JP2012167337A - Method of manufacturing silver coated flake copper powder - Google Patents

Method of manufacturing silver coated flake copper powder Download PDF

Info

Publication number
JP2012167337A
JP2012167337A JP2011030086A JP2011030086A JP2012167337A JP 2012167337 A JP2012167337 A JP 2012167337A JP 2011030086 A JP2011030086 A JP 2011030086A JP 2011030086 A JP2011030086 A JP 2011030086A JP 2012167337 A JP2012167337 A JP 2012167337A
Authority
JP
Japan
Prior art keywords
silver
copper powder
coated
powder
complex solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011030086A
Other languages
Japanese (ja)
Other versions
JP5778941B2 (en
Inventor
Yusuke Anpo
雄介 安保
Norio Mogi
謙雄 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2011030086A priority Critical patent/JP5778941B2/en
Publication of JP2012167337A publication Critical patent/JP2012167337A/en
Application granted granted Critical
Publication of JP5778941B2 publication Critical patent/JP5778941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently manufacturing a silver coated flake copper powder which demonstrates higher conductivity as a conductive filler without using an organic solvent and without requiring wet type heat treatment.SOLUTION: In the method of manufacturing the silver coated flake copper powder, a copper powder is brought into contact with a complex solution of silver to coat a surface with the silver, then obtained powder particle is subjected to flattening treatment so as to turn an aspect ratio to 3 or larger, and thereafter the powder particle is brought into contact with the complex solution of the silver to coat the surface with the silver. At that time, it is preferable that a surface treating agent such as palmitic acid is added during the flattening treatment and/or to a final product, and the shape of copper power particle and the powder particle obtained by coating the copper powder particle with the silver is spherical.

Description

本発明は、導電性ペーストを得るための導電性フィラー等の用途に好適な銀被覆フレーク銅粉の製造方法に関するものである。   The present invention relates to a method for producing a silver-coated flake copper powder suitable for uses such as a conductive filler for obtaining a conductive paste.

高い導電性が求められる電子部品には銀粉を導電性フィラーとして使用した「銀系導電性ペースト」が使用されているが、この「銀系導電性ペースト」は、銅粉を導電性フィラーとして使用した「銅系導電性ペースト」と比較し、高い導電性を発揮する反面、地金価格が高く高価となる、マイグレーションが起こりやすい、ハンダ食われ性が劣る、といった欠点を有している。これら欠点を克服する手法として、導電性フィラーとして銀粉や銅粉に代えるべく銀被覆銅粉が注目されている。   "Electronic silver paste" using silver powder as a conductive filler is used for electronic parts that require high conductivity, but this "silver conductive paste" uses copper powder as a conductive filler. Compared to the “copper-based conductive paste”, it exhibits high conductivity, but has a drawback that the metal price is high and expensive, migration tends to occur, and solder erosion is poor. As a technique for overcoming these drawbacks, silver-coated copper powder has attracted attention as a conductive filler in place of silver powder or copper powder.

この銀被覆銅粉の製造方法として以下の方法が提案されている。
すなわち、特開2006−161081号公報(特許文献1)には、フレーク状銅粉を有機溶媒中に分散させ硝酸銀溶液を添加して銀被覆フレーク状銅粉を得る方法が開示されている。しかし、この方法は有機溶媒を用いるため、水を用いた場合と比べて、廃液処理費用がかかるという欠点がある。
また、特開2007−100155号公報(特許文献2)には、銀被覆銅粉を湿式熱処理して銀銅複合粉を製造し、得られた銀銅複合粉と銀錯体溶液を混合し、還元剤を加えて、微粒銀粒子付着銀銅複合粉を得る方法が開示されている。しかし、この方法は湿式熱処理を要しコスト高になるという欠点がある。
さらに、特開2002−245849号公報(特許文献3)には、球状銅粉を扁平加工し次いで銀の錯体溶液と接触させて銀被覆フレーク状銅粉を得る優れた製造方法が開示されている。しかし、さらに高い導電性を発揮する銀被覆フレーク状銅粉が求められている。
The following method is proposed as a manufacturing method of this silver covering copper powder.
That is, JP 2006-161081 A (Patent Document 1) discloses a method of obtaining a silver-coated flaky copper powder by dispersing a flaky copper powder in an organic solvent and adding a silver nitrate solution. However, since this method uses an organic solvent, there is a drawback in that the cost of waste liquid treatment is higher than when water is used.
Japanese Patent Laid-Open No. 2007-1000015 (Patent Document 2) describes a method of producing a silver-copper composite powder by wet-heat-treating silver-coated copper powder, mixing the obtained silver-copper composite powder and a silver complex solution, and reducing the mixture. A method of adding an agent to obtain fine silver particle-attached silver-copper composite powder is disclosed. However, this method has a drawback that it requires wet heat treatment and is expensive.
Furthermore, JP 2002-245849 A (Patent Document 3) discloses an excellent production method for obtaining a silver-coated flaky copper powder by flattening spherical copper powder and then bringing it into contact with a silver complex solution. . However, there is a need for silver-coated flaky copper powder that exhibits even higher conductivity.

特開2006−161081号公報JP 2006-161081 A 特開2007−100155号公報JP 2007-1000015 A 特開2002−245849号公報JP 2002-245849 A

本発明は、有機溶媒を用いず、湿式熱処理を要せずに、導電性フィラーとして一層高い導電性を発揮する銀被覆フレーク銅粉を効率的に製造する方法を目的としたものである。   The present invention is directed to a method for efficiently producing silver-coated flake copper powder that exhibits higher conductivity as a conductive filler without using an organic solvent and without requiring wet heat treatment.

本発明は、組成において銅粉が銀で被覆されたものとする、粉末粒子の形状において接触面を増やし電気抵抗を下げるためにフレーク状とする、ことを基本としてなされたものである。
すなわち、本発明は、第1に、銀で被覆された銅粉体粒子にアスペクト比が3以上となる扁平化処理を施し、銀の錯体溶液と接触させて表面を銀で被覆する、銀被覆フレーク銅粉の製造方法であり、第2に、銀で被覆された銅粉体粒子にアスペクト比が3以上となる扁平化処理を施し、銀の錯体溶液と接触させて表面を銀で被覆した後、得られた粉体に表面処理剤を添加する、銀被覆フレーク銅粉の製造方法であり、第3に、銀で被覆された銅粉体粒子に表面処理剤を添加して、アスペクト比が3以上となる扁平化処理を施し、得られた表面処理剤が残存する粉体を銀の錯体溶液と接触させて表面を銀で被覆する、銀被覆フレーク銅粉の製造方法であり、第4に、銀で被覆された銅粉体粒子に表面処理剤を添加して、アスペクト比が3以上となる扁平化処理を施し、得られた表面処理剤が残存する粉体を銀の錯体溶液と接触させて表面を銀で被覆した後、得られた粉体に表面処理剤を添加する、銀被覆フレーク銅粉の製造方法であり、第5に、前記表面処理剤がパルミチン酸である第2〜4のいずれかに記載の銀被覆フレーク銅粉の製造方法であり、第6に、前記銀の錯体溶液が銀の錯体水溶液である第1〜5のいずれかに記載の銀被覆フレーク銅粉の製造方法であり、第7に、前記の銀で被覆された銅粉体粒子が球状である第1〜6のいずれかに記載の銀被覆フレーク銅粉の製造方法である。
The present invention is based on the concept that the copper powder is coated with silver in the composition, and the shape of the powder particles is flaked to increase the contact surface and lower the electrical resistance.
That is, according to the present invention, first, silver powder-coated copper powder particles are subjected to a flattening treatment having an aspect ratio of 3 or more, and contacted with a silver complex solution to coat the surface with silver. This is a method for producing flake copper powder. Second, the copper powder particles coated with silver are subjected to a flattening treatment with an aspect ratio of 3 or more, and the surface is coated with silver by contacting with a silver complex solution. Thereafter, a surface treatment agent is added to the obtained powder, and a method for producing a silver-coated flake copper powder. Third, a surface treatment agent is added to the silver-coated copper powder particles to obtain an aspect ratio. Is a method for producing a silver-coated flake copper powder, wherein the surface treatment agent is subjected to a flattening treatment of 3 or more, and the surface-treating powder obtained is brought into contact with a silver complex solution to coat the surface with silver. 4. Add a surface treatment agent to the copper powder particles coated with silver, and the aspect ratio is 3 or more. The surface treatment agent obtained is subjected to a flattening treatment, and the surface treatment agent is left in contact with the silver complex solution to coat the surface with silver, and then the surface treatment agent is added to the obtained powder. It is a manufacturing method of flake copper powder, 5th is the manufacturing method of the silver covering flake copper powder in any one of the 2nd-4th in which the surface treating agent is palmitic acid, The method for producing a silver-coated flake copper powder according to any one of 1 to 5, wherein the complex solution is a silver complex aqueous solution. Seventh, the silver-coated copper powder particles are spherical. It is a manufacturing method of the silver covering flake copper powder in any one of 1-6.

本発明によれば、有機溶媒を用いず、湿式熱処理を要せずに、導電フィラーとして一層高い導電性を発揮する銀被覆フレーク銅粉を低コストで効率的に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the silver coating flake copper powder which exhibits much higher electroconductivity as a conductive filler can be efficiently manufactured at low cost, without using an organic solvent and requiring no wet heat treatment.

実施例2の工程図である。10 is a process diagram of Example 2. FIG. 比較例1の工程図である。10 is a process diagram of Comparative Example 1. FIG.

本発明の出発物質である原料銅粉は、湿式還元法によって得られた銅粉でも、アトマイズ法によって得られた銅粉でも、電気分解法によって得られた銅粉でもよい。本発明においてアトマイズ粉が原料に使用できることは価格的にも大量生産性にも有利な点である。原料銅粉は球状粒子であることが望ましく、その平均粒径は0.5〜20μmの範囲、好ましくは1〜10μmの範囲であるのがよい。
また、原料銅粉は純度99%以上の銅粉でもよいし、必要に応じて異種元素を含有した銅合金粉とすることもできる。
さらに、平均粒径に近い粒径の球状粒子数の多い(すなわち粒度分布の狭い球状の)銅粉が好ましい。
The raw material copper powder that is the starting material of the present invention may be a copper powder obtained by a wet reduction method, a copper powder obtained by an atomization method, or a copper powder obtained by an electrolysis method. In the present invention, the ability to use atomized powder as a raw material is advantageous in terms of price and mass productivity. The raw material copper powder is desirably spherical particles, and the average particle diameter is in the range of 0.5 to 20 μm, preferably in the range of 1 to 10 μm.
Further, the raw material copper powder may be a copper powder having a purity of 99% or more, or may be a copper alloy powder containing a different element as required.
Furthermore, a copper powder having a large number of spherical particles having a particle size close to the average particle size (that is, a spherical particle having a narrow particle size distribution) is preferable.

銀の錯体溶液は、炭酸アンモニウム、硝酸銀、並びにエチレンジアミン四酢酸塩を主成分とする。この錯体溶液は水溶液である。炭酸アンモニウムの代わりに、他のアンモニウム塩やアンモニアから選ばれた一種以上を用いてもよい。また、エチレンジアミン四酢酸塩の代わりに、エチレンジアミン四酢酸、トリエチレンジアミン、ジエチレントリアミン五酢酸塩、アンモニウム塩、アンモニア、ニトリロ三酢酸塩の中から選ばれた1種または2種以上のものを利用することができる。水への溶解度の点等、取り扱いやすさの点から、エチレンジアミン四酢酸四ナトリウムもしくはエチレンジアミン四酢酸三ナトリウムが好ましい。この錯体溶液を用いて前記銅粉を処理して、銅粉粒子の表面部の銅と液中の銀イオンとの置換反応によって銅粉粒子表面に薄い銀の被膜を形成させ銀被覆することができる。
なお、この銀の錯体溶液は、上記のように原料銅粉と接触させる工程でも、後述の銀で被覆された原料銅粉を扁平化処理した粉体と再度接触させる工程でも、同様に用いることができる。
The silver complex solution is mainly composed of ammonium carbonate, silver nitrate, and ethylenediaminetetraacetate. This complex solution is an aqueous solution. Instead of ammonium carbonate, one or more selected from other ammonium salts and ammonia may be used. Further, instead of ethylenediaminetetraacetate, one or more selected from ethylenediaminetetraacetate, triethylenediamine, diethylenetriaminepentaacetate, ammonium salt, ammonia, nitrilotriacetate may be used. it can. From the viewpoint of ease of handling such as solubility in water, ethylenediaminetetraacetic acid tetrasodium or ethylenediaminetetraacetic acid trisodium is preferred. The copper powder is treated with this complex solution, and a thin silver film is formed on the surface of the copper powder particles by a substitution reaction between copper on the surface of the copper powder particles and silver ions in the liquid, thereby covering the copper powder. it can.
This silver complex solution should be used in the same manner as described above, either in the step of contacting with the raw material copper powder, or in the step of bringing the raw material copper powder coated with silver, which will be described later, into contact again with the flattened powder. Can do.

上記の出発原料の銅粉を上記の銀の錯体溶液と接触させて原料銅粉表面を銀で被覆した後に固液分離して第1中間物質の銀被覆(球状)銅粉が得られる。
なお、あらかじめ銀が被覆された球状の銅粉を用いても良い。
この第1中間物質の銀被覆銅粉(または、あらかじめ銀が被覆された球状の銅粉)を平均長径L/平均厚さTのアスペクト比が3以上、好ましくは3〜40、さらに好ましくは5〜30となるように扁平化処理し扁平粒子粉末(フレーク粉末またはフレーク状粉末という。)とすることによって第2中間物質の銀被覆フレーク銅粉が得られる。
なお、この扁平化処理(フレーク化処理ともいう。)によれば処理前に比較して平均粒径は若干大きくなる。
The above starting raw material copper powder is brought into contact with the above silver complex solution, and the surface of the raw material copper powder is coated with silver, followed by solid-liquid separation to obtain a first intermediate material silver-coated (spherical) copper powder.
A spherical copper powder coated with silver in advance may be used.
This first intermediate silver-coated copper powder (or spherical copper powder previously coated with silver) has an average major axis L / average thickness T aspect ratio of 3 or more, preferably 3 to 40, more preferably 5 By flattening so as to be ˜30 to obtain flat particle powder (referred to as flake powder or flaky powder), a silver-coated flake copper powder as a second intermediate substance is obtained.
In addition, according to this flattening process (it is also called flake process), an average particle diameter becomes a little large compared with a process.

第1中間物質の銀被覆(球状)銅粉に扁平化処理を施す方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、媒体撹拌ミルを用いた湿式粉砕法や、転動ボールミル、振動ボールミル等を用いた乾式粉砕法など、公知の手法を適宜利用することができ、媒体撹拌ミルもしくは振動ボールミルが好ましい。これによって、粒子同士の凝集や接合を防止しながら、各粒子を独立した状態でそれぞれを扁平な形状に加工することができる。この扁平化処理により、平均粒径D50は1〜20μmの範囲、好ましくは1〜10μmの範囲となる。
また、必要に応じて表面処理剤を、扁平化処理の前、処理中、または処理後のいずれか1回以上添加することができ、例えば、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート形成剤、保護コロイド等が挙げられ、これらの中でも、脂肪酸が好ましい。前記脂肪酸としては、例えば、プロピオン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アルリル酸、オレイン酸、リノール酸、アラキドン酸などが挙げられ、パルミチン酸が好ましい。
The method for performing the flattening treatment on the silver-coated (spherical) copper powder of the first intermediate substance is not particularly limited and can be appropriately selected according to the purpose. For example, a wet pulverization method using a medium stirring mill or the like In addition, a known method such as a dry pulverization method using a rolling ball mill, a vibration ball mill or the like can be appropriately used, and a medium stirring mill or a vibration ball mill is preferable. This makes it possible to process each particle into a flat shape while preventing the particles from aggregating and joining. By this flattening treatment, the average particle diameter D 50 is in the range of 1 to 20 μm, preferably in the range of 1 to 10 μm.
Further, if necessary, the surface treatment agent can be added one or more times before, during or after the flattening treatment, for example, fatty acid, fatty acid salt, surfactant, organic metal, chelate. Examples thereof include a forming agent and a protective colloid. Among these, fatty acids are preferable. Examples of the fatty acid include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, allylic acid, oleic acid, linoleic acid, arachidonic acid, and palmitic acid is preferable.

上記の第2中間物質の銀被覆フレーク銅粉を、前記と同様に再度、銀の錯体溶液と接触させて表面を銀で被覆した後に固液分離することによって、本発明が目的とする最終製品の銀被覆フレーク銅粉を得ることができる。
なお、被覆銀量は、原料銅粉に被覆する場合も、第2中間物質の銀被覆フレーク銅粉に被覆する場合も、いずれも(被覆後に得られる第1中間物質もしくは最終製品の質量に対して)1〜30質量%とすることができる。被覆量は、それぞれ同一でもよいし、異なっていてもよい。ただし、原料銅粉に被覆する量は、扁平後において銅粉の表面を表面積カバー率で90%以上は被覆することが望ましい。
また、銀被覆量が1〜30質量%の範囲であれば、扁平後の被覆前後のアスペクト比は殆ど変わらなく、同一とみなせる。これは被覆厚さが、極わずかなナノレベルであるためである。
また、必要に応じてこの最終製品の銀被覆フレーク銅粉に前記表面処理剤である脂肪酸等を添加することにより、さらに高い導電性が得られる。脂肪酸の中でもパルミチン酸が好ましく、その添加量は0.01〜5.0質量%の範囲、好ましくは0.01〜1.0質量%の範囲となる。5.0質量%を超えて添加しても、それ以上の効果は得られない。また、0.01質量%未満の添加では効果が発現しない。
The above-mentioned second intermediate material silver-coated flake copper powder is again brought into contact with a silver complex solution to coat the surface with silver, and then solid-liquid separation is performed, whereby the final product intended by the present invention is obtained. The silver-coated flake copper powder can be obtained.
It should be noted that the amount of coated silver is not limited to the mass of the first intermediate material or the final product obtained after coating, both when coated on the raw material copper powder and when coated on the silver-coated flake copper powder of the second intermediate material. And 1) to 30% by mass. The coating amount may be the same or different. However, the amount of the raw material copper powder to be coated is desirably 90% or more of the surface of the copper powder after covering the surface.
Moreover, if the silver coating amount is in the range of 1 to 30% by mass, the aspect ratio before and after coating after flattening is almost the same and can be regarded as the same. This is because the coating thickness is extremely small at the nano level.
Further, if necessary, by adding a fatty acid or the like as the surface treatment agent to the silver-coated flake copper powder of the final product, higher conductivity can be obtained. Among the fatty acids, palmitic acid is preferable, and the amount added is in the range of 0.01 to 5.0% by mass, preferably in the range of 0.01 to 1.0% by mass. Even if it exceeds 5.0% by mass, no further effect can be obtained. Moreover, an effect will not be expressed if less than 0.01 mass% is added.

このように、銀被覆(球状)銅粉をさらに加工してあるため、扁平化処理をされた銀被覆フレーク銅粉は、扁平されるまでの加工を受けている。そのため、表面は、ボールなどで加圧された加工表面となり、元の被覆層であった表面とは形態が異なる層が形成される。本発明は、加工された銀被覆フレーク銅粉の表面にさらに銀を被覆することで、効果が得られている。換言すれば、加工された表面の粗さ、同一粉体表面内での被覆厚さ、状態が異なったものにさらに被覆する特徴を有している。元の被覆層の上に被覆するのであれば、被覆処理を同一操作で繰り返すことによって、被覆厚を長大化、すなわち厚みを増大することで接触確率を向上させたに過ぎない。本発明は、同一成分で被覆するのであっても、加工された層とその上から被覆された2層からなり、下地加工層では、銅粉との密着性を向上し、その上の被覆層は、被覆したままで伸展の余地を十分に有した層との相乗効果により抵抗が減じられると考えられる。   Thus, since the silver-coated (spherical) copper powder is further processed, the flattened silver-coated flake copper powder has been processed until it is flattened. Therefore, the surface becomes a processed surface pressed with a ball or the like, and a layer having a different form from the surface that was the original coating layer is formed. In the present invention, the effect is obtained by further coating silver on the surface of the processed silver-coated flake copper powder. In other words, it has the characteristic of further coating the processed surface roughness, the coating thickness within the same powder surface, and the different states. If the coating is made on the original coating layer, the coating process is repeated by the same operation, so that the coating thickness is increased, that is, the contact probability is improved by increasing the thickness. The present invention consists of a processed layer and two layers coated thereon, even if it is coated with the same component. In the base processed layer, the adhesion with the copper powder is improved, and the coated layer thereon It is considered that the resistance is reduced by a synergistic effect with a layer that has been coated and has sufficient room for extension.

また、銀被覆(球状)銅粉を扁平化処理すると、粉体の最表面の銅露出面積が増えると考えられる。もしくは、被覆処理を行っただけでは銅粉の表面を銀で完全に被覆することはできていないことも考えられる。この銀被覆フレーク銅粉を用いて得られたペースト塗膜を乾燥した場合、銅の酸化によって抵抗値が悪化してしまう。本発明は、扁平化によって耐候性の劣る銅が表面に多く存在することになったとしても、もう一度被覆処理を行って被覆の穴を埋めたことで低電気抵抗に寄与したと考えられる。   Further, it is considered that when the silver-coated (spherical) copper powder is flattened, the exposed copper area on the outermost surface of the powder increases. Alternatively, it is conceivable that the surface of the copper powder cannot be completely covered with silver only by performing the coating treatment. When the paste coating film obtained using this silver-coated flake copper powder is dried, the resistance value is deteriorated due to oxidation of copper. The present invention is thought to have contributed to low electrical resistance by performing coating treatment once again and filling the coating hole even if copper having inferior weather resistance is present on the surface due to flattening.

さらに、第1中間物質の扁平化には表面処理剤が用いられるため、第2中間物質の銀被覆フレーク銅粉の表面には表面処理剤が存在する。脱脂などの表面処理剤の除去をしない場合、表面処理剤が付着したままの状態であるため水溶液とは濡れは悪く、本発明における第2中間物質の銀被覆フレーク銅粉への銀の被覆は、原料銅粉へ銀を被覆する場合と比べて不均一になると考えられる。一方、粉体表面に表面処理剤が存在するフレーク銅粉に対して銀被覆処理を行った場合も、原料銅粉への被覆と比べて、下地を被覆する量が面内で不均一になると思われる。こうして得られた銀被覆フレーク銅粉はあらゆるところに銅が露出していると考えられ、保存時や焼結時の酸化によって塗膜の電気抵抗を低減することは難しいと考えられる。しかし、本発明における第2中間物質の銀被覆フレーク銅粉に銀をさらに被覆する場合、既に銀で被覆された下地加工層が存在しているため、不均一に被覆されたとしても電気抵抗を悪化させることには至らなかったと考えられる。本発明は、銅粉に対して銀を被覆後に扁平化処理を行い、さらに銀を不均一に被覆させることが電気抵抗の低減に対して効奏したと考えられる。   Furthermore, since the surface treatment agent is used for flattening the first intermediate substance, the surface treatment agent is present on the surface of the silver-coated flake copper powder of the second intermediate substance. When the surface treatment agent such as degreasing is not removed, the surface treatment agent remains attached, so that the wetness with the aqueous solution is poor, and the silver coating on the silver-coated flake copper powder of the second intermediate substance in the present invention It is considered that the material copper powder becomes non-uniform compared to the case where silver is coated on the copper powder. On the other hand, when the silver coating treatment is performed on the flake copper powder in which the surface treatment agent is present on the powder surface, the amount of the base coating is not uniform in the surface compared to the coating on the raw material copper powder. Seem. The silver-coated flake copper powder obtained in this way is considered to have exposed copper in every place, and it is considered difficult to reduce the electrical resistance of the coating film by oxidation during storage or sintering. However, when silver is further coated on the silver-coated flake copper powder of the second intermediate material in the present invention, since there is a ground processing layer already coated with silver, even if it is coated unevenly, the electric resistance is reduced. It seems that it did not get worse. In the present invention, it is considered that the copper powder is coated with silver and then flattened, and further silver is coated non-uniformly to reduce electric resistance.

ここで、扁平状(フレーク状)銀被覆銅粉とは、平均長径L/平均厚さTで定義されるアスペクト比が3以上の扁平な形状を有する。「平均長径L」と「平均厚さT」は、走査型電子顕微鏡で測定した粒子100個の平均長径と平均厚みである。また、平均粒径D50は、レーザー回折散乱式粒度分布測定装置(ハネウエル−日機装株式会社製、MICROTRAC HRA)を用いて、粉末0.3gをイソプロパノール30mLに加え、45W超音波分散処理を5分間行って試料を準備し、全反射モードで測定を行った。 Here, the flat (flaky) silver-coated copper powder has a flat shape with an aspect ratio defined by the average major axis L / average thickness T of 3 or more. “Average major axis L” and “average thickness T” are the average major axis and average thickness of 100 particles measured with a scanning electron microscope. The average particle diameter D 50 is determined by adding 0.3 g of powder to 30 mL of isopropanol using a laser diffraction / scattering particle size distribution analyzer (Honeywell-Nikkiso Co., Ltd., MICROTRAC HRA), and subjecting to 45 W ultrasonic dispersion treatment for 5 minutes. A sample was prepared and measured in total reflection mode.

[実施例1]
〈銀被覆銅粉(第1中間物質、または「銀で被覆された球状の銅粉体粒子」)の製造工程〉
原料の金属銅粉として、日本アトマイズ(株)製の純度99.9質量%、平均粒径が5μmの球状アトマイズ銅粉を用いた。
容量1リットルの撹拌槽に上記の金属銅粉80.0gを、イオン交換水300.3gにEDTA四ナトリウム(エチレンジアミン四酢酸四ナトリウム)36.3g、炭酸アンモニウム38.1gを溶解した液に加え、さらに30質量%の銀を含む硝酸銀溶液29.6g、EDTA四ナトリウム79.0g、炭酸アンモニウム40.0g、イオン交換水346.9gを調合した銀錯体溶液を15分間で添加して、金属銅粉の粒子表面への銀の析出を行った。
その後、ろ過して得た固形分をろ液が透明になるまでイオン交換水で洗浄し、70℃で真空乾燥して銀被覆銅粉(第1中間物質)を得た。
なお、この銀被覆銅粉(第1中間物質)の製造に当っては原料金属銅粉に対して銀被覆量が10質量%となるように銀塩を調合した。
[Example 1]
<Manufacturing process of silver-coated copper powder (first intermediate substance or “spherical copper powder particles coated with silver”)>
As the raw material copper metal powder, spherical atomized copper powder having a purity of 99.9% by mass and an average particle size of 5 μm manufactured by Nippon Atomize Co., Ltd. was used.
Add 80.0 g of the above copper metal powder to a 1 liter stirring tank, add 306.3 g of ion-exchanged water to 36.3 g of EDTA tetrasodium (ethylenediaminetetraacetic acid tetrasodium), and 38.1 g of ammonium carbonate, Further, a silver complex solution containing 29.6 g of a silver nitrate solution containing 30% by mass of silver, 79.0 g of tetrasodium EDTA, 40.0 g of ammonium carbonate, and 346.9 g of ion-exchanged water was added over 15 minutes to obtain a metal copper powder. Silver was deposited on the surface of the particles.
Thereafter, the solid content obtained by filtration was washed with ion-exchanged water until the filtrate became transparent, and vacuum dried at 70 ° C. to obtain a silver-coated copper powder (first intermediate substance).
In producing the silver-coated copper powder (first intermediate substance), a silver salt was prepared so that the silver coating amount was 10% by mass with respect to the raw metal copper powder.

〈銀被覆フレーク銅粉(第2中間物質)の製造工程(扁平化処理工程)〉
上記の銀被覆(球状)銅粉(第1中間物質)にパルミチン酸を0.3質量%加えてよく混合し、SUS(ステンレススチール)ボールとともに振動ボールミルに装入して扁平化処理を施した。得られた第2中間物質の平均粒径D50とアスペクト比を表1に示す。なお、ここで扁平化処理後においては、粉をそのままとし、表面にパルミチン酸が残存(付着)したままとした。
<Silver-coated flake copper powder (second intermediate material) manufacturing process (flattening process)>
0.3% by mass of palmitic acid was added to the above silver-coated (spherical) copper powder (first intermediate substance) and mixed well, and the mixture was flattened by placing it in a vibrating ball mill together with a SUS (stainless steel) ball. . Table 1 shows the average particle diameter D 50 and the aspect ratio of the obtained second intermediate substance. Here, after the flattening treatment, the powder was left as it was, and palmitic acid remained (attached) on the surface.

〈銀被覆フレーク銅粉(本発明が目的とする最終製品)の製造工程〉
容量1リットルの撹拌槽に上記の銀被覆フレーク銅粉(第2中間物質)80.0gを、銀被覆銅粉の製造工程と同じ組成の液に加え、さらに銀被覆銅粉の製造工程と同じ組成の銀錯体溶液を15分間で添加して、さらなる銀の析出を行った。
その後、ろ過して得た固形分をろ液が透明になるまでイオン交換水で洗浄し、70℃で真空乾燥させた。乾燥後、粗粒を除去するために目開き40μmの篩にかけ、本発明が目的とする最終製品の銀被覆フレーク銅粉を得た。この最終製品の平均粒径D50とアスペクト比と銀被覆量を表1に示す。
なお、この最終製品の銀被覆フレーク銅粉の製造に当っては、原料銅粉への被覆に用いた量と同一量の銀の被覆をすべく、銀錯体溶液を調合した(すなわち最終製品の銀被覆フレーク銅粉の銀被覆量が20質量%となるように銀錯体溶液を調合した)。
<Manufacturing process of silver-coated flake copper powder (the final product targeted by the present invention)>
80.0 g of the above silver-coated flake copper powder (second intermediate substance) is added to a liquid having the same composition as the silver-coated copper powder manufacturing process in the stirring tank having a capacity of 1 liter, and the same as the silver-coated copper powder manufacturing process. The silver complex solution of composition was added in 15 minutes to further deposit silver.
Thereafter, the solid content obtained by filtration was washed with ion-exchanged water until the filtrate became transparent, and vacuum-dried at 70 ° C. After drying, in order to remove coarse particles, it was passed through a sieve having an opening of 40 μm to obtain a final product silver-coated flake copper powder intended by the present invention. Shows the average particle diameter D 50 and the aspect ratio and the silver coverage of the final product in Table 1.
In the production of the silver-coated flake copper powder of this final product, a silver complex solution was prepared so that the same amount of silver as that used for coating the raw material copper powder was coated (that is, the final product The silver complex solution was prepared so that the silver coating amount of the silver-coated flake copper powder was 20% by mass).

〈ペースト評価〉
得られた最終製品の銀被覆フレーク銅粉78.8質量%に対して、エポキシ樹脂(旭電化工業株式会社製、EP−4901E)を7.5質量%、硬化剤(味の素ファインテクノ株式会社製、アミキュアMY−24)を1.5質量%、溶剤としてエチルカルビトールアセテート(関東化学株式会社製、特級)を12.2質量%添加し、プロペラレス自公転式撹拌脱泡装置(株式会社シンキー製、AR−250)で60秒間、撹拌した。
得られたペーストをスライドガラスにすりきり印刷し、熱風式乾燥機にて200℃で40分間乾燥させ、株式会社アドバンテスト製デジタルマルチメーター(R6551)を用いて膜抵抗(電気抵抗)を測定した。
その評価結果は表1に示す通りであって、体積抵抗値190μΩ・cmという高導電性のものであった。
<Paste evaluation>
7.5% by mass of epoxy resin (Asahi Denka Kogyo Co., Ltd., EP-4901E) and hardener (Ajinomoto Fine Techno Co., Ltd.) with respect to 78.8% by mass of the silver-coated flake copper powder of the final product obtained Amycure MY-24) 1.5% by mass, ethyl carbitol acetate (made by Kanto Chemical Co., Ltd., special grade) as a solvent 12.2% by mass was added, and propellerless self-revolving agitation deaerator (Sinky Corporation) Manufactured by AR-250) for 60 seconds.
The obtained paste was printed on a slide glass, dried with a hot air dryer at 200 ° C. for 40 minutes, and the film resistance (electric resistance) was measured using a digital multimeter (R6551) manufactured by Advantest Corporation.
The evaluation results are as shown in Table 1 and were highly conductive with a volume resistance value of 190 μΩ · cm.

Figure 2012167337
Figure 2012167337

[実施例2]
実施例1で得られた最終製品の銀被覆フレーク銅粉に対して、パルミチン酸を0.3質量%添加し、混合し、粗粒を除去するために目開き40μmの篩にかけた。得られた銀被覆フレーク銅粉の平均粒径D50とアスペクト比と銀被覆量を表1に示す。
その工程図を図1に示す。
評価結果は表1に示す通りであって、体積抵抗値144μΩ・cmという一層高導電性のものであった。
[Example 2]
To the final product, silver-coated flake copper powder obtained in Example 1, 0.3% by mass of palmitic acid was added, mixed, and passed through a sieve having an opening of 40 μm to remove coarse particles. The average particle diameter D 50 and the aspect ratio of the obtained silver-coated flaky copper powder and silver coated amount shown in Table 1.
The process diagram is shown in FIG.
The evaluation results are as shown in Table 1 and were higher conductivity with a volume resistance value of 144 μΩ · cm.

[比較例1]
実施例1記載の原料の金属銅粉にパルミチン酸を0.3質量%添加し、よく混合し、SUS(ステンレススチール)ボールとともに振動ボールミルに装入して扁平化処理を施した。
次いで、容量1リットルの撹拌槽に上記の扁平化処理を施した金属銅粉80.0gを、イオン交換水300.3gにEDTA四ナトリウム36.3g、炭酸アンモニウム38.1gを溶解した液と共に加え、さらに30質量%の銀を含む硝酸銀溶液66.5g、EDTA四ナトリウム177.7g、炭酸アンモニウム40.0g、イオン交換水337.5gを調合した銀錯体溶液を15分間で添加して、粒子表面への銀の析出を行った。
その後、ろ過して得た固形分をろ液が透明になるまでイオン交換水で洗浄し、70℃で真空乾燥し、粗粒を除去するために目開き40μmの篩にかけて銀被覆フレーク銅粉を得た。得られた銀被覆フレーク銅粉の平均粒径D50とアスペクト比を表1に示す。
なお、この銀被覆フレーク銅粉の製造に当っては、銀被覆フレーク銅粉の銀被覆量が20質量%となるように銀錯体溶液を調合した。
その工程図を図2に示す。
その評価結果は表1に示す通りであって、銀量は21.2質量%であって実施例1〜2と同等であるにもかかわらず、体積抵抗値は1310μΩ・cmであって、実施例1〜2に比し大幅に導電性が劣るものであった。
[Comparative Example 1]
0.3% by mass of palmitic acid was added to the raw material copper metal powder described in Example 1, mixed well, and placed in a vibrating ball mill together with a SUS (stainless steel) ball for flattening treatment.
Next, 80.0 g of the copper metal powder subjected to the above flattening treatment was added to a stirring tank having a capacity of 1 liter together with a solution obtained by dissolving 36.3 g of tetrasodium EDTA and 38.1 g of ammonium carbonate in 300.3 g of ion-exchanged water. Further, a silver complex solution prepared by mixing 66.5 g of a silver nitrate solution containing 30% by mass of silver, 177.7 g of EDTA tetrasodium, 40.0 g of ammonium carbonate, and 337.5 g of ion-exchanged water was added over 15 minutes. Silver was deposited on the surface.
Thereafter, the solid content obtained by filtration is washed with ion-exchanged water until the filtrate becomes transparent, vacuum-dried at 70 ° C., and passed through a sieve with an opening of 40 μm to remove the coarse particles. Obtained. Table 1 shows the average particle diameter D 50 and the aspect ratio of the obtained silver-coated flake copper powder.
In producing the silver-coated flake copper powder, a silver complex solution was prepared so that the silver coating amount of the silver-coated flake copper powder was 20% by mass.
The process diagram is shown in FIG.
The evaluation results are as shown in Table 1, and although the amount of silver is 21.2% by mass and equivalent to Examples 1-2, the volume resistance value is 1310 μΩ · cm. Compared with Examples 1 and 2, the conductivity was significantly inferior.

Claims (7)

銀で被覆された銅粉体粒子にアスペクト比が3以上となる扁平化処理を施し、銀の錯体溶液と接触させて表面を銀で被覆する、銀被覆フレーク銅粉の製造方法。   A method for producing a silver-coated flake copper powder, wherein the copper powder particles coated with silver are subjected to a flattening treatment having an aspect ratio of 3 or more, and contacted with a silver complex solution to coat the surface with silver. 銀で被覆された銅粉体粒子にアスペクト比が3以上となる扁平化処理を施し、銀の錯体溶液と接触させて表面を銀で被覆した後、得られた粉体に表面処理剤を添加する、銀被覆フレーク銅粉の製造方法。   The copper powder particles coated with silver are subjected to a flattening treatment with an aspect ratio of 3 or more, contacted with a silver complex solution to coat the surface with silver, and then a surface treatment agent is added to the obtained powder. A method for producing silver-coated flake copper powder. 銀で被覆された銅粉体粒子に表面処理剤を添加して、アスペクト比が3以上となる扁平化処理を施し、得られた表面処理剤が残存する粉体を銀の錯体溶液と接触させて表面を銀で被覆する、銀被覆フレーク銅粉の製造方法。   A surface treatment agent is added to the copper powder particles coated with silver, and a flattening treatment with an aspect ratio of 3 or more is performed. The resulting powder with the surface treatment agent remaining is brought into contact with a silver complex solution. A method for producing silver-coated flake copper powder, wherein the surface is coated with silver. 銀で被覆された銅粉体粒子に表面処理剤を添加して、アスペクト比が3以上となる扁平化処理を施し、得られた表面処理剤が残存する粉体を銀の錯体溶液と接触させて表面を銀で被覆した後、得られた粉体に表面処理剤を添加する、銀被覆フレーク銅粉の製造方法。   A surface treatment agent is added to the copper powder particles coated with silver, and a flattening treatment with an aspect ratio of 3 or more is performed. The resulting powder with the surface treatment agent remaining is brought into contact with a silver complex solution. Then, after the surface is coated with silver, a surface treating agent is added to the obtained powder. A method for producing silver-coated flake copper powder. 前記表面処理剤がパルミチン酸である請求項2〜4のいずれかに記載の銀被覆フレーク銅粉の製造方法。   The method for producing a silver-coated flake copper powder according to any one of claims 2 to 4, wherein the surface treatment agent is palmitic acid. 前記銀の錯体溶液が銀の錯体水溶液である、請求項1〜5のいずれかに記載の銀被覆フレーク銅粉の製造方法。   The manufacturing method of the silver covering flake copper powder in any one of Claims 1-5 whose said silver complex solution is silver complex aqueous solution. 前記の銀で被覆された銅粉体粒子が球状である、請求項1〜6のいずれかに記載の銀被覆フレーク銅粉の製造方法。   The method for producing a silver-coated flake copper powder according to any one of claims 1 to 6, wherein the silver-coated copper powder particles are spherical.
JP2011030086A 2011-02-15 2011-02-15 Method for producing silver-coated flake copper powder Active JP5778941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030086A JP5778941B2 (en) 2011-02-15 2011-02-15 Method for producing silver-coated flake copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030086A JP5778941B2 (en) 2011-02-15 2011-02-15 Method for producing silver-coated flake copper powder

Publications (2)

Publication Number Publication Date
JP2012167337A true JP2012167337A (en) 2012-09-06
JP5778941B2 JP5778941B2 (en) 2015-09-16

Family

ID=46971754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030086A Active JP5778941B2 (en) 2011-02-15 2011-02-15 Method for producing silver-coated flake copper powder

Country Status (1)

Country Link
JP (1) JP5778941B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990061A (en) * 2012-11-07 2013-03-27 宁波广博纳米新材料股份有限公司 Preparation method of tightly-combined silver-coated copper powder
CN104028769A (en) * 2014-06-10 2014-09-10 铜陵国传电子材料科技有限公司 Manufacturing method of high-green-strength atomized copper powder
JP2014208908A (en) * 2013-03-29 2014-11-06 Dowaエレクトロニクス株式会社 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2015021145A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2017210686A (en) * 2017-07-31 2017-11-30 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and production method therefor
KR20240013169A (en) 2021-05-28 2024-01-30 가부시키가이샤 아데카 Composition, method for producing cured product, and cured product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110369712B (en) * 2019-08-29 2021-08-20 嘉兴学院 Preparation method of silver-coated copper powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037440A1 (en) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
JP2011028985A (en) * 2009-07-24 2011-02-10 Fujikura Kasei Co Ltd Method of manufacturing conductive paste, and the conductive paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037440A1 (en) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
JP2011028985A (en) * 2009-07-24 2011-02-10 Fujikura Kasei Co Ltd Method of manufacturing conductive paste, and the conductive paste

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990061A (en) * 2012-11-07 2013-03-27 宁波广博纳米新材料股份有限公司 Preparation method of tightly-combined silver-coated copper powder
JP2014208908A (en) * 2013-03-29 2014-11-06 Dowaエレクトロニクス株式会社 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2015021145A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
CN104028769A (en) * 2014-06-10 2014-09-10 铜陵国传电子材料科技有限公司 Manufacturing method of high-green-strength atomized copper powder
JP2017210686A (en) * 2017-07-31 2017-11-30 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and production method therefor
KR20240013169A (en) 2021-05-28 2024-01-30 가부시키가이샤 아데카 Composition, method for producing cured product, and cured product

Also Published As

Publication number Publication date
JP5778941B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
TWI570196B (en) Silver-clad copper powder
JP5920541B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP2010174311A (en) Silver-plated copper fine powder, conductive paste produced by using silver-plated copper fine powder and method of producing silver-plated copper fine powder
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP2007239077A (en) Method for producing particulate silver particle, and particulate silver particle obtained by the method
JP2006225692A (en) Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
JP2018076603A (en) Conductive particles, conductive resin composition containing the same, and coated material
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP2016108649A (en) Silver-coated copper powder and method of producing the same
KR101759400B1 (en) A silver coating method for copper powder used circuit printing and adhesive conductive paste
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP2006183110A (en) Silver-copper composite powder and method for producing silver-copper composite powder
JP2016145404A (en) Copper powder for conductive paste and method for producing the same
JP4961315B2 (en) Method for producing metal-coated nickel powder
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2014208908A (en) Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP2005154846A (en) Composite metal particulate-dispersed liquid, and its production method
JP5858202B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
KR102344652B1 (en) Silver coating method of conductive copper powder and silver coated copper powder manufactured using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150710

R150 Certificate of patent or registration of utility model

Ref document number: 5778941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250