WO2017179524A1 - Silver-coated copper powder and method for producing same - Google Patents

Silver-coated copper powder and method for producing same Download PDF

Info

Publication number
WO2017179524A1
WO2017179524A1 PCT/JP2017/014638 JP2017014638W WO2017179524A1 WO 2017179524 A1 WO2017179524 A1 WO 2017179524A1 JP 2017014638 W JP2017014638 W JP 2017014638W WO 2017179524 A1 WO2017179524 A1 WO 2017179524A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
copper powder
coated copper
diameter
coated
Prior art date
Application number
PCT/JP2017/014638
Other languages
French (fr)
Japanese (ja)
Inventor
井上 健一
江原 厚志
吉田 昌弘
恭三 増田
山田 雄大
孝造 尾木
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Publication of WO2017179524A1 publication Critical patent/WO2017179524A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • a slurry of copper powder obtained by rapidly solidifying by spraying high-pressure water while dropping molten metal heated by copper is used as non-oxidizing gas.
  • the copper powder obtained by solid-liquid separation is coated with a silver-containing layer (a layer made of silver or a silver compound).
  • the copper powder obtained by solid-liquid separation may be dried, crushed, sieved, or washed with water as necessary.
  • the phosphorus content in the copper powder before silver coating was measured with an ICP emission spectroscopic analyzer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.). As a result, the phosphorus content was 470 ppm.
  • This conductive paste is printed on an alumina substrate by screen printing (in a pattern with a line width of 500 ⁇ m and a line length of 37.5 mm), and then heated and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film. Then, the volume resistivity of the obtained conductive film was calculated and the storage stability (reliability) was evaluated.
  • the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 0.7 [mu] m
  • 50% cumulative particle diameter (D 50 diameter) is 2.1 .mu.m
  • cumulative 90% particle diameter (D 90 diameter) 4. It was 0 ⁇ m.
  • the crystallite diameter D (111) is 124 nm
  • the crystallite diameter D (200) is 62 nm
  • the crystallite diameter D (220) is 64 nm
  • D (111) / D (200) is 2.00
  • D ( 111) / D (220) was 1.94
  • D (200) / D (220) was 0.97.
  • the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1.
  • the amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated.
  • the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated

Abstract

Provided are: a silver-coated copper powder which enables the production of a conductive paste that is suitable for the production of a conductive film having low volume resistivity and excellent storage stability (reliability); and a method for producing this silver-coated copper powder. This silver-coated copper powder is obtained by covering a copper powder with a silver-containing layer (a layer that is formed from silver or a silver compound), said copper powder being obtained by holding a slurry of a copper powder, which is obtained through quenching solidification by spraying high-pressure water to a dripping melt that is obtained by heating and melting copper, in the presence of a non-oxidizing gas such as a nitrogen gas and then subjecting the slurry to solid-liquid separation.

Description

銀被覆銅粉およびその製造方法Silver-coated copper powder and method for producing the same
 本発明は、銀被覆銅粉およびその製造方法に関し、特に、導電性ペーストなどに使用する銀被覆銅粉およびその製造方法に関する。 The present invention relates to a silver-coated copper powder and a method for producing the same, and more particularly to a silver-coated copper powder used for a conductive paste and the like and a method for producing the same.
 従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電性ペーストが使用されている。 Conventionally, in order to form electrodes and wiring of electronic parts by printing methods, etc., conductive paste prepared by blending solvent, resin, dispersant, etc. with conductive metal powder such as silver powder and copper powder has been used. Yes.
 しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であり、安価であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。 However, although silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, so that the cost is high. On the other hand, copper powder has a low volume resistivity, is a good conductive material, is inexpensive, but is easily oxidized, and therefore has poor storage stability (reliability) compared to silver powder.
 これらの問題を解消するために、導電性ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉が提案されている(例えば、特許文献1~2参照)。 In order to solve these problems, a silver-coated copper powder in which the surface of the copper powder is coated with silver has been proposed as a metal powder used in the conductive paste (see, for example, Patent Documents 1 and 2).
特開2010-174311号公報(段落番号0003)JP 2010-174411 A (paragraph number 0003) 特開2010-077495号公報(段落番号0006)JP 2010-077745 (paragraph number 0006)
 しかし、特許文献1~2の銀被覆銅粉では、導電性ペーストに使用して導電膜を作製したときに、導電膜の体積抵抗率が高くなったり、保存安定性(信頼性)が不十分な場合があった。 However, in the silver-coated copper powders of Patent Documents 1 and 2, when a conductive film is produced using a conductive paste, the volume resistivity of the conductive film is increased or the storage stability (reliability) is insufficient. There was a case.
 したがって、本発明は、このような従来の問題点に鑑み、体積抵抗率が低く且つ保存安定性(信頼性)に優れた導電膜の製造に適した導電性ペーストを製造することができる、銀被覆銅粉およびその製造方法を提供することを目的とする。 Therefore, in view of such a conventional problem, the present invention can produce a conductive paste suitable for the production of a conductive film having a low volume resistivity and excellent storage stability (reliability). It aims at providing a covering copper powder and its manufacturing method.
 本発明者らは、上記課題を解決するために鋭意研究した結果、銅を加熱して溶解した溶湯を落下させながら高圧水を吹き付けて急冷凝固して得られた銅粉のスラリーを非酸化性ガスの存在下で保持した後、固液分離して得られた銅粉を銀含有層で被覆することにより、体積抵抗率が低く且つ保存安定性(信頼性)に優れた導電膜の製造に適した導電性ペーストを製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention have developed a copper powder slurry obtained by rapidly solidifying by spraying high-pressure water while dropping molten metal obtained by heating copper. After holding in the presence of gas, the copper powder obtained by solid-liquid separation is coated with a silver-containing layer to produce a conductive film with low volume resistivity and excellent storage stability (reliability). The inventors have found that a suitable conductive paste can be produced, and have completed the present invention.
 すなわち、本発明による銀被覆銅粉は、銅を加熱して溶解した溶湯を落下させながら高圧水を吹き付けて急冷凝固して得られた銅粉のスラリーを非酸化性ガスの存在下で保持した後、固液分離して得られた銅粉を銀含有層で被覆することを特徴とする。 That is, the silver-coated copper powder according to the present invention holds a copper powder slurry obtained by rapid solidification by spraying high-pressure water while dropping a molten metal melted by heating copper in the presence of a non-oxidizing gas. Thereafter, the copper powder obtained by solid-liquid separation is covered with a silver-containing layer.
 この銀被覆銅粉の製造方法において、スラリー中とスラリーを収容する容器内との少なくとも一方に非酸化性ガスを吹き込みながら保持することによって、スラリーを非酸化性ガスの存在下で保持するのが好ましい。また、銅粉のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1~15μmであるのが好ましい。また、高圧水がアルカリ水溶液であるのが好ましく、溶湯にリンを添加するのが好ましい。 In this method for producing silver-coated copper powder, the slurry is held in the presence of the non-oxidizing gas by blowing the non-oxidizing gas into at least one of the slurry and the container containing the slurry. preferable. The 50% cumulative particle diameter of the volume basis measured by a laser diffraction particle size distribution measuring apparatus of the copper powder (D 50 diameter) is preferably from 0.1 ~ 15 [mu] m. The high-pressure water is preferably an alkaline aqueous solution, and phosphorus is preferably added to the molten metal.
 また、本発明による銀被覆銅粉は、銅粉の表面が銀含有層で被覆された銀被覆銅粉であって、Cuの(200)面における結晶子径D(200)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(200)が1.8以上であり且つCuの(220)面における結晶子径D(220)に対するCuの(200)面における結晶子径D(200)の比D(200)/D(220)が1.095以下であることを特徴とする。 Further, the silver-coated copper powder according to the present invention is a silver-coated copper powder in which the surface of the copper powder is coated with a silver-containing layer, and the Cu (111 ) with respect to the crystallite diameter D (200) in the (200) plane of Cu. ) The ratio D (111) / D (200) of the crystallite diameter D (111) in the plane is 1.8 or more and the (200) plane of Cu with respect to the crystallite diameter D (220) in the (220) plane of Cu The ratio D (200) / D (220) of the crystallite diameter D (200 ) is 1.095 or less.
 この銀被覆銅粉において、銀被覆銅粉のCuの(220)面における結晶子径D(220)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(220)が1.90以上であるのが好ましい。また、銀被覆銅粉のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1~15μmであるのが好ましい。また、銀被覆銅粉中のリン含有量が10~1000ppmであるのが好ましい。 In this silver-coated copper powder, the ratio D (111) / D ( ) of the crystallite diameter D (111) in the (111) plane of Cu to the crystallite diameter D (220) in the Cu (220) plane of the silver-coated copper powder. 220) is preferably 1.90 or more. Further, cumulative 50% particle diameter on a volume basis as measured by a laser diffraction particle size distribution measuring apparatus of the silver-coated copper powder (D 50 diameter) is preferably from 0.1 ~ 15 [mu] m. The phosphorus content in the silver-coated copper powder is preferably 10 to 1000 ppm.
 さらに、本発明による導電性ペーストは、導電性粉末として上記の銀被覆銅粉を含むことを特徴とする。 Furthermore, the conductive paste according to the present invention is characterized by containing the above silver-coated copper powder as a conductive powder.
 なお、本明細書中において、「銀被覆銅粉のCuの(hkl)面における結晶子径D(hkl)」とは、銀被覆銅粉のX線回折パターンのCuの(hkl)ピークの半価幅からシェラーの式を用いて算出した結晶子径をいう。 In this specification, “crystallite diameter D (hkl) in Cu (hkl) plane of silver-coated copper powder” means half of the (hkl) peak of Cu in the X-ray diffraction pattern of silver-coated copper powder. It refers to the crystallite diameter calculated from the value width using Scherrer's equation.
 本発明によれば、体積抵抗率が低く且つ保存安定性(信頼性)に優れた導電膜の製造に適した導電性ペーストを製造することができる、銀被覆銅粉およびその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the silver coating copper powder which can manufacture the electrically conductive paste suitable for manufacture of the electrically conductive film with low volume resistivity and excellent in storage stability (reliability), and its manufacturing method are provided. be able to.
実施例および比較例の銀被覆銅粉のCuの(200)面における結晶子径D(200)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(200)と、その銀被覆銅粉を使用して作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)との関係を示す図である。The ratio D (111) / D (200 ) of the crystallite diameter D (111) in the (111) plane of Cu to the crystallite diameter D (200) in the (200) plane of Cu of the silver-coated copper powders of Examples and Comparative Examples ) and is a diagram showing the relationship between the silver-coated copper powder volume resistivity change rate after storage for 6 weeks conductive film at 0.99 ° C. was prepared using a (%). 実施例および比較例の銀被覆銅粉のCuの(220)面における結晶子径D(220)に対するCuの(200)面における結晶子径D(200)の比D(200)/D(220)と、その銀被覆銅粉を使用して作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)との関係を示す図である。The ratio D (200) / D (220 ) of the crystallite diameter D (200) in the (200) plane of Cu to the crystallite diameter D (220) in the (220) plane of Cu of the silver-coated copper powders of Examples and Comparative Examples ) and is a diagram showing the relationship between the silver-coated copper powder volume resistivity change rate after storage for 6 weeks conductive film at 0.99 ° C. was prepared using a (%). 実施例および比較例の銀被覆銅粉の銀被覆層の厚さと、その銀被覆銅粉を使用して作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)との関係を示す図である。The thickness of the silver coating layer of the silver-coated copper powder of Examples and Comparative Examples, and the volume resistivity change rate (%) after the conductive film prepared using the silver-coated copper powder was stored at 150 ° C. for 6 weeks It is a figure which shows the relationship.
 本発明による銀被覆銅粉の製造方法の実施の形態では、銅を加熱して溶解した溶湯を落下させながら高圧水を吹き付けて急冷凝固して得られた銅粉のスラリーを非酸化性ガスの存在下で保持した後、固液分離して得られた銅粉を銀含有層(銀または銀化合物からなる層)で被覆する。なお、固液分離して得られた銅粉は、必要に応じて、乾燥したり、解砕したり、篩別してもよく、水洗してもよい。 In the embodiment of the method for producing silver-coated copper powder according to the present invention, a slurry of copper powder obtained by rapidly solidifying by spraying high-pressure water while dropping molten metal heated by copper is used as non-oxidizing gas. After holding in the presence, the copper powder obtained by solid-liquid separation is coated with a silver-containing layer (a layer made of silver or a silver compound). In addition, the copper powder obtained by solid-liquid separation may be dried, crushed, sieved, or washed with water as necessary.
 銅粉は、銅を溶解温度以上の温度(1100~1600℃)に加熱して溶解した溶湯をタンディッシュ下部から落下させながら高圧水を吹き付けて急冷凝固させることにより微粉末とする、所謂水アトマイズ法により製造する。水アトマイズ法により銅粉を製造すると、粒子径が小さい銅粉を得ることができるので、そのような銅粉を銀含有層で被覆した銀被覆銅粉を導電性ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。また、高圧水として、pHを高くして銅の腐食を防止するために、アルカリ水を使用するのが好ましく、pH8~12のアルカリ水を5~50℃の温度で使用するのがさらに好ましい。このアルカリ水として、純水に水酸化ナトリウムなどのアルカリを溶解したアルカリ水溶液を使用することができる。このように(好ましくはアルカリ水からなる)高圧水を吹き付けて急冷凝固して得られた銅粉のスラリーを非酸化性ガスの存在下で保持した後、固液分離して得られた銅粉を使用することにより、体積抵抗率が低く且つ保存安定性(信頼性)に優れた導電膜の製造に適した導電性ペーストを製造することができる、銀被覆銅粉を製造することができる。また、高圧水は、水圧30~150MPaで吹き付けられるのが好ましい。 The copper powder is so-called water atomized, which is made into a fine powder by heating the copper to a temperature higher than the melting temperature (1100 to 1600 ° C) and dropping the molten metal from the lower part of the tundish while spraying high-pressure water and rapidly solidifying it. Manufactured by the law. When copper powder is produced by the water atomization method, a copper powder having a small particle diameter can be obtained. Therefore, when silver-coated copper powder in which such a copper powder is coated with a silver-containing layer is used as a conductive paste, The conductivity can be improved by increasing the number of contact points. In addition, alkaline water is preferably used as high-pressure water in order to increase the pH and prevent copper corrosion, and it is more preferable to use alkaline water having a pH of 8 to 12 at a temperature of 5 to 50 ° C. As this alkaline water, an alkaline aqueous solution in which an alkali such as sodium hydroxide is dissolved in pure water can be used. The copper powder obtained by solid-liquid separation after holding the slurry of copper powder obtained by spraying high-pressure water (preferably consisting of alkaline water) and rapidly solidifying in this manner in the presence of a non-oxidizing gas. By using this, it is possible to produce a silver-coated copper powder that can produce a conductive paste having a low volume resistivity and excellent storage stability (reliability) suitable for producing a conductive film. The high-pressure water is preferably sprayed at a water pressure of 30 to 150 MPa.
 非酸化性ガスとして、窒素ガスやアルゴンガスなどの不活性ガス、水素や一酸化炭素などの還元性ガスを使用することができる。これらのガスは、単独で使用してもよいし、所定の割合で混合した混合ガスとして使用してもよい。この非酸化性ガスは、スラリー中に直接吹き込むのが好ましいが、スラリー中に直接吹き込まないでスラリーを収容する(タンクや配管などの)容器内(のスラリー上方の空間)に吹き込んでもよい。このように吹き込む非酸化性ガスの流量は、スラリー中の酸素濃度を十分に低減することができる流量にすればよく、スラリーを収容する(タンクや配管などの)容器内(のスラリー上方の空間)に吹き込む場合には、その(タンクや配管などの)容器内の雰囲気中の酸素濃度を好ましくは1質量%未満(さらに好ましくは0.1質量%未満)にすることができる流量にすればよい。このようにスラリー中の酸素含有量を低減すると、銅粉の酸化(CuOやCuOの生成)を抑制することができる。このように銅粉の酸化を抑制すると、Cuの結晶構造が歪められるのを抑制することができると考えられ、このようにして得られた銅粉を銀被覆層で被覆して銀被覆銅粉を製造すると、銀被覆銅粉のCuの所定の結晶面における結晶子径を所望の結晶子径にすることができる。このような銅粉の酸化を抑制するために、非酸化性ガスの流量は、10~1000L/分であるのが好ましく、その吹き込みを保持する時間(スラリー中やスラリーを収容する(タンクや配管などの)容器内に非酸化性ガスを吹き込む時間)は、5~360分間であるのが好ましい。 As the non-oxidizing gas, an inert gas such as nitrogen gas or argon gas, or a reducing gas such as hydrogen or carbon monoxide can be used. These gases may be used alone or as a mixed gas mixed at a predetermined ratio. This non-oxidizing gas is preferably blown directly into the slurry. However, the non-oxidizing gas may be blown into a container (such as a tank or a pipe) containing the slurry (a space above the slurry) without blowing directly into the slurry. The flow rate of the non-oxidizing gas blown in this way may be set to a flow rate that can sufficiently reduce the oxygen concentration in the slurry, and the space (above the slurry) in a container (such as a tank or a pipe) containing the slurry. If the flow rate is such that the oxygen concentration in the atmosphere in the container (such as a tank or piping) is preferably less than 1% by mass (more preferably less than 0.1% by mass). Good. Thus, if the oxygen content in the slurry is reduced, oxidation of copper powder (generation of CuO and Cu 2 O) can be suppressed. Thus, it is thought that suppressing the oxidation of the copper powder can suppress the distortion of the crystal structure of Cu, and the copper powder thus obtained is coated with a silver coating layer to form a silver-coated copper powder. Can produce a desired crystallite diameter in a predetermined crystal plane of Cu of the silver-coated copper powder. In order to suppress such oxidation of the copper powder, the flow rate of the non-oxidizing gas is preferably 10 to 1000 L / min, and the time during which the blowing is maintained (in the slurry or in the slurry (tank or piping) Etc.) The time for blowing the non-oxidizing gas into the container is preferably 5 to 360 minutes.
 銀含有層の被覆量は、銀被覆銅粉に対して1~50質量%であるのが好ましく、7~50質量%であるのがさらに好ましく、8~45質量%であるのがさらに好ましく、9~40質量%であるのが最も好ましい。銀含有層の被覆量が1質量%未満では、銀被覆銅粉の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。 The coating amount of the silver-containing layer is preferably 1 to 50% by mass, more preferably 7 to 50% by mass, and further preferably 8 to 45% by mass with respect to the silver-coated copper powder. It is most preferably 9 to 40% by mass. If the coating amount of the silver-containing layer is less than 1% by mass, the conductivity of the silver-coated copper powder is adversely affected. On the other hand, if it exceeds 50 mass%, the cost increases due to an increase in the amount of silver used, which is not preferable.
 銅粉の粒子径は、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1~15μmであるのが好ましく、0.3~10μmであるのがさらに好ましく、1~5μmであるのが最も好ましい。累積50%粒子径(D50径)が0.1μm未満では、銀被覆銅粉の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、銀被覆銅粉を含む導電性ペーストにより微細な配線を形成するのが困難になるので好ましくない。 Particle size of the copper powder is preferably from (Heroes method by) Laser cumulative 50% particle size of the diffraction-type particle size volume basis as measured by the distribution measuring device (D 50 diameter) 0.1 ~ 15 [mu] m, 0.3 More preferably, it is ˜10 μm, most preferably 1 to 5 μm. A cumulative 50% particle diameter (D 50 diameter) of less than 0.1 μm is not preferable because it adversely affects the conductivity of the silver-coated copper powder. On the other hand, if it exceeds 15 μm, it is difficult to form a fine wiring with a conductive paste containing silver-coated copper powder, which is not preferable.
 また、銅粉中の酸素含有量を低下させるために、溶湯にリンを添加してもよい。このリンの添加量は、溶湯中のリンの濃度が10~2000ppmになる量であるのが好ましく、400~2000ppmになる量であるのがさらに好ましい。溶湯にリンを添加するために、溶湯にリン銅合金を添加してもよい。このように溶湯にリンを添加すると、スラリー中の酸素含有量を低減することができ、銅粉の酸化(CuOやCuOの生成)を抑制することができる。このように銅粉の酸化を抑制すると、Cuの結晶構造が歪められるのを抑制することができると考えられ、このようにして得られた銅粉を銀被覆層で被覆して銀被覆銅粉を製造すると、銀被覆銅粉のCuの所定の結晶面における結晶子径を所望の結晶子径にすることができる。 Moreover, in order to reduce the oxygen content in the copper powder, phosphorus may be added to the molten metal. The amount of phosphorus added is preferably such that the concentration of phosphorus in the molten metal is 10 to 2000 ppm, and more preferably 400 to 2000 ppm. In order to add phosphorus to the molten metal, a phosphor copper alloy may be added to the molten metal. When phosphorus is added to the molten metal in this way, the oxygen content in the slurry can be reduced, and oxidation of copper powder (generation of CuO and Cu 2 O) can be suppressed. Thus, it is thought that suppressing the oxidation of the copper powder can suppress the distortion of the crystal structure of Cu, and the copper powder thus obtained is coated with a silver coating layer to form a silver-coated copper powder. Can produce a desired crystallite diameter in a predetermined crystal plane of Cu of the silver-coated copper powder.
 銅粉を銀含有層で被覆する方法として、銅と銀の置換反応を利用した置換法や、還元剤を用いる還元法により、銅粉の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅粉と銀または銀化合物を含む溶液を攪拌しながら銅粉の表面に銀または銀化合物を析出させる方法や、溶媒中に銅粉および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅粉の表面に銀または銀化合物を析出させる方法などを使用することができる。なお、このように銅粉を銀含有層で被覆する工程は、銅粉の酸化を抑制するために、窒素雰囲気などの非酸化性雰囲気で行うのが好ましい。 As a method of coating copper powder with a silver-containing layer, use a method of depositing silver or a silver compound on the surface of copper powder by a substitution method using a substitution reaction between copper and silver or a reduction method using a reducing agent. For example, a method of precipitating silver or a silver compound on the surface of a copper powder while stirring a solution containing copper powder and silver or a silver compound in a solvent, or a solution containing a copper powder and an organic substance in a solvent and a solvent For example, a method of precipitating silver or a silver compound on the surface of the copper powder while mixing and stirring a solution containing silver or a silver compound and an organic substance can be used. In addition, it is preferable to perform the process of coat | covering copper powder with a silver content layer in this way in non-oxidizing atmospheres, such as nitrogen atmosphere, in order to suppress the oxidation of copper powder.
 この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20~30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。 As this solvent, water, an organic solvent, or a mixture of these can be used. When using a mixed solvent of water and organic solvent, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.). The mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately. In addition, as water used as a solvent, distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.
 銀含有層の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銅粉を銀含有層で被覆する反応(銀被覆反応)をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層の量に応じて決定することができる。 Since silver ions need to be present in the solution as a raw material for the silver-containing layer, it is preferable to use silver nitrate having high solubility in water and many organic solvents. In addition, in order to carry out the reaction of coating copper powder with a silver-containing layer (silver coating reaction) as uniformly as possible, silver nitrate is dissolved in a solvent (water, organic solvent or a mixture of these) instead of solid silver nitrate. It is preferred to use a solution. The amount of silver nitrate solution used, the concentration of silver nitrate in the silver nitrate solution, and the amount of organic solvent can be determined according to the amount of the target silver-containing layer.
 銀含有層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅粉のコアとなる銅粉は主構成要素が銅であるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。 In order to form a silver-containing layer more uniformly, a chelating agent may be added to the solution. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions generated as a by-product due to substitution reaction between silver ions and metallic copper do not reprecipitate. . In particular, since the main component of the copper powder that is the core of the silver-coated copper powder is copper, it is preferable to select a chelating agent while paying attention to the complex stability constant with copper. Specifically, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.
 銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。 In order to perform the silver coating reaction stably and safely, a pH buffer may be added to the solution. As this pH buffering agent, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.
 銀被覆反応の際には、銀塩を添加する前に溶液中に銅粉を入れて攪拌し、銅粉が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは10~40℃、さらに好ましくは15~35℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分~5時間の範囲で設定することができる。 During the silver coating reaction, stir copper powder in the solution before adding the silver salt, and add the solution containing the silver salt while the copper powder is sufficiently dispersed in the solution. Is preferred. The reaction temperature during the silver coating reaction may be any temperature that does not cause the reaction solution to solidify or evaporate, but is preferably set in the range of 10 to 40 ° C, more preferably 15 to 35 ° C. The reaction time varies depending on the coating amount of silver or silver compound and the reaction temperature, but can be set in the range of 1 minute to 5 hours.
 また、銀含有層で被覆した銅粉を表面処理剤で表面処理するのが好ましく、この表面処理剤が脂肪酸であるのが好ましい。この脂肪酸として、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸などを使用することができるが、パルミチン酸、ステアリン酸またはオレイン酸を使用するのが好ましい。 Moreover, it is preferable to surface-treat the copper powder coated with the silver-containing layer with a surface treatment agent, and this surface treatment agent is preferably a fatty acid. These fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, vaccenic acid , Linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, melicic acid, etc. Although it is possible, it is preferred to use palmitic acid, stearic acid or oleic acid.
 上述した銀被覆銅粉の製造方法の実施の形態により、本発明による銀被覆銅粉を製造することができる。 The silver-coated copper powder according to the present invention can be manufactured according to the embodiment of the method for manufacturing the silver-coated copper powder described above.
 本発明による銀被覆銅粉では、銅粉の表面が銀含有層で被覆され、Cuの(200)面における結晶子径D(200)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(200)が1.8以上であり且つCuの(220)面における結晶子径D(220)に対するCuの(200)面における結晶子径D(200)の比D(200)/D(220)が1.095以下(好ましくは1.09以下)である。このような銀被覆銅粉により、体積抵抗率が低く且つ保存安定性(信頼性)に優れた導電膜の製造に適した導電性ペーストを製造することができる。 The silver-coated copper powder according to the present invention, the surface of the copper powder is covered with a silver-containing layer, the crystallite diameter D in (111) plane of Cu with respect to the crystallite diameter D (200) in (200) plane of Cu (111) the ratio of the ratio D (111) / D (200) is 1.8 or more at and and crystallite size in the (200) plane of Cu with respect to (220) crystallite diameter D (220) in the surface of the Cu D (200) D (200) / D (220) is 1.095 or less (preferably 1.09 or less). With such silver-coated copper powder, a conductive paste suitable for the production of a conductive film having a low volume resistivity and excellent storage stability (reliability) can be produced.
 また、銀被覆銅粉を含む導電性ペーストから製造される導電膜の体積抵抗率および信頼性の観点から、上記の銀被覆銅粉のCuの(220)面における結晶子径D(220)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(220)が1.90以上であるのが好ましい。 Moreover, from the viewpoint of volume resistivity and reliability of a conductive film produced from a conductive paste containing silver-coated copper powder, the crystal-coated diameter D (220) in the (220) plane of Cu of the silver-coated copper powder is described above. It is preferable that the ratio D (111) / D (220) of the crystallite diameter D (111) in the (111) plane of Cu is 1.90 or more.
 なお、銀被覆銅粉のCuの(111)面における結晶子径D(111)は、100~160nmであるのが好ましく、110~150nmであるのがさらに好ましい。また、銀被覆銅粉のCuの(200)面における結晶子径D(200)は、40~90nmであるのが好ましく、50~80nmであるのがさらに好ましい。さらに、銀被覆銅粉のCuの(220)面における結晶子径D(220)は、40~90nmであるのが好ましく、50~80nmであるのがさらに好ましい。 The crystallite diameter D (111) in the Cu (111) plane of the silver-coated copper powder is preferably 100 to 160 nm, and more preferably 110 to 150 nm. Further, the crystallite diameter D (200) in the (200) plane of Cu of the silver-coated copper powder is preferably 40 to 90 nm, and more preferably 50 to 80 nm. Further, the crystallite diameter D (220) in the Cu (220) plane of the silver-coated copper powder is preferably 40 to 90 nm, and more preferably 50 to 80 nm.
 また、銀含有層が銀または銀化合物からなる層であるのが好ましく、銀含有層の被覆量は、銀被覆銅粉に対して1~50質量%であるのが好ましく、7~50質量%であるのがさらに好ましく、8~45質量%であるのがさらに好ましく、9~40質量%であるのが最も好ましい。銀含有層の被覆量が1質量%未満では、銀被覆銅粉の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。なお、必ずしも銅粉の表面全体が銀含有層で被覆されている必要はない。 The silver-containing layer is preferably a layer made of silver or a silver compound, and the coating amount of the silver-containing layer is preferably 1 to 50% by mass, and 7 to 50% by mass with respect to the silver-coated copper powder. More preferably, it is more preferably 8 to 45% by mass, and most preferably 9 to 40% by mass. If the coating amount of the silver-containing layer is less than 1% by mass, the conductivity of the silver-coated copper powder is adversely affected. On the other hand, if it exceeds 50 mass%, the cost increases due to an increase in the amount of silver used, which is not preferable. Note that the entire surface of the copper powder is not necessarily covered with the silver-containing layer.
 銀被覆銅粉の粒子径は、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1~15μmであるのが好ましく、0.3~10μmであるのがさらに好ましく、1~5μmであるのが最も好ましい。累積50%粒子径(D50径)が0.1μm未満では、銀被覆銅粉の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、銀被覆銅粉を含む導電性ペーストにより微細な配線を形成するのが困難になるので好ましくない。 Particle diameter of the silver-coated copper powder is preferably from (Heroes method by) Laser cumulative 50% particle size of the diffraction-type particle size volume basis as measured by the distribution measuring device (D 50 diameter) 0.1 ~ 15 [mu] m, 0 More preferably, it is 3 to 10 μm, and most preferably 1 to 5 μm. A cumulative 50% particle diameter (D 50 diameter) of less than 0.1 μm is not preferable because it adversely affects the conductivity of the silver-coated copper powder. On the other hand, if it exceeds 15 μm, it is difficult to form a fine wiring with a conductive paste containing silver-coated copper powder, which is not preferable.
 銀被覆銅粉のBET比表面積は、銀被覆銅粉の導電性の観点から、0.1~4m/gであるのが好ましく、0.2~3m/gであるのがさらに好ましい。銀被覆銅粉のタップ密度は、銀被覆銅粉の充填性の観点から、4~7.5g/cmであるのが好ましく、4.5~7g/cmであるのがさらに好ましい。銀被覆銅粉中の酸素含有量は、銀被覆銅粉の導電性の観点から、0.4質量%以下であるのが好ましく、0.3質量%以下であるのがさらに好ましい。銀被覆銅粉中の炭素含有量は、銀被覆銅粉を含む導電性ペーストとその導電性ペーストを塗布する基板との密着性の観点から、0.3質量%以下であるのが好ましく、0.2質量%以下であるのが好ましい。銀被覆銅粉中のリン含有量は、銀被覆銅粉を含む導電性ペーストから製造される導電膜の体積抵抗率および信頼性の観点から、10~1000ppmであるのが好ましく、200~500ppmであるのがさらに好ましい。銀被覆銅粉の形状は、水アトマイズ法により製造された形状である略球状でもよいが、機械的に変形させてフレーク状にしてもよい。 The BET specific surface area of the silver-coated copper powder is preferably 0.1 to 4 m 2 / g, more preferably 0.2 to 3 m 2 / g, from the viewpoint of the conductivity of the silver-coated copper powder. The tap density of the silver-coated copper powder is preferably 4 to 7.5 g / cm 3 , more preferably 4.5 to 7 g / cm 3 from the viewpoint of the filling property of the silver-coated copper powder. From the viewpoint of conductivity of the silver-coated copper powder, the oxygen content in the silver-coated copper powder is preferably 0.4% by mass or less, and more preferably 0.3% by mass or less. The carbon content in the silver-coated copper powder is preferably 0.3% by mass or less from the viewpoint of adhesion between the conductive paste containing the silver-coated copper powder and the substrate to which the conductive paste is applied. It is preferably 2% by mass or less. The phosphorus content in the silver-coated copper powder is preferably 10 to 1000 ppm, preferably 200 to 500 ppm, from the viewpoint of the volume resistivity and reliability of the conductive film produced from the conductive paste containing the silver-coated copper powder. More preferably. The shape of the silver-coated copper powder may be substantially spherical, which is a shape manufactured by a water atomizing method, but may be mechanically deformed to form a flake.
 本発明による銀被覆銅粉の実施の形態は、(銀被覆銅粉を有機成分中に分散させた)導電性ペーストの材料などに使用することができる。導電性ペーストの構成要素として、銀被覆銅粉、(エチルセルロース樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ブチラール樹脂などの)バインダー樹脂またはこのバインダー樹脂を有機溶剤に溶解したビヒクル、ガラスフリット、無機酸化物、(飽和または不飽和脂肪族炭化水素類、ケトン類、芳香族炭化水素類、グリコールエーテル類、エステル類、アルコール類などの)有機溶剤、分散剤、硬化剤などが含まれる。このような導電性ペーストは、各構成要素を計量して所定の容器に入れ、らいかい機、万能攪拌機、ニーダーなどを用いて予備混練した後、3本ロールで本混練することによって作製することができる。また、必要に応じて、その後、溶剤を添加して、粘度調整を行ってもよい。また、ガラスフリットや無機酸化物とビヒクルのみを本混練して粒度を下げた後、最後に銀被覆銅粉を追加して本混練してもよい。なお、導電性ペーストの導電性粉末として、他の金属粉末を配合してもよい。この導電性ペーストをディッピングや印刷などにより所定パターンに形成した後に焼成して導電膜を形成することができる。 The embodiment of the silver-coated copper powder according to the present invention can be used as a material for a conductive paste (in which silver-coated copper powder is dispersed in an organic component). Components of the conductive paste include silver-coated copper powder, binder resin (such as ethyl cellulose resin, acrylic resin, epoxy resin, phenol resin, butyral resin) or a vehicle, glass frit, inorganic oxide obtained by dissolving this binder resin in an organic solvent. Products, organic solvents (saturated or unsaturated aliphatic hydrocarbons, ketones, aromatic hydrocarbons, glycol ethers, esters, alcohols, etc.), dispersants, curing agents, and the like. Such a conductive paste is prepared by weighing each component into a predetermined container, pre-kneading using a raking machine, universal stirrer, kneader, etc. and then carrying out main kneading with three rolls. Can do. Further, if necessary, the viscosity may be adjusted by adding a solvent thereafter. Alternatively, after only kneading glass frit or inorganic oxide and vehicle to lower the particle size, silver-coated copper powder may be added and finally kneaded. In addition, you may mix | blend another metal powder as electroconductive powder of an electroconductive paste. The conductive paste can be formed into a predetermined pattern by dipping or printing and then baked to form a conductive film.
 本発明による銀被覆銅粉の実施の形態を含む導電性ペーストから得られた導電膜の体積抵抗率は、20~55μΩ・cmであるのが好ましく、20~45μΩ・cmであるのがさらに好ましい。また、この導電膜を一定温度(150℃)に保たれた(大気雰囲気の)試験室内において6週間保存した後の導電膜の体積抵抗率の変化率は、120%以下であるのが好ましく、100%以下であるのがさらに好ましい。 The volume resistivity of the conductive film obtained from the conductive paste including the embodiment of the silver-coated copper powder according to the present invention is preferably 20 to 55 μΩ · cm, and more preferably 20 to 45 μΩ · cm. . The rate of change in the volume resistivity of the conductive film after storage for 6 weeks in a test chamber (in the atmosphere) maintained at a constant temperature (150 ° C.) is preferably 120% or less, More preferably, it is 100% or less.
 以下、本発明による銀被覆銅粉およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the silver-coated copper powder and the production method thereof according to the present invention will be described in detail.
[実施例1]
 無酸素銅15kgを加熱して溶解した1300℃の溶湯中に(15質量%のリンを含む)リン銅合金を(溶湯中の)リン濃度が930ppmになるように添加して撹拌し、混合することにより作製したリン含有銅溶湯をタンディッシュ下部から落下させながら、水アトマイズ装置により大気中において水圧150MPaで高圧水を吹き付けて急冷凝固させ、得られたスラリーをタンク内に収容し、スラリー中に500L/分の流量で窒素ガスを吹き込んで30分間保持した後、固液分離し、固形物を水洗し、110℃で10時間乾燥し、解砕し、風力分級して、少量のリンを含む銅粉を得た。なお、窒素ガスを吹き込んで保持したときのタンク内の雰囲気中の酸素濃度は0.1質量%未満であった。また、高圧水として、高圧ポンプに給水するタンク中の純水に水酸化ナトリウムを添加して得られたpH10.3のアルカリ水溶液を使用した。
[Example 1]
In a molten 1300 ° C melted by heating 15 kg of oxygen-free copper, a phosphorous copper alloy (containing 15% by mass of phosphorus) is added so that the phosphorous concentration (in the molten metal) is 930 ppm, and stirred and mixed. While dropping the molten phosphorus-containing copper melt from the bottom of the tundish, the water atomizer blows high-pressure water at a water pressure of 150 MPa in the atmosphere to rapidly cool and solidify the slurry. Blow nitrogen gas at a flow rate of 500 L / min and hold for 30 minutes, followed by solid-liquid separation, washing the solid with water, drying at 110 ° C. for 10 hours, crushing, air classification, and containing a small amount of phosphorus Copper powder was obtained. The oxygen concentration in the atmosphere in the tank when nitrogen gas was blown and held was less than 0.1% by mass. Further, as the high-pressure water, an alkaline aqueous solution having a pH of 10.3 obtained by adding sodium hydroxide to pure water in a tank supplied to the high-pressure pump was used.
 また、EDTA-2Na二水和物167gと炭酸アンモニウム167gを純水1936gに溶解した溶液(溶液1)と、EDTA-2Na二水和物367gと炭酸アンモニウム184gを純水1464gに溶解した溶液に、硝酸銀61gを純水189gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。 In addition, a solution (solution 1) in which 167 g of EDTA-2Na dihydrate and 167 g of ammonium carbonate were dissolved in 1936 g of pure water, and a solution in which 367 g of EDTA-2Na dihydrate and 184 g of ammonium carbonate were dissolved in 1464 g of pure water, A solution (solution 2) obtained by adding a solution obtained by dissolving 61 g of silver nitrate in 189 g of pure water was prepared.
 次に、窒素雰囲気下において、得られた銅粉350gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて20分間撹拌することにより、銀により被覆された銅粉を含むスラリーを得た。 Next, 350 g of the obtained copper powder was added to Solution 1 in a nitrogen atmosphere, and the temperature was raised to 25 ° C. while stirring. The solution 2 was added to the copper powder-dispersed solution and stirred for 20 minutes to obtain a slurry containing copper powder coated with silver.
 次に、得られたスラリーに、表面処理剤としてパルミチン酸をアルコールに溶解させて得られた(3質量%のパルミチン酸を含む)溶液35gを添加し、40分間撹拌した後、濾過し、水洗し、真空雰囲気中において70℃で乾燥し、得られた乾燥粉末80gをミル(メリタジャパン株式会社製のセレクトグラインドMJ-518)に入れ、20秒間の粉砕処理を2回行って解砕し、篩別して、銀被覆銅粉末を得た。 Next, 35 g of a solution obtained by dissolving palmitic acid as a surface treating agent in alcohol (containing 3% by mass of palmitic acid) was added to the resulting slurry, stirred for 40 minutes, filtered, washed with water Then, it was dried at 70 ° C. in a vacuum atmosphere, and 80 g of the obtained dry powder was put into a mill (Select Grind MJ-518, manufactured by Melita Japan Co., Ltd.) and pulverized by performing twice for 20 seconds. The silver-coated copper powder was obtained by sieving.
 このようにして得られた銀被覆銅粉のBET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めた。また、銀被覆前の銅粉の平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 The BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content, phosphorus content and particle size distribution of the silver-coated copper powder thus obtained were determined. It was. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content of the copper powder before silver coating were calculated | required.
 銀被覆前の銅粉の平均粒径として、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の乾燥モジュール)))により分散圧5barで測定した体積基準の累積50%粒子径(D50径)を求めたところ、2.0μmであった。 As an average particle diameter of the copper powder before silver coating, a volume standard measured by a laser diffraction particle size distribution measuring device (Heros particle size distribution measuring device (HELOS & RODOS (airflow type drying module) manufactured by SYMPATEC)) at a dispersion pressure of 5 bar. was determined for the 50% cumulative particle diameter (D 50 diameter) was 2.0 .mu.m.
 銀被覆前の銅粉のBET比表面積は、測定器内に105℃で20分間窒素ガスを流して脱気した後、BET比表面積測定器(ユアサアイオニクス株式会社製の4ソーブUS)を使用してBET1点法により測定した。その結果、BET比表面積は0.58m/gであった。 The BET specific surface area of the copper powder before silver coating is degassed by flowing nitrogen gas at 105 ° C. for 20 minutes in the measuring instrument, and then a BET specific surface area measuring instrument (4-sorb US made by Yuasa Ionics Co., Ltd.) is used. Then, it was measured by the BET 1 point method. As a result, the BET specific surface area was 0.58 m 2 / g.
 銀被覆前の銅粉中の酸素含有量は、酸素・窒素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。その結果、酸素含有量は0.24質量%であった。 The oxygen content in the copper powder before silver coating was measured with an oxygen / nitrogen analyzer (EMGA-920 manufactured by Horiba, Ltd.). As a result, the oxygen content was 0.24% by mass.
 銀被覆前の銅粉中のリン含有量は、ICP発光分光分析装置(株式会社日立ハイテクサイエンス製のSPS3520V)により測定した。その結果、リン含有量は470ppmであった。 The phosphorus content in the copper powder before silver coating was measured with an ICP emission spectroscopic analyzer (SPS3520V manufactured by Hitachi High-Tech Science Co., Ltd.). As a result, the phosphorus content was 470 ppm.
 銀被覆銅粉のBET比表面積は、銀被覆前の銅粉のBET比表面積と同様の方法により求めた。その結果、BET比表面積は0.43m/gであった。 The BET specific surface area of the silver-coated copper powder was determined by the same method as the BET specific surface area of the copper powder before silver coating. As a result, the BET specific surface area was 0.43 m 2 / g.
 銀被覆銅粉のタップ密度(TAP)は、特開2007-263860号公報に記載された方法と同様に、銀被覆銅粉0.5gを内径6mmの有底円筒形のダイに充填して銀被覆銅粉層を形成し、この銀被覆銅粉層の上面に0.160N/mの圧力を均一に加えた後、銀被覆銅粉層の高さを測定し、この銀被覆銅粉層の高さの測定値と、充填された銀被覆銅粉の重量とから、銀被覆銅粉の密度を求めて、銀被覆銅粉のタップ密度とした。その結果、タップ密度は5.8g/cmであった。 The tap density (TAP) of the silver-coated copper powder is the same as the method described in JP-A-2007-263860, in which 0.5 g of silver-coated copper powder is filled into a bottomed cylindrical die having an inner diameter of 6 mm. After forming a coated copper powder layer and uniformly applying a pressure of 0.160 N / m 2 on the upper surface of the silver coated copper powder layer, the height of the silver coated copper powder layer is measured, and this silver coated copper powder layer From the measured value of the height and the weight of the filled silver-coated copper powder, the density of the silver-coated copper powder was determined and used as the tap density of the silver-coated copper powder. As a result, the tap density was 5.8 g / cm 3 .
 銀被覆銅粉の銀の被覆量は、銀被覆銅粉(約2.5g)を塩化ビニル製リング(内径3.2cm×厚さ4mm)内に敷き詰めた後、錠剤型成型圧縮機(株式会社前川試験製作所製の型番BRE-50)により100kNの荷重をかけて銀被覆銅粉のペレットを作製し、このペレットをサンプルホルダー(開口径3.0cm)に入れて蛍光X線分析装置(株式会社リガク製のRIX2000)内の測定位置にセットし、測定雰囲気を減圧下(8.0Pa)とし、X線出力を50kV、50mAとした条件で測定した結果から、装置に付属のソフトウェアで自動計算することによって求めた。その結果、銀被覆銅粉中の銀の被覆量は10.3質量%であった。 The silver coating amount of the silver-coated copper powder is determined by placing a silver-coated copper powder (about 2.5 g) in a vinyl chloride ring (inner diameter 3.2 cm × thickness 4 mm), A pellet of silver-coated copper powder was prepared by applying a load of 100 kN according to model number BRE-50 manufactured by Maekawa Test Mfg. Co., Ltd., and this pellet was placed in a sample holder (opening diameter: 3.0 cm) and an X-ray fluorescence analyzer (Co. Rigaku RIX2000) is set at the measurement position, the measurement atmosphere is under reduced pressure (8.0 Pa), and the X-ray output is 50 kV, 50 mA. Was determined by As a result, the silver coating amount in the silver-coated copper powder was 10.3% by mass.
 銀被覆層の厚さは、銀被覆層の厚さ(nm)={銀の被覆量(質量%)×10}/{BET比表面積(m/g)×10.49}から求めた。その結果、銀被覆層の厚さは30nmであった。 The thickness of the silver coating layer was determined from the thickness of the silver coating layer (nm) = {silver coating amount (mass%) × 10} / {BET specific surface area (m 2 /g)×10.49}. As a result, the thickness of the silver coating layer was 30 nm.
 銀被覆銅粉中の酸素含有量は、酸素・窒素分析装置(株式会社堀場製作所製のEMGA-920)により測定した。その結果、酸素含有量は0.13質量%であった。 The oxygen content in the silver-coated copper powder was measured with an oxygen / nitrogen analyzer (EMGA-920 manufactured by Horiba, Ltd.). As a result, the oxygen content was 0.13% by mass.
 銀被覆銅粉中の炭素含有量は、炭素・硫黄分析装置(株式会社堀場製作所製のEMIA-220V)により測定した。その結果、炭素含有量は0.18質量%であった。 The carbon content in the silver-coated copper powder was measured with a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.). As a result, the carbon content was 0.18% by mass.
 銀被覆銅粉中のリン含有量は、銀被覆前の銅粉のリン含有量と同様の方法により求めた。その結果、リン含有量は380ppmであった。 The phosphorus content in the silver-coated copper powder was determined by the same method as the phosphorus content of the copper powder before silver coating. As a result, the phosphorus content was 380 ppm.
 銀被覆銅粉の粒度分布として、銅被覆前の銅粉の平均粒径を測定したレーザー回折式粒度分布測定装置と同様のレーザー回折式粒度分布測定装置により測定した体積基準の累積10%粒子径(D10径)、累積50%粒子径(D50径)および累積90%粒子径(D90径)を求めた。その結果、累積10%粒子径(D10径)は0.6μm、累積50%粒子径(D50径)は2.0μm、累積90%粒子径(D90径)は3.9μmであった。 As the particle size distribution of the silver-coated copper powder, a volume-based cumulative 10% particle size measured by a laser diffraction particle size distribution measurement device similar to the laser diffraction particle size distribution measurement device that measures the average particle size of the copper powder before copper coating. (D 10 diameter), it was determined cumulative 50% particle diameter (D 50 diameter) and cumulative 90% particle diameter (D 90 diameter). As a result, the cumulative 10% particle diameter (D 10 diameter) is 0.6 .mu.m, cumulative 50% particle diameter (D 50 diameter) is 2.0 .mu.m, cumulative 90% particle diameter (D 90 diameter) was 3.9μm .
 また、得られた銀被覆銅粉について、X線回折装置(株式会社リガク製のRINT Ultima III)によりCo線源(40kV/30mA)で、Cuの(111)面については49~53°/2θの範囲、Cuの(200)面については58~61°/2θの範囲、Cuの(220)面については87~91°/2θの範囲を測定して、X線回折(XRD)の評価を行った。このX線回折パターンから得られたCuの(111)面の半価幅βを用いて、Scherrerの式D=(K・λ)/(β・cosθ)からCuの(111)面における結晶子径D(111)を算出したところ、結晶子径D(111)は142nmであった。なお、Scherrerの式において、Dは結晶子径(nm)、λは測定X線波長(nm)、βは結晶子による回折幅の広がり、θは回折角のブラッグ角、KはScherrer定数を示し、この式中の測定X線波長λを0.179nm、Scherrer定数Kを0.90とした。同様に、X線回折パターンから得られたCuの(200)面および(220)面のそれぞれの半値幅βを用いて、Scherrerの式からCuの(200)面および(220)面における結晶子径D(200)およびD(220)を算出したところ、結晶子径D(200)は76nmであり、結晶子径D(220)は70nmであった。これらの結果から、結晶子径D(200)に対する結晶子径D(111)の比D(111)/D(200)は1.87、結晶子径D(220)に対する結晶子径D(111)の比D(111)/D(220)は2.03、結晶子径D(220)に対する結晶子径D(200)の比D(200)/D(220)は1.09になる。 Further, with respect to the obtained silver-coated copper powder, an X-ray diffractometer (RINT Ultimate III manufactured by Rigaku Corporation) was used as a Co source (40 kV / 30 mA), and a Cu (111) plane was 49 to 53 ° / 2θ. The X-ray diffraction (XRD) evaluation is performed by measuring the range of 58, 61 ° / 2θ for the (200) plane of Cu, and 87-91 ° / 2θ for the (220) plane of Cu. went. Using the half-value width β of the (111) plane of Cu obtained from this X-ray diffraction pattern, the crystallite in the (111) plane of Cu from the Scherrer equation D = (K · λ) / (β · cos θ) When the diameter D (111) was calculated, the crystallite diameter D (111) was 142 nm. In the Scherrer equation, D is the crystallite diameter (nm), λ is the measured X-ray wavelength (nm), β is the diffraction width spread by the crystallite, θ is the Bragg angle of the diffraction angle, and K is the Scherrer constant. In this equation, the measured X-ray wavelength λ was 0.179 nm, and the Scherrer constant K was 0.90. Similarly, using the half widths β of the (200) plane and (220) plane of Cu obtained from the X-ray diffraction pattern, the crystallites in the (200) plane and (220) plane of Cu are obtained from the Scherrer equation. When the diameters D (200) and D (220) were calculated, the crystallite diameter D (200) was 76 nm, and the crystallite diameter D (220) was 70 nm. These results, the crystallite diameter D (200) ratio D of the crystallite diameter D (111) for (111) / D (200) is 1.87, and the crystallite diameter D (111 for the crystallite diameter D (220) the ratio D of) (111) / D (220 ) is 2.03, the ratio D of the crystallite diameter D for the crystallite diameter D (220) (200) ( 200) / D (220) becomes 1.09.
 次に、得られた銀被覆銅粉9.3gと、熱硬化型樹脂としてビスフェノールF型エポキシ樹脂(株式会社ADEKA製のアデカレジンEP-4901E)0.82gと、硬化剤として三フッ化ホウ素モノエチルアミン0.041gと、溶剤としてブチルカルビトールアセテート0.25gと、分散剤としてオレイン酸0.01gとを混練脱泡機で混合した後、三本ロールを5回パスして均一に分散させることによって導電性ペーストを得た。 Next, 9.3 g of the obtained silver-coated copper powder, 0.82 g of bisphenol F type epoxy resin (ADEKA RESIN EP-4901E manufactured by ADEKA Corporation) as a thermosetting resin, and boron trifluoride monoethylamine as a curing agent After mixing 0.041 g, butyl carbitol acetate 0.25 g as a solvent, and oleic acid 0.01 g as a dispersant with a kneading defoaming machine, three rolls are passed five times to uniformly disperse. A conductive paste was obtained.
 この導電性ペーストをスクリーン印刷法によってアルミナ基板上に(線幅500μm、線長37.5mmのパターンに)印刷した後、大気中において200℃で40分間加熱して硬化させることによって導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。 This conductive paste is printed on an alumina substrate by screen printing (in a pattern with a line width of 500 μm and a line length of 37.5 mm), and then heated and cured in the atmosphere at 200 ° C. for 40 minutes to form a conductive film. Then, the volume resistivity of the obtained conductive film was calculated and the storage stability (reliability) was evaluated.
 導電膜の体積抵抗率は、得られた導電膜のライン抵抗をデジタルマルチメーター(株式会社エーディーシー製のAD7451A)により測定し、膜厚を表面粗さ形状測定機(株式会社東京精密製のサーフコム1500DX型)により測定して、体積抵抗率(Ω・cm)=ライン抵抗(Ω)×膜厚(cm)×線幅(cm)/線長(cm)により算出した。その結果、導電膜の初期の)体積抵抗率は35μΩ・cmであった。 For the volume resistivity of the conductive film, the line resistance of the obtained conductive film was measured with a digital multimeter (AD7451A manufactured by ADC Corporation), and the film thickness was measured with a surface roughness profile measuring machine (Surfcom manufactured by Tokyo Seimitsu Co., Ltd.). 1500 DX), and volume resistivity (Ω · cm) = line resistance (Ω) × film thickness (cm) × line width (cm) / line length (cm) was calculated. As a result, the initial volume resistivity of the conductive film was 35 μΩ · cm.
 導電膜の保存安定性(信頼性)は、一定温度(150℃)に保たれた(大気雰囲気の)試験室内において6週間保存した導電膜の体積抵抗率(6週間保存後の体積抵抗率)を算出し、体積抵抗率の変化率(%)={(6週間保存後の体積抵抗率)-(初期の体積抵抗率)}×100/(初期の体積抵抗率)によって評価した。その結果、6週間保存後の体積抵抗率は54μΩ・cmであり、体積抵抗率の変化率は54%であった。 The storage stability (reliability) of the conductive film is the volume resistivity of the conductive film stored for 6 weeks in a test chamber (in the atmosphere) maintained at a constant temperature (150 ° C.) (volume resistivity after storage for 6 weeks). The volume resistivity change rate (%) = {(volume resistivity after 6 weeks storage) − (initial volume resistivity)} × 100 / (initial volume resistivity). As a result, the volume resistivity after storage for 6 weeks was 54 μΩ · cm, and the rate of change in volume resistivity was 54%.
[実施例2]
 EDTA-2Na二水和物143gと炭酸アンモニウム143gを純水1662gに溶解した溶液(溶液1)と、EDTA-2Na二水和物405gと炭酸アンモニウム202gを純水1613gに溶解した溶液に、硝酸銀67gを純水209gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。
[Example 2]
In a solution (solution 1) in which 143 g of EDTA-2Na dihydrate and 143 g of ammonium carbonate are dissolved in 1662 g of pure water, and in a solution in which 405 g of EDTA-2Na dihydrate and 202 g of ammonium carbonate are dissolved in 1613 g of pure water, 67 g of silver nitrate A solution (solution 2) obtained by adding a solution prepared by dissolving 209 g in 209 g of pure water was prepared.
 次に、窒素雰囲気下において、実施例1と同様の方法により得られた銅粉300gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて20分間撹拌することにより、銀により被覆された銅粉を含むスラリーを得た。 Next, in a nitrogen atmosphere, 300 g of copper powder obtained by the same method as in Example 1 was added to Solution 1, and the temperature was raised to 25 ° C. while stirring. The solution 2 was added to the copper powder-dispersed solution and stirred for 20 minutes to obtain a slurry containing copper powder coated with silver.
 次に、得られたスラリーに、表面処理剤としてオレイン酸をアルコールに溶解させて得られた(3質量%のオレイン酸を含む)溶液30gを添加し、40分間撹拌した後、濾過し、水洗し、真空雰囲気中において70℃で乾燥し、得られた乾燥粉末80gをミル(メリタジャパン株式会社製のセレクトグラインドMJ-518)に入れ、20秒間の粉砕処理を2回行って解砕し、篩別して、銀被覆銅粉末を得た。 Next, 30 g of a solution (containing 3% by mass of oleic acid) obtained by dissolving oleic acid in alcohol as a surface treatment agent was added to the obtained slurry, stirred for 40 minutes, filtered, washed with water Then, it was dried at 70 ° C. in a vacuum atmosphere, and 80 g of the obtained dry powder was put into a mill (Select Grind MJ-518, manufactured by Melita Japan Co., Ltd.) and pulverized by performing twice for 20 seconds. The silver-coated copper powder was obtained by sieving.
 このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、BET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めるとともに、X線回折の評価を行った。また、銀被覆前の銅粉について、実施例1と同様の方法により、平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 For the silver-coated copper powder thus obtained, the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1. The amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated | required by the method similar to Example 1 about the copper powder before silver coating.
 その結果、銀被覆前の銅粉の平均粒径は2.0μm、BET比表面積は0.58m/g、酸素含有量は0.24質量%、リン含有量は470ppmであった。また、銀被覆銅粉のBET比表面積は0.40m/g、タップ密度は5.7g/cm、銀の被覆量は13.2質量%、銀被覆層の厚さは40nm、酸素含有量は0.14質量%、炭素含有量は0.15質量%、リン含有量は450ppmであった。また、銀被覆銅粉の累積10%粒子径(D10径)は0.7μm、累積50%粒子径(D50径)は2.1μm、累積90%粒子径(D90径)は4.0μmであった。また、結晶子径D(111)は124nm、結晶子径D(200)は62nm、結晶子径D(220)は64nmであり、D(111)/D(200)は2.00、D(111)/D(220)は1.94、D(200)/D(220)は0.97であった。 As a result, the average particle diameter of the copper powder before silver coating was 2.0 μm, the BET specific surface area was 0.58 m 2 / g, the oxygen content was 0.24 mass%, and the phosphorus content was 470 ppm. Further, the silver-coated copper powder has a BET specific surface area of 0.40 m 2 / g, a tap density of 5.7 g / cm 3 , a silver coating amount of 13.2% by mass, a silver coating layer thickness of 40 nm, and oxygen content The amount was 0.14% by mass, the carbon content was 0.15% by mass, and the phosphorus content was 450 ppm. Further, the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 0.7 [mu] m, 50% cumulative particle diameter (D 50 diameter) is 2.1 .mu.m, cumulative 90% particle diameter (D 90 diameter) 4. It was 0 μm. The crystallite diameter D (111) is 124 nm, the crystallite diameter D (200) is 62 nm, the crystallite diameter D (220) is 64 nm, D (111) / D (200) is 2.00, D ( 111) / D (220) was 1.94 and D (200) / D (220) was 0.97.
 また、得られた銀被覆銅粉を使用して、実施例1と同様の方法により、導電性ペーストを作製して導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の初期の体積抵抗率は27μΩ・cm、6週間保存後の体積抵抗率は41μΩ・cmであり、体積抵抗率の変化率は52%であった。 In addition, using the obtained silver-coated copper powder, a conductive paste was produced by the same method as in Example 1 to form a conductive film, and the volume resistivity of the obtained conductive film was calculated and stored stably. The reliability (reliability) was evaluated. As a result, the initial volume resistivity of the conductive film was 27 μΩ · cm, the volume resistivity after storage for 6 weeks was 41 μΩ · cm, and the rate of change in volume resistivity was 52%.
[実施例3]
 溶湯中のリン濃度が950ppmになるようにリン銅合金を添加し、溶湯の温度を1600℃とし、高圧水として、高圧ポンプに給水するタンク中の純水に水酸化ナトリウムを添加して得られたpH10.7のアルカリ水溶液を使用した以外は、実施例1と同様の方法により、少量のリンを含む銅粉を得た。
[Example 3]
It is obtained by adding phosphorous copper alloy so that the phosphorus concentration in the molten metal becomes 950 ppm, setting the molten metal temperature to 1600 ° C., and adding sodium hydroxide to pure water in the tank supplied to the high-pressure pump as high-pressure water. A copper powder containing a small amount of phosphorus was obtained in the same manner as in Example 1 except that an alkaline aqueous solution having a pH of 10.7 was used.
 また、EDTA-2Na二水和物119gと炭酸アンモニウム119gを純水1385gに溶解した溶液(溶液1)と、EDTA-2Na二水和物591gと炭酸アンモニウム295gを純水2352gに溶解した溶液に、硝酸銀98gを純水304gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。 In addition, a solution (solution 1) in which 119 g of EDTA-2Na dihydrate and 119 g of ammonium carbonate were dissolved in 1385 g of pure water, and a solution in which 591 g of EDTA-2Na dihydrate and 295 g of ammonium carbonate were dissolved in 2352 g of pure water, A solution (solution 2) obtained by adding a solution obtained by dissolving 98 g of silver nitrate in 304 g of pure water was prepared.
 次に、窒素雰囲気下において、得られた銅粉250gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて20分間撹拌することにより、銀により被覆された銅粉を含むスラリーを得た。 Next, 250 g of the obtained copper powder was added to Solution 1 in a nitrogen atmosphere, and the temperature was raised to 25 ° C. while stirring. The solution 2 was added to the copper powder-dispersed solution and stirred for 20 minutes to obtain a slurry containing copper powder coated with silver.
 次に、得られたスラリーに、表面処理剤としてパルミチン酸をアルコールに溶解させて得られた(3質量%のパルミチン酸を含む)溶液25gを添加し、40分間撹拌した後、濾過し、水洗し、真空雰囲気中において70℃で乾燥し、得られた乾燥粉末80gをミル(メリタジャパン株式会社製のセレクトグラインドMJ-518)に入れ、20秒間の粉砕処理を2回行って解砕し、篩別して、銀被覆銅粉末を得た。 Next, 25 g of a solution obtained by dissolving palmitic acid in alcohol as a surface treatment agent (containing 3% by mass of palmitic acid) was added to the obtained slurry, and the mixture was stirred for 40 minutes, filtered, washed with water Then, it was dried at 70 ° C. in a vacuum atmosphere, and 80 g of the obtained dry powder was put into a mill (Select Grind MJ-518, manufactured by Melita Japan Co., Ltd.) and pulverized by performing twice for 20 seconds. The silver-coated copper powder was obtained by sieving.
 このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、BET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めるとともに、X線回折の評価を行った。また、銀被覆前の銅粉について、実施例1と同様の方法により、平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 For the silver-coated copper powder thus obtained, the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1. The amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated | required by the method similar to Example 1 about the copper powder before silver coating.
 その結果、銀被覆前の銅粉の平均粒径は2.1μm、BET比表面積は0.59m/g、酸素含有量は0.36質量%、リン含有量は320ppmであった。また、銀被覆銅粉のBET比表面積は0.45m/g、タップ密度は5.6g/cm、銀の被覆量は21.6質量%、銀被覆層の厚さは72nm、酸素含有量は0.21質量%、炭素含有量は0.19質量%、リン含有量は250ppmであった。また、銀被覆銅粉の累積10%粒子径(D10径)は0.8μm、累積50%粒子径(D50径)は2.3μm、累積90%粒子径(D90径)は4.3μmであった。また、結晶子径D(111)は145nm、結晶子径D(200)は69nm、結晶子径D(220)は68nmであり、D(111)/D(200)は2.10、D(111)/D(220)は2.13、D(200)/D(220)は1.01であった。 As a result, the average particle diameter of the copper powder before silver coating was 2.1 μm, the BET specific surface area was 0.59 m 2 / g, the oxygen content was 0.36 mass%, and the phosphorus content was 320 ppm. Further, the silver-coated copper powder has a BET specific surface area of 0.45 m 2 / g, a tap density of 5.6 g / cm 3 , a silver coating amount of 21.6% by mass, a silver coating layer thickness of 72 nm, and an oxygen content The amount was 0.21% by mass, the carbon content was 0.19% by mass, and the phosphorus content was 250 ppm. Further, the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 0.8 [mu] m, 50% cumulative particle diameter (D 50 diameter) is 2.3 .mu.m, cumulative 90% particle diameter (D 90 diameter) 4. It was 3 μm. The crystallite diameter D (111) is 145 nm, the crystallite diameter D (200) is 69 nm, the crystallite diameter D (220) is 68 nm, and D (111) / D (200) is 2.10, D ( 111) / D (220) was 2.13, and D (200) / D (220) was 1.01.
 また、得られた銀被覆銅粉を使用して、実施例1と同様の方法により、導電性ペーストを作製して導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の初期の体積抵抗率は37μΩ・cm、6週間保存後の体積抵抗率は47μΩ・cmであり、体積抵抗率の変化率は27%であった。 In addition, using the obtained silver-coated copper powder, a conductive paste was produced by the same method as in Example 1 to form a conductive film, and the volume resistivity of the obtained conductive film was calculated and stored stably. The reliability (reliability) was evaluated. As a result, the initial volume resistivity of the conductive film was 37 μΩ · cm, the volume resistivity after storage for 6 weeks was 47 μΩ · cm, and the rate of change in volume resistivity was 27%.
[実施例4]
 高圧水の水圧を100MPaとした以外は、実施例1と同様の方法により、少量のリンを含む銅粉を得た。
[Example 4]
A copper powder containing a small amount of phosphorus was obtained in the same manner as in Example 1 except that the water pressure of the high-pressure water was set to 100 MPa.
 また、EDTA-2Na二水和物167gと炭酸アンモニウム167gを純水1939gに溶解した溶液(溶液1)と、EDTA-2Na二水和物367gと炭酸アンモニウム184gを純水1464gに溶解した溶液に、硝酸銀61gを純水189gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。 In addition, a solution (solution 1) in which 167 g of EDTA-2Na dihydrate and 167 g of ammonium carbonate were dissolved in 1939 g of pure water, and a solution in which 367 g of EDTA-2Na dihydrate and 184 g of ammonium carbonate were dissolved in 1464 g of pure water, A solution (solution 2) obtained by adding a solution obtained by dissolving 61 g of silver nitrate in 189 g of pure water was prepared.
 次に、窒素雰囲気下において、得られた銅粉350gを溶液1に加えて、攪拌しながら25℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて20分間撹拌することにより、銀により被覆された銅粉を含むスラリーを得た。 Next, 350 g of the obtained copper powder was added to Solution 1 in a nitrogen atmosphere, and the temperature was raised to 25 ° C. while stirring. The solution 2 was added to the copper powder-dispersed solution and stirred for 20 minutes to obtain a slurry containing copper powder coated with silver.
 次に、得られたスラリーに、表面処理剤としてオレイン酸をアルコールに溶解させて得られた(3質量%のオレイン酸を含む)溶液35gを添加し、40分間撹拌した後、濾過し、水洗し、真空雰囲気中において70℃で乾燥し、得られた乾燥粉末80gをミル(メリタジャパン株式会社製のセレクトグラインドMJ-518)に入れ、20秒間の粉砕処理を2回行って解砕し、篩別して、銀被覆銅粉末を得た。 Next, 35 g of a solution obtained by dissolving oleic acid in alcohol as a surface treatment agent (containing 3% by mass of oleic acid) was added to the resulting slurry, stirred for 40 minutes, filtered, washed with water Then, it was dried at 70 ° C. in a vacuum atmosphere, and 80 g of the obtained dry powder was put into a mill (Select Grind MJ-518, manufactured by Melita Japan Co., Ltd.) and pulverized by performing twice for 20 seconds. The silver-coated copper powder was obtained by sieving.
 このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、BET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めるとともに、X線回折の評価を行った。また、銀被覆前の銅粉について、実施例1と同様の方法により、平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 For the silver-coated copper powder thus obtained, the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1. The amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated | required by the method similar to Example 1 about the copper powder before silver coating.
 その結果、銀被覆前の銅粉の平均粒径は3.8μm、BET比表面積は0.34m/g、酸素含有量は0.19質量%、リン含有量は470ppmであった。また、銀被覆銅粉のBET比表面積は0.22m/g、タップ密度は6.4g/cm、銀の被覆量は10.0質量%、銀被覆層の厚さは54nm、酸素含有量は0.11質量%、炭素含有量は0.12質量%、リン含有量は390ppmであった。また、銀被覆銅粉の累積10%粒子径(D10径)は1.3μm、累積50%粒子径(D50径)は3.7μm、累積90%粒子径(D90径)は7.5μmであった。また、結晶子径D(111)は115nm、結晶子径D(200)は52nm、結晶子径D(220)は60nmであり、D(111)/D(200)は2.21、D(111)/D(220)は1.92、D(200)/D(220)は0.87であった。 As a result, the average particle size of the copper powder before silver coating was 3.8 μm, the BET specific surface area was 0.34 m 2 / g, the oxygen content was 0.19 mass%, and the phosphorus content was 470 ppm. The silver-coated copper powder has a BET specific surface area of 0.22 m 2 / g, a tap density of 6.4 g / cm 3 , a silver coating amount of 10.0% by mass, a silver coating layer thickness of 54 nm, and oxygen content The amount was 0.11% by mass, the carbon content was 0.12% by mass, and the phosphorus content was 390 ppm. Further, the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 1.3 .mu.m, cumulative 50% particle diameter (D 50 diameter) is 3.7 .mu.m, cumulative 90% particle diameter (D 90 diameter) 7. It was 5 μm. The crystallite diameter D (111) is 115 nm, the crystallite diameter D (200) is 52 nm, the crystallite diameter D (220) is 60 nm, and D (111) / D (200) is 2.21, D ( 111) / D (220) was 1.92 and D (200) / D (220) was 0.87.
 また、得られた銀被覆銅粉を使用して、実施例1と同様の方法により、導電性ペーストを作製して導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、初期の体積抵抗率は35μΩ・cm、6週間保存後の体積抵抗率は46μΩ・cmであり、体積抵抗率の変化率は31%であった。 In addition, using the obtained silver-coated copper powder, a conductive paste was produced by the same method as in Example 1 to form a conductive film, and the volume resistivity of the obtained conductive film was calculated and stored stably. The reliability (reliability) was evaluated. As a result, the initial volume resistivity was 35 μΩ · cm, the volume resistivity after storage for 6 weeks was 46 μΩ · cm, and the rate of change in volume resistivity was 31%.
[実施例5]
 銅を加熱して溶解した溶湯中にリン銅合金を添加しなかった以外は、実施例4と同様の方法により、銀被覆銅粉末を得た。
[Example 5]
A silver-coated copper powder was obtained in the same manner as in Example 4 except that the phosphor copper alloy was not added to the molten metal obtained by heating and melting copper.
 このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、BET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めるとともに、X線回折の評価を行った。また、銀被覆前の銅粉について、実施例1と同様の方法により、平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 For the silver-coated copper powder thus obtained, the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1. The amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated | required by the method similar to Example 1 about the copper powder before silver coating.
 その結果、銀被覆前の銅粉の平均粒径は3.7μm、BET比表面積は0.26m/g、酸素含有量は0.29質量%、リン含有量は10ppm未満であった。また、銀被覆銅粉のBET比表面積は0.25m/g、タップ密度は5.5g/cm、銀の被覆量は10.4質量%、銀被覆層の厚さは56nm、酸素含有量は0.14質量%、炭素含有量は0.13質量%、リン含有量は10ppm未満であった。また、銀被覆銅粉の累積10%粒子径(D10径)は1.4μm、累積50%粒子径(D50径)は3.7μm、累積90%粒子径(D90径)は6.5μmであった。また、結晶子径D(111)は107nm、結晶子径D(200)は57nm、結晶子径D(220)は60nmであり、D(111)/D(200)は1.88、D(111)/D(220)は1.78、D(200)/D(220)は0.95であった。 As a result, the average particle diameter of the copper powder before silver coating was 3.7 μm, the BET specific surface area was 0.26 m 2 / g, the oxygen content was 0.29 mass%, and the phosphorus content was less than 10 ppm. The silver-coated copper powder has a BET specific surface area of 0.25 m 2 / g, a tap density of 5.5 g / cm 3 , a silver coating amount of 10.4% by mass, a silver coating layer thickness of 56 nm, and oxygen content The amount was 0.14% by mass, the carbon content was 0.13% by mass, and the phosphorus content was less than 10 ppm. Further, the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 1.4 [mu] m, 50% cumulative particle diameter (D 50 diameter) is 3.7 .mu.m, cumulative 90% particle diameter (D 90 diameter) 6. It was 5 μm. The crystallite diameter D (111) is 107 nm, the crystallite diameter D (200) is 57 nm, the crystallite diameter D (220) is 60 nm, and D (111) / D (200) is 1.88, D ( 111) / D (220) was 1.78 and D (200) / D (220) was 0.95.
 また、得られた銀被覆銅粉を使用して、実施例1と同様の方法により、導電性ペーストを作製して導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の初期の体積抵抗率は41μΩ・cm、6週間保存後の体積抵抗率は79μΩ・cmであり、体積抵抗率の変化率は93%であった。 In addition, using the obtained silver-coated copper powder, a conductive paste was produced by the same method as in Example 1 to form a conductive film, and the volume resistivity of the obtained conductive film was calculated and stored stably. The reliability (reliability) was evaluated. As a result, the initial volume resistivity of the conductive film was 41 μΩ · cm, the volume resistivity after storage for 6 weeks was 79 μΩ · cm, and the rate of change in volume resistivity was 93%.
[比較例1]
 銅を加熱して溶解した溶湯中にリン銅合金を添加せず、高圧水としてpH5.8の水を使用し、窒素ガスの吹き込みを行わなかった以外は、実施例1と同様の方法により、銀被覆銅粉末を得た。
[Comparative Example 1]
In the same manner as in Example 1 except that the phosphor copper alloy was not added to the molten metal obtained by heating copper, pH 5.8 water was used as high-pressure water, and nitrogen gas was not blown. Silver-coated copper powder was obtained.
 このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、BET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めるとともに、X線回折の評価を行った。また、銀被覆前の銅粉について、実施例1と同様の方法により、平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 For the silver-coated copper powder thus obtained, the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1. The amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated | required by the method similar to Example 1 about the copper powder before silver coating.
 その結果、銀被覆前の銅粉の平均粒径は2.3μm、BET比表面積は0.60m/g、酸素含有量は0.22質量%、リン含有量は10ppm未満であった。また、銀被覆銅粉のBET比表面積は0.45m/g、タップ密度は5.8g/cm、銀の被覆量は10.6質量%、銀被覆層の厚さは35nm、酸素含有量は0.22質量%、炭素含有量は0.18質量%、リン含有量は10ppm未満であった。また、銀被覆銅粉の累積10%粒子径(D10径)は0.9μm、累積50%粒子径(D50径)は2.3μm、累積90%粒子径(D90径)は3.9μmであった。また、結晶子径D(111)は113nm、結晶子径D(200)は66nm、結晶子径D(220)は60nmであり、D(111)/D(200)は1.71、D(111)/D(220)は1.88、D(200)/D(220)は1.10であった。 As a result, the average particle diameter of the copper powder before silver coating was 2.3 μm, the BET specific surface area was 0.60 m 2 / g, the oxygen content was 0.22 mass%, and the phosphorus content was less than 10 ppm. The BET specific surface area of the silver-coated copper powder is 0.45 m 2 / g, the tap density is 5.8 g / cm 3 , the silver coating amount is 10.6% by mass, the thickness of the silver coating layer is 35 nm, and oxygen content is included The amount was 0.22% by mass, the carbon content was 0.18% by mass, and the phosphorus content was less than 10 ppm. Further, the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 0.9 .mu.m, cumulative 50% particle diameter (D 50 diameter) is 2.3 .mu.m, cumulative 90% particle diameter (D 90 diameter) 3. It was 9 μm. The crystallite diameter D (111) is 113 nm, the crystallite diameter D (200) is 66 nm, the crystallite diameter D (220) is 60 nm, and D (111) / D (200) is 1.71 and D ( 111) / D (220) was 1.88, and D (200) / D (220) was 1.10.
 また、得られた銀被覆銅粉を使用して、実施例1と同様の方法により、導電性ペーストを作製して導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、初期の体積抵抗率は47μΩ・cm、6週間保存後の体積抵抗率は131μΩ・cmであり、体積抵抗率の変化率は178%であった。 In addition, using the obtained silver-coated copper powder, a conductive paste was produced by the same method as in Example 1 to form a conductive film, and the volume resistivity of the obtained conductive film was calculated and stored stably. The reliability (reliability) was evaluated. As a result, the initial volume resistivity was 47 μΩ · cm, the volume resistivity after storage for 6 weeks was 131 μΩ · cm, and the rate of change in volume resistivity was 178%.
[比較例2]
 銅を加熱して溶解した溶湯中にリン銅合金を添加せず、窒素ガスの吹き込みを行わなかった以外は、実施例1と同様の方法により、銀被覆銅粉末を得た。
[Comparative Example 2]
A silver-coated copper powder was obtained in the same manner as in Example 1 except that the phosphor copper alloy was not added to the molten metal obtained by heating copper and nitrogen gas was not blown.
 このようにして得られた銀被覆銅粉について、実施例1と同様の方法により、BET比表面積、タップ密度(TAP)、銀の被覆量、銀被覆層の厚さ、酸素含有量、炭素含有量、リン含有量および粒度分布を求めるとともに、X線回折の評価を行った。また、銀被覆前の銅粉について、実施例1と同様の方法により、平均粒径、BET比表面積、酸素含有量およびリン含有量を求めた。 For the silver-coated copper powder thus obtained, the BET specific surface area, tap density (TAP), silver coating amount, silver coating layer thickness, oxygen content, carbon content were obtained in the same manner as in Example 1. The amount, phosphorus content and particle size distribution were determined, and X-ray diffraction was evaluated. Moreover, the average particle diameter, BET specific surface area, oxygen content, and phosphorus content were calculated | required by the method similar to Example 1 about the copper powder before silver coating.
 その結果、銀被覆前の銅粉の平均粒径は2.1μm、BET比表面積は0.61m/g、酸素含有量は0.21質量%、リン含有量は10ppm未満であった。また、銀被覆銅粉のBET比表面積は0.45m/g、タップ密度は5.7g/cm、銀の被覆量は10.5質量%、銀被覆層の厚さは31nm、酸素含有量は0.21質量%、炭素含有量は0.15質量%、リン含有量は10ppm未満であった。また、銀被覆銅粉の累積10%粒子径(D10径)は0.8μm、累積50%粒子径(D50径)は2.1μm、累積90%粒子径(D90径)は3.8μmであった。また、結晶子径D(111)は106nm、結晶子径D(200)は69nm、結晶子径D(220)は61nmであり、D(111)/D(200)は1.54、D(111)/D(220)は1.74、D(200)/D(220)は1.13であった。 As a result, the average particle diameter of the copper powder before silver coating was 2.1 μm, the BET specific surface area was 0.61 m 2 / g, the oxygen content was 0.21% by mass, and the phosphorus content was less than 10 ppm. The silver-coated copper powder has a BET specific surface area of 0.45 m 2 / g, a tap density of 5.7 g / cm 3 , a silver coating amount of 10.5% by mass, a silver coating layer thickness of 31 nm, and oxygen content The amount was 0.21% by mass, the carbon content was 0.15% by mass, and the phosphorus content was less than 10 ppm. Further, the cumulative 10% particle diameter of the silver-coated copper powder (D 10 diameter) is 0.8 [mu] m, 50% cumulative particle diameter (D 50 diameter) is 2.1 .mu.m, cumulative 90% particle diameter (D 90 diameter) 3. It was 8 μm. The crystallite diameter D (111) is 106 nm, the crystallite diameter D (200) is 69 nm, the crystallite diameter D (220) is 61 nm, and D (111) / D (200) is 1.54, D ( 111) / D (220) was 1.74 and D (200) / D (220) was 1.13.
 また、得られた銀被覆銅粉を使用して、実施例1と同様の方法により、導電性ペーストを作製して導電膜を形成し、得られた導電膜の体積抵抗率の算出と保存安定性(信頼性)の評価を行った。その結果、導電膜の初期の体積抵抗率は48μΩ・cm、6週間保存後の体積抵抗率は158μΩ・cmであり、体積抵抗率の変化率は229%であった。 In addition, using the obtained silver-coated copper powder, a conductive paste was produced by the same method as in Example 1 to form a conductive film, and the volume resistivity of the obtained conductive film was calculated and stored stably. The reliability (reliability) was evaluated. As a result, the initial volume resistivity of the conductive film was 48 μΩ · cm, the volume resistivity after storage for 6 weeks was 158 μΩ · cm, and the change rate of the volume resistivity was 229%.
 これらの実施例および比較例の銀被覆銅粉の製造条件および特性を表1~表3に示す。 Tables 1 to 3 show the production conditions and characteristics of the silver-coated copper powders of these examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これらの表からわかるように、実施例の銀被覆銅粉を使用して作製した導電膜は、比較例の銀被覆銅粉を使用して作製した導電膜と比べて、初期の体積抵抗率が低く、150℃で6週間保存した後の体積抵抗率の変化率(%)が低くなり、導電膜の保存安定性(信頼性)に優れている。 As can be seen from these tables, the conductive film prepared using the silver-coated copper powder of the example has an initial volume resistivity as compared with the conductive film prepared using the silver-coated copper powder of the comparative example. Low, the rate of change (%) in volume resistivity after storage at 150 ° C. for 6 weeks is low, and the storage stability (reliability) of the conductive film is excellent.
 また、実施例および比較例の銀被覆銅粉のCuの(200)面における結晶子径D(200)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(200)と、その銀被覆銅粉を使用して作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)との関係を図1に示し、実施例および比較例の銀被覆銅粉のCuの(220)面における結晶子径D(220)に対するCuの(200)面における結晶子径D(200)の比D(200)/D(220)と、その銀被覆銅粉を使用して作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)との関係を図2に示す。また、実施例および比較例の銀被覆銅粉の銀被覆層の厚さと、その銀被覆銅粉を使用して作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)との関係を図3に示す。 Further, the ratio D (111) / D of the crystallite diameter D (111) in the (111) plane of Cu to the crystallite diameter D (200) in the (200) plane of Cu of the silver-coated copper powders of Examples and Comparative Examples. FIG. 1 shows the relationship between (200) and the volume resistivity change rate (%) after the conductive film prepared using the silver-coated copper powder was stored at 150 ° C. for 6 weeks. The ratio D (200) / D (220) of the crystallite diameter D (200) in the (200) plane of Cu to the crystallite diameter D (220) in the Cu (220) plane of the silver-coated copper powder of the example, FIG. 2 shows the relationship between the volume resistivity change rate (%) after a conductive film prepared using silver-coated copper powder was stored at 150 ° C. for 6 weeks. Moreover, the rate of change in volume resistivity after storing the thickness of the silver coating layer of the silver-coated copper powder of Examples and Comparative Examples and the conductive film prepared using the silver-coated copper powder at 150 ° C. for 6 weeks ( %) Is shown in FIG.
 図1からわかるように、Cuの(200)面における結晶子径D(200)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(200)が1.8以上の銀被覆銅粉(実施例の銀被覆銅粉)は、その比が1.8より低い比較例の銀被覆銅粉と比べて、作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)が低くなり、導電膜の保存安定性(信頼性)に優れている。また、図2からわかるように、Cuの(220)面における結晶子径D(220)に対するCuの(200)面における結晶子径D(200)の比D(200)/D(220)が1.1より低い銀被覆銅粉(実施例の銀被覆銅粉)は、その比が1.1以上の比較例の銀被覆銅粉と比べて、作製した導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)が低くなり、導電膜の保存安定性(信頼性)に優れている。さらに、図3からわかるように、実施例の銀被覆銅粉を使用して作製した導電膜は、比較例の銀被覆銅粉を使用して作製した導電膜と比べて、同じ銀被覆層の厚さでも、導電膜を150℃で6週間保存した後の体積抵抗率の変化率(%)が大幅に低くなり、導電膜の保存安定性(信頼性)を大幅に向上させることができる。 As can be seen from FIG. 1, the ratio D (111) / D (200) of the crystallite diameter D (111) in the (111) plane of Cu to the crystallite diameter D (200) in the (200) plane of Cu is 1. Eight or more silver-coated copper powders (silver-coated copper powders of the examples) were compared with the silver-coated copper powders of the comparative examples whose ratio was lower than 1.8, after the produced conductive film was stored at 150 ° C. for 6 weeks. The volume resistivity change rate (%) is low, and the storage stability (reliability) of the conductive film is excellent. As can be seen from FIG. 2, the ratio D (200) / D (220) of the crystallite diameter D (200) in the (200) plane of Cu to the crystallite diameter D (220) in the (220) plane of Cu is The silver-coated copper powder lower than 1.1 (silver-coated copper powder of the example) was stored at 150 ° C. for 6 weeks, compared with the silver-coated copper powder of the comparative example having a ratio of 1.1 or more. The change rate (%) of the volume resistivity after the reduction is low, and the storage stability (reliability) of the conductive film is excellent. Furthermore, as can be seen from FIG. 3, the conductive film prepared using the silver-coated copper powder of the example has the same silver coating layer as the conductive film prepared using the silver-coated copper powder of the comparative example. Even with the thickness, the rate of change (%) in volume resistivity after storing the conductive film at 150 ° C. for 6 weeks is significantly reduced, and the storage stability (reliability) of the conductive film can be greatly improved.
 本発明による銀被覆銅粉は、回路基板の導体パターン、太陽電池などの基板の電極や回路などの電子部品に使用する導電性ペーストの作製に利用することができる。 The silver-coated copper powder according to the present invention can be used for the production of a conductive paste for use in electronic components such as conductor patterns of circuit boards, electrodes of boards such as solar cells, and circuits.

Claims (10)

  1. 銅を加熱して溶解した溶湯を落下させながら高圧水を吹き付けて急冷凝固して得られた銅粉のスラリーを非酸化性ガスの存在下で保持した後、固液分離して得られた銅粉を銀含有層で被覆することを特徴とする、銀被覆銅粉の製造方法。 The copper obtained by solid-liquid separation after holding the slurry of copper powder obtained by rapid solidification by spraying high-pressure water while dropping the molten metal heated by copper, followed by solid-liquid separation A method for producing a silver-coated copper powder, wherein the powder is coated with a silver-containing layer.
  2. 前記スラリー中と前記スラリーを収容する容器内との少なくとも一方に前記非酸化性ガスを吹き込みながら保持することによって、前記スラリーを非酸化性ガスの存在下で保持することを特徴とする、請求項1に記載の銀被覆銅粉の製造方法。 The slurry is held in the presence of a non-oxidizing gas by holding the non-oxidizing gas while blowing it into at least one of the slurry and a container containing the slurry. A method for producing the silver-coated copper powder according to 1.
  3. 前記銅粉のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1~15μmであることを特徴とする、請求項1に記載の銀被覆銅粉の製造方法。 Wherein the cumulative 50% particle diameter on a volume basis as measured by a laser diffraction particle size distribution measuring apparatus of the copper powder (D 50 diameter) is 0.1 ~ 15 [mu] m, silver-coated copper according to claim 1 Powder manufacturing method.
  4. 前記高圧水がアルカリ水溶液であることを特徴とする、請求項1に記載の銀被覆銅粉の製造方法。 The method for producing a silver-coated copper powder according to claim 1, wherein the high-pressure water is an alkaline aqueous solution.
  5. 前記溶湯にリンを添加することを特徴とする、請求項1に記載の銀被覆銅粉の製造方法。 The method for producing silver-coated copper powder according to claim 1, wherein phosphorus is added to the molten metal.
  6. 銅粉の表面が銀含有層で被覆された銀被覆銅粉であって、Cuの(200)面における結晶子径D(200)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(200)が1.8以上であり且つCuの(220)面における結晶子径D(220)に対するCuの(200)面における結晶子径D(200)の比D(200)/D(220)が1.095以下であることを特徴とする、銀被覆銅粉。 A silver-coated copper powder whose surface is coated with a silver-containing layer of the copper powder, the Cu (200) crystallite diameter D (200) for the Cu in the surface of the (111) crystallite in surface diameter D (111) Ratio D (111) / D (200) is 1.8 or more and ratio D of crystallite diameter D (200) in Cu (200) plane to crystallite diameter D (220) in Cu (220 ) plane D (200) / D (220) is 1.095 or less, Silver-coated copper powder characterized by the above-mentioned.
  7. 前記銀被覆銅粉のCuの(220)面における結晶子径D(220)に対するCuの(111)面における結晶子径D(111)の比D(111)/D(220)が1.90以上であることを特徴とする、請求項6に記載の銀被覆銅粉。 The ratio D (111) / D (220) of the crystallite diameter D (111) in the (111) plane of Cu to the crystallite diameter D (220) in the (220) plane of Cu of the silver-coated copper powder is 1.90. It is the above, The silver covering copper powder of Claim 6 characterized by the above-mentioned.
  8. 前記銀被覆銅粉のレーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1~15μmであることを特徴とする、請求項6に記載の銀被覆銅粉。 Wherein the cumulative 50% particle diameter on a volume basis as measured by a laser diffraction particle size distribution measuring apparatus of the silver-coated copper powder (D 50 diameter) is 0.1 ~ 15 [mu] m, silver claim 6 Coated copper powder.
  9. 前記銀被覆銅粉中のリン含有量が10~1000ppmであることを特徴とする、請求項6に記載の銀被覆銅粉。 The silver-coated copper powder according to claim 6, wherein a phosphorus content in the silver-coated copper powder is 10 to 1000 ppm.
  10. 導電性粉末として請求項6に記載の銀被覆銅粉を含むことを特徴とする、導電性ペースト。 A conductive paste comprising the silver-coated copper powder according to claim 6 as a conductive powder.
PCT/JP2017/014638 2016-04-12 2017-04-10 Silver-coated copper powder and method for producing same WO2017179524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-079577 2016-04-12
JP2016079577A JP6722495B2 (en) 2016-04-12 2016-04-12 Silver-coated copper powder and method for producing the same

Publications (1)

Publication Number Publication Date
WO2017179524A1 true WO2017179524A1 (en) 2017-10-19

Family

ID=60041669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014638 WO2017179524A1 (en) 2016-04-12 2017-04-10 Silver-coated copper powder and method for producing same

Country Status (3)

Country Link
JP (1) JP6722495B2 (en)
TW (1) TW201802256A (en)
WO (1) WO2017179524A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170464B2 (en) * 2018-08-30 2022-11-14 Dowaエレクトロニクス株式会社 Method for cleaning silver-coated metal powder, method for producing silver-coated metal powder, silver-coated copper powder, silver-coated copper alloy powder, method for producing conductive paste and conductive film, electronic component, and electric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258128A (en) * 2012-05-18 2013-12-26 Tohoku Univ Conductive paste
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258128A (en) * 2012-05-18 2013-12-26 Tohoku Univ Conductive paste
JP2015021143A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same

Also Published As

Publication number Publication date
TW201802256A (en) 2018-01-16
JP2017190483A (en) 2017-10-19
JP6722495B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP5937730B2 (en) Method for producing copper powder
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
WO2014080662A1 (en) Copper powder and method for producing same
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
JP2007239077A (en) Method for producing particulate silver particle, and particulate silver particle obtained by the method
JP7090511B2 (en) Silver powder and its manufacturing method
KR20100096111A (en) Copper powder for electrically conductive paste, and electrically conductive paste
JP2020076155A (en) Silver-coated copper powder and method for producing the same
JP7272834B2 (en) Silver powder and its manufacturing method
JP2016176093A (en) Silver-covered metal powder and method for producing the same
WO2018123809A1 (en) Copper powder and method for manufacturing same
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP6159505B2 (en) Flat copper particles
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP5453598B2 (en) Silver-coated copper powder and conductive paste
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP5785433B2 (en) Low carbon copper particles
JP2017201062A (en) Method for producing silver-coated copper alloy powder
WO2019065341A1 (en) Silver powder and production method thereof
JP7136970B2 (en) Silver powder containing phosphorus and conductive paste containing the silver powder
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
WO2024071303A1 (en) Copper powder, copper paste containing same, and method for producing conductive film
WO2016114106A1 (en) Silver-coated copper powder and method for manufacturing same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782337

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782337

Country of ref document: EP

Kind code of ref document: A1