JPH0378906A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH0378906A
JPH0378906A JP1216657A JP21665789A JPH0378906A JP H0378906 A JPH0378906 A JP H0378906A JP 1216657 A JP1216657 A JP 1216657A JP 21665789 A JP21665789 A JP 21665789A JP H0378906 A JPH0378906 A JP H0378906A
Authority
JP
Japan
Prior art keywords
powder
metal
alloy
conductive paste
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1216657A
Other languages
Japanese (ja)
Inventor
Tatsu Maeda
龍 前田
Shingoro Fukuoka
新五郎 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1216657A priority Critical patent/JPH0378906A/en
Publication of JPH0378906A publication Critical patent/JPH0378906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

PURPOSE:To enhance oxidation resistance of metal powder so as to secure sufficient conductivity and solderability by galvanizing a noble metal on alloyed metal powder. CONSTITUTION:Cu-Ni alloy or Cu-Zn alloy powder coated with one kind of metal selected from a group of Au, Pt, Pd, Ru and Ag is used as metal powder of conductive paste consisting mainly of metallic powder, glass frit and organic vehicle. The reason for the use of Cu-Ni ro Cu-Zn as the alloyed metal is higher oxidation resistance of alloy by itself than Cu, conductivity within an allowable range, and excellent migration resistance and galvanizing property. The conductor being excellent in stability and solderability is therefore attainable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チップコンデンサー、チップ抵抗等の導体電
極の形成あるいはハイブリッドIC基板における配線パ
ターンの形成に好適に用いられる導電性ペーストに間す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a conductive paste that is suitably used for forming conductor electrodes of chip capacitors, chip resistors, etc., or for forming wiring patterns on hybrid IC boards.

[従来の技術及び解決すべき課題] 近年、セラミック積層チップコンデンサーやセラミック
チップ抵抗の導体電極用あるいはハイブリッドIC基板
における配線パターンの形成用導電性ペーストにはAg
、 Ag−Pd、 P t、 Au等の貴金属粉末が導
電フィラーとして用いられている。しかし、これらの貴
金属粉末は高価であるため、CuやNi等の卑金属粉末
を用いた導電性ペーストの開発が行われているが、これ
ら卑金属粉末を用いた導電性ペーストは、大気中600
〜1000℃の高温で焼成すると金属粉末が酸化して所
望の導電性を得ることができない。そのため、焼成雰囲
気を窒素ガスにすることが試みられているが、焼成雰囲
気を窒素ガスのみにすると焼成導体にバーンアウトしき
れなかった炭素分が残存して導体抵抗や半田付性に悪影
響を残すこととなり、この問題を回避するためには10
ppm程度の酸素を含有するように焼成雰囲気を厳密に
調整することが不可欠で、そのためには高度の技術力を
必要としコストアップとなる欠点があった。
[Prior art and problems to be solved] In recent years, Ag has been used as a conductive paste for conductive electrodes of ceramic multilayer chip capacitors and ceramic chip resistors, or for forming wiring patterns on hybrid IC boards.
, Ag-Pd, Pt, Au, and other noble metal powders are used as conductive fillers. However, since these noble metal powders are expensive, conductive pastes using base metal powders such as Cu and Ni are being developed.
If fired at a high temperature of ~1000°C, the metal powder will oxidize and the desired conductivity cannot be obtained. Therefore, attempts have been made to use nitrogen gas as the firing atmosphere, but if the firing atmosphere is nitrogen gas only, unburned carbon remains in the fired conductor, adversely affecting conductor resistance and solderability. Therefore, in order to avoid this problem, 10
It is essential to strictly adjust the firing atmosphere to contain oxygen on the order of ppm, which requires a high level of technical skill and has the drawback of increasing costs.

また、卑金属を合金化した合金粉末を用いた導電性ペー
ストも知られているが、合金化しても酸化の問題は完全
には解決されていなかった。
Furthermore, conductive pastes using alloy powders made by alloying base metals are also known, but even with alloying, the problem of oxidation has not been completely solved.

本発明は、上記課題を解決するため、合金化した金属粉
末の表面に貴金属のメツキを施すことにより金属粉末の
耐酸化性を向上させ、酸素濃度が11000pp程度の
雰囲気中における焼成によっても十分な導電性とハンダ
付性を確保できる導電性ペーストを提供するものである
In order to solve the above-mentioned problems, the present invention improves the oxidation resistance of the metal powder by plating the surface of the alloyed metal powder with a noble metal, and the oxidation resistance of the metal powder is improved even by firing in an atmosphere with an oxygen concentration of about 11,000 pp. The present invention provides a conductive paste that can ensure conductivity and solderability.

[課題解決のための手段] 本発明者らは、純金属例えば銅の粉末上に貴金属をメツ
キしたものは、銅粉の酸化が優先的に生じ、貴金属の酸
化の効果が小さいが、合金粉末としたものは、母材金属
の導電性は純金属に比べて劣るが耐酸化性が向上し貴金
属メツキによりさらに表面での耐酸化性が向上すること
に着目し本発明に到ったものである。
[Means for Solving the Problems] The present inventors have discovered that when a pure metal such as copper powder is plated with a noble metal, the oxidation of the copper powder occurs preferentially and the effect of oxidation of the noble metal is small; The present invention was developed by focusing on the fact that although the conductivity of the base metal is inferior to that of pure metal, it has improved oxidation resistance, and that plating with precious metals further improves the oxidation resistance on the surface. be.

すなわち、本発明は、金属粉末、ガラスフリット、有機
質ビヒクルを主成分とする導電性ペーストにおいて、前
記金属粉末としてCu−Ni合金粉末またはCu−Zn
合金粉末の表面にAu、Pt、Pd、Ru、Agの群か
ら選はれたいずれか1種の金属をコーティングしてなる
金属粉末を使用したことを特徴とするものである。
That is, the present invention provides a conductive paste containing metal powder, glass frit, and an organic vehicle as main components, in which Cu-Ni alloy powder or Cu-Zn alloy powder is used as the metal powder.
The present invention is characterized in that a metal powder is used in which the surface of the alloy powder is coated with any one metal selected from the group of Au, Pt, Pd, Ru, and Ag.

本発明において、合金化した金属としてCu−Ni、C
u−Znを用いる理由は、合金そのものがCuに比較し
て耐酸化性であり、かつ導電性も許容範囲のものであり
、耐マイグレーション性、メツキ性に優れているからで
ある。
In the present invention, the alloyed metals include Cu-Ni, C
The reason why u-Zn is used is that the alloy itself has higher oxidation resistance than Cu, has acceptable conductivity, and has excellent migration resistance and plating performance.

本発明のCu−Ni合金におけるNiの含有量は5〜5
0重量%の範囲であり、Niの含有量が多くなるにした
がって耐酸化性は向上するが導電性が低下するため、好
ましくはNi1O〜20重量%のものがよい。
The Ni content in the Cu-Ni alloy of the present invention is 5 to 5
The Ni content is in the range of 0% by weight, and as the Ni content increases, the oxidation resistance improves but the conductivity decreases, so it is preferably Ni1O to 20% by weight.

また、Cu−Zn合金におけるZnの含有量は5〜60
重量%の範囲であり、Znの含有量が多くなるにしたが
フて耐酸化性は向上するが導電性が低下するため、好ま
しくはZn20〜40重量%のものがよい。
In addition, the Zn content in the Cu-Zn alloy is 5 to 60
As the Zn content increases, the oxidation resistance improves but the conductivity decreases, so it is preferably 20 to 40% by weight.

さらに、本発明におけるCu−Ni合金、Cu−Zn合
金には、必要に応じてその他の元素を少量、例えば、A
1、B、Be、Snを0.1〜5重量%の範囲で添加し
ても差し支えない。
Furthermore, the Cu-Ni alloy and Cu-Zn alloy in the present invention may contain small amounts of other elements, such as A.
1, B, Be, and Sn may be added in an amount of 0.1 to 5% by weight.

本発明の合金粉末は、特にその製法を限定するものでは
ないが、たとえば、Cu−NiあるいはCu−Znの溶
湯を水アトマイズあるいはガスアトマイズすることによ
り微粉化し、ついで、得られた粉末を水素還元により表
面酸化のない粉体とし、さらに分級して0.1〜5μm
程度の粉末とすることによって得ることができる。
The manufacturing method of the alloy powder of the present invention is not particularly limited, but for example, a molten Cu-Ni or Cu-Zn is pulverized by water atomization or gas atomization, and then the obtained powder is subjected to hydrogen reduction. Powder with no surface oxidation, further classified to 0.1-5μm
It can be obtained by making it into a powder.

合金粉末表面への貴金属のコーティングは、無電解メツ
キが好ましく、メツキしようとする貴金属を含有するメ
ツキ液に合金粉末を入れ、加熱攪はんすることにより容
易に実施できる。
Coating of the noble metal onto the surface of the alloy powder is preferably carried out by electroless plating, which can be easily carried out by adding the alloy powder to a plating solution containing the noble metal to be plated and heating and stirring.

貴金属のメッキ厚は、0.O1〜1μm程度が好ましい
。なお、実際には、金属粉末上のメッキ厚は、被破壊で
は測定できず測定には手間がかかるので、便宜上、被メ
ツキ粉末(合金粉末)に対するメツキ金属の重量比で管
理することができ 本発明の金属粉末における合金粉末
に対する貴金属メツキの重量比は、0.1〜50重量%
程度が好ましい。
The plating thickness of precious metal is 0. The thickness is preferably about 1 to 1 μm. Note that in reality, the plating thickness on metal powder cannot be measured by destruction and it takes time to measure, so for convenience, it can be managed by the weight ratio of the plating metal to the powder to be plated (alloy powder). The weight ratio of the noble metal plating to the alloy powder in the metal powder of the invention is 0.1 to 50% by weight.
degree is preferred.

上記の重量比が0.1重量%以下になると、ミクロンレ
ベルの粉末の場合、メッキ厚が0.0003μmと小さ
くなり、高温に加熱すると容易に貴金属が合金中に拡散
していき、耐酸化性の効果が得られなくなる。また、重
量比が50重量%を越えるとコストアップとなる。
When the above weight ratio becomes 0.1% by weight or less, the plating thickness becomes as small as 0.0003μm in the case of micron-level powder, and when heated to high temperatures, the precious metal easily diffuses into the alloy, resulting in poor oxidation resistance. effect will no longer be obtained. Moreover, if the weight ratio exceeds 50% by weight, the cost will increase.

上記のようにして得られた貴金属メツキ合金粉末は、P
bo−B203−9 i02等のガラスフリット、エチ
ルセルローズ、ターピネオール、ブチルカルピトール等
からなる有機質ビヒクルとともに三本ロールで混練され
て導電性ペーストとなる。
The noble metal plated alloy powder obtained as described above is P
A conductive paste is obtained by kneading in a triple roll with a glass frit such as bo-B203-9 i02 and an organic vehicle consisting of ethyl cellulose, terpineol, butyl calpitol, etc.

本発明の導電性ペーストは、誘電体と重ねて焼成すれば
チップコンデンサー用の電極に、また抵抗体と接続して
焼成すればチップ抵抗用の電極に、そして、セラミック
板上に印刷して焼成すればハイブリッドIC回路板の配
線材として使用できる。
The conductive paste of the present invention can be used as an electrode for a chip capacitor if it is layered with a dielectric and fired, or as an electrode for a chip resistor if it is connected to a resistor and fired, and then printed on a ceramic plate and fired. Then, it can be used as a wiring material for hybrid IC circuit boards.

なお、本発明の導電性ペーストは、酸素濃度が100 
ppm以上の雰囲気中500〜1000℃での焼成が可
能で、雰囲気中の酸素濃度は11000pp程度まで許
容される。
Note that the conductive paste of the present invention has an oxygen concentration of 100
Firing is possible at 500 to 1000° C. in an atmosphere of ppm or more, and oxygen concentration in the atmosphere is allowed up to about 11000 ppm.

[実施例コ 実施例1〜1O Ni20重量%のCu−Ni合金(Cu−20%Niと
表す)及びZn40重量%のCu−Zn合金(Cu−4
0%Znと表す)をそれぞれ約1400℃の溶湯とし、
水アトマイズにより合金粉を得た。
[Example Examples 1 to 1O Cu-Ni alloy containing 20 wt% Ni (expressed as Cu-20%Ni) and Cu-Zn alloy containing 40 wt% Zn (Cu-4
0% Zn) as a molten metal at approximately 1400°C,
Alloy powder was obtained by water atomization.

得られた合金粉を500℃で水素気流中で還元した後、
分級して平均粒径2.5μmのCu−Ni合金粉末およ
びCu−Zn合金粉末を得た。
After reducing the obtained alloy powder at 500°C in a hydrogen stream,
It was classified to obtain Cu-Ni alloy powder and Cu-Zn alloy powder with an average particle size of 2.5 μm.

得られた合金粉末を高純度化学研究新製のAu、Pt、
Pd、Ru、Agのそれぞれのメツキ液(商品名: K
−24N、Pt−10,Pd−10、Ru−10、S−
700)(50〜70℃に調整)に攪はんしながら浸漬
して、合金粉末表面にそれぞれの金属をメツキした。メ
ツキ金属の合金粉末に対する割合は、約30重量%とな
るようコントロールした。
The obtained alloy powder was made of high-purity chemical research products such as Au, Pt,
Pd, Ru, Ag plating liquid (product name: K
-24N, Pt-10, Pd-10, Ru-10, S-
700) (adjusted to 50 to 70°C) while stirring to plate each metal on the surface of the alloy powder. The ratio of plating metal to alloy powder was controlled to be about 30% by weight.

得られた金属粉末100重量部に対して、ガラスフリッ
ト(日本電気硝子■製、商品名: GA−4)10重量
部、エチルセルローズ4重量部、ターピネオール20重
量部の割合で配合して三本ロールで混練して10種類の
導電性ペーストを得た。
To 100 parts by weight of the obtained metal powder, 10 parts by weight of glass frit (manufactured by Nippon Electric Glass ■, trade name: GA-4), 4 parts by weight of ethyl cellulose, and 20 parts by weight of terpineol were mixed and three pieces were prepared. Ten types of conductive pastes were obtained by kneading with a roll.

得られた導電性ペーストのそれぞれをセラミック板上に
印刷した後、500 ppmの酸素を含有する窒素雰囲
気中で700℃で20分間焼成して導体回路を形成した
。それぞれの導体の電気抵抗を測定し体積抵抗率を算出
した結果を第1表にまとめた。
Each of the obtained conductive pastes was printed on a ceramic plate and then baked at 700° C. for 20 minutes in a nitrogen atmosphere containing 500 ppm of oxygen to form a conductor circuit. The electrical resistance of each conductor was measured and the volume resistivity was calculated, and the results are summarized in Table 1.

また、得られた上記導電性ペーストをそれぞれセラミッ
ク板上に50X50mmのサイズに印刷・焼成したのち
、導体表面をフラックス処理して260℃のハンダ浴に
浸漬してハンダ付性を評価した。結果を第1表に併記し
た。
Further, each of the above-obtained conductive pastes was printed and fired on a ceramic plate in a size of 50 x 50 mm, and then the conductor surface was treated with flux and immersed in a 260° C. solder bath to evaluate solderability. The results are also listed in Table 1.

比較例1〜3 比較例1.2として、上記実施例において製造したCu
−20%Ni合金粉末およびCu−40%Zn合金粉末
をメツキ処理せずにそのまま金属粉末として用いて実施
例と同様にしてペーストとした。
Comparative Examples 1 to 3 As Comparative Example 1.2, the Cu produced in the above example
-20%Ni alloy powder and Cu-40%Zn alloy powder were used as metal powders as they were without being plated, and pastes were prepared in the same manner as in the examples.

また、比較例3として、上記実施例と同様の製法で得た
平均粒径2.5μmのCu粉末の表面に、Auメツキを
30重量%の割合で施した金属粉末を用いて上記実施例
と同様にペーストとした。
In addition, as Comparative Example 3, a metal powder in which 30% by weight of Au plating was applied to the surface of Cu powder with an average particle size of 2.5 μm obtained by the same manufacturing method as in the above example was used. It was made into a paste in the same way.

これらペーストを上記実施例と同様にしてセラミック板
上に印刷し焼成した後、導体の電気抵抗を測定して体積
抵抗率を算出した。また、ハンダ付性についても上記実
施例と同様にして評価した。
These pastes were printed on a ceramic plate and fired in the same manner as in the above example, and then the electrical resistance of the conductor was measured to calculate the volume resistivity. Further, solderability was also evaluated in the same manner as in the above examples.

それらの結果を第1表に併記した。The results are also listed in Table 1.

実施例11〜14 実施例1〜5で得たと同じ平均粒径2.5μmのCu−
20%Ni合金粉末の表面にAgメツキ(メツキ液: 
S−700)を施して金属粉末を得た。
Examples 11-14 Cu-
Ag plating (plating liquid:
S-700) to obtain metal powder.

この際、メツキ時間を変えることによりAgメツキ付着
量を母材合金粉末に対して5%、10%、20%、40
%となるよう調整した。なお、この場合のメツキ厚さは
、粒子をすべて粒径2.5μmの滑らかな球体とした場
合、それぞれ0.06μm、0.13 μm、0.25
 μm、0.5 μmである。
At this time, by changing the plating time, the amount of Ag plating deposited was 5%, 10%, 20%, and 40% relative to the base alloy powder.
Adjusted to be %. In addition, the plating thickness in this case is 0.06 μm, 0.13 μm, and 0.25 μm, respectively, when all particles are smooth spheres with a particle size of 2.5 μm.
μm, 0.5 μm.

得られた金属粉末を実施例1〜10と同様な方法でペー
ストとし、同様に印刷したのち、800ppmの酸素を
含む窒素雰囲気中で700℃で20分間焼成して導体を
形成した。得られた導体について体積抵抗率およびハン
ダ付性を評価し、それらの結果も第1表に示した。
The obtained metal powder was made into a paste in the same manner as in Examples 1 to 10, printed in the same manner, and then fired at 700° C. for 20 minutes in a nitrogen atmosphere containing 800 ppm of oxygen to form a conductor. The obtained conductor was evaluated for volume resistivity and solderability, and the results are also shown in Table 1.

第1表から明らかなように、卑金属合金粉末表面に貴金
属メツキを施した金属粉末を使用した本発明の導電性ペ
ーストにおいては、メ・フキをしない金属粉末あるいは
銅粉末表面に貴金属メツキをした金属粉末を使用したも
のに比較して初期の体積抵抗率が著しく小さく、経時変
化も極めて小さい。また、ハンダ付性についても良好な
結果が得られている。
As is clear from Table 1, in the conductive paste of the present invention, which uses metal powder with noble metal plating on the surface of base metal alloy powder, metal powder without coating or copper powder with noble metal plating on the surface The initial volume resistivity is significantly lower than that using powder, and the change over time is also extremely small. Also, good results were obtained regarding solderability.

(以下余白) [発明の効果] 以上説明したように、本発明の導電性ペーストによれば
、母材に卑金属の合金を使用しているため安価であり、
導電フィラーが耐酸化性であるために体積抵抗率が低く
かつ安定性に優れ、ハンダ付性にも優れた導体を提供す
ることができる。したがって、本発明は工業的に極めて
有用である。
(The following is a blank space) [Effects of the Invention] As explained above, the conductive paste of the present invention uses a base metal alloy as the base material, so it is inexpensive;
Since the conductive filler is oxidation resistant, it is possible to provide a conductor with low volume resistivity, excellent stability, and excellent solderability. Therefore, the present invention is extremely useful industrially.

Claims (1)

【特許請求の範囲】[Claims]  金属粉末、ガラスフリット、有機質ビヒクルを主成分
とする導電性ペーストにおいて、前記金属粉末としてC
u−Ni合金粉末またはCu−Zn合金粉末の表面にA
u、Pt、Pd、Ru、Agの群から選ばれたいずれか
1種の金属をコーティングしてなる金属粉末を用いるこ
とを特徴とする導電性ペースト。
In a conductive paste containing metal powder, glass frit, and an organic vehicle as main components, C as the metal powder.
A on the surface of u-Ni alloy powder or Cu-Zn alloy powder
A conductive paste characterized by using metal powder coated with any one metal selected from the group consisting of u, Pt, Pd, Ru, and Ag.
JP1216657A 1989-08-23 1989-08-23 Conductive paste Pending JPH0378906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216657A JPH0378906A (en) 1989-08-23 1989-08-23 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216657A JPH0378906A (en) 1989-08-23 1989-08-23 Conductive paste

Publications (1)

Publication Number Publication Date
JPH0378906A true JPH0378906A (en) 1991-04-04

Family

ID=16691891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216657A Pending JPH0378906A (en) 1989-08-23 1989-08-23 Conductive paste

Country Status (1)

Country Link
JP (1) JPH0378906A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033752A1 (en) * 2001-10-18 2003-04-24 Canadian Electronic Powders Corporation (Cepc) Powder for laminated ceramic capacitor internal electrode
JP2010526414A (en) * 2007-04-25 2010-07-29 フエロ コーポレーション Formation of thick film conductor made of silver and nickel, or silver and nickel alloy, and solar cell made therefrom
JP2012033291A (en) * 2010-07-28 2012-02-16 Tdk Corp Paste for electrode formation, terminal electrode and ceramic electronic part
JP2014005531A (en) * 2012-01-17 2014-01-16 Dowa Electronics Materials Co Ltd Silver-coated copper alloy powder and method for producing the same
JP2014091842A (en) * 2012-11-01 2014-05-19 Dowa Electronics Materials Co Ltd Method of manufacturing silver coating copper alloy powder
JP2015018814A (en) * 2010-01-25 2015-01-29 日立化成株式会社 Paste composition for electrode and solar cell
JP2015021145A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
WO2016029397A1 (en) * 2014-08-28 2016-03-03 E.I. Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2017201062A (en) * 2017-06-23 2017-11-09 Dowaエレクトロニクス株式会社 Method for producing silver-coated copper alloy powder
JP2017210686A (en) * 2017-07-31 2017-11-30 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and production method therefor
US10325693B2 (en) 2014-08-28 2019-06-18 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
WO2020013293A1 (en) * 2018-07-12 2020-01-16 住友金属鉱山株式会社 Alloy powder and method for producing same
US10672922B2 (en) 2014-08-28 2020-06-02 Dupont Electronics, Inc. Solar cells with copper electrodes
US11817266B2 (en) 2021-03-12 2023-11-14 Murata Manufacturing Co., Ltd. Conductive paste and ceramic electronic component

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324154C (en) * 2001-10-18 2007-07-04 加拿大电子粉末公司 Powder for laminated ceramic capacitor internal electrode
US7277268B2 (en) 2001-10-18 2007-10-02 Candian Electronic Powers Corporation Laminated ceramic capacitor
US7857886B2 (en) 2001-10-18 2010-12-28 Canadian Electronic Powders Corporation Powder for laminated ceramic capacitor internal electrode
WO2003033752A1 (en) * 2001-10-18 2003-04-24 Canadian Electronic Powders Corporation (Cepc) Powder for laminated ceramic capacitor internal electrode
JP2010526414A (en) * 2007-04-25 2010-07-29 フエロ コーポレーション Formation of thick film conductor made of silver and nickel, or silver and nickel alloy, and solar cell made therefrom
EP2137739A4 (en) * 2007-04-25 2013-04-24 Ferro Corp Thick film conductor formulations comprising silver and nickel or silver and nickel alloys and solar cells made therefrom
JP2017195195A (en) * 2010-01-25 2017-10-26 日立化成株式会社 Paste composition for electrode and solar cell
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2015018814A (en) * 2010-01-25 2015-01-29 日立化成株式会社 Paste composition for electrode and solar cell
JP2012033291A (en) * 2010-07-28 2012-02-16 Tdk Corp Paste for electrode formation, terminal electrode and ceramic electronic part
KR20140123526A (en) * 2012-01-17 2014-10-22 도와 일렉트로닉스 가부시키가이샤 Silver-coated copper alloy powder and method for manufacturing same
CN104066535A (en) * 2012-01-17 2014-09-24 同和电子科技有限公司 Silver-coated copper alloy powder and method for manufacturing same
EP2796228A4 (en) * 2012-01-17 2015-10-14 Dowa Electronics Materials Co Silver-coated copper alloy powder and method for manufacturing same
JP2016020544A (en) * 2012-01-17 2016-02-04 Dowaエレクトロニクス株式会社 Silver coated copper alloy powder and manufacturing method therefor
JP2014005531A (en) * 2012-01-17 2014-01-16 Dowa Electronics Materials Co Ltd Silver-coated copper alloy powder and method for producing the same
JP2016145422A (en) * 2012-01-17 2016-08-12 Dowaエレクトロニクス株式会社 Silver coated copper alloy powder and manufacturing method therefor
US10062473B2 (en) 2012-01-17 2018-08-28 Dowa Electronics Materials Co., Ltd. Silver-coated copper alloy powder and method for producing same
JP2017150086A (en) * 2012-01-17 2017-08-31 Dowaエレクトロニクス株式会社 Silver coated copper alloy powder and manufacturing method therefor
JP2014091842A (en) * 2012-11-01 2014-05-19 Dowa Electronics Materials Co Ltd Method of manufacturing silver coating copper alloy powder
JP2015021145A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
WO2016029397A1 (en) * 2014-08-28 2016-03-03 E.I. Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
US10672922B2 (en) 2014-08-28 2020-06-02 Dupont Electronics, Inc. Solar cells with copper electrodes
US9951231B2 (en) 2014-08-28 2018-04-24 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
CN106605270A (en) * 2014-08-28 2017-04-26 E.I.内穆尔杜邦公司 Copper-containing conductive pastes and electrodes made therefrom
CN106605270B (en) * 2014-08-28 2019-03-08 E.I.内穆尔杜邦公司 Cupric electrocondution slurry and thus manufactured electrode
US10325693B2 (en) 2014-08-28 2019-06-18 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
JP2017201062A (en) * 2017-06-23 2017-11-09 Dowaエレクトロニクス株式会社 Method for producing silver-coated copper alloy powder
JP2017210686A (en) * 2017-07-31 2017-11-30 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and production method therefor
WO2020013293A1 (en) * 2018-07-12 2020-01-16 住友金属鉱山株式会社 Alloy powder and method for producing same
KR20210024051A (en) * 2018-07-12 2021-03-04 스미토모 긴조쿠 고잔 가부시키가이샤 Alloy powder and its manufacturing method
JPWO2020013293A1 (en) * 2018-07-12 2021-04-30 住友金属鉱山株式会社 Alloy powder and its manufacturing method
EP3822000A4 (en) * 2018-07-12 2022-04-20 Sumitomo Metal Mining Co., Ltd. Alloy powder and method for producing same
US11859264B2 (en) 2018-07-12 2024-01-02 Sumitomo Metal Mining Co., Ltd. Alloy powder and method for producing same
US11817266B2 (en) 2021-03-12 2023-11-14 Murata Manufacturing Co., Ltd. Conductive paste and ceramic electronic component

Similar Documents

Publication Publication Date Title
JPH0378906A (en) Conductive paste
US4122232A (en) Air firable base metal conductors
CN110692109B (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
JP6885188B2 (en) Method for manufacturing conductive composition and terminal electrode
US4485153A (en) Conductive pigment-coated surfaces
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
EP0047071B1 (en) Thick film conductor employing nickel oxide
JP2009146890A (en) Copper conductive paste in which low-temperature baking out is possible
WO2016029400A1 (en) Copper-containing conductive pastes and electrodes made therefrom
JPH0616461B2 (en) Chip type porcelain capacitor
US3502489A (en) Metalizing compositions fireable in an inert atmosphere
JPH0266101A (en) Electric conductive particles and manufacture thereof
JP3861648B2 (en) Copper conductor paste composition, method for producing the same, and electronic component using the same
JP7132591B2 (en) Conductive paste and sintered body
JP2017199544A (en) Conductive composition, and method for manufacturing terminal electrode
JPH0440803B2 (en)
JP3318299B2 (en) Pb-free low-temperature firing type conductive paint
JPS6341166B2 (en)
JPH05114305A (en) Paste for baking
JPS63283184A (en) Circuit substrate covered with conductor composition
JPH0465010A (en) Copper conductive paste
JPH07130573A (en) Ceramic powder coated with conductive metal
JP2992958B2 (en) Conductive paste for low-temperature fired multilayer wiring boards
JP2614147B2 (en) Organometallic conductor composition
KR830001482B1 (en) Nickel Alloy Paste for Electric Conductor Formation