is as a material for conductive pastes that form internal electrodes of electronic parts that are further miniaturized. If used, it is preferably 1-8 μm, more preferably 1-5 μm, most preferably 1.2-4 μm. In addition, the ratio of the average particle diameter (SEM diameter) of the single particles observed with a field emission scanning electron microscope (SEM diameter/ D50 diameter) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder was 0. It is preferably 3 to 1.0, more preferably 0.35 to 1.0, even more preferably 0.5 to 1.0, and even more preferably 0.65 to 1.0. is most preferred. It can be said that the larger the ratio (SEM diameter/ D50 diameter) (primary particle diameter/secondary particle diameter), the less aggregation of silver powder.

また、銀粉のBET比表面積は、0.1~1.0m/gであるのが好ましく、0.15~0.8m/gであるのがさらに好ましく、0.18~0.5m/gであるのが最も好ましい。また、銀粉のタップ密度は、銀粉を導電性ペーストの材料として使用して導電膜を形成する場合に銀粉の充填性を高めて良好な導電性の導電膜を形成するために、2~8g/cmであるのが好ましく、2.5~7.8g/cmであるのがさらに好ましく、3.5~7.5g/cmであるのが最も好ましい。さらに、銀粉を導電性ペーストの材料として使用して導電膜を形成する場合に銀粉の充填性を高めて良好な導電性の導電膜を形成するために、銀粉の累積50%粒子径(D50径)に対するタップ密度の比(タップ密度/D50径)は、0.45~3.6g/(cm・μm)であるのが好ましく、0.8~3.2g/(cm・μm)であるのがさらに好ましく、1.1~3.0g/(cm・μm)であるのが最も好ましい。 Also, the BET specific surface area of the silver powder is preferably 0.1 to 1.0 m 2 /g, more preferably 0.15 to 0.8 m 2 /g, and more preferably 0.18 to 0.5 m 2 . /g is most preferred. In addition, the tap density of the silver powder is 2 to 8 g/g/ It is preferably between 2.5 and 7.8 g/cm 3 and most preferably between 3.5 and 7.5 g/cm 3 . Furthermore, when silver powder is used as a conductive paste material to form a conductive film, the silver powder has a cumulative 50% particle diameter (D 50 The ratio of the tap density to the diameter (tap density/ D50 diameter) is preferably 0.45 to 3.6 g/(cm 3 μm), and 0.8 to 3.2 g/(cm 3 μm ), most preferably 1.1 to 3.0 g/(cm 3 ·μm).

なお、上記の銀粉の形状は、球状やフレーク状などの様々な粒状の形状のいずれの形状でもよく、形状が揃っていない不定形状でもよい。 The shape of the silver powder may be any of various granular shapes such as a spherical shape and a flake shape, or may be an irregular shape with irregular shapes.

また、この銀粉をさらに凝集し難くするために、銀粉の表面に有機化合物からなる表面処理剤を付着させてもよい。このように有機化合物からなる表面処理剤を銀粉の表面に付着させる(銀粉の表面を被覆する)と、この有機化合物により銀粉中の炭素含有量が多くなる。しかし、このように有機化合物からなる表面処理剤が存在する銀粉を使用した焼成型導電性ペーストを基板に塗布した後に焼成して導電膜を形成する場合、銀粉の表面に存在する表面処理剤は、焼成の際に早期に銀粉の表面から離脱するため、焼成の際に炭素分から発生した二酸化炭素などのガスによって導電膜にクラックが生じて導電膜と基板との密着性が悪くなるという問題は生じないと考えられる。すなわち、焼成の際に炭素分から発生した二酸化炭素などのガスによって導電膜にクラックが生じて導電膜と基板との密着性が悪くなるという問題は、銀粉の内部に存在する炭素の含有量が多くなると生じる問題であり、銀粉の内部に存在する炭素の含有量が少なければ、銀粉の表面に存在する有機化合物によって銀粉中の炭素含有量が多くなっても、そのような問題は生じないと考えられる。そのため、有機化合物からなる表面処理剤が存在する銀粉では、銀粉の表面に存在する有機化合物からなる表面処理剤の大部分(または略全て)を除去したときの炭素含有量が少なければよく、(銀粉の内部の炭素は残存したまま)銀粉の表面に存在する有機化合物からなる表面処理剤の大部分(または略全て)を除去できる程度に加熱したとき(銀粉を150℃で10時間加熱したとき)の炭素含有量が、0.05質量%以下であればよく、0.03質量%以下であるのが好ましく、0.007質量%以下であるのがさらに好ましい。なお、銀粉の表面に有機化合物からなる表面処理剤が付着した銀粉中の炭素含有量は、0.3質量%以下であるのが好ましく、0.2質量%以下であるのがさらに好ましく、また、0.001質量%以上であるのが好ましい。 In order to make the silver powder more difficult to agglomerate, a surface treatment agent made of an organic compound may be attached to the surface of the silver powder. When the surface treatment agent composed of an organic compound is attached to the surface of the silver powder (coating the surface of the silver powder), the organic compound increases the carbon content in the silver powder. However, in the case of forming a conductive film by applying a firing-type conductive paste using silver powder containing a surface treatment agent made of an organic compound to a substrate and then firing the paste, the surface treatment agent present on the surface of the silver powder is However, since the silver powder is released from the surface of the silver powder early during firing, gas such as carbon dioxide generated from the carbon during firing causes cracks in the conductive film, resulting in poor adhesion between the conductive film and the substrate. not likely to occur. That is, the problem that the adhesion between the conductive film and the substrate is deteriorated due to cracks in the conductive film caused by gases such as carbon dioxide generated from the carbon during firing is solved when the carbon content inside the silver powder is large. If the carbon content inside the silver powder is small, even if the carbon content in the silver powder increases due to the organic compounds present on the surface of the silver powder, such problems will not occur. be done. Therefore, in silver powder containing a surface treatment agent made of an organic compound, the carbon content should be small when most (or substantially all) of the surface treatment agent made of an organic compound present on the surface of the silver powder is removed. When heated to the extent that most (or almost all) of the surface treatment agent made of an organic compound present on the surface of the silver powder can be removed (while the carbon inside the silver powder remains) (when the silver powder is heated at 150 ° C. for 10 hours) ) may be 0.05% by mass or less, preferably 0.03% by mass or less, and more preferably 0.007% by mass or less. The carbon content in the silver powder in which the surface treatment agent made of an organic compound is attached to the surface of the silver powder is preferably 0.3% by mass or less, more preferably 0.2% by mass or less. , 0.001% by mass or more.

この有機化合物からなる表面処理剤として、炭素数1~32の飽和または不飽和脂肪酸、炭素数1~32の飽和または不飽和アミン、環構成原子数5~12の複素環化合物などの有機化合物からなる表面処理剤を使用することができるが、導電性を向上させる観点から、炭素数1~32の飽和または不飽和脂肪酸を使用するのが好ましく、分散性を向上させる観点から、脂肪酸やアミンの炭素数が4~24であるのが好ましい。脂肪酸やアミンは、環状構造を有してもよい。また、複素環化合物は、飽和または不飽和のいずれの化合物でもよく、縮合環構造の化合物でもよく、トリアゾール化合物(分子内にトリアゾール構造を有する化合物)であるのが好ましい。 Examples of the surface treatment agent comprising an organic compound include organic compounds such as saturated or unsaturated fatty acids having 1 to 32 carbon atoms, saturated or unsaturated amines having 1 to 32 carbon atoms, and heterocyclic compounds having 5 to 12 ring atoms. However, from the viewpoint of improving conductivity, it is preferable to use saturated or unsaturated fatty acids having 1 to 32 carbon atoms, and from the viewpoint of improving dispersibility, fatty acids and amines are used. It preferably has 4 to 24 carbon atoms. Fatty acids and amines may have a cyclic structure. Moreover, the heterocyclic compound may be either a saturated or unsaturated compound, a compound having a condensed ring structure, and is preferably a triazole compound (a compound having a triazole structure in the molecule).

有機化合物からなる表面処理剤として、具体的には、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リシノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸、ベンゾトリアゾールなどを使用することができるが、パルミチン酸、ステアリン酸、オレイン酸またはリシノール酸を使用するのが好ましい。 Specific examples of surface treatment agents made of organic compounds include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, palmitoleic acid, and margarine. Acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, ricinoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotin Acids such as montanic acid, melissic acid, benzotriazole can be used, but preferably palmitic acid, stearic acid, oleic acid or ricinoleic acid are used.

上述した銀粉の実施の形態のうち、表面に有機化合物からなる表面処理剤を付着させていない銀粉は、銀に20ppm以上(好ましくは20~10000ppm、さらに好ましくは40~2000ppm、さらに好ましくは40~800ppm、最も好ましくは230~750ppm)の銅を(好ましくは銅単体またはAg-Cu合金の形態で)添加して溶解した(好ましくは銀の融点約962℃より300~720℃高い温度の)溶湯を落下させながら、(好ましくは、大気雰囲気中または(水素、一酸化炭素、アルゴン、窒素などの)非酸化性雰囲気中において水圧70~400MPa(さらに好ましくは90~280MPa)で)(好ましくは純水またはpH8~12のアルカリ水である)高圧水を吹き付けて急冷凝固させることにより製造することができる。 Among the embodiments of the silver powder described above, the silver powder that does not have a surface treatment agent made of an organic compound attached to the surface has a silver content of 20 ppm or more (preferably 20 to 10000 ppm, more preferably 40 to 2000 ppm, more preferably 40 to 40 ppm). 800 ppm, most preferably 230-750 ppm) of copper (preferably in the form of pure copper or an Ag—Cu alloy) added and melted (preferably at a temperature of 300-720° C. above the melting point of silver, about 962° C.) while dropping (preferably in an atmospheric atmosphere or in a non-oxidizing atmosphere (such as hydrogen, carbon monoxide, argon, nitrogen) at a water pressure of 70 to 400 MPa (more preferably 90 to 280 MPa)) (preferably pure It can be produced by spraying high-pressure water (which is water or alkaline water with a pH of 8 to 12) to rapidly cool and solidify.

高圧水を吹き付ける、所謂水アトマイズ法によって、銀に微量の銅(溶湯中の含有量が20ppm以上、好ましくは20~10000ppm、さらに好ましくは40~2000ppm、さらに好ましくは40~800ppm、最も好ましくは230~750ppmになる銅)を添加した溶湯から銀粉を製造すると、粒子径が小さく、炭素含有量が少なく且つ凝集し難い銀粉を得ることができる。 A trace amount of copper (content in molten metal is 20 ppm or more, preferably 20 to 10000 ppm, more preferably 40 to 2000 ppm, more preferably 40 to 800 ppm, more preferably 40 to 800 ppm, most preferably 230 ppm) When silver powder is produced from molten metal to which copper (up to 750 ppm) is added, it is possible to obtain silver powder with a small particle size, a low carbon content, and resistance to agglomeration.

また、水アトマイズ法によって溶湯から銀粉を製造する際に、溶湯の温度と高圧水の圧力を調整することによって、銀粉の平均粒子径を調整することができる。例えば、溶湯の温度を高くしたり、高圧水の圧力を高くすることにより、銀粉の平均粒子径を小さくすることができる。 Further, when silver powder is produced from molten metal by the water atomization method, the average particle size of silver powder can be adjusted by adjusting the temperature of the molten metal and the pressure of high-pressure water. For example, the average particle size of the silver powder can be reduced by increasing the temperature of the molten metal or increasing the pressure of the high-pressure water.

また、水アトマイズ法によって溶湯から銀粉を製造する際に、溶湯を落下させながら高圧水を吹き付けて急冷凝固させて得られたスラリーを固液分離し、得られた固形物を乾燥して(微量の銅を含む)銀粉を得ることができる。なお、必要に応じて、固液分離して得られた固形物を乾燥する前に水洗してもよいし、乾燥した後に解砕したり分級して、粒度を調整してもよい。 In addition, when producing silver powder from molten metal by the water atomization method, the slurry obtained by rapidly cooling and solidifying by spraying high-pressure water while dropping the molten metal is separated into solids and liquids. containing copper) silver powder can be obtained. If necessary, the solid obtained by solid-liquid separation may be washed with water before drying, or may be pulverized or classified after drying to adjust the particle size.

また、上述した銀粉の実施の形態のうち、表面に有機化合物からなる表面処理剤を付着させた銀粉は、水アトマイズ法により得られた銀粒子の表面処理を行うことによって製造することができる。この表面処理は、水アトマイズ法により得られた銀粒子と有機化合物からなる表面処理剤を混合して、銀粒子の表面に表面処理剤を付着させることによって行ってもよいし、急冷凝固により得られたスラリーを固液分離する前に、(銀粒子を含む)スラリーに有機化合物からなる表面処理剤を添加(混合)して、銀粒子の表面に表面処理剤を付着させることによって行ってもよい。このようにして銀粉の表面に表面処理剤を付着させる(銀粉の表面を表面処理剤で被覆する)ことにより、銀粉のタップ密度を高めることができる。なお、表面処理剤の添加量は、(表面処理剤を含まない)銀粉100重量部に対して、0.01~7重量部であるのが好ましく、0.015~6重量部であるのがさらに好ましく、0.02~5重量部であるのが最も好ましい。 In addition, among the embodiments of the silver powder described above, the silver powder having the surface treated with a surface treatment agent made of an organic compound can be produced by surface-treating silver particles obtained by a water atomization method. This surface treatment may be carried out by mixing the silver particles obtained by water atomization with a surface treatment agent comprising an organic compound, and adhering the surface treatment agent to the surface of the silver particles, or by rapid solidification. Before solid-liquid separation of the obtained slurry, a surface treatment agent consisting of an organic compound is added (mixed) to the slurry (containing silver particles), and the surface treatment agent is attached to the surface of the silver particles. good. By attaching the surface treatment agent to the surface of the silver powder (coating the surface of the silver powder with the surface treatment agent) in this manner, the tap density of the silver powder can be increased. The amount of the surface treatment agent added is preferably 0.01 to 7 parts by weight, more preferably 0.015 to 6 parts by weight, with respect to 100 parts by weight of the silver powder (not including the surface treatment agent). More preferably, it is most preferably 0.02 to 5 parts by weight.

本発明による銀粉の実施の形態を(焼成型導電性ペーストなどの)導電性ペーストの材料として使用する場合、この銀粉を、(飽和脂肪族炭化水素類、不飽和脂肪族炭化水素類、ケトン類、芳香族炭化水素類、グリコールエーテル類、エステル類、アルコール類などの)有機溶剤や、(エチルセルロースやアクリル樹脂などの)バインダ樹脂などの有機成分中に分散させて導電性ペーストを作製することができる。また、必要に応じて、この導電性ペーストにガラスフリット、無機酸化物、分散剤などを添加してもよい。 When an embodiment of the silver powder according to the present invention is used as a material for a conductive paste (such as a fired conductive paste), the silver powder can be mixed with (saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, ketones , aromatic hydrocarbons, glycol ethers, esters, and alcohols) and organic components such as binder resins (such as ethyl cellulose and acrylic resins) to prepare a conductive paste. can. Further, if necessary, glass frit, inorganic oxide, dispersing agent, etc. may be added to this conductive paste.

導電性ペースト中の銀粉の含有量は、導電性ペーストの製造コストおよび導電膜の導電性の観点から、5~98質量%であるのが好ましく、70~95質量%であるのがさらに好ましい。また、導電性ペースト中の銀粉は、1種以上の他の金属粉末(銀と錫の合金粉末、錫粉などの金属粉末)と混合して使用してもよい。この金属粉末は、本発明による銀粉の実施の形態と形状や粒径が異なる金属粉末でもよい。この金属粉末のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)は、導電性ペーストを焼成して薄い導電膜を形成するために、0.5~20μmであるのが好ましい。また、この金属粉末の導電性ペースト中の含有量は、1~94質量%であるのが好ましく、4~29質量%であるのがさらに好ましい。なお、導電性ペースト中の銀粉と金属粉末の含有量の合計は、60~99質量%であるのが好ましく、74~99質量%であるのがさらに好ましい。また、導電性ペースト中の有機溶剤の含有量は、導電性ペースト中の銀粉の分散性や導電性ペーストの適切な粘度を考慮して、0.8~20質量%であるのが好ましく、0.8~15質量%であるのがさらに好ましい。この有機溶剤は、2種以上を混合して使用してもよい。また、導電性ペースト中のバインダ樹脂の含有量は、導電性ペースト中の銀粉の分散性や導電性ペーストの導電性の観点から、0.1~10質量%であるのが好ましく、0.1~6質量%であるのがさらに好ましい。このバインダ樹脂は、2種以上を混合して使用してもよい。また、導電性ペースト中のガラスフリットの含有量は、導電性ペーストの焼結性の観点から、0.1~20質量%であるのが好ましく、0.1~10質量%であるのがさらに好ましい。このガラスフリットは、2種以上を混合して使用してもよい。 The content of the silver powder in the conductive paste is preferably 5 to 98% by mass, more preferably 70 to 95% by mass, from the viewpoint of production cost of the conductive paste and conductivity of the conductive film. Also, the silver powder in the conductive paste may be used by mixing with one or more other metal powders (metal powders such as silver-tin alloy powders and tin powders). This metal powder may be a metal powder different in shape and particle size from the silver powder according to the embodiment of the present invention. The volume-based cumulative 50% particle diameter ( D50 diameter) measured by a laser diffraction particle size distribution analyzer of this metal powder is 0.5 to 20 μm in order to bake the conductive paste to form a thin conductive film. is preferred. Also, the content of the metal powder in the conductive paste is preferably 1 to 94% by mass, more preferably 4 to 29% by mass. The total content of silver powder and metal powder in the conductive paste is preferably 60 to 99% by mass, more preferably 74 to 99% by mass. In addition, the content of the organic solvent in the conductive paste is preferably 0.8 to 20% by mass, considering the dispersibility of the silver powder in the conductive paste and the appropriate viscosity of the conductive paste. 0.8 to 15 mass % is more preferred. These organic solvents may be used in combination of two or more. In addition, the content of the binder resin in the conductive paste is preferably 0.1 to 10% by mass, from the viewpoint of the dispersibility of the silver powder in the conductive paste and the conductivity of the conductive paste. More preferably ~6% by mass. This binder resin may be used in combination of two or more. Further, the content of the glass frit in the conductive paste is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, from the viewpoint of sinterability of the conductive paste. preferable. You may use this glass frit in mixture of 2 or more types.

このような導電性ペーストは、例えば、各構成要素を計量して所定の容器に入れ、らいかい機、万能攪拌機、ニーダーなどを用いて予備混練した後、3本ロールで本混練することによって作製することができる。また、必要に応じて、その後、さらに有機溶剤を添加して、粘度調整を行ってもよい。また、ガラスフリットや無機酸化物と有機溶剤やバインダ樹脂を混練して粒度を下げた後、最後に銀粉を追加して本混練してもよい。 Such a conductive paste is prepared by, for example, weighing each constituent element, putting it in a predetermined container, pre-kneading it using a scouring machine, a universal stirrer, a kneader, etc., and then kneading it with a three-roll machine. can do. Further, if necessary, an organic solvent may be added thereafter to adjust the viscosity. Further, after kneading the glass frit or inorganic oxide with the organic solvent or the binder resin to reduce the particle size, silver powder may be finally added and main kneading may be performed.

この導電性ペーストをディッピングや(メタルマスク印刷、スクリーン印刷、インクジェット印刷などの)印刷などにより(セラミック基板や誘電体層などの)基板上に所定パターン形状に塗布した後に焼成して導電膜を形成することができる。導電性ペーストをディッピングにより塗布する場合には、導電性ペースト中に基板をディッピングして塗膜を形成し、この塗膜を焼成して得られた導電膜の不要な部分を除去して、基板上に所定パターン形状の導電膜を形成することができる。 This conductive paste is dipped or printed (metal mask printing, screen printing, inkjet printing, etc.) to form a conductive film by coating it in a predetermined pattern on a substrate (ceramic substrate, dielectric layer, etc.) and then baking it. can do. When the conductive paste is applied by dipping, the substrate is dipped in the conductive paste to form a coating film, and the unnecessary portion of the conductive film obtained by baking this coating film is removed. A conductive film having a predetermined pattern shape can be formed thereon.

基板上に塗布した導電性ペーストの焼成は、窒素、アルゴン、水素、一酸化炭素などの非酸化性雰囲気下で行ってもよいが、銀粉は酸化し難いため、コスト面から大気雰囲気下で行うのが好ましい。なお、導電性ペーストの焼成温度は、600~1000℃程度であるのが好ましく、700~900℃程度であるのがさらに好ましい。また、導電性ペーストの焼成の前に、真空乾燥などにより予備乾燥を行うことにより、導電性ペースト中の有機溶剤などの揮発成分を除去してもよい。また、導電性ペーストがバインダ樹脂を含む場合は、導電性ペーストの焼成の前に、バインダ樹脂の含有量を低減させる脱バインダ工程として250~400℃の低温で加熱するのが好ましい。 Firing of the conductive paste applied to the substrate may be performed in a non-oxidizing atmosphere such as nitrogen, argon, hydrogen, or carbon monoxide, but since silver powder is difficult to oxidize, it is performed in an air atmosphere from the viewpoint of cost. is preferred. The firing temperature of the conductive paste is preferably about 600 to 1000.degree. C., more preferably about 700 to 900.degree. In addition, volatile components such as an organic solvent in the conductive paste may be removed by performing pre-drying such as vacuum drying before baking the conductive paste. Further, when the conductive paste contains a binder resin, it is preferable to heat the conductive paste at a low temperature of 250 to 400° C. as a binder removal step to reduce the content of the binder resin before baking the conductive paste.

以下、本発明による銀粉およびその製造方法の実施例について詳細に説明する。 Examples of the silver powder and the method for producing the same according to the present invention will now be described in detail.

[実施例1]
純度99.99質量%のショット銀23.96kgと、(228ppmの銅を含む)Ag-Cu合金6.04kgとを大気雰囲気中において1600℃に加熱して溶解した溶湯(46ppmの銅を含む銀の溶湯)をタンディッシュ下部から落下させながら、水アトマイズ装置により大気雰囲気中において水圧150MPa、水量160L/分でアルカリ水(純水21.6mに対して苛性ソーダ157.55gを添加したアルカリ水溶液(pH10.7))を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形物を水洗し、乾燥して、(微量の銅を含む)銀粉を得た。
[Example 1]
A molten metal (silver containing 46 ppm copper Alkaline water (alkaline aqueous solution prepared by adding 157.55 g of caustic soda to 21.6 m3 of pure water ( pH 10.7)) was sprayed to rapidly solidify, solid-liquid separation was performed on the obtained slurry, and the solid matter was washed with water and dried to obtain silver powder (containing a small amount of copper).

このようにして得られた銀粉の単体粒子径(一次粒子径)として、電界放出型走査電子顕微鏡(SEM)(株式会社日立ハイテクノロジーズ製のS-4700)によって倍率5000倍で観測した単体粒子の平均粒子径(SEM径)を、任意の粒子30個のフェレ径の平均値から求めた。その結果、銀粉のSEM径(一次粒子径)は2.35μmであった。また、銀粉の凝集粒子径(二次粒子径)として、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、分散圧5barで体積基準の累積50%粒子径(D50径)を測定したところ、銀粉の累積50%粒子径(D50径)は6.0μmであった。なお、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(一次粒子径/二次粒子径)を算出すると、0.39であった。 As the single particle diameter (primary particle diameter) of the silver powder thus obtained, the single particle observed at a magnification of 5000 with a field emission scanning electron microscope (SEM) (S-4700 manufactured by Hitachi High-Technologies Co., Ltd.) The average particle size (SEM size) was obtained from the average value of the Feret diameters of 30 arbitrary particles. As a result, the SEM diameter (primary particle diameter) of the silver powder was 2.35 µm. In addition, as the agglomerated particle size (secondary particle size) of the silver powder, a laser diffraction particle size distribution measuring device (HELOS particle size distribution measuring device manufactured by SYMPATEC (HELOS & RODOS (airflow type dispersion module))) was used to determine dispersion. When the volume-based cumulative 50% particle diameter ( D50 diameter) was measured at a pressure of 5 bar, the cumulative 50% particle diameter ( D50 diameter) of the silver powder was 6.0 µm. The ratio (primary particle size/secondary particle size) of the SEM size (primary particle size) to the cumulative 50% particle size ( D50 size) (secondary particle size) was 0.39.

また、銀粉の組成分析を誘導結合プラズマ(ICP)発光分光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)によって行ったところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であった。 In addition, when the composition analysis of the silver powder was performed by an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.), the content of copper in the silver powder was ±10% of the content of copper in the molten metal. %.

また、銀粉中の炭素含有量を炭素・硫黄分析装置(株式会社堀場製作所製のEMIA-920V2)により測定したところ、炭素含有量は0.004質量%であり、酸素含有量を酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA-920)により測定したところ、酸素含有量は0.040質量%であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.004質量%程度である。 In addition, when the carbon content in the silver powder was measured by a carbon/sulfur analyzer (EMIA-920V2 manufactured by Horiba, Ltd.), the carbon content was 0.004% by mass, and the oxygen content was determined by oxygen, nitrogen, and The oxygen content was 0.040% by mass as measured by a hydrogen analyzer (EMGA-920 manufactured by Horiba, Ltd.). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.004% by mass even after heating at 150° C. for 10 hours as described later.

また、銀粉のBET比表面積をBET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、測定器内に105℃で20分間窒素ガスを流して脱気した後、窒素とヘリウムの混合ガス(N:30体積%、He:70体積%)を流しながら、BET1点法により測定したところ、BET比表面積は0.34m/gであった。 In addition, the BET specific surface area of the silver powder was measured using a BET specific surface area measuring device (Macsorb manufactured by Mountec Co., Ltd.), and after degassing by flowing nitrogen gas into the measuring device at 105 ° C. for 20 minutes, nitrogen and helium were mixed. The BET specific surface area was 0.34 m 2 /g when measured by the BET single-point method while flowing gas (N 2 : 30% by volume, He: 70% by volume).

さらに、銀粉のタップ密度(TAP)として、特開2007-263860号公報に記載された方法と同様に、銀粉を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して銀粉層を形成し、この銀粉層の上面に0.160N/mの圧力を均一に加えて、この圧力で銀粉がこれ以上密に充填されなくなるまで銀粉を圧縮した後、銀粉層の高さを測定し、この銀粉層の高さの測定値と、充填された銀粉の重量とから、銀粉の密度を求めた。その結果、タップ密度は3.0g/cmであった。なお、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、0.50g/(cm・μm)であった。 Furthermore, as the tap density (TAP) of the silver powder, in the same manner as the method described in JP-A-2007-263860, the silver powder was placed in a bottomed cylindrical die with an inner diameter of 6 mm and a height of 11.9 mm up to 80% of the volume. A silver powder layer is formed by filling, and a pressure of 0.160 N/m 2 is uniformly applied to the upper surface of this silver powder layer. The density of the silver powder was obtained from the measured value of the height of the silver powder layer and the weight of the filled silver powder. As a result, the tap density was 3.0 g/cm 3 . The ratio (TAP/ D50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder was calculated to be 0.50 g/(cm 3 ·μm).

[実施例2]
ショット銀25kgと、(581ppmの銅を含む)Ag-Cu合金15kgとを溶解した溶湯(218ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。
[Example 2]
In the same manner as in Example 1, except that 25 kg of shot silver and 15 kg of Ag—Cu alloy (containing 581 ppm of copper) were melted (molten silver containing 218 ppm of copper) was used. (including copper) silver powder was obtained.

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.34μm、累積50%粒子径(D50径)は4.1μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.57であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.34 μm, the cumulative 50% particle diameter ( D50 diameter) is 4.1 μm, and the SEM diameter / D50 diameter (primary particle diameter / secondary particle diameter) is 0.57 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であり、炭素含有量は0.002質量%、酸素含有量は0.041質量%、BET比表面積は0.36m/g、タップ密度は4.1g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.00g/(cm・μm)であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.002質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was within the range of ± 10% of the copper content in the molten metal. , the carbon content is 0.002% by mass, the oxygen content is 0.041% by mass, the BET specific surface area is 0.36 m 2 /g, the tap density is 4.1 g/cm 3 , and the cumulative amount of silver powder is 50 The ratio of tap density (TAP) to % particle diameter ( D50 diameter) (TAP/ D50 diameter) was 1.00 g/(cm 3 ·μm). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.002% by mass even after being heated at 150° C. for 10 hours as described later.

[実施例3]
ショット銀24kgと、(595ppmの銅を含む)Ag-Cu合金16kgとを溶解した溶湯(238ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。
[Example 3]
In the same manner as in Example 1, except that 24 kg of shot silver and 16 kg of Ag—Cu alloy (containing 595 ppm of copper) were melted (molten silver containing 238 ppm of copper) was used. (including copper) silver powder was obtained.

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.19μm、累積50%粒子径(D50径)は2.9μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.75であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.19 μm, the cumulative 50% particle diameter ( D50 diameter) is 2.9 μm, and the SEM diameter / D50 diameter (primary particle diameter / secondary particle diameter) is 0.75 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であり、炭素含有量は0.004質量%、酸素含有量は0.051質量%、BET比表面積は0.42m/g、タップ密度は4.2g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.45g/(cm・μm)であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.004質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was within the range of ± 10% of the copper content in the molten metal. , the carbon content is 0.004% by mass, the oxygen content is 0.051% by mass, the BET specific surface area is 0.42 m 2 /g, the tap density is 4.2 g/cm 3 , and the cumulative amount of silver powder is 50 The ratio of tap density (TAP) to % particle diameter (D 50 diameter) (TAP/D 50 diameter) was 1.45 g/(cm 3 ·μm). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.004% by mass even after heating at 150° C. for 10 hours as described later.

[実施例4]
ショット銀25kgと、(675ppmの銅を含む)Ag-Cu合金15kgとを溶解した溶湯(253ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。
[Example 4]
In the same manner as in Example 1, except that 25 kg of shot silver and 15 kg of Ag—Cu alloy (containing 675 ppm of copper) were melted (molten silver containing 253 ppm of copper) was used. (including copper) silver powder was obtained.

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.51μm、累積50%粒子径(D50径)は3.1μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.81であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.51 μm, the cumulative 50% particle diameter ( D50 diameter) is 3.1 μm, and the SEM diameter / D50 diameter (primary particle diameter / secondary particle diameter) is 0.81 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であり、炭素含有量は0.003質量%、酸素含有量は0.036質量%、BET比表面積は0.36m/g、タップ密度は5.0g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.61g/(cm・μm)であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.003質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was within the range of ± 10% of the copper content in the molten metal. , the carbon content is 0.003% by mass, the oxygen content is 0.036% by mass, the BET specific surface area is 0.36 m 2 /g, the tap density is 5.0 g/cm 3 , and the cumulative amount of silver powder is 50 The ratio of tap density (TAP) to % particle diameter ( D50 diameter) (TAP/ D50 diameter) was 1.61 g/(cm 3 ·μm). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.003% by mass even after heating at 150° C. for 10 hours as described later.

[実施例5]
ショット銀18.62kgと、(975ppmの銅を含む)Ag-Cu合金11.38kgとを溶解した溶湯(370ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。
[Example 5]
By the same method as in Example 1, except that a molten metal (molten silver containing 370 ppm copper) in which 18.62 kg of shot silver and 11.38 kg of Ag—Cu alloy (containing 975 ppm copper) were dissolved was used. , to obtain a silver powder (containing traces of copper).

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.54μm、累積50%粒子径(D50径)は2.8μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.90であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.54 μm, the cumulative 50% particle diameter ( D50 diameter) is 2.8 μm, and the SEM diameter / D50 diameter (primary particle diameter / secondary particle diameter) is 0.90 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であり、炭素含有量は0.004質量%、酸素含有量は0.049質量%、BET比表面積は0.37m/g、タップ密度は4.7g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.68g/(cm・μm)であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.004質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was within the range of ± 10% of the copper content in the molten metal. , the carbon content is 0.004% by mass, the oxygen content is 0.049% by mass, the BET specific surface area is 0.37 m 2 /g, the tap density is 4.7 g/cm 3 , and the cumulative amount of silver powder is 50 The ratio of tap density (TAP) to % particle diameter ( D50 diameter) (TAP/ D50 diameter) was 1.68 g/(cm 3 ·μm). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.004% by mass even after heating at 150° C. for 10 hours as described later.

[実施例6]
ショット銀6.27kgと、(1343ppmの銅を含む)Ag-Cu合金2.43kgとを溶解した溶湯(375ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。
[Example 6]
By the same method as in Example 1, except that a molten metal (molten silver containing 375 ppm copper) in which 6.27 kg of shot silver and 2.43 kg of Ag—Cu alloy (containing 1343 ppm copper) were dissolved was used. , to obtain a silver powder (containing traces of copper).

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.83μm、累積50%粒子径(D50径)は3.1μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.91であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.83 μm, the cumulative 50% particle diameter ( D50 diameter) is 3.1 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) is 0.91 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であり、炭素含有量は0.006質量%、酸素含有量は0.069質量%、BET比表面積は0.35m/g、タップ密度は4.7g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.52g/(cm・μm)であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.006質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was within the range of ± 10% of the copper content in the molten metal. , the carbon content is 0.006% by mass, the oxygen content is 0.069% by mass, the BET specific surface area is 0.35 m 2 /g, the tap density is 4.7 g/cm 3 , and the cumulative amount of silver powder is 50 The ratio of tap density (TAP) to % particle diameter (D 50 diameter) (TAP/D 50 diameter) was 1.52 g/(cm 3 ·μm). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.006% by mass even after heating at 150° C. for 10 hours as described later.

[実施例7]
ショット銀29.79kgと、(1508ppmの銅を含む)Ag-Cu合金10.21kgとを溶解した溶湯(385ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。
[Example 7]
By the same method as in Example 1, except that a molten metal (molten silver containing 385 ppm copper) in which 29.79 kg of shot silver and 10.21 kg of Ag—Cu alloy (containing 1508 ppm copper) were dissolved was used. , to obtain a silver powder (containing traces of copper).

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.57μm、累積50%粒子径(D50径)は2.9μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.89であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.57 μm, the cumulative 50% particle diameter ( D50 diameter) is 2.9 μm, and the SEM diameter / D50 diameter (primary particle diameter / secondary particle diameter) is 0.89 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は溶湯中の銅の含有量の±10%の範囲内であり、炭素含有量は0.002質量%、酸素含有量は0.046質量%、BET比表面積は0.36m/g、タップ密度は4.3g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.48g/(cm・μm)であった。なお、本実施例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.002質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was within the range of ± 10% of the copper content in the molten metal. , the carbon content is 0.002% by mass, the oxygen content is 0.046% by mass, the BET specific surface area is 0.36 m 2 /g, the tap density is 4.3 g/cm 3 , and the cumulative amount of silver powder is 50 The ratio of tap density (TAP) to % particle diameter (D 50 diameter) (TAP/D 50 diameter) was 1.48 g/(cm 3 ·μm). Since the silver powder of this example was not surface-treated with an organic compound, the carbon content was about 0.002% by mass even after being heated at 150° C. for 10 hours as described later.

[比較例1]
ショット銀5kgを溶解した溶湯を使用した以外は、実施例1と同様の方法により、銀粉を得た。
[Comparative Example 1]
A silver powder was obtained in the same manner as in Example 1, except that a molten metal in which 5 kg of shot silver was dissolved was used.

このようにして得られた銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.33μm、累積50%粒子径(D50径)は9.6μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.24であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated. The SEM diameter (primary particle diameter) is 2.33 μm, the cumulative 50% particle diameter ( D50 diameter) is 9.6 μm, and the SEM diameter / D50 diameter (primary particle diameter / secondary particle diameter) is 0.24 Met.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、得られた銀粉はCuを含まない銀粉であり、炭素含有量は0.004質量%、酸素含有量は0.038質量%、BET比表面積は0.35m/g、タップ密度は2.3g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は0.24g/(cm・μm)であった。なお、本比較例の銀粉は、有機化合物による表面処理を行っていないため、後述するように150℃で10時間加熱した後も、炭素含有量は0.004質量%程度である。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the obtained silver powder was a silver powder containing no Cu, and the carbon content was 0.004% by mass. , the oxygen content is 0.038% by mass, the BET specific surface area is 0.35 m 2 /g, the tap density is 2.3 g / cm 3 , and the tap density ( TAP) ratio (TAP/ D50 diameter) was 0.24 g/(cm 3 ·μm). In addition, since the silver powder of this comparative example is not surface-treated with an organic compound, the carbon content is about 0.004% by mass even after heating at 150° C. for 10 hours as described later.

実施例1~7および比較例1の銀粉の原料中の銅の量と特性を表1および表2に示す。 Tables 1 and 2 show the amount and properties of copper in the raw materials of the silver powders of Examples 1 to 7 and Comparative Example 1.

Figure 0007272834000001
Figure 0007272834000001

Figure 0007272834000002
Figure 0007272834000002

[実施例8]
ショット銀13.76kgと、(61ppmの銅を含む)Ag-Cu合金26.26kgとを溶解した溶湯(400ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。なお、実施例1と同様の方法により、この銀粉中の炭素含有量を測定したところ、0.005質量%であった。
[Example 8]
By the same method as in Example 1, except that a molten metal (molten silver containing 400 ppm copper) in which 13.76 kg of shot silver and 26.26 kg of Ag—Cu alloy (containing 61 ppm copper) were dissolved was used. , to obtain a silver powder (containing traces of copper). When the carbon content in this silver powder was measured by the same method as in Example 1, it was 0.005% by mass.

また、上記の銀粉に、表面処理剤としてオレイン酸26.6g(銀粉100質量部に対して0.07重量部)を加えて、銀粉を解砕しながら、銀粉と表面処理剤を混合して、オレイン酸で表面処理された銀粉を得た。このようにオレイン酸で表面処理を行った銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は1.81μm、累積50%粒子径(D50径)は2.5μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.72であった。 In addition, 26.6 g of oleic acid (0.07 parts by weight with respect to 100 parts by mass of silver powder) was added as a surface treatment agent to the above silver powder, and the silver powder and the surface treatment agent were mixed while pulverizing the silver powder. , to obtain a silver powder surface-treated with oleic acid. For the silver powder thus surface-treated with oleic acid, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) is measured, and the ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter) is calculated. As a result, the SEM diameter (primary particle diameter) of the silver powder was 1.81 μm, the cumulative 50% particle diameter ( D50 diameter) was 2.5 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.72.

また、表面処理を行った銀粉について、実施例1と同様の方法により、組成分析を行い、炭素含有量および酸素含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は360ppmであり、炭素含有量は0.101質量%、酸素含有量は0.042質量%、BET比表面積は0.34m/g、タップ密度は6.9g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は2.76g/(cm・μm)であった。 In addition, the surface-treated silver powder was subjected to composition analysis in the same manner as in Example 1, the carbon content and oxygen content were measured, the BET specific surface area and tap density (TAP) were determined, and the cumulative amount of silver powder When the tap density (TAP) ratio (TAP/ D50 diameter) to the 50% particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was 360 ppm, and the carbon content was 0.101% by mass. , the oxygen content is 0.042% by mass, the BET specific surface area is 0.34 m 2 /g, the tap density is 6.9 g / cm 3 , and the tap density ( TAP) ratio (TAP/ D50 diameter) was 2.76 g/(cm 3 ·μm).

また、表面処理を行った銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から100℃、120℃、150℃および180℃までそれぞれ5℃/分で昇温させ、それぞれの温度で10時間保持した後、それぞれ常温まで自然降温させ、実施例1と同様の方法により、銀粉中の炭素含有量を測定したところ、100℃で10時間加熱したときに0.105質量%、120℃で10時間加熱したときに0.057質量%、150℃で10時間加熱したときに0.005質量%、180℃で10時間加熱したときに0.005質量%であった。この結果から、銀粉を150℃以上で10時間加熱したときにオレイン酸による表面処理前の銀粉の炭素含有量になっており、銀粉を150℃以上で10時間加熱することにより、銀粉の表面に存在する(表面処理剤としての)オレイン酸が全て除去されていることがわかる。 In addition, 30 g of the surface-treated silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), and this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and this drying is performed. While flowing air in the machine at a flow rate of 30 L/min, the temperature was raised from room temperature to 100°C, 120°C, 150°C and 180°C at a rate of 5°C/min, and held at each temperature for 10 hours. The carbon content in the silver powder was measured by the same method as in Example 1 after allowing the temperature to drop naturally. 057% by mass, 0.005% by mass when heated at 150° C. for 10 hours, and 0.005% by mass when heated at 180° C. for 10 hours. From this result, when the silver powder was heated at 150 ° C. or higher for 10 hours, the carbon content of the silver powder before the surface treatment with oleic acid was reached. It can be seen that all of the oleic acid present (as a surface treatment agent) has been removed.

[実施例9]
ショット銀10kgと、(740ppmの銅を含む)Ag-Cu合金10.012kgとを溶解した溶湯(370ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。なお、実施例1と同様の方法により、この銀粉中の炭素含有量を測定したところ、0.003質量%であった。
[Example 9]
In the same manner as in Example 1, except that 10 kg of shot silver and 10.012 kg of Ag—Cu alloy (containing 740 ppm of copper) were melted (molten silver containing 370 ppm of copper) ( A silver powder containing a trace amount of copper was obtained. When the carbon content in this silver powder was measured by the same method as in Example 1, it was 0.003% by mass.

また、上記の銀粉に、表面処理剤としてオレイン酸10.0g(銀粉100質量部に対して0.05重量部)を加えて、銀粉を解砕しながら、銀粉と表面処理剤を混合して、オレイン酸で表面処理された銀粉を得た。このように表面処理を行った銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.00μm、累積50%粒子径(D50径)は2.9μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.69であった。 Further, 10.0 g of oleic acid (0.05 parts by weight with respect to 100 parts by mass of silver powder) is added as a surface treatment agent to the above silver powder, and the silver powder and the surface treatment agent are mixed while pulverizing the silver powder. , to obtain a silver powder surface-treated with oleic acid. For the silver powder surface-treated in this way, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured. , The ratio of the SEM diameter (primary particle diameter) to the cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (SEM diameter / D 50 diameter) (primary particle diameter / secondary particle diameter) was calculated, The SEM diameter (primary particle diameter) of the silver powder was 2.00 µm, the cumulative 50% particle diameter ( D50 diameter) was 2.9 µm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.9 µm. was 69.

また、表面処理を行った銀粉について、実施例1と同様の方法により、組成分析を行い、炭素含有量および酸素含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は350ppmであり、炭素含有量は0.047質量%、酸素含有量は0.043質量%、BET比表面積は0.30m/g、タップ密度は6.5g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は2.24g/(cm・μm)であった。 In addition, the surface-treated silver powder was subjected to composition analysis in the same manner as in Example 1, the carbon content and oxygen content were measured, the BET specific surface area and tap density (TAP) were determined, and the cumulative amount of silver powder When the ratio of tap density (TAP) to 50% particle diameter ( D50 diameter) (TAP/ D50 diameter) was calculated, the copper content in the silver powder was 350 ppm, and the carbon content was 0.047% by mass. , the oxygen content is 0.043% by mass, the BET specific surface area is 0.30 m 2 /g, the tap density is 6.5 g / cm 3 , and the tap density ( TAP) ratio (TAP/ D50 diameter) was 2.24 g/(cm 3 ·μm).

また、表面処理を行った銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から120℃および150℃までそれぞれ5℃/分で昇温させ、それぞれの温度で10時間保持した後、それぞれ常温まで自然降温させ、実施例1と同様の方法により、銀粉中の炭素含有量を測定したところ、120℃で10時間加熱したときに0.020質量%、150℃で10時間加熱したときに0.003質量%であった。この結果から、銀粉を150℃以上で10時間加熱したときにオレイン酸による表面処理前の銀粉の炭素含有量になっており、銀粉を150℃で10時間加熱することにより、銀粉の表面に存在する(表面処理剤としての)オレイン酸が全て除去されていることがわかる。 In addition, 30 g of the surface-treated silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), and this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and this drying is performed. While flowing air in the machine at a flow rate of 30 L / min, the temperature was raised from room temperature to 120 ° C. and 150 ° C. at 5 ° C. / min, respectively, held at each temperature for 10 hours, and then naturally cooled to room temperature. When the carbon content in the silver powder was measured by the same method as in 1, it was 0.020% by mass when heated at 120°C for 10 hours, and 0.003% by mass when heated at 150°C for 10 hours. . From this result, when the silver powder was heated at 150 ° C. or higher for 10 hours, the carbon content of the silver powder before the surface treatment with oleic acid was reached. It can be seen that all the oleic acid (as a surface treatment agent) has been removed.

[比較例2]
湿式還元法によって製造された銀粉(DOWAハイテック株式会社により製造されてDOWAエレクトロニクス株式会社により販売されているAG-4-8F)を用意し、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は1.65μm、累積50%粒子径(D50径)は1.9μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.87であった。
[Comparative Example 2]
A silver powder produced by a wet reduction method (AG-4-8F produced by DOWA Hitech Co., Ltd. and sold by DOWA Electronics Co., Ltd.) was prepared, and the SEM diameter (primary particle diameter), the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) is measured, and the SEM diameter (primary particle diameter) for the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) When the ratio (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter) was calculated, the SEM diameter (primary particle diameter) of the silver powder was 1.65 μm, and the cumulative 50% particle diameter ( D50 diameter) was 1.9 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.87.

また、この銀粉について、実施例1と同様の方法により、組成分析を行い、炭素含有量および酸素含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は0質量%、炭素含有量は0.196質量%、酸素含有量は0.297質量%、BET比表面積は0.30m/g、タップ密度は6.5g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は3.42g/(cm・μm)であった。 In addition, the silver powder was subjected to composition analysis in the same manner as in Example 1, the carbon content and oxygen content were measured, the BET specific surface area and tap density (TAP) were determined, and the cumulative 50% particle diameter of the silver powder was determined. When the ratio of tap density (TAP) to ( D50 diameter) (TAP/ D50 diameter) was calculated, the copper content in the silver powder was 0% by mass, the carbon content was 0.196% by mass, and the oxygen content was is 0.297% by mass, the BET specific surface area is 0.30 m 2 /g, the tap density is 6.5 g / cm 3 , and the tap density (TAP) ratio to the cumulative 50% particle diameter (D 50 diameter) of the silver powder (TAP/D 50 diameter) was 3.42 g/(cm 3 ·μm).

また、この銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から100℃、120℃および150℃までそれぞれ5℃/分で昇温させ、それぞれの温度で10時間保持した後、それぞれ常温まで自然降温させ、実施例1と同様の方法により、銀粉中の炭素含有量を測定したところ、100℃で10時間加熱したときに0.195質量%、120℃で10時間加熱したときに0.070質量%、150℃で10時間加熱したときに0.062質量%であった。 Also, 30 g of this silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and 30 L/ The temperature was raised from room temperature to 100° C., 120° C. and 150° C. at 5° C./min while air was flowed at a flow rate of 100° C., and held at each temperature for 10 hours. When the carbon content in the silver powder was measured by the same method, it was 0.195% by mass when heated at 100 ° C. for 10 hours, 0.070% by mass when heated at 120 ° C. for 10 hours, and at 150 ° C. It was 0.062% by mass when heated for 10 hours.

実施例8~9および比較例2の銀粉の原料中の銅の量と特性を表3および表4に示し、加熱による炭素含有量の変化を表5に示す。 Tables 3 and 4 show the amount and properties of copper in the raw materials of the silver powders of Examples 8 to 9 and Comparative Example 2, and Table 5 shows changes in carbon content due to heating.

Figure 0007272834000003
Figure 0007272834000003

Figure 0007272834000004
Figure 0007272834000004

Figure 0007272834000005
Figure 0007272834000005

[実施例10]
ショット銀39.97kgと(28質量%の銅を含む)Ag-Cu合金0.031kgとを溶解した溶湯(218ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(220ppmの銅を含む)銀粉を得た。
[Example 10]
The same method as in Example 1, except that a molten metal (molten silver containing 218 ppm copper) in which 39.97 kg of shot silver and 0.031 kg of Ag—Cu alloy (containing 28% by mass of copper) were dissolved was used. gave a silver powder (containing 220 ppm copper).

このようにして得られた銀粉について、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.33μm、累積50%粒子径(D50径)は4.3μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.54であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated, the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured, and the cumulative 50% particle diameter ( D50 diameter ) (secondary particle diameter) to SEM diameter (primary particle diameter) ratio (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter), the SEM diameter (primary particle diameter) of the silver powder is 2.33 μm, the cumulative 50% particle diameter ( D50 diameter) was 4.3 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.54.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は220ppmであり、炭素含有量は0.005質量%、酸素含有量は0.046質量%、BET比表面積は0.34m/g、タップ密度は3.7g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は0.84g/(cm・μm)であった。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was 220 ppm, the carbon content was 0.005% by mass, The oxygen content is 0.046% by mass, the BET specific surface area is 0.34 m 2 /g, the tap density is 3.7 g/cm 3 , and the tap density (TAP ) ratio (TAP/D 50 diameter) was 0.84 g/(cm 3 ·μm).

[実施例11]
ショット銀31.79kgと(1252ppmの銅を含む)Ag-Cu合金8.21kgとを溶解した溶湯(257ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(270ppmの銅を含む)銀粉を得た。
[Example 11]
By the same method as in Example 1, except that a molten metal (molten silver containing 257 ppm copper) in which 31.79 kg of shot silver and 8.21 kg of Ag—Cu alloy (containing 1252 ppm copper) were dissolved was used. A silver powder (containing 270 ppm copper) was obtained.

このようにして得られた銀粉について、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.60μm、累積50%粒子径(D50径)は2.9μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.89であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated, the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured, and the cumulative 50% particle diameter ( D50 diameter ) (secondary particle diameter) to SEM diameter (primary particle diameter) ratio (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter), the SEM diameter (primary particle diameter) of the silver powder is 2.60 μm, the cumulative 50% particle diameter ( D50 diameter) was 2.9 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.89.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は270ppmであり、炭素含有量は0.001質量%、酸素含有量は0.042質量%、BET比表面積は0.37m/g、タップ密度は4.7g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.60g/(cm・μm)であった。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was 270 ppm, the carbon content was 0.001% by mass, The oxygen content is 0.042% by mass, the BET specific surface area is 0.37 m 2 /g, the tap density is 4.7 g / cm 3 , and the tap density (TAP ) ratio (TAP/D 50 diameter) was 1.60 g/(cm 3 ·μm).

[実施例12]
ショット銀48.00kgと(757ppmの銅を含む)Ag-Cu合金32.00kgとを溶解した溶湯(303ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(310ppmの銅を含む)銀粉を得た。
[Example 12]
By the same method as in Example 1, except that a molten metal (molten silver containing 303 ppm copper) in which 48.00 kg of shot silver and 32.00 kg of Ag—Cu alloy (containing 757 ppm copper) were dissolved was used. A silver powder (containing 310 ppm copper) was obtained.

このようにして得られた銀粉について、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.73μm、累積50%粒子径(D50径)は3.6μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.76であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated, the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured, and the cumulative 50% particle diameter ( D50 diameter ) (secondary particle diameter) to SEM diameter (primary particle diameter) ratio (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter), the SEM diameter (primary particle diameter) of the silver powder is 2.73 μm, the cumulative 50% particle diameter ( D50 diameter) was 3.6 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.76.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は310ppmであり、炭素含有量は0.003質量%、酸素含有量は0.042質量%、BET比表面積は0.35m/g、タップ密度は4.1g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.14g/(cm・μm)であった。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was 310 ppm, the carbon content was 0.003% by mass, The oxygen content is 0.042% by mass, the BET specific surface area is 0.35 m 2 /g, the tap density is 4.1 g / cm 3 , and the tap density (TAP ) ratio (TAP/D 50 diameter) was 1.14 g/(cm 3 ·μm).

[実施例13]
ショット銀20.69kgと(723ppmの銅を含む)Ag-Cu合金19.31kgとを溶解した溶湯(349ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(360ppmの銅を含む)銀粉を得た。
[Example 13]
In the same manner as in Example 1, except that a molten metal (molten silver containing 349 ppm copper) in which 20.69 kg of shot silver and 19.31 kg of Ag—Cu alloy (containing 723 ppm copper) were dissolved was used. A silver powder (containing 360 ppm copper) was obtained.

このようにして得られた銀粉について、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は3.15μm、累積50%粒子径(D50径)は3.3μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.97であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated, the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured, and the cumulative 50% particle diameter ( D50 diameter ) (secondary particle diameter) to SEM diameter (primary particle diameter) ratio (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter), the SEM diameter (primary particle diameter) of the silver powder is 3.15 μm, the cumulative 50% particle diameter ( D50 diameter) was 3.3 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.97.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は360ppmであり、炭素含有量は0.003質量%、酸素含有量は0.043質量%、BET比表面積は0.38m/g、タップ密度は3.8g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.16g/(cm・μm)であった。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was 360 ppm, the carbon content was 0.003% by mass, The oxygen content is 0.043% by mass, the BET specific surface area is 0.38 m 2 /g, the tap density is 3.8 g / cm 3 , and the tap density (TAP ) ratio (TAP/D 50 diameter) was 1.16 g/(cm 3 ·μm).

[実施例14]
ショット銀6.00kgと(800ppmの銅を含む)Ag-Cu合金14.00kgとを溶解した溶湯(560ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(620ppmの銅を含む)銀粉を得た。
[Example 14]
By the same method as in Example 1, except that a molten metal (molten silver containing 560 ppm copper) in which 6.00 kg of shot silver and 14.00 kg of Ag—Cu alloy (containing 800 ppm copper) were dissolved was used. A silver powder (containing 620 ppm copper) was obtained.

このようにして得られた銀粉について、SEM径(一次粒子径)を算出し、累積50%粒子径(D50径)(二次粒子径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は2.32μm、累積50%粒子径(D50径)は2.8μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.84であった。 For the silver powder thus obtained, the SEM diameter (primary particle diameter) was calculated, the cumulative 50% particle diameter ( D50 diameter) (secondary particle diameter) was measured, and the cumulative 50% particle diameter ( D50 diameter ) (secondary particle diameter) to SEM diameter (primary particle diameter) ratio (SEM diameter / D50 diameter) (primary particle diameter / secondary particle diameter), the SEM diameter (primary particle diameter) of the silver powder is 2.32 μm, the cumulative 50% particle diameter ( D50 diameter) was 2.8 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.84.

また、実施例1と同様の方法により、銀粉の組成分析を行い、銀粉中の炭素含有量および酸素含有量を測定し、銀粉のBET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は620ppmであり、炭素含有量は0.003質量%、酸素含有量は0.057質量%、BET比表面積は0.38m/g、タップ密度は4.4g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.59g/(cm・μm)であった。 In addition, by the same method as in Example 1, the composition analysis of the silver powder was performed, the carbon content and oxygen content in the silver powder were measured, the BET specific surface area and tap density (TAP) of the silver powder were obtained, and the cumulative 50 When the ratio (TAP/ D50 diameter) of the tap density (TAP) to the % particle diameter ( D50 diameter) was calculated, the copper content in the silver powder was 620 ppm, the carbon content was 0.003% by mass, The oxygen content is 0.057% by mass, the BET specific surface area is 0.38 m 2 /g, the tap density is 4.4 g / cm 3 , and the tap density (TAP ) ratio (TAP/D 50 diameter) was 1.59 g/(cm 3 ·μm).

実施例10~14の銀粉の原料中の銅の量と特性を表6および表7に示す。また、実施例10~14で得られた銀粉を5000倍で観察した電界放出型走査電子顕微鏡(FE-SEM)写真を図1~図5に示す。 Tables 6 and 7 show the amount and properties of copper in the raw materials of the silver powders of Examples 10-14. 1 to 5 show field emission scanning electron microscope (FE-SEM) photographs of the silver powders obtained in Examples 10 to 14 at a magnification of 5,000.

Figure 0007272834000006
Figure 0007272834000006

Figure 0007272834000007
Figure 0007272834000007

[実施例15]
ショット銀27.99kgと、(340ppmの銅を含む)Ag-Cu合金7.15kgと、(360ppmの銅を含む)Ag-Cu合金4.84kgと(27.93質量%の銅を含む)Ag-Cu合金0.024kgとを溶解した溶湯(260ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。なお、実施例1と同様の方法により、この銀粉中の炭素含有量を測定したところ、0.002質量%であった。
[Example 15]
27.99 kg shot silver, 7.15 kg Ag—Cu alloy (containing 340 ppm copper), 4.84 kg Ag—Cu alloy (containing 360 ppm copper) and Ag (containing 27.93 wt.% copper) -A silver powder (containing a trace amount of copper) was obtained in the same manner as in Example 1, except that a molten metal (melted silver containing 260 ppm copper) in which 0.024 kg of a Cu alloy was dissolved was used. When the carbon content in this silver powder was measured by the same method as in Example 1, it was 0.002% by mass.

また、上記の銀粉に、表面処理剤としてリシノール酸3.8g(銀粉100質量部に対して0.05重量部)を加えて、銀粉を解砕しながら、銀粉と表面処理剤を混合して、リシノール酸で表面処理された銀粉を得た。このようにリシノール酸で表面処理を行った銀粉について、実施例1と同様の方法により、SEM径(一次粒子径)を算出し、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は3.63μm、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)はそれぞれ2.0μm、4.0μm、7.1μm、10.13μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.90であった。 In addition, 3.8 g of ricinoleic acid (0.05 parts by weight with respect to 100 parts by mass of silver powder) as a surface treatment agent is added to the above silver powder, and the silver powder and the surface treatment agent are mixed while pulverizing the silver powder. , to obtain a silver powder surface-treated with ricinoleic acid. For the silver powder thus surface-treated with ricinoleic acid, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 1, and the cumulative 10% particle diameter ( D10 diameter) and the cumulative 50% particle diameter (D 50 diameter), cumulative 90% particle diameter (D 90 diameter) and cumulative 99% particle diameter (D 99 diameter) are measured, and SEM diameter for cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (Primary particle size) ratio (SEM size/ D50 size) (Primary particle size/Secondary particle size) was calculated. D 10 diameter), cumulative 50% particle size (D 50 size), cumulative 90% particle size (D 90 size) and cumulative 99% particle size (D 99 size) are 2.0 μm, 4.0 μm and 7.1 μm, respectively. , and 10.13 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.90.

また、表面処理を行った銀粉について、実施例1と同様の方法により、組成分析を行い、炭素含有量、酸素含有量、リン含有量およびカルシウム含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は270ppmであり、炭素含有量は0.033質量%、酸素含有量は0.033質量%、リン含有量は10ppm未満、カルシウム含有量は10ppm、BET比表面積は0.19m/g、タップ密度は7.2g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.80g/(cm・μm)であった。なお、リン含有量およびカルシウム含有量は、実施例1の銀粉の組成分析と同様に、誘導結合プラズマ(ICP)発光分光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)によって行った。 In addition, the surface-treated silver powder was subjected to composition analysis in the same manner as in Example 1, and the carbon content, oxygen content, phosphorus content and calcium content were measured, and the BET specific surface area and tap density ( TAP) was obtained, and the ratio (TAP/ D50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder was calculated. The content is 0.033% by mass, the oxygen content is 0.033% by mass, the phosphorus content is less than 10 ppm, the calcium content is 10 ppm, the BET specific surface area is 0.19 m 2 /g, the tap density is 7.2 g/ cm 3 , and the ratio (TAP/D 50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter (D 50 diameter) of the silver powder was 1.80 g/(cm 3 ·μm). The phosphorus content and calcium content were determined using an inductively coupled plasma (ICP) emission spectrometer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.) in the same manner as the composition analysis of the silver powder in Example 1.

また、表面処理を行った銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から150℃まで5℃/分で昇温させ、その温度で10時間保持した後、常温まで自然降温させ、実施例1と同様の方法により、銀粉中の炭素含有量を測定したところ、0.003質量%であった。この結果から、銀粉を150℃で10時間加熱したときにリシノール酸による表面処理前の銀粉の炭素含有量とほぼ同等になっており、銀粉を150℃で10時間加熱することにより、銀粉の表面に存在する(表面処理剤としての)リシノール酸が殆ど除去されていることがわかる。 In addition, 30 g of the surface-treated silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), and this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and this drying is performed. While flowing air in the machine at a flow rate of 30 L / min, the temperature was raised from room temperature to 150 ° C. at 5 ° C. / min, held at that temperature for 10 hours, and then naturally cooled to room temperature. , the carbon content in the silver powder was measured to be 0.003% by mass. From this result, when the silver powder was heated at 150° C. for 10 hours, the carbon content of the silver powder was almost the same as that of the silver powder before the surface treatment with ricinoleic acid. It can be seen that most of the ricinoleic acid (as a surface treatment agent) present in the sample is removed.

[実施例16]
ショット銀17.99kgと、(330ppmの銅を含む)Ag-Cu合金22.0kgと、(27.93質量%の銅を含む)Ag-Cu合金0.013kgとを溶解した溶湯(270ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。なお、実施例1と同様の方法により、この銀粉中の炭素含有量を測定したところ、0.003質量%であった。
[Example 16]
A molten metal (270 ppm copper A silver powder (containing a trace amount of copper) was obtained in the same manner as in Example 1, except that a molten silver containing ) was used. When the carbon content in this silver powder was measured by the same method as in Example 1, it was 0.003% by mass.

また、上記の銀粉に、表面処理剤としてリシノール酸20.0g(銀粉100質量部に対して0.05重量部)を加えて、銀粉を解砕しながら、銀粉と表面処理剤を混合して、リシノール酸で表面処理された銀粉を得た。このようにリシノール酸で表面処理を行った銀粉について、実施例15と同様の方法により、SEM径(一次粒子径)を算出し、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は3.60μm、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)はそれぞれ1.8μm、3.6μm、6.8μm、11.39μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.99であった。 In addition, 20.0 g of ricinoleic acid (0.05 parts by weight with respect to 100 parts by mass of silver powder) was added as a surface treatment agent to the above silver powder, and the silver powder and the surface treatment agent were mixed while pulverizing the silver powder. , to obtain a silver powder surface-treated with ricinoleic acid. For the silver powder thus surface-treated with ricinoleic acid, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 15, and the cumulative 10% particle diameter ( D10 diameter) and the cumulative 50% particle diameter (D 50 diameter), cumulative 90% particle diameter (D 90 diameter) and cumulative 99% particle diameter (D 99 diameter) are measured, and SEM diameter for cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (Primary particle size) ratio (SEM size/ D50 size) (Primary particle size/Secondary particle size) was calculated. D 10 diameter), cumulative 50% particle size (D 50 size), cumulative 90% particle size (D 90 size) and cumulative 99% particle size (D 99 size) are 1.8 µm, 3.6 µm, and 6.8 µm, respectively. , and 11.39 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.99.

また、表面処理を行った銀粉について、実施例15と同様の方法により、組成分析を行い、炭素含有量、酸素含有量、リン含有量およびカルシウム含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は280ppmであり、炭素含有量は0.036質量%、酸素含有量は0.038質量%、リン含有量は10ppm未満、カルシウム含有量は12ppm、BET比表面積は0.20m/g、タップ密度は7.2g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.98g/(cm・μm)であった。 In addition, the surface-treated silver powder was subjected to composition analysis in the same manner as in Example 15, and the carbon content, oxygen content, phosphorus content and calcium content were measured, and the BET specific surface area and tap density ( TAP) was obtained, and the ratio (TAP/ D50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder was calculated. The content is 0.036% by mass, the oxygen content is 0.038% by mass, the phosphorus content is less than 10 ppm, the calcium content is 12 ppm, the BET specific surface area is 0.20 m 2 /g, the tap density is 7.2 g/ cm 3 , and the ratio (TAP/D 50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter (D 50 diameter) of the silver powder was 1.98 g/(cm 3 ·μm).

また、表面処理を行った銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から150℃まで5℃/分で昇温させ、その温度で10時間保持した後、常温まで自然降温させ、実施例15と同様の方法により、銀粉中の炭素含有量を測定したところ、0.003質量%であった。この結果から、銀粉を150℃で10時間加熱したときにリシノール酸による表面処理前の銀粉の炭素含有量になっており、銀粉を150℃で10時間加熱することにより、銀粉の表面に存在する(表面処理剤としての)リシノール酸が全て除去されていることがわかる。 In addition, 30 g of the surface-treated silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), and this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and this drying is performed. While flowing air in the machine at a flow rate of 30 L / min, the temperature was raised from room temperature to 150 ° C. at 5 ° C. / min, held at that temperature for 10 hours, and then naturally cooled to room temperature. , the carbon content in the silver powder was measured to be 0.003% by mass. From this result, when the silver powder is heated at 150 ° C. for 10 hours, the carbon content of the silver powder before the surface treatment with ricinoleic acid is reached, and by heating the silver powder at 150 ° C. for 10 hours, It can be seen that all of the ricinoleic acid (as a surface treatment agent) has been removed.

[実施例17]
ショット銀27.99kgと、(340ppmの銅を含む)Ag-Cu合金7.15kgと、(360ppmの銅を含む)Ag-Cu合金4.84kgと、(27.93質量%の銅を含む)Ag-Cu合金0.024kgとを溶解した溶湯(270ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。なお、実施例1と同様の方法により、この銀粉中の炭素含有量を測定したところ、0.002質量%であった。
[Example 17]
27.99 kg shot silver, 7.15 kg Ag—Cu alloy (containing 340 ppm copper), 4.84 kg Ag—Cu alloy (containing 360 ppm copper), and (containing 27.93 wt.% copper) A silver powder (containing a trace amount of copper) was obtained in the same manner as in Example 1, except that a molten metal (molten silver containing 270 ppm copper) in which 0.024 kg of Ag-Cu alloy was dissolved was used. When the carbon content in this silver powder was measured by the same method as in Example 1, it was 0.002% by mass.

また、上記の銀粉に、表面処理剤としてリシノール酸1.20g(銀粉100質量部に対して0.04重量部)を加えて、銀粉を解砕しながら、銀粉と表面処理剤を混合して、リシノール酸で表面処理された銀粉を得た。このようにリシノール酸で表面処理を行った銀粉について、実施例15と同様の方法により、SEM径(一次粒子径)を算出し、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は3.53μm、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)はそれぞれ1.9μm、3.7μm、6.3μm、9.59μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.97であった。 In addition, 1.20 g of ricinoleic acid (0.04 parts by weight with respect to 100 parts by mass of silver powder) is added as a surface treatment agent to the silver powder, and the silver powder and the surface treatment agent are mixed while pulverizing the silver powder. , to obtain a silver powder surface-treated with ricinoleic acid. For the silver powder thus surface-treated with ricinoleic acid, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 15, and the cumulative 10% particle diameter ( D10 diameter) and the cumulative 50% particle diameter (D 50 diameter), cumulative 90% particle diameter (D 90 diameter) and cumulative 99% particle diameter (D 99 diameter) are measured, and SEM diameter for cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (Primary particle diameter) ratio (SEM diameter/ D50 diameter) (primary particle diameter/secondary particle diameter) was calculated. D 10 diameter), cumulative 50% particle size (D 50 size), cumulative 90% particle size (D 90 size) and cumulative 99% particle size (D 99 size) are 1.9 µm, 3.7 µm, and 6.3 µm, respectively. , was 9.59 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.97.

また、表面処理を行った銀粉について、実施例15と同様の方法により、組成分析を行い、炭素含有量、酸素含有量、リン含有量およびカルシウム含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は260ppmであり、炭素含有量は0.029質量%、酸素含有量は0.033質量%、リン含有量は10ppm未満、カルシウム含有量は10ppm、BET比表面積は0.21m/g、タップ密度は7.1g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.95g/(cm・μm)であった。 In addition, the surface-treated silver powder was subjected to composition analysis in the same manner as in Example 15, and the carbon content, oxygen content, phosphorus content and calcium content were measured, and the BET specific surface area and tap density ( TAP) was obtained, and the ratio (TAP/ D50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder was calculated. The content is 0.029% by mass, the oxygen content is 0.033% by mass, the phosphorus content is less than 10 ppm, the calcium content is 10 ppm, the BET specific surface area is 0.21 m 2 /g, the tap density is 7.1 g/ cm 3 , and the ratio (TAP/D 50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter (D 50 diameter) of the silver powder was 1.95 g/(cm 3 ·μm).

また、表面処理を行った銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から150℃まで5℃/分で昇温させ、その温度で10時間保持した後、常温まで自然降温させ、実施例15と同様の方法により、銀粉中の炭素含有量を測定したところ、0.003質量%であった。この結果から、銀粉を150℃で10時間加熱したときにリシノール酸による表面処理前の銀粉の炭素含有量とほぼ同等になっており、銀粉を150℃で10時間加熱することにより、銀粉の表面に存在する(表面処理剤としての)リシノール酸が殆ど除去されていることがわかる。 In addition, 30 g of the surface-treated silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), and this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and this drying is performed. While flowing air in the machine at a flow rate of 30 L / min, the temperature was raised from room temperature to 150 ° C. at 5 ° C. / min, held at that temperature for 10 hours, and then naturally cooled to room temperature. , the carbon content in the silver powder was measured to be 0.003% by mass. From this result, when the silver powder was heated at 150° C. for 10 hours, the carbon content of the silver powder was almost the same as that of the silver powder before the surface treatment with ricinoleic acid. It can be seen that most of the ricinoleic acid (as a surface treatment agent) present in the sample is removed.

[実施例18]
ショット銀27.99kgと、(340ppmの銅を含む)Ag-Cu合金7.15kgと、(360ppmの銅を含む)Ag-Cu合金4.84kgと、(27.93質量%の銅を含む)Ag-Cu合金0.024kgとを溶解した溶湯(270ppmの銅を含む銀の溶湯)を使用した以外は、実施例1と同様の方法により、(微量の銅を含む)銀粉を得た。なお、実施例1と同様の方法により、この銀粉中の炭素含有量を測定したところ、0.002質量%であった。
[Example 18]
27.99 kg shot silver, 7.15 kg Ag—Cu alloy (containing 340 ppm copper), 4.84 kg Ag—Cu alloy (containing 360 ppm copper), and (containing 27.93 wt.% copper) A silver powder (containing a trace amount of copper) was obtained in the same manner as in Example 1, except that a molten metal (molten silver containing 270 ppm copper) in which 0.024 kg of Ag-Cu alloy was dissolved was used. When the carbon content in this silver powder was measured by the same method as in Example 1, it was 0.002% by mass.

また、上記の銀粉に、表面処理剤としてリシノール酸0.70g(銀粉100質量部に対して0.023重量部)を加えて、銀粉を解砕しながら、銀粉と表面処理剤を混合して、リシノール酸で表面処理された銀粉を得た。このようにリシノール酸で表面処理を行った銀粉について、実施例15と同様の方法により、SEM径(一次粒子径)を算出し、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)を測定し、累積50%粒子径(D50径)(二次粒子径)に対するSEM径(一次粒子径)の比(SEM径/D50径)(一次粒子径/二次粒子径)を算出したところ、銀粉のSEM径(一次粒子径)は3.29μm、累積10%粒子径(D10径)、累積50%粒子径(D50径)、累積90%粒子径(D90径)および累積99%粒子径(D99径)はそれぞれ1.8μm、3.5μm、6.2μm、9.75μmであり、SEM径/D50径(一次粒子径/二次粒子径)は0.93であった。 In addition, 0.70 g of ricinoleic acid (0.023 parts by weight with respect to 100 parts by mass of silver powder) is added as a surface treatment agent to the above silver powder, and the silver powder and the surface treatment agent are mixed while pulverizing the silver powder. , to obtain a silver powder surface-treated with ricinoleic acid. For the silver powder thus surface-treated with ricinoleic acid, the SEM diameter (primary particle diameter) was calculated in the same manner as in Example 15, and the cumulative 10% particle diameter ( D10 diameter) and the cumulative 50% particle diameter (D 50 diameter), cumulative 90% particle diameter (D 90 diameter) and cumulative 99% particle diameter (D 99 diameter) are measured, and SEM diameter for cumulative 50% particle diameter (D 50 diameter) (secondary particle diameter) (Primary particle size) ratio (SEM size/ D50 size) (Primary particle size/Secondary particle size) was calculated. D 10 diameter), cumulative 50% particle diameter (D 50 diameter), cumulative 90% particle diameter (D 90 diameter) and cumulative 99% particle diameter (D 99 diameter) are 1.8 μm, 3.5 μm, and 6.2 μm, respectively. , was 9.75 μm, and the SEM diameter/ D50 diameter (primary particle diameter/secondary particle diameter) was 0.93.

また、表面処理を行った銀粉について、実施例15と同様の方法により、組成分析を行い、炭素含有量、酸素含有量、リン含有量およびカルシウム含有量を測定し、BET比表面積およびタップ密度(TAP)を求め、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)を算出したところ、銀粉中の銅の含有量は270ppmであり、炭素含有量は0.020質量%、酸素含有量は0.034質量%、リン含有量は10ppm未満、カルシウム含有量は10ppm未満、BET比表面積は0.20m/g、タップ密度は6.8g/cmであり、銀粉の累積50%粒子径(D50径)に対するタップ密度(TAP)の比(TAP/D50径)は1.92g/(cm・μm)であった。 In addition, the surface-treated silver powder was subjected to composition analysis in the same manner as in Example 15, and the carbon content, oxygen content, phosphorus content and calcium content were measured, and the BET specific surface area and tap density ( TAP) was obtained, and the ratio (TAP/ D50 diameter) of the tap density (TAP) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder was calculated. The content is 0.020% by mass, the oxygen content is 0.034% by mass, the phosphorus content is less than 10 ppm, the calcium content is less than 10 ppm, the BET specific surface area is 0.20 m 2 /g, and the tap density is 6.8 g. /cm 3 , and the ratio of the tap density (TAP) to the cumulative 50% particle diameter (D 50 diameter) of the silver powder (TAP/D 50 diameter) was 1.92 g/(cm 3 ·μm).

また、表面処理を行った銀粉30gを(縦150mm×横100mm×深さ20mmの)SUSトレイ上に載せ、このトレイを棚式乾燥機(ヤマト科学株式会社製のDN610I型)に入れ、この乾燥機内に30L/分の流量で空気を流しながら、常温から150℃まで5℃/分で昇温させ、その温度で10時間保持した後、常温まで自然降温させ、実施例15と同様の方法により、銀粉中の炭素含有量を測定したところ、0.003質量%であった。この結果から、銀粉を150℃で10時間加熱したときにリシノール酸による表面処理前の銀粉の炭素含有量とほぼ同等になっており、銀粉を150℃で10時間加熱することにより、銀粉の表面に存在する(表面処理剤としての)リシノール酸が殆ど除去されていることがわかる。 In addition, 30 g of the surface-treated silver powder is placed on a SUS tray (150 mm long x 100 mm wide x 20 mm deep), and this tray is placed in a shelf dryer (DN610I type manufactured by Yamato Scientific Co., Ltd.), and this drying is performed. While flowing air in the machine at a flow rate of 30 L / min, the temperature was raised from room temperature to 150 ° C. at 5 ° C. / min, held at that temperature for 10 hours, and then naturally cooled to room temperature. , the carbon content in the silver powder was measured to be 0.003% by mass. From this result, when the silver powder was heated at 150° C. for 10 hours, the carbon content of the silver powder was almost the same as that of the silver powder before the surface treatment with ricinoleic acid. It can be seen that most of the ricinoleic acid (as a surface treatment agent) present in the sample is removed.

実施例15~18の銀粉の原料中の銅の量と特性を表8~表10に示し、加熱による炭素含有量の変化を表11に示す。また、実施例15~18で得られた銀粉を5000倍で観察した電界放出型走査電子顕微鏡(FE-SEM)写真を図6~図9に示し、実施例15~18で得られた銀粉についてレーザー回折式粒度分布測定装置により測定した体積基準の粒度分布を図10~図13に示す。 Tables 8 and 10 show the amount and properties of copper in the raw materials of the silver powders of Examples 15 and 18, and Table 11 shows changes in carbon content due to heating. 6 to 9 show field emission scanning electron microscope (FE-SEM) photographs of the silver powders obtained in Examples 15 to 18 at a magnification of 5,000. Volume-based particle size distributions measured by a laser diffraction particle size distribution analyzer are shown in FIGS. 10 to 13. FIG.

Figure 0007272834000008
Figure 0007272834000008

Figure 0007272834000009
Figure 0007272834000009

Figure 0007272834000010
Figure 0007272834000010

Figure 0007272834000011
Figure 0007272834000011

本発明による銀粉は、太陽電池の電極、低温焼成セラミック(LTCC)を使用した電子部品や積層セラミックインダクタなどの積層セラミック電子部品の内部電極、積層セラミックコンデンサや積層セラミックインダクタなどの外部電極などを形成するために、焼成型導電性ペーストの材料として利用して、高い導電性の導電膜を得ることができる。 The silver powder according to the present invention forms electrodes of solar cells, internal electrodes of multilayer ceramic electronic components such as electronic components and multilayer ceramic inductors using low temperature co-fired ceramics (LTCC), and external electrodes of multilayer ceramic capacitors and multilayer ceramic inductors. Therefore, it is possible to obtain a highly conductive conductive film by using it as a material for a sintering type conductive paste.

Claims (13)

20~10000ppmの銅を含む銀粉であって、レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D 50 径)が1~15μm、タップ密度が2~8g/cm 、累積50%粒子径(D 50 径)に対するタップ密度の比(タップ密度/D 50 径)が0.45~3.6g/(cm ・μm)の銀粉であり、この銀粉を大気雰囲気中において150℃で10時間加熱したときの炭素含有量が0.05質量%以下であることを特徴とする、銀粉。 A silver powder containing 20 to 10,000 ppm of copper, having a volume-based cumulative 50% particle diameter ( D50 diameter) measured by a laser diffraction particle size distribution analyzer of 1 to 15 μm, and a tap density of 2 to 8 g/cm. 3. Silver powder having a tap density ratio (tap density/ D50 diameter) to the cumulative 50% particle diameter ( D50 diameter) of 0.45 to 3.6 g / (cm 3 μm), and this silver powder is placed in an air atmosphere. A silver powder having a carbon content of 0.05% by mass or less when heated at 150° C. for 10 hours. 前記銀粉中の銅の含有量が20~750ppmであることを特徴とする、請求項1に記載の銀粉。 The silver powder according to claim 1, characterized in that the copper content in said silver powder is 20-750 ppm. 前記銀粉の累積50%粒子径(D 50 径)が1~μmであることを特徴とする、請求項1または2に記載の銀粉。 3. The silver powder according to claim 1, wherein the cumulative 50% particle diameter (D50 diameter ) of said silver powder is 1 to 8 μm. 前記銀粉の累積50%粒子径(D50径)に対する、電界放出型走査電子顕微鏡によって観測した単体粒子の平均粒子径(SEM径)の比(SEM径/D50径)が0.3~1.0であることを特徴とする、請求項3に記載の銀粉。 The ratio (SEM diameter/ D50 diameter) of the average particle diameter (SEM diameter) of single particles observed by a field emission scanning electron microscope to the cumulative 50% particle diameter ( D50 diameter) of the silver powder is 0.3 to 1. 4. The silver powder according to claim 3, characterized in that it is .0. 前記銀粉の累積50%粒子径(D50径)に対するタップ密度の比(タップ密度/D50径)が1.13.0g/(cm・μm)であることを特徴とする、請求項3または4に記載の銀粉。 The tap density ratio (tap density/ D50 diameter) to the cumulative 50% particle diameter ( D50 diameter) of the silver powder is 1.1 to 3.0 g / (cm 3 μm), The silver powder according to claim 3 or 4. 前記銀粉中の酸素含有量が0.1質量%以下であることを特徴とする、請求項1乃至5のいずれかに記載の銀粉。 The silver powder according to any one of claims 1 to 5, wherein the oxygen content in said silver powder is 0.1% by mass or less. 前記銀粉のBET比表面積が0.1~1.0m/gであることを特徴とする、請求項1乃至6のいずれかに記載の銀粉。 The silver powder according to any one of claims 1 to 6, characterized in that the silver powder has a BET specific surface area of 0.1 to 1.0 m 2 /g. 前記銀粉のタップ密度が3.57.5g/cmであることを特徴とする、請求項1乃至7のいずれかに記載の銀粉。 The silver powder according to any one of claims 1 to 7, characterized in that said silver powder has a tap density of 3.5 to 7.5 g/ cm3 . 前記銀粉の表面に有機化合物が付着していることを特徴とする、請求項1乃至8のいずれかに記載の銀粉。 9. The silver powder according to any one of claims 1 to 8, wherein an organic compound is adhered to the surface of said silver powder. 20~10000ppmの銅を含む銀を溶解した溶湯であって、銀の融点より300~720℃高い温度の溶湯を落下させながら、水圧90~280MPaで高圧水を吹き付けて急冷凝固させ得られた銀粒子を有機化合物と混合して銀粒子を有機化合物で表面処理することを特徴とする、銀粉の製造方法。 A molten metal containing 20 to 10,000 ppm of copper is melted , and is obtained by rapidly cooling and solidifying by spraying high-pressure water at a water pressure of 90 to 280 MPa while dropping the molten metal at a temperature higher than the melting point of silver by 300 to 720 ° C. A method for producing silver powder, characterized by mixing the obtained silver particles with an organic compound to surface-treat the silver particles with the organic compound . 前記溶湯中の銅の含有量が20~750ppmであることを特徴とする、請求項10に記載の銀粉の製造方法。 The method for producing silver powder according to claim 10, wherein the content of copper in the molten metal is 20-750 ppm. 請求項1乃至9のいずれかに記載の銀粉が有機成分中に分散していることを特徴とする、導電性ペースト。 A conductive paste, wherein the silver powder according to any one of claims 1 to 9 is dispersed in an organic component. 請求項12の導電性ペーストを基板上に塗布した後に焼成して導電膜を製造することを特徴とする、導電膜の製造方法。 13. A method for producing a conductive film, comprising applying the conductive paste of claim 12 onto a substrate and then baking the paste to produce the conductive film.
JP2019049828A 2018-04-11 2019-03-18 Silver powder and its manufacturing method Active JP7272834B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076003 2018-04-11
JP2018076003 2018-04-11

Publications (2)

Publication Number Publication Date
JP2019183268A JP2019183268A (en) 2019-10-24
JP7272834B2 true JP7272834B2 (en) 2023-05-12

Family

ID=68339948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049828A Active JP7272834B2 (en) 2018-04-11 2019-03-18 Silver powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7272834B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115461172A (en) * 2020-04-28 2022-12-09 拓自达电线株式会社 Silver particles
WO2022191001A1 (en) 2021-03-10 2022-09-15 Dowaエレクトロニクス株式会社 Silver powder and production method therefor
JP7416516B1 (en) 2022-10-27 2024-01-17 福田金属箔粉工業株式会社 Silver-based metal powder and method for producing the silver-based metal powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695682A (en) 2013-12-18 2014-04-02 福达合金材料股份有限公司 Sliver oxide contact material with base body performance-strengthening additives as well as preparation method and product thereof
WO2017110255A1 (en) 2015-12-25 2017-06-29 株式会社ノリタケカンパニーリミテド Silver powder, silver paste, and use therefor
JP2017172043A (en) 2016-03-16 2017-09-28 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695682A (en) 2013-12-18 2014-04-02 福达合金材料股份有限公司 Sliver oxide contact material with base body performance-strengthening additives as well as preparation method and product thereof
WO2017110255A1 (en) 2015-12-25 2017-06-29 株式会社ノリタケカンパニーリミテド Silver powder, silver paste, and use therefor
JP2017172043A (en) 2016-03-16 2017-09-28 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JP2019183268A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7090511B2 (en) Silver powder and its manufacturing method
TWI442984B (en) Copper powder for conductive paste and conductive paste
JP7272834B2 (en) Silver powder and its manufacturing method
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
KR102574302B1 (en) Silver alloy powder and manufacturing method thereof
JP5576199B2 (en) Copper powder for conductive paste and conductive paste
WO2018123809A1 (en) Copper powder and method for manufacturing same
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
WO2015008628A1 (en) Silver-coated copper alloy powder and process for producing same
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JP6899275B2 (en) Silver alloy powder and its manufacturing method
TWI755565B (en) Silver powder and method for producing same
JP2018123427A (en) Silver alloy powder and manufacturing method therefor
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP7136970B2 (en) Silver powder containing phosphorus and conductive paste containing the silver powder
WO2017115462A1 (en) Silver alloy powder and method for producing same
WO2020158685A1 (en) Sn particles, conductive composition using the same, and method for producing sn particles
JP5969118B2 (en) Copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230427

R150 Certificate of patent or registration of utility model

Ref document number: 7272834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150