JP2017039632A - 水素製造装置及び水素製造方法 - Google Patents

水素製造装置及び水素製造方法 Download PDF

Info

Publication number
JP2017039632A
JP2017039632A JP2015164209A JP2015164209A JP2017039632A JP 2017039632 A JP2017039632 A JP 2017039632A JP 2015164209 A JP2015164209 A JP 2015164209A JP 2015164209 A JP2015164209 A JP 2015164209A JP 2017039632 A JP2017039632 A JP 2017039632A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
dehydrogenation
dehydrogenation reactor
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015164209A
Other languages
English (en)
Inventor
暁 山本
Akira Yamamoto
暁 山本
佑一朗 平野
Yuichiro Hirano
佑一朗 平野
幸次郎 中川
Kojiro Nakagawa
幸次郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2015164209A priority Critical patent/JP2017039632A/ja
Publication of JP2017039632A publication Critical patent/JP2017039632A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】気液分離処理で分離できない不純物である非凝縮ガスの濃縮を防止して装置全体のエネルギー効率の低下を防止することができること。【解決手段】MCHを加熱して水素と脱水素物質とに分解する脱水素反応器10と、脱水素反応器10が生成した脱水素反応物を冷却して水素濃度の高い脱水素反応物と凝縮された液化不純物とに気液分離する気液分離器35,36と、気液分離器36から導入された脱水素反応物から水素V31とオフガスG31とに分離する水素分離器30と、水素分離器30から分離されたオフガスを脱水素反応器10におけるMCHの入口側に導入するオフガス供給ラインLN1と、オフガス供給ラインLN1からオフガスG31の一部または全部を熱エネルギーとして利用する水素利用系1Cと、を備える。【選択図】図1

Description

本発明は、装置全体のエネルギー効率の低下を防止することができる水素製造装置及び水素製造方法に関する。
従来から、有機ハイドライドの一種である芳香族炭化水素の水素化物を水素と脱水素物質とに分解する脱水素反応器によって生成された脱水素反応物を水素分離器によって水素を分離して導出する水素ステーションなどの水素製造装置が知られている。
ここで、特許文献1には、脱水素反応後の脱水素反応物から水素を分離し、さらに膜分離手段によって水素と非透過ガスとに分離する高純度水素製造方法が記載されている。
特開2005−213087号公報
ところで、従来の水素製造装置では、脱水素反応器によって有機ハイドライドを水素と脱水素物質とに分解する際、脱水素触媒を用いてこの分解を促進している。
また、脱水素反応器によって生成された脱水素反応物のなかには、水素以外に、未反応有機ハイドライド、脱水素物質などの不純物が含まれる。このため、水素分離器で水素を分離する前に、脱水素反応物を冷却し、気液分離系によって凝縮された不純物を取り除き、不純物濃度の低い脱水素反応物を水素分離器に供給するようにしている。
しかし、不純物の中には、冷却して凝縮しない非凝縮ガス、例えばメタンなどの炭化水素物が含まれる。水素分離器に供給された脱水素反応物は、水素分離器によって水素とオフガスとに分離されるが、このオフガスには非凝縮ガスが含まれる。
そして、非凝縮ガスが含まれるオフガスを廃棄することが考えられるが、このオフガス中は、水素が含まれており、装置のエネルギー効率を低下させてしまうという問題があった。
本発明は、上記に鑑みてなされたものであって、装置全体のエネルギー効率の低下を防止することができる水素製造装置及び水素製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる水素製造装置は、有機ハイドライドを脱水素反応により水素と脱水素物質とに分解する脱水素反応器と、前記脱水素反応器での前記脱水素反応により生成された脱水素反応物を前記脱水素反応器で生成された前記脱水素反応物よりも水素濃度の高い脱水素反応物と凝縮された液化不純物とに気液分離する気液分離系と、気液分離系にて気液分離された前記脱水素反応物を水素とオフガスとに分離する水素分離器と、水素分離器で分離されたオフガスを前記脱水素反応器における有機ハイドライドの入口側に供給可能なオフガス供給ラインと、前記オフガスの一部または全部を熱エネルギーとして利用する水素利用系と、を備えたことを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記水素利用系は、前記オフガスを、前記脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼ガスとして供給するボイラ供給ラインを有することを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記水素利用系は、前記オフガス内における、前記気液分離系で凝固しない不純物である非凝固ガスの濃度を検出する濃度センサを備え、前記非凝固ガスの濃度が所定値以上となった場合、前記オフガスを熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記水素分離器で分離された水素を前記脱水素反応器における有機ハイドライドの入口側に供給する水素供給ラインを設け、前記水素利用系は、前記非凝固ガスの濃度が所定値以上となった場合、前記オフガス供給ラインのオフガスを熱エネルギー利用側に供給し、前記水素供給ラインから一部の水素を前記脱水素反応器における有機ハイドライドの入口側に供給することを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記水素利用系は、前記オフガスを前記脱水素反応器側と熱エネルギー利用側とに分岐して供給する流量調整分岐弁を備え、前記流量調整分岐弁を切り替えて前記オフガスを熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記水素利用系は、前記オフガスの50%以上を熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記水素利用系は、前記所定時間毎に前記オフガスの全てを熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造方法は、有機ハイドライドを脱水素反応器の脱水素反応により水素と脱水素物質とに分解する脱水素反応工程と、前記脱水素反応器での前記脱水素反応により生成された脱水素反応物を前記脱水素反応器で生成された前記脱水素反応物よりも水素濃度の高い脱水素反応物と凝縮された液化不純物とに気液分離する気液分離工程と、気液分離工程にて気液分離された前記脱水素反応物を水素分離器によって水素とオフガスとに分離する水素分離工程と、水素分離工程で分離されたオフガスを前記脱水素反応器における有機ハイドライドの入口側に供給するオフガス供給工程と、前記オフガスの一部または全部を熱エネルギーとして利用する水素利用工程と、を含むことを特徴とする。
また、本発明にかかる水素製造方法は、上記の発明において、前記水素利用工程は、前記オフガスを、前記脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼ガスとして供給するボイラ供給工程を有することを特徴とする。
また、本発明にかかる水素製造方法は、上記の発明において、前記水素利用工程は、前記オフガス内における、前記気液分離工程で凝固しない不純物である非凝固ガスの濃度を検出し、前記非凝固ガスの濃度が所定値以上となった場合、前記オフガスを熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造方法は、上記の発明において、前記水素分離器で分離された水素を前記脱水素反応器における有機ハイドライドの入口側に供給する水素供給工程を含み、前記水素利用工程は、前記非凝固ガスの濃度が所定値以上となった場合、前記オフガスを熱エネルギー利用側に供給し、前記水素供給工程から一部の水素を前記脱水素反応器における有機ハイドライドの入口側に供給することを特徴とする。
また、本発明にかかる水素製造方法は、上記の発明において、前記水素利用工程は、前記オフガスを前記脱水素反応器側と熱エネルギー利用側とに分岐して供給する流量調整分岐弁を切り替えて前記オフガスを熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造方法は、上記の発明において、前記水素利用工程は、前記オフガスの50%以上を熱エネルギー利用側に供給することを特徴とする。
また、本発明にかかる水素製造方法は、上記の発明において、前記水素利用工程は、前記所定時間毎に前記オフガスの全てを熱エネルギー利用側に供給することを特徴とする。
本発明によれば、水素分離器から分離されたオフガスの一部または全部を熱エネルギーとして利用するようにしているので、装置全体のエネルギー効率の低下を防止することができる。
図1は、本発明の実施の形態1である水素製造装置の構成を示す回路図である。 図2は、水素分離器の入導出成分流量の関係を示す模式図である。 図3は、本発明の実施の形態2である水素製造装置の構成を示す回路図である。 図4は、本発明の実施の形態3である水素製造装置の構成を示す回路図である。 図5は、本発明の実施の形態4である水素製造装置の構成を示す回路図である。
以下、添付図面を参照してこの発明を実施するための形態について説明する。
(実施の形態1)
[全体構成]
図1は、本発明の実施の形態1である水素製造装置1の構成を示す回路図である。この水素製造装置1は、脱水素反応により有機ハイドライドから水素を製造する装置であり、例えば燃料電池自動車や水素エンジン車などに水素を供給する水素ステーションに採用されるものである。図1に示すように、水素製造装置1は、脱水素反応系1Aと水素分離系1Bとを有する。脱水素反応系1Aは、脱水素反応器10によって有機ハイドライドを水素と脱水素物質とに分解し、当該水素および当該脱水素物質に分解されなかった未分解反応物とを含む脱水素反応物を導出する。水素分離系1Bは、脱水素反応系1Aから導出された脱水素反応物から水素分離器30によって水素を分離して外部導出する。
有機ハイドライドは、不飽和結合を有する有機化合物の水素化物であり、脱水素触媒を用いて、水素と脱水素物質(不飽和結合を有する有機化合物)とを含む脱水素反応物に分解することができる。有機ハイドライドは、常温常圧下で液体状のものが好ましく、このようなものを採用する場合、ガソリンなどと同様に液体燃料としてローリーなどによって水素ステーションなどの水素製造装置1へ輸送することができる。本実施の形態1では、有機ハイドライドとして、メチルシクロヘキサン(以下、MCHと称する)を用いて説明するが、これには限られない。なお、不飽和結合を有する有機化合物とは、二重結合あるいは三重結合を分子内に一つ以上有し、常温常圧下で液状である有機化合物である。二重結合としては、炭素−炭素二重結合(C=C)、炭素−窒素二重結合(C=N)、炭素−酸素二重結合(C=O)、窒素−酸素二重結合(N=O)が例示される。三重結合としては、炭素−炭素三重結合、炭素−窒素三重結合が例示される。不飽和結合を有する有機化合物としては、貯蔵性および輸送性の観点から、常温常圧下で液体状の有機化合物であることが好ましい。
不飽和結合を有する有機化合物としては、例えばオレフィン類、ジエン類、アセチレン類、ベンゼン、炭素鎖置換芳香族類、へテロ置換芳香族類、多環芳香族類、シフ塩基類、ヘテロ芳香族類、ヘテロ5員環化合物類、キノン類、ケトン類などが挙げられる。オレフィン類としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ウンデセン、ドデセンなどが挙げられる。ジエン類としては、アレン、ブタジエン、ペンタジエン、ヘキサジエン、へブタジエン、オクタジエン、ピペリレン、イソプレンなどが挙げられる。アセチレン類としては、アセチレン、プロピン、ビニルアセチレンなどが挙げられる。炭素鎖置換芳香族類としては、アルキル置換芳香族類などが挙げられる。アルキル置換芳香族類としては、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、クメン、安息香酸などが挙げられる。へテロ置換芳香族類としては、アニソール、ジメトキシベンゼン、フェノール、アニリン、N、N−ジメチルアニリンなどが挙げられる。多環芳香族類としては、ナフタレン、メチルナフタレン、アントラセン、テトラセン、フェナントレン、テトラリン、アズレンなどが挙げられる。シフ塩基類としては、2-aza-hept-1-en-1-yl-cyclohexaneなどが挙げられる。ヘテロ芳香族類としては、ピリジン、ピリミジン、キノリン、イソキノリンなどが挙げられる。ヘテロ5員環化合物類としては、フラン、チオフェン、ピロール、イミダゾールなどが挙げられる。キノン類としては、ベンゾキノン、ナフトキノンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトンなどが挙げられる。なお、言うまでもないことであるが、二酸化炭素や一酸化炭素は不飽和結合を有しているが一般に有機化合物とは見なされないので、本実施形態における不飽和結合を有する有機化合物から除外される。
上記の不飽和化合物の中でも、ベンゼン、トルエン、キシレン、エチルベンゼン、ナフタレン、メチルナフタレン、テトラリンなど(以下、「ベンゼン等」と記載する。)は、水素化の前後において非水溶性であり、水と相分離可能であるため、生成物としての回収が非常に容易である点において、アセトン等の水溶性の有機化合物よりも好ましい。これらベンゼン等として、純粋な化合物を用いても良いし、複数の化合物の混合物を用いても良い。
[脱水素反応系]
図1に示すように、ローリーなどによって輸送されたMCHは、タンクT1内に貯留される。貯留されたMCHは、ポンプP1によって吸い上げられる。ポンプP1からの吐出流量は、フローコントローラ100によって制御される。ポンプP1から吐出されたMCH(L1)は、予熱器11によって、例えば室温近くの20℃から、110℃〜120℃に昇温される。昇温された液状のMCH(L2)は、蒸発器12によって蒸発され、180℃の気化されたMCH(V1)となる。MCH(V1)は、さらに加熱器13によって300℃に昇温され、MCH(V2)として脱水素反応器10に導入される。
脱水素反応器10内には、熱媒油などの熱媒体が通る管が蛇行して配置される。また、脱水素反応器10内には、脱水素触媒が取り付けられる。MCH(V2)の脱水素反応は吸熱反応であるため、熱媒体としては例えば350℃程度のものを用いて、脱水素反応器10内を通過するMCH(V2)の脱水素反応が効率良く行われる300℃程度に維持できるように脱水素反応器10内を加熱する。脱水素反応器10内に導入されたMCH(V2)は、水素とトルエンとに分解され、水素とトルエンと未分解のMCHを含む脱水素反応物V3として330℃程度で脱水素反応器10から導出される。
脱水素反応物V3は、加熱器13において、加熱器13に導入されるMCH(V1)と熱交換を行う。熱交換された脱水素反応物V3は、215℃程度に降温した脱水素反応物V4となる。この脱水素反応物V4は、予熱器11において、予熱器11に導入されるMCH(L1)と熱交換を行う。この予熱器11において、脱水素反応物V4とMCH(L1)とを熱交換することによって、後段の蒸発器12での熱交換量を減らすことができる。すなわち、このような構成とすることによって、後述するように、熱媒体を加熱するためのエネルギー消費を抑制することができるため、装置全体のエネルギー効率を高めることができる。この予熱器11において熱交換された脱水素反応物(V5)は、139℃まで降温し、その後、水素分離系1Bに導出される。
脱水素反応器10に導入される熱媒体L11は、熱媒ボイラ21において加熱される。脱水素反応器10内で吸熱された熱媒体L12は、蒸発器12においてMCH(L1)と熱交換してMCH(L1)を蒸発させて180℃まで昇温する。その後、降温した熱媒体L13は、ポンプP2によって再び熱媒ボイラ21に導入されて加熱される。本実施形態1において熱媒体は、伝熱効率の観点から熱媒油を採用しているが、これには限られない。なお、熱媒体は、タンクT2に貯留され、熱媒体の循環系において熱媒体が不足する場合には当該循環系を構成する管路に熱媒体が補給され、熱媒体が多い場合には当該循環系を構成する管路から引き抜かれる。
熱媒ボイラ21は、ラインLN11を流れるLPガスG1とラインLN12を流れる空気G2とが流入し、LPガスG1を燃焼することによって熱媒体L13を加熱する。空気G2は、ブロア22から吐出され、空気予熱器23によって予熱された後、熱媒ボイラ21に導入される。熱媒ボイラ21で燃焼した燃焼ガスG3は、空気予熱器23で空気G2と熱交換を行った後、燃焼排ガスとして大気に排出される。この空気予熱器23を用いた空気予熱によってエネルギー効率を高めることができる。なお、熱媒ボイラ21による熱媒体の加熱制御は、温度コントローラ200が脱水素反応器10内の温度を検出し、この検出温度をもとにポンプP2による熱媒ボイラ21への熱媒体流量を調整するとともに、温度コントローラ201が検出する脱水素反応器10に流入する熱媒体L11の温度を検出し、この検出温度をもとに、フローコントローラ103を介して、熱媒ボイラ21で燃焼するLPガスG1の流量を調整することによってなされる。フローコントローラ103は、バルブVL103の開閉制御を行う。
なお、本実施の形態1では、熱媒ボイラ21を用いて熱媒体を加熱し、この加熱された熱媒体によって脱水素反応器10の加熱を行っている。このような熱媒体を用いた加熱機構を採用すると、例えばバーナーにより直接加熱する加熱機構に比べて、より均一に加熱することができるため、脱水素反応器10の温度制御をより安定して行うことができる。熱媒体を用いた加熱機構としては、液体状の熱媒体を用いたものには限られず、例えばLPガスをバーナーなどによって燃焼した燃焼ガスを脱水素反応器10内の配管に流入してMCH(V2)を加熱するような気体状の熱媒体を用いたものでもよい。また、加熱機構としては、熱媒体を用いたものには限られず、同様の効果があれば他の機構を採用しても良い。
本実施の形態1による脱水素反応系1Aでは、脱水素反応器10から導出される脱水素反応物V3の熱エネルギーを用いて加熱器13で脱水素反応器10に流入するMCH(V1)を加熱するとともに、蒸発器12の前段に配置された予熱器11が、加熱器13による熱交換後の脱水素反応物V4の熱エネルギーを用いて、蒸発前の液状のMCH(L1)を予熱するようにしている。この結果、蒸発器12においてMCH(L1)の蒸発に消費される熱媒体L12の熱エネルギーを減少することができる。この熱媒体L12から失われる熱エネルギーの減少は、熱媒ボイラ21で消費されるエネルギーの減少をもたらし、結果的に装置全体のエネルギー効率を向上させることができる。
[水素分離系]
一方、予熱器11を介した脱水素反応物V5は、水素分離系1Bに流入する。脱水素反応物V5は、冷却器31で例えば135℃〜140℃から、40℃程度まで冷却され、気液分離器35によって気液分離される。気液分離器35で液状物質として分離されない、水素含有量が高い脱水素反応物V6は、さらに冷却器32で40℃から15℃程度まで冷却され、気液分離器36によって気液分離される。気液分離器36で液状物質として分離されず、水素含有量がさらに高まった脱水素反応物V7は、コンプレッサP3によって加圧された脱水素反応物V30として水素分離器30に導入される。なお、コンプレッサP3によって加圧された脱水素反応物V30は、加圧によって温度上昇するため、水素分離器30に導入する前に、冷却器33によって90℃まで冷却される。
水素分離器30は、脱水素反応物V30から水素を選択的に分離する機能を有するものであり、本実施の形態1では膜分離機構を用いたものが採用される。膜分離機構に採用される水素分離膜としては、コンプレッサP3から導入される圧力に耐え得る(例えば900kPa以上の耐圧性がある)膜として、カーボン膜、パラジウム膜、ゼオライト膜などが挙げられるが、耐圧性や小さい差圧での実用化の観点ではカーボン膜およびゼオライト膜が比較的好ましく、中でもカーボン膜が振動に対する機械的強度の観点で特に好ましい。カーボン膜は、分子量の小さい水素を透過させ、トルエンや未分解物質などの相対的に分子量の大きいものを透過させない機能を有している。コンプレッサP3は、200kPaの脱水素反応物V7を900kPaまで昇圧した脱水素反応物V30として水素分離器30に導出する。水素分離器30における水素分離時の差圧は、200kPaであるため、分離された水素V31は、90℃で700kPaとなる。水素V31は、冷却器34で、40℃まで冷却し、フローコントローラ101で調整して700kPaの水素V32として外部導出される。すなわち、要求された外部圧力及び温度をもつ製品水素として外部に供給される。
ここで、圧力コントローラ400は、コンプレッサP3が導出する圧力が所定圧となるように制御する。この所定圧は、圧力損失を考慮し、水素分離器30における水素分離により生じる差圧200kPaと、水素分離器30によって分離された水素V31の外部に導出する圧力700kPaとを合わせた圧力900kPaよりも高い圧力にする。コンプレッサP3が導出する圧力をこのような所定圧にすることによって、水素分離器30の後段に従来設けていた、製品水素として必要な圧力に昇圧するための製品水素の導出専用のコンプレッサを設ける必要がなくなる。この結果、装置全体をコンパクトにすることができる。また、コンプレッサを分散配置せず、大型のコンプレッサに集約することによって圧力効率を高めることができ、結果的に、水素分離器30による水素分離処理に必要なエネルギー及び製品水素の供給処理に必要なエネルギーのトータルエネルギーを削減することができる。
なお、気液分離器35,36において液状物質として分離されたトルエン含有量が大きく水素が含まれる液化不純物L21,L22は、タンクT3に捕集され、回収トルエンとして用いられる。回収トルエンは、再び水素と反応させることにより水素化物(MCH)として繰り返し使用することができる。
水素分離器30における膜分離機構の水素分離膜を透過しなかった非透過ガス(オフガス)G31は、供給ラインLN1を介して脱水素反応器10の導入側に導入される。本実施の形態1では、オフガスG31の加熱を効果的に行うために、オフガスG31は、蒸発器12と加熱器13との間の配管内に導入される。このオフガスG31には水素分離膜を透過できなかった水素が含まれる。オフガスG31内の水素が脱水素反応器10に導入されると、脱水素触媒を充填した脱水素反応器の水素濃度を一定以上に保持することができて脱水素反応器10内の脱水素触媒の劣化を抑制することができる。特に、本実施の形態1で示すように、オフガスG31を脱水素反応器10の導入側(上流側)から導入することにより、相対的に水素の存在量が少ない当該導入側におけるコーキング現象の発生をより効果的に抑制することができる。
図2は、水素分離器30の入導出成分流量の関係を示す模式図である。図2に示すように、水素分離器30に導入される脱水素反応物V30は、水素:16.5kmol/h、その他:0.2kmol/hの流量配分であり、水素含有量が高い。水素分離器30によって分離される水素V31は、水素:13.4kmol/hであり、水素分離器30によって分離されなかったオフガスG31は、水素:3.1kmol/h、その他:0.2kmol/hの流量配分となる。すなわち、オフガスG31には、水素分離膜を透過できなかった水素が含まれており、この水素を脱水素反応器10の導入側に導入することによって、脱水素反応器10内の脱水素触媒の劣化を抑制することができる。
なお、図1において、温度コントローラ202〜204は、冷却器31〜33から導出されたガス温度を検出し、各冷却器31〜33に流入する冷却水の流量を調整することによって温度制御を行っている。ここで、冷却器31,33,34は、必要冷却能力が小さいため、クーリングタワーを介して自然冷却した冷却水を用いており、冷却器32は、必要冷却能力が大きいため、チラーを介して強制的に電気冷却した冷却水を用いている。なお、クーリングタワーを有効活用し、冷却器31,32による多段冷却を行うことによって強制冷却による電力消費が抑えられるため、装置全体のエネルギー効率を高めることができる。
また、気液分離器35,36の液化したトルエンの排出は、それぞれレベルコントローラ301,302によって排出制御される。すなわち、レベルコントローラ301,302は、それぞれ検出する液面が所定高さ以上となった場合にバルブを開いてトルエンをタンクT3に排出する。また、フローコントローラ101は、水素V32の導出流量が所定流量となるように、バルブを制御する。さらに、フローコントローラ102は、オフガスG31の流量が所定流量となるように、バルブ(流量調整分岐弁VL102)を制御する。
[水素利用系]
流量調整分岐弁VL102は、供給ラインLN1を流れるオフガスG31をフローコントローラ102の制御のもとに、流量の50%未満をそのまま供給ラインLN1を介して脱水素反応器10の入口側に導入するとともに、残りの50%以上の流量を供給ラインLN3側に流す。供給ラインLN3は、LPガスG1が流れるラインLN11であってバルブVL103の下流に接続される。そして、供給ラインLN3を流れるオフガスG31は、ラインLN11でLPガスG1と混合される。オフガスG31とLPガスG1との混合ガスは、熱媒ボイラ21に供給されて燃焼される。
ここで、流量調整分岐弁VL102と供給ラインLN3は、オフガスG31を熱エネルギーとして用いる水素利用系1Cを構成する。
オフガスG31内には、気液分離器35,36で不純物として凝縮しなかった非凝縮ガスが、脱水素反応器10、気液分離器35,36、水素分離器30、供給ラインLN1を閉ループとして濃縮されていく。しかし、流量調整分岐弁VL102を介して50%未満の流量のオフガスG31が脱水素反応器10の入口側に戻されるので、閉ループで非凝縮ガスが濃縮されることがない。
この結果、水素分離器30において非凝縮ガスが製品水素である水素V31内に含まれる率が増大することがなく、製品水素の純度の低下を防止することができる。
また、オフガスG31内の非凝縮ガスの濃縮が進むと、オフガスG31中における非凝縮ガスの分圧が大きくなり、オフガスG31に含まれる水素の分圧が低下することになる。しかし、オフガスG31内の非凝縮ガスの濃縮が進まないので、オフガスG31中に含まれる水素含有量の減少を防止できるので、脱水素触媒の劣化を抑制することができる。
さらに、水素利用系1Cを設けることによって、オフガスG31の50%以上の流量が捨てられることなく、オフガスG31を熱媒ボイラ21の燃焼ガスとして用いているため、装置全体のエネルギー効率が向上することになる。
(実施の形態2)
次に、実施の形態2について説明する。本実施の形態2は、図3に示すように、実施の形態1の水素利用系C1に、オフガスG31中の非凝縮ガスの濃度を検出する濃度センサS1を設け、非凝縮ガスの濃度が所定値以上となった場合、実施の形態1と同様に、流量調整分岐弁VL102を介してオフガスG31の50%未満の流量を供給ラインLN1に流し、オフガスG31の50%以上の流量を供給ラインLN3に流すようにしている。そして、供給ラインLN3を介して流れたオフガスG31を熱媒ボイラ21に供給して燃焼する水素利用系13Cを有する。その他の構成は実施の形態1と同じである。
本実施の形態2では、濃度センサS1によってオフガスG31中の非凝縮ガスの濃度を検出し、非凝縮ガスの濃縮状態を詳細に観察しているので、非凝縮ガスの濃縮を確実に防止することができる。そして、オフガスG31を一層有効利用して脱水素触媒の劣化を抑止することができる。
(実施の形態3)
次に、実施の形態3について説明する。本実施の形態3は、図4に示すように、実施の形態1の構成に対し、フローコントローラ102に対応するフローコントローラ202が流量調整分岐弁VL102を所定時間ごとに切り替え、オフガスG31の導出を供給ラインLN1側と供給ラインLN3側とに切り替える水素利用系14Cを設けている。その他の構成は、実施の形態1と同じである。
この所定時間ごとの切替とは、例えば、水素製造装置1を運転している昼間はオフガスG31を供給ラインLN1側に切り替え、水素製造装置1を運転していない夜間の一定期間、オフガスG31をラインLN3側に切り替える。この夜間の一定期間とは、例えば、非凝縮ガスが閉ループを1周する時間であることが好ましい。また、運転している昼間では、非凝縮ガスが所定値以上に濃縮しない期間であることが好ましい。
これによって、水素製造装置の運転に影響を与えずに、非凝縮ガスの濃縮を抑えることができる。なお、上述した実施の形態3では、流量調整分岐弁VL102を100%の流量で完全に切り替えることを前提として説明したが、これに限らず、流量調整をもたせた切替であってもよい。
(実施の形態4)
次に、実施の形態4について説明する。本実施の形態4は、図5に示すように、実施の形態2の構成に対し、水素V31の一部を、供給ラインLN1と同様に、脱水素反応器10におけるMCHの入口側に供給する供給ラインLN2を設けている。供給ラインLN2は、流量調整弁VL102の下流に接続される。供給ラインLN2上には、フローコントローラ104とバルブVL104とが設けられる。
濃度センサS1が所定値以上の非凝縮ガスの濃度を検出した場合、フローコントローラ102は、調整流量分岐弁VL102によって、すべてのオフガスG31を供給ラインLN3に導出するとともに、フローコントローラ104は、これまで閉にしていたバルブVL104を開にして水素V33を脱水素反応器10側に導出する。この水素V33は、パージガスとして機能し、閉ループ上の非凝縮ガスをほとんどなくすことができる。この水素V33の供給時間は、オフガスG31が閉ループを1周する時間であることが好ましい。この水素V33の供給時間の経過後、フローコントローラ102は、オフガスG31の供給ラインLN1への供給を許容し、フローコントローラ104は、原則、バルブVL104を閉にする。なお、本実施の形態4では、流量調整分岐弁VL102に対して、オフガスG31の50%未満の流量を供給ラインLN1に供給するという制限をもたせなくてもよい。
なお、濃度センサS1をもつ実施の形態2,4、あるいは流量調整切換弁VL102に対する時間切替を行うフローコントローラ202をもつ実施の形態3において、濃度センサS1が所定値以上の非凝縮ガスの濃度を検出した場合、あるいは所定時間経過した場合、水素V33を供給する供給ラインLN2から供給ラインLN1に、水素V33をパージガスとして導入してもよい。この水素V33の導入時間は、オフガスG31が閉ループを1周する時間であることが好ましい。
また、上述した実施の形態における水素分離器30は、膜分離方式を用いたものであったが、これに限らず、圧力スイング吸着(PSA:Pressure Swing Adsorption)方式の水素分離器であるPSA装置や、温度スイング吸着(TSA:Temperature Swing Adsorption)方式の水素分離器を用いてもよい。
さらに、上述した実施の形態1〜4の構成要素は適宜選択して組み合わせても良い。
1 水素製造装置
1A 脱水素反応系
1B 水素分離系
1C,13C,14C,15C 水素利用系
10 脱水素反応器
11 予熱器
12 蒸発器
13 加熱器
21 熱媒ボイラ
22 ブロア
23 空気予熱器
30 水素分離器
31,32,33,34 冷却器
35,36 気液分離器
100,101,102,103,104 フローコントローラ
200,201,202,203,204 温度コントローラ
301,302 レベルコントローラ
400 圧力コントローラ
S1 濃度センサ
G1 LPガス
G2 空気
G3 燃焼ガス
G31 オフガス
L11,L12,L13 熱媒体
L21,L22 液化不純物
P1,P2 ポンプ
P3 コンプレッサ
T1,T2,T3 タンク
V3,V4,V5,V6,V7,V30 脱水素反応物
V31,V32,V33 水素
VL103,VL104 バルブ
VL102 流量調整分岐弁
LN1,LN2,LN3 供給ライン
LN11,LN12 ライン

Claims (14)

  1. 有機ハイドライドを脱水素反応により水素と脱水素物質とに分解する脱水素反応器と、
    前記脱水素反応器での前記脱水素反応により生成された脱水素反応物を前記脱水素反応器で生成された前記脱水素反応物よりも水素濃度の高い脱水素反応物と凝縮された液化不純物とに気液分離する気液分離系と、
    気液分離系にて気液分離された前記脱水素反応物を水素とオフガスとに分離する水素分離器と、
    水素分離器で分離されたオフガスを前記脱水素反応器における有機ハイドライドの入口側に供給可能なオフガス供給ラインと、
    前記オフガスの一部または全部を熱エネルギーとして利用する水素利用系と、
    を備えたことを特徴とする水素製造装置。
  2. 前記水素利用系は、
    前記オフガスを、前記脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼ガスとして供給するボイラ供給ラインを有することを特徴とする請求項1に記載の水素製造装置。
  3. 前記水素利用系は、
    前記オフガス内における、前記気液分離系で凝固しない不純物である非凝固ガスの濃度を検出する濃度センサを備え、
    前記非凝固ガスの濃度が所定値以上となった場合、前記オフガスを熱エネルギー利用側に供給することを特徴とする請求項1または2に記載の水素製造装置。
  4. 前記水素分離器で分離された水素を前記脱水素反応器における有機ハイドライドの入口側に供給する水素供給ラインを設け、
    前記水素利用系は、
    前記非凝固ガスの濃度が所定値以上となった場合、前記オフガス供給ラインのオフガスを熱エネルギー利用側に供給し、前記水素供給ラインから一部の水素を前記脱水素反応器における有機ハイドライドの入口側に供給することを特徴とする請求項3に記載の水素製造装置。
  5. 前記水素利用系は、
    前記オフガスを前記脱水素反応器側と熱エネルギー利用側とに分岐して供給する流量調整分岐弁を備え、
    前記流量調整分岐弁を切り替えて前記オフガスを熱エネルギー利用側に供給することを特徴とする請求項1〜4のいずれか一つに記載の水素製造装置。
  6. 前記水素利用系は、
    前記オフガスの50%以上を熱エネルギー利用側に供給することを特徴とする請求項1〜5のいずれか一つに記載の水素製造装置。
  7. 前記水素利用系は、
    前記所定時間毎に前記オフガスの全てを熱エネルギー利用側に供給することを特徴とする請求項1〜6のいずれか一つに記載の水素製造装置。
  8. 有機ハイドライドを脱水素反応器の脱水素反応により水素と脱水素物質とに分解する脱水素反応工程と、
    前記脱水素反応器での前記脱水素反応により生成された脱水素反応物を前記脱水素反応器で生成された前記脱水素反応物よりも水素濃度の高い脱水素反応物と凝縮された液化不純物とに気液分離する気液分離工程と、
    気液分離工程にて気液分離された前記脱水素反応物を水素分離器によって水素とオフガスとに分離する水素分離工程と、
    水素分離工程で分離されたオフガスを前記脱水素反応器における有機ハイドライドの入口側に供給するオフガス供給工程と、
    前記オフガスの一部または全部を熱エネルギーとして利用する水素利用工程と、
    を含むことを特徴とする水素製造方法。
  9. 前記水素利用工程は、
    前記オフガスを、前記脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼ガスとして供給するボイラ供給工程を有することを特徴とする請求項8に記載の水素製造方法。
  10. 前記水素利用工程は、
    前記オフガス内における、前記気液分離工程で凝固しない不純物である非凝固ガスの濃度を検出し、前記非凝固ガスの濃度が所定値以上となった場合、前記オフガスを熱エネルギー利用側に供給することを特徴とする請求項8または9に記載の水素製造方法。
  11. 前記水素分離器で分離された水素を前記脱水素反応器における有機ハイドライドの入口側に供給する水素供給工程を含み、
    前記水素利用工程は、
    前記非凝固ガスの濃度が所定値以上となった場合、前記オフガスを熱エネルギー利用側に供給し、前記水素供給工程から一部の水素を前記脱水素反応器における有機ハイドライドの入口側に供給することを特徴とする請求項10に記載の水素製造方法。
  12. 前記水素利用工程は、
    前記オフガスを前記脱水素反応器側と熱エネルギー利用側とに分岐して供給する流量調整分岐弁を切り替えて前記オフガスを熱エネルギー利用側に供給することを特徴とする請求項8〜11のいずれか一つに記載の水素製造方法。
  13. 前記水素利用工程は、
    前記オフガスの50%以上を熱エネルギー利用側に供給することを特徴とする請求項8〜12のいずれか一つに記載の水素製造方法。
  14. 前記水素利用工程は、
    前記所定時間毎に前記オフガスの全てを熱エネルギー利用側に供給することを特徴とする請求項8〜13のいずれか一つに記載の水素製造方法。
JP2015164209A 2015-08-21 2015-08-21 水素製造装置及び水素製造方法 Pending JP2017039632A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015164209A JP2017039632A (ja) 2015-08-21 2015-08-21 水素製造装置及び水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015164209A JP2017039632A (ja) 2015-08-21 2015-08-21 水素製造装置及び水素製造方法

Publications (1)

Publication Number Publication Date
JP2017039632A true JP2017039632A (ja) 2017-02-23

Family

ID=58203010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015164209A Pending JP2017039632A (ja) 2015-08-21 2015-08-21 水素製造装置及び水素製造方法

Country Status (1)

Country Link
JP (1) JP2017039632A (ja)

Similar Documents

Publication Publication Date Title
JP6405275B2 (ja) 水素の製造方法、および水素製造システム
JP5864393B2 (ja) 水素供給システム
JP2016000679A (ja) 水素製造装置及び水素製造方法
EP3399580B1 (en) Fuel cell system and method for operating a fuel cell system
JP2017065937A (ja) 水素製造装置及び水素製造方法
JP2018012610A (ja) 水素製造装置及び水素製造方法
JP6238842B2 (ja) 水素製造装置およびその運転方法
JP2018052768A (ja) 水素製造システム起動方法及び水素製造システム
JP2017039632A (ja) 水素製造装置及び水素製造方法
JP2017001914A (ja) 水素製造装置及び水素製造方法
JP6830819B2 (ja) 水素製造装置
JP2016169133A (ja) 水素製造装置及び水素製造方法
JP6376999B2 (ja) 水素製造装置及び水素製造方法
JP2018002486A (ja) 水素製造装置
JP2016040218A (ja) 脱水素化システム、及び脱水素化システムの運転方法
JP2016000678A (ja) 水素製造装置及び水素製造方法
JP2016169134A (ja) 脱水素反応器
JP2018002487A (ja) 水素製造装置
JP2016000677A (ja) 水素製造装置及び水素製造方法
JP2018002566A (ja) 水素製造装置
KR20240021945A (ko) 암모니아 분해 프로세스
KR20240021941A (ko) NOx 제거를 이용한 그린 수소를 위한 암모니아 분해
JP2018052778A (ja) 水素製造装置及び水素製造方法
CN113735079A (zh) 一种常温提取超高纯度氦气的方法及生产装置
JP2016050145A (ja) 脱水素化システム