JP2017201062A - Method for producing silver-coated copper alloy powder - Google Patents

Method for producing silver-coated copper alloy powder Download PDF

Info

Publication number
JP2017201062A
JP2017201062A JP2017122959A JP2017122959A JP2017201062A JP 2017201062 A JP2017201062 A JP 2017201062A JP 2017122959 A JP2017122959 A JP 2017122959A JP 2017122959 A JP2017122959 A JP 2017122959A JP 2017201062 A JP2017201062 A JP 2017201062A
Authority
JP
Japan
Prior art keywords
silver
alloy powder
copper alloy
mass
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017122959A
Other languages
Japanese (ja)
Inventor
江原 厚志
Atsushi Ebara
厚志 江原
井上 健一
Kenichi Inoue
健一 井上
孝造 尾木
Kozo Ogi
孝造 尾木
山田 雄大
Takehiro Yamada
雄大 山田
英幸 藤本
Hideyuki Fujimoto
英幸 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2017122959A priority Critical patent/JP2017201062A/en
Publication of JP2017201062A publication Critical patent/JP2017201062A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide method for producing a silver-coated copper alloy powder that has a low volume resistance and excellent storage stability (reliability).SOLUTION: A copper alloy powder has a composition comprising 0.5-40 mass%, preferably 1-20 mass% of at least one of nickel and zinc, with the balance being copper and unavoidable impurities. The copper alloy powder is formed into a flaky shape to prepare a flaky copper alloy powder with a cumulative 50% particle size (Ddiameter) of 0.5-20 μm, as measured with a laser diffraction particle size distribution device. After that, the powder is coated with 7-50 mass% of a silver-containing layer.SELECTED DRAWING: None

Description

本発明は、銀被覆銅合金粉末の製造方法に関し、特に、導電ペーストなどに使用する銀被覆銅合金粉末の製造方法に関する。   The present invention relates to a method for producing a silver-coated copper alloy powder, and more particularly to a method for producing a silver-coated copper alloy powder used for a conductive paste or the like.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電ペーストが使用されている。   Conventionally, in order to form electrodes and wiring of electronic parts by printing methods, etc., conductive pastes prepared by blending a conductive metal powder such as silver powder or copper powder with a solvent, resin, dispersant, etc. have been used. .

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。   However, although silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, and thus costs are high. On the other hand, copper powder has a low volume resistivity and is a good conductive material. However, since it is easily oxidized, it has poor storage stability (reliability) compared to silver powder.

これらの問題を解消するために、導電ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉(例えば、特許文献1〜2参照)や、銅合金の表面を銀で被覆した銀被覆銅合金粉が提案されている(例えば、特許文献3〜4参照)。   In order to solve these problems, as the metal powder used for the conductive paste, silver-coated copper powder (for example, see Patent Documents 1 and 2) in which the surface of the copper powder is coated with silver, or the surface of the copper alloy is silver. A coated silver-coated copper alloy powder has been proposed (see, for example, Patent Documents 3 to 4).

特開2010−174311号公報(段落番号0003)JP 2010-174411 A (paragraph number 0003) 特開2010−077495号公報(段落番号0006)JP 2010-077745 (paragraph number 0006) 特開平08−311304号公報(段落番号0006)JP 08-311304 A (paragraph number 0006) 特開平10−152630号公報(段落番号0006)JP-A-10-152630 (paragraph number 0006)

しかし、特許文献1〜2の銀被覆銅粉では、銅粉の表面に銀で被覆されていない部分が存在すると、その部分から酸化が進行してしまうため、体積抵抗率の経時変化による変化率が大きく、保存安定性(信頼性)が不十分になる。また、特許文献3〜4の銀被覆銅合金粉では、体積抵抗率が高く(導電性が低く)なり、体積抵抗率の経時変化による変化率が非常に大きく、保存安定性(信頼性)が非常に悪化するという問題がある。   However, in the silver-coated copper powders of Patent Documents 1 and 2, if there is a part that is not coated with silver on the surface of the copper powder, oxidation proceeds from that part. And storage stability (reliability) becomes insufficient. In addition, in the silver-coated copper alloy powders of Patent Documents 3 to 4, the volume resistivity is high (conductivity is low), the change rate of the volume resistivity with time is very large, and the storage stability (reliability) is high. There is a problem of getting worse.

したがって、本発明は、このような従来の問題点に鑑み、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末の製造方法を提供することを目的とする。   Accordingly, in view of such conventional problems, an object of the present invention is to provide a method for producing a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability).

本発明者らは、上記課題を解決するために鋭意研究した結果、0.5〜40質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末をフレーク状に形成した後に7〜50質量%の銀含有層で被覆することによって、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found a copper alloy powder having a composition comprising at least one of nickel and zinc of 0.5 to 40% by mass, with the balance being copper and inevitable impurities. It was found that a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability) can be produced by coating with a silver-containing layer of 7 to 50% by mass after forming into a flake shape. The present invention has been completed.

すなわち、本発明による銀被覆銅合金粉末の製造方法は、0.5〜40質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末をフレーク状に形成した後に7〜50質量%の銀含有層で被覆することを特徴とする。   That is, the method for producing a silver-coated copper alloy powder according to the present invention flakes a copper alloy powder having a composition comprising at least one of 0.5 to 40% by mass of nickel and zinc, with the balance consisting of copper and inevitable impurities. After forming, it is characterized by being covered with a silver-containing layer of 7 to 50% by mass.

この銀被覆銅合金粉末の製造方法において、フレーク状に形成した後の銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.5〜20μmであるのが好ましい。また、銅合金粉末をアトマイズ法により製造するのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。さらに、ニッケルおよび亜鉛の少なくとも一方の含有量が1〜20質量%であるのが好ましく、銀含有層の被覆量が9〜40質量%であるのが好ましい。 In this method for producing a silver-coated copper alloy powder, the cumulative 50% particle diameter (D50 diameter) measured by a laser diffraction particle size distribution device of the copper alloy powder after being formed into flakes is 0.5 to 20 μm. Is preferred. Moreover, it is preferable to manufacture copper alloy powder by the atomizing method, and it is preferable that a silver containing layer is a layer which consists of silver or a silver compound. Furthermore, the content of at least one of nickel and zinc is preferably 1 to 20% by mass, and the coating amount of the silver-containing layer is preferably 9 to 40% by mass.

本発明によれば、体積抵抗率が低く且つ保存安定性(信頼性)に優れた銀被覆銅合金粉末の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing a silver-coated copper alloy powder having a low volume resistivity and excellent storage stability (reliability).

本発明による銀被覆銅合金粉末の製造方法の実施の形態では、0.5〜40質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末をフレーク状に形成した後に(銀被覆銅合金粉末に対して)7〜50質量%の銀含有層(銀または銀化合物からなる被覆層)(シェル)により被覆する。   In an embodiment of a method for producing a silver-coated copper alloy powder according to the present invention, a copper alloy powder having a composition containing at least one kind of nickel and zinc of 0.5 to 40% by mass and the balance consisting of copper and inevitable impurities is flakes. After forming into a shape (with respect to the silver-coated copper alloy powder), it is coated with a 7 to 50% by mass silver-containing layer (coating layer comprising silver or a silver compound) (shell).

銅合金粉末は、湿式還元法、電解法、気相法などにより製造してもよいが、合金成分を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅合金粉末を得ることができるので、銅合金粉末を導電ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。   The copper alloy powder may be manufactured by a wet reduction method, an electrolytic method, a gas phase method, etc., but the alloy components are dissolved at a melting temperature or higher and collided with high-pressure gas or high-pressure water while dropping from the lower part of the tundish. It is preferable to produce by a so-called atomizing method (such as a gas atomizing method or a water atomizing method) to obtain a fine powder by rapid solidification. In particular, copper alloy powder with a small particle size can be obtained by manufacturing by the so-called water atomization method in which high-pressure water is sprayed. Therefore, when copper alloy powder is used in a conductive paste, conductivity due to an increase in contact points between particles is obtained. Can be improved.

このようなフレーク状の銅合金粉末は、例えば、(ボールミル、アトライタ、ビーズミルなどの)湿式メディア型ミルや振動ミル、好ましくは湿式メディア型ミルをフレーク化装置として使用し、この装置に銅合金粉末と、(水、アルコール、その他の有機溶剤などの)溶媒、好ましくはアルコールを投入し、潤滑剤を添加しないで、(φ0.1〜5mm、好ましくはφ0.3〜3mmの)ステンレス、ジルコニア、ガラスなどからなるメディア、好ましくはステンレスまたはジルコニアからなるメディアで機械的に塑性変形させて偏平化することにより製造することができる。   Such flaky copper alloy powder is, for example, a wet media type mill (such as a ball mill, an attritor, a bead mill) or a vibration mill, preferably a wet media type mill, used as a flaking device. And stainless steel, zirconia (φ0.1-5 mm, preferably φ0.3-3 mm) without adding a lubricant (preferably water, alcohol, other organic solvents), preferably alcohol, and without adding a lubricant, It can be produced by mechanically plastically deforming and flattening with a medium made of glass or the like, preferably a medium made of stainless steel or zirconia.

また、被覆層を形成する方法として、銅と銀の置換反応を利用した還元法や、還元剤を用いる還元法により、銅合金粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅合金粉末と銀または銀化合物を含む溶液を攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法や、溶媒中に銅合金粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅合金粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。   Further, as a method of forming the coating layer, a method of depositing silver or a silver compound on the surface of the copper alloy powder by a reduction method using a substitution reaction between copper and silver or a reduction method using a reducing agent may be used. For example, a method of depositing silver or a silver compound on the surface of a copper alloy powder while stirring a solution containing the copper alloy powder and silver or a silver compound in a solvent, or a solution containing a copper alloy powder and an organic substance in the solvent For example, a method of precipitating silver or a silver compound on the surface of the copper alloy powder while mixing and stirring a solution containing silver or a silver compound and an organic substance in a solvent can be used.

溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。   As the solvent, water, an organic solvent, or a mixture of these can be used. When using a mixed solvent of water and organic solvent, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.). The mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately. In addition, as water used as a solvent, distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.

銀含有層(銀または銀化合物からなる被覆層)の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銀被覆反応をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層(銀または銀化合物からなる被覆層)の量に応じて決定することができる。   As a raw material for a silver-containing layer (a coating layer made of silver or a silver compound), it is preferable to use silver nitrate having high solubility in water and many organic solvents because silver ions need to be present in the solution. . In order to perform the silver coating reaction as uniformly as possible, it is preferable to use a silver nitrate solution in which silver nitrate is dissolved in a solvent (water, an organic solvent or a mixed solvent thereof) instead of solid silver nitrate. The amount of the silver nitrate solution to be used, the concentration of silver nitrate in the silver nitrate solution, and the amount of the organic solvent can be determined according to the amount of the target silver-containing layer (a coating layer made of silver or a silver compound).

銀含有層(銀または銀化合物からなる被覆層)をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅合金粉末のコアとなる銅合金粉末は主構成要素として銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。   In order to form a silver-containing layer (a coating layer made of silver or a silver compound) more uniformly, a chelating agent may be added to the solution. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions or the like by-produced by substitution reaction between silver ions and metallic copper do not reprecipitate. . In particular, since the copper alloy powder serving as the core of the silver-coated copper alloy powder contains copper as a main component, it is preferable to select a chelating agent while paying attention to the complex stability constant with copper. Specifically, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。   In order to perform the silver coating reaction stably and safely, a pH buffer may be added to the solution. As this pH buffering agent, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中に銅合金粉末を入れて攪拌し、銅合金粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは20〜80℃、さらに好ましくは25〜75℃、最も好ましくは30〜70℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。   In the silver coating reaction, before adding the silver salt, the copper alloy powder is put in the solution and stirred, and the solution containing the silver salt is added while the copper alloy powder is sufficiently dispersed in the solution. It is preferable to do this. The reaction temperature in this silver coating reaction may be a temperature at which the reaction solution solidifies or evaporates, but is preferably 20 to 80 ° C, more preferably 25 to 75 ° C, and most preferably 30 to 70 ° C. Set. Moreover, although reaction time changes with the coating amount of silver or a silver compound, and reaction temperature, it can set in the range of 1 minute-5 hours.

なお、銅合金粉末中のニッケルおよび亜鉛の少なくとも一種の含有量は、0.5〜40質量%であり、1〜20質量%であるのが好ましい。ニッケルおよび亜鉛の少なくとも一種の含有量が0.5質量%未満では、銅合金粉末中の銅の酸化が著しく、耐酸化性に問題が生じるので好ましくない。一方、40質量%を超えると、銅合金粉末の導電性に悪影響を及ぼすので好ましくない。   In addition, content of at least 1 type of nickel and zinc in copper alloy powder is 0.5-40 mass%, and it is preferable that it is 1-20 mass%. If the content of at least one kind of nickel and zinc is less than 0.5% by mass, copper in the copper alloy powder is significantly oxidized, which causes a problem in oxidation resistance. On the other hand, if it exceeds 40% by mass, the conductivity of the copper alloy powder is adversely affected.

また、フレーク状に形成した後の銅合金粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.5〜20μmであるのが好ましく、0.5〜10μmであるのがさらに好ましく、1〜5μmであるのが最も好ましい。累積50%粒子径(D50径)が0.5μm未満では、フレーク状の銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、20μmを超えると、微細な配線の形成が困難になるので好ましくない。 Moreover, the particle diameter of the copper alloy powder after forming into flakes has a cumulative 50% particle diameter (D50 diameter) measured by a laser diffraction particle size distribution device (by the Helos method) of 0.5 to 20 μm. Is preferably 0.5 to 10 μm, and most preferably 1 to 5 μm. A cumulative 50% particle diameter (D 50 diameter) of less than 0.5 μm is not preferable because it adversely affects the conductivity of the flaky copper alloy powder. On the other hand, if it exceeds 20 μm, it is not preferable because formation of fine wiring becomes difficult.

また、フレーク状の銅合金粉末のアスペクト比(累積50%粒子径D50/平均厚さ)が2〜20であるのが好ましく、3〜10であるのがさらに好ましい。アスペクト比が2未満では、フレーク状の銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、20を超えると、導電ペーストに使用した場合に、ペーストの粘度やチキソ性が高くなり過ぎるので好ましくない。 The aspect ratio (cumulative 50% particle diameter D 50 / average thickness) of the flaky copper alloy powder is preferably 2 to 20, and more preferably 3 to 10. An aspect ratio of less than 2 is not preferable because it adversely affects the conductivity of the flaky copper alloy powder. On the other hand, when it exceeds 20, when used in a conductive paste, the viscosity and thixotropy of the paste become too high, which is not preferable.

なお、銀含有層の被覆量は、7〜50質量%であり、8〜45質量%であるのが好ましく、9〜40質量%であるのがさらに好ましい。銀含有層の被覆量が7質量%未満では、フレーク状の銅合金粉末の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。   In addition, the coating amount of a silver content layer is 7-50 mass%, it is preferable that it is 8-45 mass%, and it is more preferable that it is 9-40 mass%. If the coating amount of the silver-containing layer is less than 7% by mass, the conductivity of the flaky copper alloy powder is adversely affected. On the other hand, if it exceeds 50 mass%, the cost increases due to an increase in the amount of silver used, which is not preferable.

以下、本発明による銀被覆銅合金粉末の製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the manufacturing method of the silver covering copper alloy powder by this invention is described in detail.

[実施例1]
銅8.0kgとニッケル1.0kgと亜鉛1.0kgを加熱した溶湯をタンディッシュ下部から落下させながら高圧水を吹付けて急冷凝固させ、得られた合金粉末をろ過し、水洗し、乾燥し、解砕し、分級して、銅合金粉末(銅−ニッケル−亜鉛合金粉末)を得た。
[Example 1]
While dropping 8.0 kg of copper, 1.0 kg of nickel and 1.0 kg of zinc from the lower part of the tundish, high-pressure water is sprayed and rapidly solidified. The resulting alloy powder is filtered, washed with water and dried. And then pulverized and classified to obtain a copper alloy powder (copper-nickel-zinc alloy powder).

次に、得られた銅合金粉末(銅−ニッケル−亜鉛合金粉末)353.7gと、直径1.6mmのステンレスボール2144.7gと、工業用アルコール(日本アルコール販売株式会社製のソルミックスAP7)136.3gを湿式メディア攪拌型ミル(タンク容積1リットル、棒状アーム型の攪拌羽根)に投入し、羽根の周速2.5m/秒で15分間攪拌し、得られたスラリーをろ過し、乾燥して、フレーク状銅合金粉末(フレーク状の銅−ニッケル−亜鉛合金粉末)を得た。   Next, 353.7 g of the obtained copper alloy powder (copper-nickel-zinc alloy powder), 2164.7 g of stainless steel balls having a diameter of 1.6 mm, and industrial alcohol (Solmix AP7 manufactured by Nippon Alcohol Sales Co., Ltd.) 136.3 g was put into a wet media stirring type mill (tank volume 1 liter, rod-shaped arm type stirring blade), stirred for 15 minutes at a peripheral speed of the blade of 2.5 m / second, and the resulting slurry was filtered and dried. Thus, a flaky copper alloy powder (flaky copper-nickel-zinc alloy powder) was obtained.

また、EDTA−2Na二水和物157.1gと炭酸アンモニウム157.1gを純水1828.2gに溶解した溶液(溶液1)と、EDTA−2Na二水和物346.5gと炭酸アンモニウム173.2gを純水1380.1gに溶解した溶液に、硝酸銀57.7gを純水178.4gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。   Further, a solution (solution 1) obtained by dissolving 157.1 g of EDTA-2Na dihydrate and 157.1 g of ammonium carbonate in 1828.2 g of pure water, 346.5 g of EDTA-2Na dihydrate, and 173.2 g of ammonium carbonate A solution obtained by adding 57.7 g of silver nitrate in 178.4 g of pure water to a solution of 1380.1 g of pure water dissolved in 1380.1 g of pure water was prepared.

次に、窒素雰囲気下において、得られたフレーク状銅合金粉末(フレーク状の銅−ニッケル−亜鉛合金粉末)330gを溶液1に加えて、攪拌しながら35℃まで昇温させた。このフレーク状銅合金粉末(フレーク状の銅−ニッケル−亜鉛合金粉末)が分散した溶液に溶液2を加えて20分間攪拌した後、分散剤としてパルミチン酸1.0gを工業用アルコール(日本アルコール販売株式会社製のソルミックスAP7)32.0gに溶解させた溶液を添加し、さらに40分間攪拌した後、ろ過し、水洗し、乾燥し、解砕して、銀により被覆されたフレーク状銅合金粉末(銀被覆フレーク状銅合金粉末)を得た。   Next, in a nitrogen atmosphere, 330 g of the obtained flaky copper alloy powder (flaked copper-nickel-zinc alloy powder) was added to the solution 1 and heated to 35 ° C. while stirring. After the solution 2 was added to the solution in which the flaky copper alloy powder (flaked copper-nickel-zinc alloy powder) was dispersed and stirred for 20 minutes, 1.0 g of palmitic acid was used as a dispersant for industrial alcohol (Japan Alcohol Sales). A solution dissolved in 32.0 g of Solmix AP7) manufactured by Co., Ltd. was added and stirred for an additional 40 minutes, followed by filtration, washing with water, drying, crushing, and flaky copper alloy coated with silver A powder (silver-coated flaky copper alloy powder) was obtained.

このようにして得られた(銀被覆前の)銅合金粉末の組成および粒度分布を求めるとともに、銀被覆フレーク状銅合金粉末の組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。   Obtaining the composition and particle size distribution of the copper alloy powder thus obtained (before silver coating), the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content of the silver-coated flaky copper alloy powder The quantity and carbon content were determined.

銀被覆前の銅合金粉末中の銅、ニッケルおよび亜鉛の含有量は、銅合金粉末(約2.5g)を塩化ビニル製リング(内径3.2mm×厚さ4mm)内に敷き詰めた後、錠剤型の成型圧縮機(株式会社前川試験製作所製の型番BRE−50)により100kNの荷重をかけて、銅合金粉末のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求め、ナトリウム未満の軽元素を除いた成分の比率を算出した。その結果、銀被覆前の銅合金粉末中の銅の含有量は80.8質量%、ニッケルの含有量は10.8質量%、亜鉛の含有量は8.4質量%であり、銅合金粉末はCu80Ni10Zn10合金の粉末であった。 The content of copper, nickel and zinc in the copper alloy powder before silver coating was determined by placing the copper alloy powder (about 2.5 g) in a vinyl chloride ring (inner diameter 3.2 mm × thickness 4 mm), A copper alloy powder pellet was produced by applying a load of 100 kN using a mold molding compressor (model number BRE-50 manufactured by Maekawa Test Co., Ltd.), and the pellet was placed in a sample holder (opening diameter: 3.0 cm). From the measurement results set in a measurement position in a fluorescent X-ray analyzer (RIX2000 manufactured by Rigaku Co., Ltd.), the measurement atmosphere was under reduced pressure (8.0 Pa), and the X-ray output was 50 kV, 50 mA. The ratio of the components excluding light elements less than sodium was calculated by automatic calculation using the software attached to. As a result, the copper content in the copper alloy powder before silver coating was 80.8% by mass, the nickel content was 10.8% by mass, and the zinc content was 8.4% by mass. Was a powder of Cu 80 Ni 10 Zn 10 alloy.

銀被覆前の銅合金粉末の粒度分布は、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定して、累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)を求めた。その結果、銀被覆前の銅合金粉末の累積10%粒子径(D10)は0.9μm、累積50%粒子径(D50)は2.1μm、累積90%粒子径(D90)は3.9μmであった。 The particle size distribution of the copper alloy powder before the silver coating is measured by a laser diffraction particle size distribution device (Heros particle size distribution measurement device (HELOS & RODOS) manufactured by SYMPATEC), and the cumulative particle size is 10% (D 10 ) and the cumulative amount is 50%. The particle diameter (D 50 ) and cumulative 90% particle diameter (D 90 ) were determined. As a result, the cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating was 0.9 μm, the cumulative 50% particle diameter (D 50 ) was 2.1 μm, and the cumulative 90% particle diameter (D 90 ) was 3 .9 μm.

銀被覆フレーク状銅合金粉末中の銅、ニッケルおよび亜鉛の含有量は、銀被覆前の銅合金粉末中の銅、ニッケルおよび亜鉛の含有量と同様の方法により、銀被覆フレーク状銅合金粉末のペレットを作製して求めた。また、銀被覆フレーク状銅合金粉末の断面を集束イオンビーム(FIB)加工観察装置(日本電子株式会社製のJEM−9310FIB)によって加工した後、電界放出形走査電子顕微鏡(FE−SEM)(日本電子株式会社製のJSM−6700F)によって観察したところ、フレーク状銅合金粉末の表面が銀で被覆されていることが確認され、銀被覆フレーク状銅合金粉末の銀の被覆量も、銀被覆フレーク状銅合金粉末中の銅、ニッケルおよび亜鉛の含有量と同様の方法により求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は10.8質量%、銅の含有量は73.6質量%、ニッケルの含有量は9.7質量%、亜鉛の含有量は5.9質量%であった。   The content of copper, nickel and zinc in the silver-coated flaky copper alloy powder was determined by the same method as the content of copper, nickel and zinc in the copper alloy powder before silver coating. Obtained by preparing a pellet. Further, after processing the cross section of the silver-coated flaky copper alloy powder with a focused ion beam (FIB) processing observation apparatus (JEM-9310FIB manufactured by JEOL Ltd.), a field emission scanning electron microscope (FE-SEM) (Japan) JSM-6700F) manufactured by Denki Co., Ltd. confirmed that the surface of the flaky copper alloy powder was coated with silver, and the silver coating amount of the silver-coated flaky copper alloy powder was also the same as that of the silver-coated flakes. It calculated | required by the method similar to content of the copper in the copper alloy powder, nickel, and zinc. As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 10.8 mass%, the copper content was 73.6 mass%, the nickel content was 9.7 mass%, and the zinc content was 5 It was 9 mass%.

銀被覆フレーク状銅合金粉末の粒度分布は、銀被覆前の銅合金粉末の粒度分布と同様の方法により求めた。その結果、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は1.3μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は5.8μmであった。 The particle size distribution of the silver-coated flaky copper alloy powder was determined by the same method as the particle size distribution of the copper alloy powder before silver coating. As a result, the cumulative 10% particle diameter (D 10 ) of the silver-coated flaky copper alloy powder was 1.3 μm, the cumulative 50% particle diameter (D 50 ) was 3.0 μm, and the cumulative 90% particle diameter (D 90 ) was 5 .8 μm.

銀被覆フレーク状銅合金粉末のアスペクト比は、銀被覆フレーク状銅合金粉末を樹脂と混ぜてペースト化し、銅板に塗布して乾燥させて塗膜を作り、その塗膜の側面を電界放出型走査電子顕微鏡(FE−SEM)(株式会社日立製作所製のS−4700型)により2000倍の倍率で観察し、その観察した画面に対して垂直に立っている銀被覆フレーク状銅合金粉末の粒子100個について、画像解析式粒度分布測定ソフトウェア(マウンテック社のMac−View Ver4)を用いて、粒子の最長となる長さを測定し、それらを算術平均することにより求めた平均長径Lと、同じ粒子で最短となる長さを測定し、それらを算術平均することにより求めた平均厚さTを用いて、(平均長径L/平均厚さT)をアスペクト比として求めた。その結果、銀被覆フレーク状銅合金粉末のアスペクト比は4であった。   The silver coated flaky copper alloy powder has an aspect ratio of silver coated flaky copper alloy powder mixed with resin to form a paste, coated on a copper plate and dried to form a coating, and the side of the coating is field emission scanned. Particles of silver-coated flaky copper alloy powder 100 observed with an electron microscope (FE-SEM) (S-4700 type manufactured by Hitachi, Ltd.) at a magnification of 2000 times and standing perpendicular to the observed screen Using the image analysis type particle size distribution measurement software (Mac-View Ver4 of Mountec Co., Ltd.), the longest length of the particles is measured, and the average long diameter L obtained by arithmetically averaging them is the same particle. The shortest length was measured, and the average thickness T obtained by arithmetically averaging them was used to determine (average major axis L / average thickness T) as an aspect ratio. As a result, the aspect ratio of the silver-coated flaky copper alloy powder was 4.

銀被覆フレーク状銅合金粉末のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めた。その結果、銀被覆フレーク状銅合金粉末のBET比表面積は0.46m/gであった。 The BET specific surface area of the silver-coated flaky copper alloy powder was determined by the BET method using a BET specific surface area measuring apparatus (4 Sorb US manufactured by Yours IONICS Inc.). As a result, the BET specific surface area of the silver-coated flaky copper alloy powder was 0.46 m 2 / g.

銀被覆フレーク状銅合金粉末のタップ密度(TAP)は、特開2007−263860号公報に記載された方法に準拠して求めた。その結果、銀被覆フレーク状銅合金粉末のタップ密度は4.9g/cmであった。 The tap density (TAP) of the silver-coated flaky copper alloy powder was determined according to the method described in Japanese Patent Application Laid-Open No. 2007-263860. As a result, the tap density of the silver-coated flaky copper alloy powder was 4.9 g / cm 3 .

銀被覆フレーク状銅合金粉末中の酸素含有量は、酸素・窒素分析装置(LECO社製のTC−436型)により測定した。その結果、銀被覆フレーク状銅合金粉末中の酸素含有量は0.09質量%であった。   The oxygen content in the silver-coated flaky copper alloy powder was measured by an oxygen / nitrogen analyzer (TC-436 type manufactured by LECO). As a result, the oxygen content in the silver-coated flaky copper alloy powder was 0.09% by mass.

銀被覆フレーク状銅合金粉末中の炭素含有量は、炭素・硫黄分析装置(堀場製作所製のEMIA−220V)により測定した。その結果、銀被覆フレーク状銅合金粉末中の炭素含有量は0.17質量%であった。   The carbon content in the silver-coated flaky copper alloy powder was measured with a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.). As a result, the carbon content in the silver-coated flaky copper alloy powder was 0.17% by mass.

これらの結果を表1および表2に示す。   These results are shown in Tables 1 and 2.

Figure 2017201062
Figure 2017201062

Figure 2017201062
Figure 2017201062

次に、得られた銀被覆フレーク状銅合金粉末8.92gと、熱硬化型樹脂としてビスフェノールF型エポキシ樹脂(株式会社ADEKA製のアデカレジンEP−4901E)0.79gと、三フッ化ホウ素モノエチルアミン0.04gと、溶媒としてブチルカルビトールアセテート0.24gと、オレイン酸0.01gとを混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電ペーストを得た。   Next, 8.92 g of the obtained silver-coated flaky copper alloy powder, 0.79 g of bisphenol F-type epoxy resin (ADEKA RESIN EP-4901E manufactured by ADEKA Corporation) as a thermosetting resin, and boron trifluoride monoethylamine 0.04 g, 0.24 g of butyl carbitol acetate as a solvent, and 0.01 g of oleic acid were mixed by a kneading defoaming machine, and then the conductive paste was dispersed uniformly by passing three rolls five times. Obtained.

この導電ペーストをスクリーン印刷法によってアルミナ基板上に(線幅500μm、線長37.5mmのパターンに)印刷した後、大気中において200℃で40分間焼成して硬化させることによって導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。   This conductive paste is printed on an alumina substrate by a screen printing method (in a pattern having a line width of 500 μm and a line length of 37.5 mm), and then baked and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film. The volume resistivity of the obtained conductive film was calculated and the storage stability (reliability) was evaluated.

導電膜の体積抵抗率は、得られた導電膜のライン抵抗を二端子型抵抗率計(日置電機株式会社製の3540ミリオームハイテスタ)により測定し、膜厚を表面粗さ形状測定機(株式会社東京精密製のサーフコム1500DX型)により測定して、体積抵抗率(Ω・cm)=ライン抵抗(Ω)×膜厚(cm)×線幅(cm)/線長(cm)により算出した。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は146μΩ・cmであった。   For the volume resistivity of the conductive film, the line resistance of the obtained conductive film was measured with a two-terminal type resistivity meter (3540 mOhm HiTester manufactured by Hioki Electric Co., Ltd.), and the film thickness was measured with a surface roughness shape measuring instrument (stock) It was measured by a surfcom 1500DX type manufactured by Tokyo Seimitsu Co., Ltd., and calculated by volume resistivity (Ω · cm) = line resistance (Ω) × film thickness (cm) × line width (cm) / line length (cm). As a result, the volume resistivity (initial volume resistivity) of the conductive film was 146 μΩ · cm.

導電膜の保存安定性(信頼性)は、一定温度(150℃)に保たれた試験室内において1週間保存した導電膜の体積抵抗率(1週間保存後の体積抵抗率)を算出し、体積抵抗率の変化率(%)={(1週間保存後の体積抵抗率)−(初期の体積抵抗率)}×100/(初期の体積抵抗率)によって評価した。その結果、1週間保存後の体積抵抗率は152μΩ・cmであり、体積抵抗率の変化率は4%であった。同様に2週間保存後の体積抵抗率を算出して、2週間の保存安定性(信頼性)を評価したところ、2週間保存後の体積抵抗率は155μΩ・cmであり、体積抵抗率の変化率は6%であった。   The storage stability (reliability) of the conductive film is calculated by calculating the volume resistivity (volume resistivity after storage for one week) of the conductive film stored for one week in a test chamber maintained at a constant temperature (150 ° C.). Resistivity change rate (%) = {(Volume resistivity after 1 week storage) − (Initial volume resistivity)} × 100 / (Initial volume resistivity) As a result, the volume resistivity after storage for 1 week was 152 μΩ · cm, and the rate of change in volume resistivity was 4%. Similarly, the volume resistivity after storage for 2 weeks was calculated and the storage stability (reliability) for 2 weeks was evaluated. The volume resistivity after storage for 2 weeks was 155 μΩ · cm, and the change in volume resistivity The rate was 6%.

これらの結果を表3に示す。   These results are shown in Table 3.

Figure 2017201062
Figure 2017201062

[比較例1]
実施例1と同様の方法により銅合金粉末(銅−ニッケル−亜鉛合金粉末)を得た後、得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めた。その結果、銀被覆前の銅合金粉末中の銅の含有量は82.9質量%、ニッケルの含有量は10.2質量%、亜鉛の含有量は6.9質量%であり、銅合金粉末はCu80Ni10Zn10合金の粉末であった。また、銀被覆前の銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.8μm、累積90%粒子径(D90)は3.3μmであった。
[Comparative Example 1]
After obtaining a copper alloy powder (copper-nickel-zinc alloy powder) by the same method as in Example 1, the obtained copper alloy powder (before silver coating) was subjected to the same composition and composition as in Example 1. The particle size distribution was determined. As a result, the copper content in the copper alloy powder before silver coating was 82.9% by mass, the nickel content was 10.2% by mass, and the zinc content was 6.9% by mass. Was a powder of Cu 80 Ni 10 Zn 10 alloy. Further, the cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating is 0.7 μm, the cumulative 50% particle diameter (D 50 ) is 1.8 μm, and the cumulative 90% particle diameter (D 90 ) is 3. It was 3 μm.

次に、窒素雰囲気下において、得られた銅合金粉末(銅−ニッケル−亜鉛合金粉末)330gを実施例1と同様の溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅合金粉末(銅−ニッケル−亜鉛合金粉末)が分散した溶液に実施例1と同様の溶液2を加えて60分間攪拌した後、ろ過し、水洗し、乾燥し、解砕して、銀により被覆された銅合金粉末(銀被覆銅合金粉末)を得た。   Next, in a nitrogen atmosphere, 330 g of the obtained copper alloy powder (copper-nickel-zinc alloy powder) was added to the same solution 1 as in Example 1, and the temperature was raised to 35 ° C. while stirring. The same solution 2 as in Example 1 was added to the solution in which the copper alloy powder (copper-nickel-zinc alloy powder) was dispersed and stirred for 60 minutes, then filtered, washed with water, dried, crushed, and silver. A copper alloy powder coated with (silver coated copper alloy powder) was obtained.

次に、窒素雰囲気下において、得られた銀被覆銅合金粉末58.7gとパルミチン酸0.2gをコーヒーミルで混合し、この混合粉末を、直径1.6mmのステンレスボール552.8gが入った振動ボールミル(株式会社シー・エム・ティ製のTI−100)に投入し、60Hzで30分間振動させて、銀被覆フレーク状銅合金粉末を得た。   Next, in a nitrogen atmosphere, 58.7 g of the obtained silver-coated copper alloy powder and 0.2 g of palmitic acid were mixed with a coffee mill, and this mixed powder contained 552.8 g of stainless balls having a diameter of 1.6 mm. It put into a vibration ball mill (TI-100, manufactured by CMT Co., Ltd.) and vibrated at 60 Hz for 30 minutes to obtain a silver-coated flaky copper alloy powder.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は11.1質量%、銅の含有量は74.9質量%、ニッケルの含有量は9.2質量%、亜鉛の含有量は4.8質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は2.0μm、累積90%粒子径(D90)は4.0μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.57m/g、タップ密度は5.7g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.14質量%、炭素含有量は0.18質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 11.1% by mass, the copper content was 74.9% by mass, the nickel content was 9.2% by mass, and the zinc content was 4%. It was 8 mass%. The silver-coated flaky copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 0.8 μm, a cumulative 50% particle diameter (D 50 ) of 2.0 μm, and a cumulative 90% particle diameter (D 90 ) of 4. It was 0 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.57 m 2 / g, and a tap density of 5.7 g / cm 3 . Further, the oxygen content in the silver-coated flaky copper alloy powder was 0.14% by mass, and the carbon content was 0.18% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は226μΩ・cmであった。また、1週間保存後の体積抵抗率は233μΩ・cmであり、体積抵抗率の変化率は3%であった。さらに、2週間保存後の体積抵抗率は239μΩ・cmであり、体積抵抗率の変化率は6%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 226 μΩ · cm. The volume resistivity after storage for 1 week was 233 μΩ · cm, and the rate of change in volume resistivity was 3%. Further, the volume resistivity after storage for 2 weeks was 239 μΩ · cm, and the rate of change in volume resistivity was 6%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[実施例2]
銅8.0kgとニッケル1.0kgと亜鉛1.0kgの代わりに銅9.0kgと亜鉛1.0kgを使用した以外は、実施例1と同様の方法により、銅合金粉末(銅−亜鉛合金粉末)を得た。
[Example 2]
A copper alloy powder (copper-zinc alloy powder) was prepared in the same manner as in Example 1 except that 9.0 kg of copper and 1.0 kg of zinc were used instead of 8.0 kg of copper, 1.0 kg of nickel and 1.0 kg of zinc. )

このようにして得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めた。その結果、銀被覆前の銅合金粉末中の銅の含有量は90.1質量%、亜鉛の含有量は9.9質量%であり、銅合金粉末はCu90Zn10合金の粉末であった。また、銀被覆前の銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.9μm、累積90%粒子径(D90)は3.6μmであった。 For the copper alloy powder thus obtained (before silver coating), the composition and particle size distribution were determined by the same method as in Example 1. As a result, the copper content in the copper alloy powder before silver coating was 90.1% by mass, the zinc content was 9.9% by mass, and the copper alloy powder was a Cu 90 Zn 10 alloy powder. . The cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating is 0.7 μm, the cumulative 50% particle diameter (D 50 ) is 1.9 μm, and the cumulative 90% particle diameter (D 90 ) is 3. It was 6 μm.

また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例1と同様の方法により、銀被覆フレーク状銅合金粉末を得た。   Moreover, by using the obtained copper alloy powder (copper-zinc alloy powder), a silver-coated flaky copper alloy powder was obtained in the same manner as in Example 1.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は10.7質量%、銅の含有量は81.8質量%、亜鉛の含有量は7.5質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は1.5μm、累積50%粒子径(D50)は3.4μm、累積90%粒子径(D90)は7.1μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.47m/g、タップ密度は4.6g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.10質量%、炭素含有量は0.18質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 10.7% by mass, the copper content was 81.8% by mass, and the zinc content was 7.5% by mass. The silver-coated flaky copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.5 μm, a cumulative 50% particle diameter (D 50 ) of 3.4 μm, and a cumulative 90% particle diameter (D 90 ) of 7. It was 1 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.47 m 2 / g, and a tap density of 4.6 g / cm 3 . Further, the oxygen content in the silver-coated flaky copper alloy powder was 0.10% by mass, and the carbon content was 0.18% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は99μΩ・cmであった。また、1週間保存後の体積抵抗率は113μΩ・cmであり、体積抵抗率の変化率は14%であった。さらに、2週間保存後の体積抵抗率は127μΩ・cmであり、体積抵抗率の変化率は29%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 99 μΩ · cm. The volume resistivity after storage for 1 week was 113 μΩ · cm, and the rate of change in volume resistivity was 14%. Further, the volume resistivity after storage for 2 weeks was 127 μΩ · cm, and the rate of change in volume resistivity was 29%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[比較例2]
実施例2と同様の方法により銅合金粉末(銅−亜鉛合金粉末)を得た後、得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めた。その結果、銀被覆前の銅合金粉末中の銅の含有量は90.2質量%、亜鉛の含有量は9.8質量%であり、銅合金粉末はCu90Zn10合金の粉末であった。また、銀被覆前の銅合金粉末の累積10%粒子径(D10)は0.6μm、累積50%粒子径(D50)は1.7μm、累積90%粒子径(D90)は3.2μmであった。
[Comparative Example 2]
After obtaining a copper alloy powder (copper-zinc alloy powder) by the same method as in Example 2, the obtained copper alloy powder (before silver coating) was subjected to the same composition and particle size distribution as in Example 1. Asked. As a result, the copper content in the copper alloy powder before silver coating was 90.2 mass%, the zinc content was 9.8 mass%, and the copper alloy powder was a Cu 90 Zn 10 alloy powder. . In addition, the cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating is 0.6 μm, the cumulative 50% particle diameter (D 50 ) is 1.7 μm, and the cumulative 90% particle diameter (D 90 ) is 3. It was 2 μm.

また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、比較例1と同様の方法により、銀被覆フレーク状銅合金粉末を得た。   Moreover, by using the obtained copper alloy powder (copper-zinc alloy powder), a silver-coated flaky copper alloy powder was obtained in the same manner as in Comparative Example 1.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は10.9質量%、銅の含有量は81.6質量%、亜鉛の含有量は7.5質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は1.9μm、累積90%粒子径(D90)は3.6μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.54m/g、タップ密度は5.5g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.16質量%、炭素含有量は0.22質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 10.9 mass%, the copper content was 81.6 mass%, and the zinc content was 7.5 mass%. The silver-coated flaky copper alloy powder has a cumulative 10% particle size (D 10 ) of 0.7 μm, a cumulative 50% particle size (D 50 ) of 1.9 μm, and a cumulative 90% particle size (D 90 ) of 3. It was 6 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.54 m 2 / g, and a tap density of 5.5 g / cm 3 . Further, the oxygen content in the silver-coated flaky copper alloy powder was 0.16% by mass, and the carbon content was 0.22% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は129μΩ・cmであった。また、1週間保存後の体積抵抗率は167μΩ・cmであり、体積抵抗率の変化率は29%であった。さらに、2週間保存後の体積抵抗率は192μΩ・cmであり、体積抵抗率の変化率は48%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 129 μΩ · cm. The volume resistivity after storage for 1 week was 167 μΩ · cm, and the rate of change in volume resistivity was 29%. Further, the volume resistivity after storage for 2 weeks was 192 μΩ · cm, and the rate of change in volume resistivity was 48%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[実施例3]
実施例1と同様の方法により得られた銅合金粉末(銅−ニッケル−亜鉛合金粉末)を使用し、EDTA−2Na二水和物779.5gと炭酸アンモニウム389.8gを純水3105.1gに溶解した溶液に、硝酸銀129.9gを純水401.5gに溶解した溶液を加えて得られた溶液を溶液2として使用した以外は、実施例1と同様の方法により、銀被覆フレーク状銅合金粉末を得た。
[Example 3]
Using copper alloy powder (copper-nickel-zinc alloy powder) obtained by the same method as in Example 1, 779.5 g of EDTA-2Na dihydrate and 389.8 g of ammonium carbonate were added to 3105.1 g of pure water. A silver-coated flaky copper alloy was prepared in the same manner as in Example 1 except that a solution obtained by adding 129.9 g of silver nitrate in 401.5 g of pure water to the dissolved solution was used as Solution 2. A powder was obtained.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は21.9質量%、銅の含有量は64.5質量%、ニッケルの含有量は8.4質量%、亜鉛の含有量は5.2質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は1.9μm、累積50%粒子径(D50)は4.0μm、累積90%粒子径(D90)は7.2μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.42m/g、タップ密度は4.4g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.22質量%、炭素含有量は0.20質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 21.9% by mass, the copper content was 64.5% by mass, the nickel content was 8.4% by mass, and the zinc content was 5%. It was 2% by mass. The silver-coated flaky copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.9 μm, a cumulative 50% particle diameter (D 50 ) of 4.0 μm, and a cumulative 90% particle diameter (D 90 ) of 7. It was 2 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.42 m 2 / g, and a tap density of 4.4 g / cm 3 . Furthermore, the oxygen content in the silver-coated flaky copper alloy powder was 0.22% by mass, and the carbon content was 0.20% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は106μΩ・cmであった。また、1週間保存後の体積抵抗率は103μΩ・cmであり、体積抵抗率の変化率は−3%であった。さらに、2週間保存後の体積抵抗率は100μΩ・cmであり、体積抵抗率の変化率は−6%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 106 μΩ · cm. The volume resistivity after storage for 1 week was 103 μΩ · cm, and the rate of change in volume resistivity was −3%. Furthermore, the volume resistivity after storage for 2 weeks was 100 μΩ · cm, and the rate of change in volume resistivity was −6%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[比較例3]
実施例1と同様の方法により銅合金粉末(銅−亜鉛合金粉末)を得た後、得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めた。その結果、銀被覆前の銅合金粉末中の銅の含有量は83.7質量%、ニッケルの含有量は10.3質量%、亜鉛の含有量は6.0質量%であり、銅合金粉末はCu80Ni10Zn10合金の粉末であった。また、銀被覆前の銅合金粉末の累積10%粒子径(D10)は0.8μm、累積50%粒子径(D50)は2.0μm、累積90%粒子径(D90)は3.7μmであった。
[Comparative Example 3]
After obtaining a copper alloy powder (copper-zinc alloy powder) by the same method as in Example 1, the obtained copper alloy powder (before silver coating) was subjected to the same composition and particle size distribution as in Example 1. Asked. As a result, the copper content in the copper alloy powder before silver coating was 83.7% by mass, the nickel content was 10.3% by mass, and the zinc content was 6.0% by mass. Was a powder of Cu 80 Ni 10 Zn 10 alloy. The cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating is 0.8 μm, the cumulative 50% particle diameter (D 50 ) is 2.0 μm, and the cumulative 90% particle diameter (D 90 ) is 3. It was 7 μm.

また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、実施例3と同様の溶液2を使用した以外は、比較例1と同様の方法により、銀被覆フレーク状銅合金粉末を得た。   Further, using the obtained copper alloy powder (copper-zinc alloy powder), a silver-coated flaky copper alloy powder was prepared in the same manner as in Comparative Example 1 except that the same solution 2 as in Example 3 was used. Got.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は22.8質量%、銅の含有量は65.4質量%、ニッケルの含有量は8.1質量%、亜鉛の含有量は3.7質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は0.9μm、累積50%粒子径(D50)は2.4μm、累積90%粒子径(D90)は4.5μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.51m/g、タップ密度は5.6g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.22質量%、炭素含有量は0.23質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 22.8% by mass, the copper content was 65.4% by mass, the nickel content was 8.1% by mass, and the zinc content was 3 0.7% by mass. The silver-coated flaky copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 0.9 μm, a cumulative 50% particle diameter (D 50 ) of 2.4 μm, and a cumulative 90% particle diameter (D 90 ) of 4. It was 5 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.51 m 2 / g, and a tap density of 5.6 g / cm 3 . Further, the oxygen content in the silver-coated flaky copper alloy powder was 0.22% by mass, and the carbon content was 0.23% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は130μΩ・cmであった。また、1週間保存後の体積抵抗率は131μΩ・cmであり、体積抵抗率の変化率は1%であった。さらに、2週間保存後の体積抵抗率は129μΩ・cmであり、体積抵抗率の変化率は−1%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 130 μΩ · cm. The volume resistivity after storage for 1 week was 131 μΩ · cm, and the rate of change in volume resistivity was 1%. Furthermore, the volume resistivity after storage for 2 weeks was 129 μΩ · cm, and the rate of change in volume resistivity was −1%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[実施例4]
実施例2と同様の方法により得られた銅合金粉末(銅−亜鉛合金粉末)を使用し、実施例3と同様の方法により、銀被覆フレーク状銅合金粉末を得た。
[Example 4]
Using the copper alloy powder (copper-zinc alloy powder) obtained by the same method as in Example 2, a silver-coated flaky copper alloy powder was obtained by the same method as in Example 3.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は21.8質量%、銅の含有量は71.7質量%、亜鉛の含有量は6.5質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は1.6μm、累積50%粒子径(D50)は3.7μm、累積90%粒子径(D90)は7.1μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.46m/g、タップ密度は4.6g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.19質量%、炭素含有量は0.20質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 21.8% by mass, the copper content was 71.7% by mass, and the zinc content was 6.5% by mass. The silver-coated flaky copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 1.6 μm, a cumulative 50% particle diameter (D 50 ) of 3.7 μm, and a cumulative 90% particle diameter (D 90 ) of 7. It was 1 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.46 m 2 / g, and a tap density of 4.6 g / cm 3 . Further, the oxygen content in the silver-coated flaky copper alloy powder was 0.19% by mass, and the carbon content was 0.20% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は73μΩ・cmであった。また、1週間保存後の体積抵抗率は79μΩ・cmであり、体積抵抗率の変化率は8%であった。さらに、2週間保存後の体積抵抗率は87μΩ・cmであり、体積抵抗率の変化率は18%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 73 μΩ · cm. The volume resistivity after storage for 1 week was 79 μΩ · cm, and the rate of change in volume resistivity was 8%. Further, the volume resistivity after storage for 2 weeks was 87 μΩ · cm, and the rate of change in volume resistivity was 18%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[比較例4]
実施例2と同様の方法により銅合金粉末(銅−亜鉛合金粉末)を得た後、得られた(銀被覆前の)銅合金粉末について、実施例1と同様の方法により、組成および粒度分布を求めた。その結果、銀被覆前の銅合金粉末中の銅の含有量は90.0質量%、亜鉛の含有量は10.0質量%であり、銅合金粉末はCu90Zn10合金の粉末であった。また、銀被覆前の銅合金粉末の累積10%粒子径(D10)は0.7μm、累積50%粒子径(D50)は2.0μm、累積90%粒子径(D90)は3.6μmであった。
[Comparative Example 4]
After obtaining a copper alloy powder (copper-zinc alloy powder) by the same method as in Example 2, the obtained copper alloy powder (before silver coating) was subjected to the same composition and particle size distribution as in Example 1. Asked. As a result, the copper content in the copper alloy powder before silver coating was 90.0 mass%, the zinc content was 10.0 mass%, and the copper alloy powder was a Cu 90 Zn 10 alloy powder. . The cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating is 0.7 μm, the cumulative 50% particle diameter (D 50 ) is 2.0 μm, and the cumulative 90% particle diameter (D 90 ) is 3. It was 6 μm.

また、得られた銅合金粉末(銅−亜鉛合金粉末)を使用して、比較例3と同様の方法により、銀被覆フレーク状銅合金粉末を得た。   Further, using the obtained copper alloy powder (copper-zinc alloy powder), a silver-coated flaky copper alloy powder was obtained in the same manner as in Comparative Example 3.

このようにして得られた銀被覆フレーク状銅合金粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅合金粉末の銀の被覆量は22.5質量%、銅の含有量は70.9質量%、亜鉛の含有量は6.6質量%であった。また、銀被覆フレーク状銅合金粉末の累積10%粒子径(D10)は0.9μm、累積50%粒子径(D50)は2.3μm、累積90%粒子径(D90)は4.3μmであった。また、銀被覆フレーク状銅合金粉末のアスペクト比は4、BET比表面積は0.47m/g、タップ密度は5.5g/cmであった。さらに、銀被覆フレーク状銅合金粉末中の酸素含有量は0.18質量%、炭素含有量は0.24質量%であった。 For the silver-coated flaky copper alloy powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. . As a result, the silver coating amount of the silver-coated flaky copper alloy powder was 22.5% by mass, the copper content was 70.9% by mass, and the zinc content was 6.6% by mass. The silver-coated flaky copper alloy powder has a cumulative 10% particle diameter (D 10 ) of 0.9 μm, a cumulative 50% particle diameter (D 50 ) of 2.3 μm, and a cumulative 90% particle diameter (D 90 ) of 4. It was 3 μm. The silver-coated flaky copper alloy powder had an aspect ratio of 4, a BET specific surface area of 0.47 m 2 / g, and a tap density of 5.5 g / cm 3 . Further, the oxygen content in the silver-coated flaky copper alloy powder was 0.18% by mass, and the carbon content was 0.24% by mass.

また、得られた銀被覆フレーク状銅合金粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は78μΩ・cmであった。また、1週間保存後の体積抵抗率は87μΩ・cmであり、体積抵抗率の変化率は11%であった。さらに、2週間保存後の体積抵抗率は97μΩ・cmであり、体積抵抗率の変化率は24%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper alloy powder, calculation of volume resistivity and storage stability by the method similar to Example 1 were carried out. (Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 78 μΩ · cm. The volume resistivity after storage for 1 week was 87 μΩ · cm, and the rate of change in volume resistivity was 11%. Furthermore, the volume resistivity after storage for 2 weeks was 97 μΩ · cm, and the rate of change in volume resistivity was 24%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

[比較例5]
銅8.0kgとニッケル1.0kgと亜鉛1.0kgの代わりに銅10.0kgを使用した以外は、実施例1と同様の方法により、銅粉末を得た。
[Comparative Example 5]
Copper powder was obtained in the same manner as in Example 1 except that 10.0 kg of copper was used instead of 8.0 kg of copper, 1.0 kg of nickel and 1.0 kg of zinc.

このようにして得られた(銀被覆前の)銅粉末について、実施例1と同様の方法により、粒度分布を求めた。その結果、銀被覆前の銅合金粉末の累積10%粒子径(D10)は2.3μm、累積50%粒子径(D50)は5.5μm、累積90%粒子径(D90)は11.6μmであった。 For the copper powder thus obtained (before silver coating), the particle size distribution was determined by the same method as in Example 1. As a result, the cumulative 10% particle diameter (D 10 ) of the copper alloy powder before silver coating was 2.3 μm, the cumulative 50% particle diameter (D 50 ) was 5.5 μm, and the cumulative 90% particle diameter (D 90 ) was 11. .6 μm.

また、得られた銅粉末を使用して、比較例1と同様の方法により、銀被覆フレーク状銅合金粉末を得た。   Further, by using the obtained copper powder, a silver-coated flaky copper alloy powder was obtained in the same manner as in Comparative Example 1.

このようにして得られた銀被覆フレーク状銅粉末について、実施例1と同様の方法により、組成、粒度分布、アスペクト比、BET比表面積、タップ密度、酸素含有量および炭素含有量を求めた。その結果、銀被覆フレーク状銅粉末の銀の被覆量は10.7質量%、銅の含有量は89.3質量%であった。また、銀被覆フレーク状銅粉末の累積10%粒子径(D10)は2.3μm、累積50%粒子径(D50)は5.9μm、累積90%粒子径(D90)は13.8μmであった。また、銀被覆フレーク状銅粉末のアスペクト比は4、BET比表面積は0.27m/g、タップ密度は5.6g/cmであった。さらに、銀被覆フレーク状銅粉末中の酸素含有量は0.28質量%、炭素含有量は0.22質量%であった。 For the silver-coated flaky copper powder thus obtained, the composition, particle size distribution, aspect ratio, BET specific surface area, tap density, oxygen content and carbon content were determined by the same method as in Example 1. As a result, the silver coating amount of the silver-coated flaky copper powder was 10.7% by mass, and the copper content was 89.3% by mass. The silver-coated flaky copper powder has a cumulative 10% particle diameter (D 10 ) of 2.3 μm, a cumulative 50% particle diameter (D 50 ) of 5.9 μm, and a cumulative 90% particle diameter (D 90 ) of 13.8 μm. Met. The silver-coated flaky copper powder had an aspect ratio of 4, a BET specific surface area of 0.27 m 2 / g, and a tap density of 5.6 g / cm 3 . Furthermore, the oxygen content in the silver-coated flaky copper powder was 0.28% by mass, and the carbon content was 0.22% by mass.

また、得られた銀被覆フレーク状銅粉末を使用して、実施例1と同様の方法により得られた導電膜について、実施例1と同様の方法により、体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の体積抵抗率(初期の体積抵抗率)は131μΩ・cmであった。また、1週間保存後の体積抵抗率は166μΩ・cmであり、体積抵抗率の変化率は27%であった。さらに、2週間保存後の体積抵抗率は188μΩ・cmであり、体積抵抗率の変化率は43%であった。   Moreover, about the electrically conductive film obtained by the method similar to Example 1 using the obtained silver covering flaky copper powder, calculation of volume resistivity and storage stability by the method similar to Example 1 ( Reliability) was evaluated. As a result, the volume resistivity (initial volume resistivity) of the conductive film was 131 μΩ · cm. Further, the volume resistivity after storage for 1 week was 166 μΩ · cm, and the rate of change in volume resistivity was 27%. Further, the volume resistivity after storage for 2 weeks was 188 μΩ · cm, and the rate of change in volume resistivity was 43%.

これらの結果を表1〜表3に示す。   These results are shown in Tables 1 to 3.

Claims (6)

0.5〜40質量%のニッケルおよび亜鉛の少なくとも一種を含み、残部が銅および不可避不純物からなる組成を有する銅合金粉末をフレーク状に形成した後に7〜50質量%の銀含有層で被覆することを特徴とする、銀被覆銅合金粉末の製造方法。 A copper alloy powder having a composition containing at least one of nickel and zinc in an amount of 0.5 to 40% by mass and the balance of copper and inevitable impurities is formed into flakes and then coated with a silver content layer of 7 to 50% by mass. A method for producing a silver-coated copper alloy powder, wherein: 前記フレーク状に形成した後の銅合金粉末のレーザー回折式粒度分布装置により測定した累積50%粒子径(D50径)が0.5〜20μmであることを特徴とする、請求項1に記載の銀被覆銅合金粉末の製造方法。 The cumulative 50% particle diameter (D50 diameter) measured by a laser diffraction particle size distribution device of the copper alloy powder after forming into the flake shape is 0.5 to 20 μm, according to claim 1. Manufacturing method of silver-coated copper alloy powder. 前記銅合金粉末をアトマイズ法により製造することを特徴とする、請求項1または2に記載の銀被覆銅合金粉末の製造方法。 The said copper alloy powder is manufactured by the atomizing method, The manufacturing method of the silver covering copper alloy powder of Claim 1 or 2 characterized by the above-mentioned. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項1乃至3のいずれかに記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to any one of claims 1 to 3, wherein the silver-containing layer is a layer made of silver or a silver compound. 前記ニッケルおよび亜鉛の少なくとも一方の含有量が1〜20質量%であることを特徴とする、請求項1乃至4のいずれかに記載の銀被覆銅合金粉末の製造方法。 5. The method for producing a silver-coated copper alloy powder according to claim 1, wherein the content of at least one of the nickel and zinc is 1 to 20 mass%. 前記銀含有層の被覆量が9〜40質量%であることを特徴とする、請求項1乃至5のいずれかに記載の銀被覆銅合金粉末の製造方法。 The method for producing a silver-coated copper alloy powder according to any one of claims 1 to 5, wherein a coating amount of the silver-containing layer is 9 to 40% by mass.
JP2017122959A 2017-06-23 2017-06-23 Method for producing silver-coated copper alloy powder Pending JP2017201062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017122959A JP2017201062A (en) 2017-06-23 2017-06-23 Method for producing silver-coated copper alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122959A JP2017201062A (en) 2017-06-23 2017-06-23 Method for producing silver-coated copper alloy powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012241779A Division JP6194166B2 (en) 2012-11-01 2012-11-01 Method for producing silver-coated copper alloy powder

Publications (1)

Publication Number Publication Date
JP2017201062A true JP2017201062A (en) 2017-11-09

Family

ID=60264657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122959A Pending JP2017201062A (en) 2017-06-23 2017-06-23 Method for producing silver-coated copper alloy powder

Country Status (1)

Country Link
JP (1) JP2017201062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108284224A (en) * 2018-03-18 2018-07-17 中船重工黄冈贵金属有限公司 A kind of preparation method of sheet silver coated nickel powder body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201486A (en) * 1988-02-05 1989-08-14 Kobe Steel Ltd Ag plated powder for electrically conductive paint having superior migration resistance
JPH0378906A (en) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The Conductive paste
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder
JP2010275638A (en) * 2010-07-12 2010-12-09 Dowa Holdings Co Ltd Silver-coated copper powder and conductive paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201486A (en) * 1988-02-05 1989-08-14 Kobe Steel Ltd Ag plated powder for electrically conductive paint having superior migration resistance
JPH0378906A (en) * 1989-08-23 1991-04-04 Furukawa Electric Co Ltd:The Conductive paste
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder
JP2010275638A (en) * 2010-07-12 2010-12-09 Dowa Holdings Co Ltd Silver-coated copper powder and conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108284224A (en) * 2018-03-18 2018-07-17 中船重工黄冈贵金属有限公司 A kind of preparation method of sheet silver coated nickel powder body

Similar Documents

Publication Publication Date Title
JP6154507B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP2009235556A (en) Copper powder for conductive pastes, and conductive paste
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP2019065386A (en) Silver powder and manufacturing method therefor
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP6722495B2 (en) Silver-coated copper powder and method for producing the same
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
JP2019186225A (en) Copper powder for conductive paste and manufacturing method therefor
WO2019065341A1 (en) Silver powder and production method thereof
JP7065676B2 (en) A silver-coated metal powder and a method for producing the same, a conductive paste containing the silver-coated metal powder, and a method for producing a conductive film using the conductive paste.
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP2021055142A (en) Silver-coated metal powder and method for producing the same, and electroconductive coating material
JP2005330535A (en) Silver compound-covered copper powder, method for producing the silver compound-covered copper powder, method for storing the silver compound-covered copper powder and conductive paste using the silver compound-covered copper powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181226