JP2016040218A - 脱水素化システム、及び脱水素化システムの運転方法 - Google Patents

脱水素化システム、及び脱水素化システムの運転方法 Download PDF

Info

Publication number
JP2016040218A
JP2016040218A JP2014164905A JP2014164905A JP2016040218A JP 2016040218 A JP2016040218 A JP 2016040218A JP 2014164905 A JP2014164905 A JP 2014164905A JP 2014164905 A JP2014164905 A JP 2014164905A JP 2016040218 A JP2016040218 A JP 2016040218A
Authority
JP
Japan
Prior art keywords
dehydrogenation
reaction
hydrogen
dehydrogenation reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014164905A
Other languages
English (en)
Inventor
壱岐 英
Suguru Iki
英 壱岐
智史 古田
Tomohito Furuta
智史 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2014164905A priority Critical patent/JP2016040218A/ja
Publication of JP2016040218A publication Critical patent/JP2016040218A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】脱水素化触媒の劣化を抑制することができる脱水素化システムを提供する。
【解決手段】制御部23は、原料供給部21による脱水素化反応器3への原料の供給を停止している時に、水素供給部22によって反応容器31内を水素含有ガスの雰囲気とする。この状態で、制御部23は、脱水素化反応器3の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持する。これによって、反応容器31内では、水素含有ガス中の水素と、残存した脱水素化物との間で水素化反応が進行する。このように残存した脱水素化物を水素化することによって、脱水素化触媒の劣化を抑制することができる。
【選択図】図2

Description

本発明は、脱水素化反応を行う脱水素化システム、及び脱水素化システムの運転方法に関する。
従来の脱水素化システムとして、触媒反応によって原料から水素を生成して供給するシステムが知られている(例えば特許文献1参照)。特許文献1の脱水素化システムは、原料の芳香族炭化水素の水素化物を貯蔵するタンク、当該タンクから供給された原料を脱水素化触媒へ供給し脱水素化反応させることによって水素を得る反応器を備えている。
特開2006−232607号公報
特許文献1記載の脱水素化システムのように、脱水素化触媒を用いて水素を得るシステムにあっては、脱水素化触媒が劣化すると原料から水素への転化率が低下するため、脱水素化触媒の劣化を抑制することが重要となる。これに対して、脱水素化反応処理前後において、反応器の内部を窒素ガス等の不活性ガスによって充填し、脱水素化触媒を外気に晒すことなく保持することも考えられるが、脱水素化触媒の劣化を適切に防止するためには改善の余地がある。本技術分野では、脱水素化触媒の劣化を抑制することができる脱水素化システムが望まれている。
そこで、本発明は、脱水素化触媒の劣化を抑制することができる脱水素化システム、及び脱水素化システムの運転方法を提供することを目的とする。
本発明に係る脱水素化システムは、有機ハイドライドを含む原料を流通させる反応容器、及び、反応容器内に配置され、有機ハイドライドを脱水素化反応によって水素と脱水素化物とに変換する脱水素化触媒を備える脱水素化反応器と、脱水素化反応器へ原料を供給する原料供給部と、水素を含有する水素含有ガスを脱水素化反応器へ供給する水素供給部と、脱水素化反応器へ熱を供給する加熱部と、制御部と、を備え、制御部は、原料供給部による脱水素化反応器への原料の供給を停止している時に、水素供給部によって反応容器内を水素含有ガスの雰囲気とすると共に、加熱部によって脱水素化反応器に熱を供給し、脱水素化反応器の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持した状態にて、システム待機状態とする。
脱水素化反応器にて脱水素化反応を行った場合には、脱水素化物が反応容器内に残存する場合がある。この場合、残存した脱水素化物が脱水素化触媒と反応し、脱水素化触媒の表面にコークが析出して、脱水素化触媒が劣化するおそれがある。本発明に係る脱水素化システムにおいて、制御部は、原料供給部による脱水素化反応器への原料の供給を停止している時に、水素供給部によって反応容器内を水素含有ガスの雰囲気とすると共に加熱部によって脱水素化反応器に熱を供給する。この状態で、制御部は、脱水素化反応器の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持する。これによって、反応容器内では、水素含有ガス中の水素と、残存した脱水素化物との間で水素化反応が進行する。このように残存した脱水素化物を水素化することによって、脱水素化触媒の劣化を抑制することができる。
本発明に係る脱水素化システムにおいて、制御部は、脱水素化反応器の反応温度と反応圧力との関係によって定められる反応領域のうち、有機ハイドライドの平衡転化率が50%未満となる反応領域に反応温度及び反応圧力を保持してよい。このような反応領域を満たす範囲内で、脱水素化反応器の反応温度及び反応圧力を自由に設定することができる。
本発明に係る脱水素化システムにおいて、制御部は、脱水素化反応器の反応温度を200℃以下に保持してよい。これによって、脱水素化反応器の反応圧力に関わらず、脱水素化反応速度に比して水素化反応速度が大きい状態とすることができる。
本発明に係る脱水素化システムにおいて、制御部は、脱水素化反応器の反応圧力を絶対圧0.1MPaA(以下、絶対圧としてAを附記する)以上に保持してよい。また、制御部は、脱水素化反応器の反応圧力を0.3MPaA以上に保持してよい。
本発明に係る脱水素化システムの運転方法は、上述の脱水素化システムの運転方法であって、原料供給部による脱水素化反応器への原料の供給を停止している時に、水素供給部によって反応容器内を水素含有ガスの雰囲気とすると共に、加熱部によって脱水素化反応器に熱を供給し、脱水素化反応器の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持した状態にて、システム待機状態とする。
本発明に係る脱水素化システムの運転方法によれば、上述の脱水素化システムと同様の作用・効果を得ることができる。
本発明によれば、脱水素化触媒の劣化を抑制することができる。
本発明の実施形態に係る脱水素化システムを備える水素供給システムの構成を示すブロック図である。 本発明の実施形態に係る脱水素化システムの構成を示すブロック図である。 脱水素化反応器の反応温度とMCH平衡転化率との関係を示すグラフである。 MCH平衡転化率が50%となるときの反応圧力と反応温度の関係を示すグラフである。 本発明の実施形態に係る脱水素化システムによる制御処理を示すフローチャートである。
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1は、本実施形態に係る脱水素化システムを備えた水素供給システムの構成を示すブロック図である。この水素供給システム100は、原料として有機ハイドライドを用いるものである。有機ハイドライドは、製油所で大量に生産されている水素を芳香族炭化水素と反応させた水素化物が好適な例である。有機ハイドライドは、ガソリンなどと同様に液体燃料としてタンクローリーなどによって水素供給システム100へ輸送することができる。
有機ハイドライドは、不飽和結合を有する有機化合物の水素化物であり、脱水素化触媒を用いて、水素と脱水素化物(不飽和結合を有する有機化合物)とを含む脱水素化反応物に変換することができる。本実施の形態では、有機ハイドライドとして、メチルシクロヘキサン(以下、MCHと称する)を用いて説明するが、これには限られない。
不飽和結合を有する有機化合物とは、二重結合あるいは三重結合を分子内に一つ以上有する有機化合物である。二重結合としては、炭素−炭素二重結合(C=C)、炭素−窒素二重結合(C=N)、炭素−酸素二重結合(C=O)、窒素−酸素二重結合(N=O)が例示される。三重結合としては、炭素−炭素三重結合、炭素−窒素三重結合が例示される。不飽和結合を有する有機化合物としては、貯蔵性および輸送性の観点から、常温常圧下で液体状の有機化合物であることが好ましい。
不飽和結合を有する有機化合物としては、例えばオレフィン類、ジエン類、アセチレン類、ベンゼン、炭素鎖置換芳香族類、へテロ置換芳香族類、多環芳香族類、シフ塩基類、ヘテロ芳香族類、ヘテロ5員環化合物類、キノン類、ケトン類などが挙げられる。オレフィン類としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ウンデセン、ドデセンなどが挙げられる。ジエン類としては、アレン、ブタジエン、ペンタジエン、ヘキサジエン、へブタジエン、オクタジエン、ピペリレン、イソプレンなどが挙げられる。アセチレン類としては、アセチレン、プロピン、ビニルアセチレンなどが挙げられる。炭素鎖置換芳香族類としては、アルキル置換芳香族類などが挙げられる。アルキル置換芳香族類としては、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、クメン、安息香酸などが挙げられる。へテロ置換芳香族類としては、アニソール、ジメトキシベンゼン、フェノール、アニリン、N、N−ジメチルアニリンなどが挙げられる。多環芳香族類としては、ナフタレン、メチルナフタレン、アントラセン、テトラセン、フェナントレン、テトラリン、アズレンなどが挙げられる。シフ塩基類としては、2-aza-hept-1-en-1-yl-cyclohexaneなどが挙げられる。ヘテロ芳香族類としては、ピリジン、ピリミジン、キノリン、イソキノリンなどが挙げられる。ヘテロ5員環化合物類としては、フラン、チオフェン、ピロール、イミダゾールなどが挙げられる。キノン類としては、ベンゾキノン、ナフトキノンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトンなどが挙げられる。なお、言うまでもないことであるが、二酸化炭素や一酸化炭素は不飽和結合を有しているが一般に有機化合物とは見なされないので、本実施形態における不飽和結合を有する有機化合物から除外される。
上記の不飽和化合物の中でも、ベンゼン、トルエン、キシレン、エチルベンゼン、ナフタレン、メチルナフタレン、テトラリンなど(以下「ベンゼン等」とする。)は、水素化の前後において非水溶性であり、水と相分離可能であるため、生成物としての回収容易性の観点で、アセトン等の水溶性の有機化合物よりも好ましい。なお、非水溶性の有機化合物としては、ベンゼン等のうちの1種の化合物でもよいし、2種以上の化合物の混合物でもよい。
水素供給システム100は、燃料電池自動車(FCV)や水素エンジン車に水素を供給することができる。なお、メタンを主成分とした天然ガスやプロパンを主成分としたLPG、あるいはガソリン、ナフサ、灯油、軽油といった液体炭化水素原料から水素を製造する場合にも適用可能である。
本実施形態では、水素供給システム100として、FCV10に高純度水素を供給する水素ステーションを例として説明を行う。図1に示すように、本実施形態に係る水素供給システム100は、MCHタンク1、気化器2、脱水素化反応器3、気液分離器4、トルエンタンク5、水素精製器6、圧縮機7、蓄圧器8、ディスペンサ9、熱源11、冷熱源12,13、及びを備えている。また、水素供給システム100は、ラインL1〜L9を備えている。なお、本実施形態では、原料としてMCHを採用し、水素精製の過程で除去される脱水素化生成物がトルエンである場合を例として説明する。なお、実際には、トルエンのみならず、未反応のMCHと少量の副生成物及び不純物も存在するが、本実施形態中では、トルエンに混じって当該トルエンと同じ挙動を示す。従って、以下の説明において、「トルエン」と称して説明するものには、未反応のMCHや副生成物も含むものとする。
ラインL1〜L9は、MCH、トルエン、水素含有ガス、オフガス、または高純度水素が通過する流路である。ラインL1は、MCHタンク1と気化器2とを接続する。ラインL2は、気化器2と脱水素化反応器3とを接続する。ラインL3は、脱水素化反応器3と気液分離器4とを接続する。ラインL4は、気液分離器4と水素精製器6とを接続する。ラインL5は、気液分離器4とトルエンタンク5とを接続する。ラインL6は、水素精製器6と圧縮機7とを接続する。ラインL7は、水素精製器6と気化器2とを接続する。ラインL7は、水素精製器6から排出されるオフガスを脱水素化反応器3よりも上流側へ還流させるリサイクルラインとして機能する。ラインL8は、圧縮機7と蓄圧器8とを接続する。ラインL9は、蓄圧器8とディスペンサ9とを接続する。
MCHタンク1は、原料となるMCHを貯留するタンクである。外部からタンクローリーなどで輸送されたMCHは、MCHタンク1にて貯留される。MCHタンク1に貯留されているMCHは、圧縮機(不図示)によってラインL1を介して気化器2へ供給される。
気化器2は、インジェクタなどを介してMCHタンク1から供給されたMCHを気化する機器である。気化されたMCHは、ラインL7を介して水素精製器6から供給されたオフガスと併せて、ラインL2を介して脱水素化反応器3へ供給される。
脱水素化反応器3は、MCHを脱水素化反応させることによって水素を得る機器である。すなわち、脱水素化反応器3は、脱水素化触媒を用いた脱水素化反応によってMCHから水素を取り出す機器である。有機ハイドライドの反応は可逆反応であり、反応条件(温度、圧力)によって反応の方向が変わる(化学平衡の制約を受ける)。一方、脱水素化反応は、常に吸熱反応で分子数が増える反応である。従って、高温、低圧の条件が有利である。脱水素化反応は吸熱反応であるため、脱水素化反応器3は熱源11から熱媒体を介して熱を供給される。脱水素化反応器3は、脱水素化触媒中を流れるMCHと熱源11からの熱媒体との間で熱交換可能な機構を有している。熱源11は、脱水素化反応器3を加熱することができるものであればどのようなものを採用してもよい。例えば、熱源11は、脱水素化反応器3を直接加熱するものであってもよく、例えば気化器2やラインL1,L2を加熱することによって脱水素化反応器3に供給されるMCHを加熱してもよい。また、熱源11は、脱水素化反応器3と、脱水素化反応器3へ供給されるMCHの両方を加熱してもよい。例えば、熱源11としてバーナーやエンジンを採用することができる。脱水素化反応器3で取り出された水素含有ガスは、ラインL3を介して気液分離器4へ供給される。ラインL3の水素含有ガスは、液体であるトルエンを混合物として含んだ状態で、気液分離器4へ供給される。
気液分離器4は、水素含有ガスからトルエンを分離するタンクである。気液分離器4は、混合物としてトルエンを含む水素含有ガスを貯留することによって、気体である水素と液体であるトルエンとを気液分離する。気液分離器4は、冷熱源12からの冷却媒体によって冷却される。気液分離器4は、気液分離器4中の水素含有ガスと冷熱源12からの冷却媒体との間で熱交換可能な機構を有している。冷熱源12は気液分離器4を冷却することができるものであればどのようなものを採用してもよい。例えば、冷熱源12としてチラー等の冷却器を採用することができる。気液分離器4で分離されたトルエンは、ラインL5を介してトルエンタンク5へ供給される。気液分離器4で分離された水素含有ガスは、ラインL4を介して水素精製器6へ供給される。なお、水素含有ガスを冷やすと当該ガスの一部(トルエン)は液化し、気液分離器4によって、液化しないガス(水素)と分離することができる。ガスを低温とした方が、分離の効率は良くなり、圧力を上げると更に、トルエンの液化が進む。
トルエンタンク5は、気液分離器4で分離された液体のトルエンを貯留するタンクである。
水素精製器6は、脱水素化反応器3で得られると共に気液分離器4で気液分離された水素含有ガスから、脱水素化生成物(本実施形態ではトルエン)を除去する。これによって、水素精製器6は、当該水素含有ガスを精製して高純度水素(精製ガス)を得る。得られた高純度水素は、ラインL6へ供給され、水素及び脱水素化生成物を含むオフガスは、ラインL7へ排出される。ラインL7へ供給されたオフガスは、図示されない圧縮機を介して気化器2へ供給され、ラインL2を介して脱水素化反応器3へ供給される。
水素精製器6は、採用する水素精製方法によって異なるが、具体的には、水素精製方法として膜分離を用いる場合には、水素分離膜を備える水素分離装置であり、PSA(Pressure Swing Adsorption)法又はTSA(Temperature Swing Adsorption)法を用いる場合には、不純物を吸着する吸着材を格納する吸着塔を複数備えた吸着除去装置である。
水素精製器6が膜分離を用いる場合について説明する。この方法では、所定温度に加熱された膜に、圧縮機(不図示)によって所定圧力に加圧された水素含有ガスを透過させることによって、脱水素化生成物を除去し、高純度の水素ガス(精製ガス)を得ることができる。膜を透過した透過ガスの圧力は、膜を透過する前の圧力と比べて低下する。一方、膜を透過しなかった非透過ガスの圧力は、膜を透過する前の所定圧力と略同一である。このとき、膜を透過しなかった非透過ガスが、水素精製器6のオフガスに該当する。
水素精製器6に適用される膜の種類は特に限定されず、多孔質膜(分子流によって分離するもの、表面拡散流によって分離するもの、毛管凝縮作用によって分離するもの、分子ふるい作用によって分離するものなど)や、非多孔質膜を適用することができる。水素精製器6に適用される膜として、例えば、金属膜(PdAg系、PdCu系、Nb系など)、ゼオライト膜、無機膜(シリカ膜、カーボン膜など)、高分子膜(ポリイミド膜など)を採用することができる。
膜分離による水素精製器6の水素回収率は、70〜90%である。水素精製器6で用いられる膜の「水素/トルエン」の分離係数は、1000以上であることが好ましく、10000以上であることがより好ましい。
水素精製器6の除去方法として、PSA法を採用する場合について説明する。PSA法で用いられる吸着材は、高圧下では水素含有ガスに含まれるトルエンを吸着し、低圧下では吸着したトルエンを脱着する性質を持つ。PSA法は、吸着材のこのような性質を利用するものである。すなわち、吸着塔内を高圧にすることにより、水素含有ガスに含まれるトルエンを吸着材に吸着させて除去し、高純度の水素ガス(精製ガス)を得る。吸着により吸着塔内の吸着材の吸着機能が低下した場合には、吸着塔内を低圧にすることにより、吸着材に吸着したトルエンを脱着し、併せて除去した精製ガスの一部を逆流させることにより当該脱着されたトルエンを吸着塔内から除去することで、吸着材の吸着機能を再生する(このとき、トルエンを吸着塔内から除去することで排出される少なくとも水素とトルエンを含む水素含有ガスが、水素精製器6からのオフガスに該当する)。
吸着塔内の圧力の調整方法は特に限定されないが、例えば、吸着塔毎に備えられたバルブを閉めるなどの操作により、吸着塔毎に調節することができる。従って、吸着材の吸着機能が低下した吸着塔については、減圧により吸着材を再生させるとともにオフガスを排出する。一方、残りの吸着塔については、加圧により水素含有ガスに含まれるトルエンを吸着材に吸着させて除去するとともに高純度水素を得る。再生中の吸着塔についての吸着材再生が完了したら、当該吸着塔については、加圧によりトルエンの除去を開始するとともに高純度水素を得る。一方、トルエンの除去を行っていた吸着塔の全部または一部については、減圧により吸着材の再生を開始するとともにオフガスを排出する。このように、再生を行う吸着塔とトルエンの除去を行う吸着塔の切り替えを繰り返し行うことで、水素供給システム100全体として、連続的に高純度水素とオフガスとを得ることができる。水素精製器6がPSA法を採用する場合の水素回収率は、吸着塔の数によるが、約60〜90%である。
水素精製器6の除去方法として、TSA法を採用する場合について説明する。TSA法で用いられる吸着材は、常温下では水素含有ガスに含まれるトルエンを吸着し、高温下では吸着したトルエンを脱着する性質を持つ。TSA法は、吸着材のこのような性質を利用するものである。すなわち、吸着塔内を常温にすることにより、水素含有ガスに含まれるトルエンを吸着材に吸着させて除去し、高純度の水素ガス(高純度水素)を得る。吸着により吸着塔内の吸着材の吸着機能が低下した場合には、吸着塔内を高温にすることにより、吸着材に吸着したトルエンを脱着し、併せて除去した高純度水素の一部を逆流させることにより当該脱着されたトルエンを吸着塔内から除去することで、吸着材の吸着機能を再生する(このとき、トルエンを吸着塔内から除去することで排出される少なくとも水素とトルエンを含む水素含有ガスが、水素精製器6からのオフガスに該当する)。
吸着塔内の温度の調整方法は特に限定されないが、例えば、吸着塔毎に備えられたヒータのON/OFFを切り替えるなどの操作により、吸着塔毎に調節することができる。従って、吸着材の吸着機能が低下した吸着塔については、高温にすることにより吸着材を再生させるとともにオフガスを排出する。一方、残りの吸着塔については、常温に保つことにより水素含有ガスに含まれるトルエンを吸着材に吸着させて除去するとともに高純度水素を得る。再生中の吸着塔についての吸着材再生が完了したら、当該吸着塔については、吸着塔内を常温に保つことによりトルエンの除去を開始するとともに高純度水素を得る。一方、トルエンの除去を行っていた吸着塔の全部または一部については、吸着塔内を高温にすることにより吸着材の再生を開始するとともにオフガスを排出する。このように、再生を行う吸着塔とトルエンの除去を行う吸着塔の切り替えを繰り返し行うことで、水素供給システム100全体として、連続的に高純度水素とオフガスとを得ることができる。水素精製器6がTSA法を採用する場合の水素回収率は、吸着塔の数によるが、約60〜90%である。
圧縮機7は、水素精製器6で得られた高純度水素を高圧状態とする。圧縮機7は、例えば、20〜90MPaの圧力で高純度水素を高圧状態とする。圧縮機7は、高純度水素をFCV10へ供給可能とするために高圧状態にした上で、ラインL8を介して蓄圧器8へ供給する。なお、目的とする圧力に応じて、圧縮を行う圧縮ユニットを複数備え、段階的に圧縮を行う構成としてもよい。
蓄圧器8は、高純度水素を高圧状態のまま蓄える。蓄圧器8で蓄えられた高純度水素は、ラインL9を介して、ディスペンサ9によってFCV10に供給される。蓄圧器8により、水素供給システム100内にある程度の量の高純度水素を蓄えておくことができるため、FCV10へ水素を安定供給することが可能となる。ただし、蓄圧器8は、水素供給を行うために必須ではないため、省略してもよい。ラインL9を通過する高純度水素は、冷熱源13からの冷却媒体によって冷却される。ラインL9は、当該ラインL9を流れる高純度水素と冷熱源13からの冷却媒体との間で熱交換可能な機構を有している。冷熱源13はラインL9を流れる高純度水素を冷却することができるものであればどのようなものを採用してもよい。例えば、冷熱源13としてチラー等の冷却器を採用することができる。
次に、本実施形態に係る脱水素化システム150の構成について説明する。
図2に示すように、脱水素化システム150は、脱水素化反応器3と、脱水素化反応器3へ有機ハイドライドを含む原料を供給する原料供給部21と、脱水素化反応器3へ水素を含有する水素含有ガスを供給する水素供給部22と、脱水素化反応器3へ熱を供給する加熱部24と、脱水素化反応器3での脱水素化反応に関する制御を行う制御部23と、を備えている。
脱水素化反応器3は、原料を流通させる反応容器31と、反応容器31内に配置される脱水素化触媒によって形成される触媒層32と、反応容器31の周囲に設けられる熱交換器33と、を備えている。本実施形態においては、反応容器31は並列に並べられた複数本の反応管を有しており、各反応管の内部に脱水素化触媒が充填されて触媒層32が形成されている。反応容器31の各反応管の周囲は、熱交換器33によって取り囲まれている。なお、熱交換器33の構成については加熱部24の説明と合わせて後述する。
触媒層32を構成する脱水素化触媒は、有機ハイドライドを脱水素化反応によって水素と脱水素化物とに変換する。脱水素化触媒としては、例えば白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム又はゲルマニウム等が、アルミナ等の細孔が形成された多孔質担体に担持されたものが用いられる。脱水素化触媒は、ハニカム型触媒のような構造であってもよいし、成型されたペレット触媒であってもよい。脱水素化触媒は、使用に応じてコーキングが発生して性能が低下する場合があるが、酸素存在下で焼成することにより当初の性能へ戻す回復処理を行うことで、繰り返し使用可能である。反応容器31の各反応管の上流側の端部には、脱水素化反応器3の流入口36から流入してきた原料のガスを各反応管へ分配する分配部34が設けられている。また、各反応管の下流側の端部には、各触媒層32で生成された水素含有ガスを集約して混合する混合部37が設けられている。混合部37で混合された水素含有ガスは、脱水素化反応器3の排出口38から排出される。
原料供給部21は、例えば図1に示すMCHタンク1のように原料が貯留されたタンクから脱水素化反応器3へ原料を供給するポンプや流量調整弁等によって構成される。原料供給部21は、脱水素化反応器3の流入口36及び分配部34を介して、各触媒層32へ原料を供給する。水素供給部22は、例えば、図1に示す水素精製器6から排出されるオフガスを脱水素化反応器3へ供給するポンプや流量調整弁等によって構成される。水素供給部22は、水素供給システム100中のオフガスを供給しなくともよく、水素が貯留されたタンクやボンベから水素を供給してもよい。水素供給部22は、脱水素化反応器3の流入口36及び分配部34を介して、各触媒層32へ水素含有ガスを供給する。
加熱部24は、脱水素化反応器3に設けられた熱交換器33と、熱交換器33へ熱媒体を供給する熱源11と、によって構成される。熱交換器33は、反応容器31全体を外周側から取り囲むように設けられている。熱交換器33は、反応容器31の下流側の端部付近に熱媒体を流入させる流入口44を有し、反応容器31の上流側の端部付近に熱媒体を排出する排出口46を有している。このような構成により、反応容器31の各反応管の外側に熱媒体が流れ、熱媒体の熱が各触媒層32へ供給される。なお、図2に示す構成においては、脱水素化反応器3の出口側の流入口44から熱媒体が供給され、入口側の排出口46から熱媒体が排出されているが、このような構成に限定されず、流入口44と排出口46の配置が逆になってもよい。また、加熱部24は、熱媒体を流すことによって触媒層32に熱を供給する構造に限定されず、例えば反応容器31の周囲にヒータなどの発熱手段を設け、当該発熱手段から直接的に熱を供給してもよい。
制御部23は、CPU、メモリ、記憶媒体、表示装置等を含む一般的なコンピュータユニットであって、上述した脱水素化システム150の構成要素に接続され、各構成要素を制御可能に構成されている。なお、制御部23は、図1に示す水素供給システム100全体を制御するための制御部としても機能してよい。制御部23は、脱水素化システム150のシステム運転中において、脱水素化反応器3での脱水素化反応に関する制御を行う。具体的には、制御部23は、原料供給部21を制御することによって脱水素化反応器3へ原料を供給すると共に、熱源11を制御することによって熱媒体を介して脱水素化反応器3へ熱を供給する。また、制御部23は、流入口36に設けられた弁41を調整することによって、脱水素化反応器3での脱水素化反応の反応圧力を調整してよい。また、それに加えて、あるいはそれに代えて、制御部23は、原料供給部21の流量を調整することによって、脱水素化反応器3での脱水素化反応の反応圧力を調整してよい。
また、実施形態において、制御部23は、脱水素化システム150での脱水素化反応を停止し、次の起動に備えて高温状態にて待機(ホットスタンバイ)しているときに、脱水素化触媒の劣化を抑制・回復するように制御を行うことができる。具体的には、制御部23は、原料供給部21による脱水素化反応器3への原料の供給を停止している時に、水素供給部22によって反応容器31内を水素含有ガスの雰囲気とすると共に、加熱部24によって脱水素化反応器3に熱を供給する。また、制御部23は、原料供給部21による脱水素化反応器3への原料の供給を停止している時に、脱水素化反応器3の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持した状態にて、システム待機状態とする。
制御部23は、原料供給部21による原料の供給を停止している時に、水素供給部22による水素含有ガスの供給を行い、脱水素化反応器3の反応容器31の各反応管内(すなわち触媒層32)に水素含有ガスを継続的に流通させることにより、反応容器31内を水素含有ガスの雰囲気とすることができる。または、制御部23は、水素供給部22によって水素含有ガスの供給を行い、反応容器31の各反応管内に水素含有ガスを充満させた状態にて、脱水素化反応器3を弁の封鎖などによって封止してもよい。このように、反応容器31内に水素含有ガスをとどめておくことによっても、水素含有ガスの雰囲気とすることができる。
ここで、図3及び図4を参照して、脱水素化反応速度に比して水素化反応速度が大きくなる条件について説明する。「脱水素化反応速度に比して水素化反応速度が大きくなる条件」とは、「有機ハイドライドの平衡転化率が50%未満となる条件」と同義である。ここで、平衡転化率とは、所定の反応温度及び反応圧力にて、無限に反応時間が経過した後の状態を仮定した、理論的な転化率である。この平衡転化率は、脱水素化触媒の状態などによらず、演算によって一義的に算出されるものである。
例えば、有機ハイドライドがMCHであり、脱水素化物がトルエンである場合の、水素化反応と脱水素化反応の関係を式(1)に示す。式(1)では右辺から左辺に向かう反応が脱水素化反応であり、左辺から右辺に向かう反応が水素化反応である。

CH+3H ←→ C11CH …(1)
MCH(有機ハイドライド)の平衡転化率が50%以上の場合は水素化反応よりも脱水素化反応の方が進みやすい状態、すなわち水素化反応速度に比して脱水素化反応速度が大きくなる状態である。この状態では、脱水素化反応器3の反応容器31内を水素の雰囲気にしたとしても、脱水素化触媒周辺に残存するトルエンが水素化反応によって有機ハイドライドとなる反応よりも、有機ハイドライドが脱水素化反応によってトルエンとなる反応の方が優位となるため、脱水素化触媒の劣化抑制、回復の効果を得ることができない。一方、MCH(有機ハイドライド)の平衡転化率が50%未満の場合は脱水素化反応よりも水素化反応の方が進みやすい状態、すなわち脱水素化反応速度に比して水素化反応速度が大きくなる状態である。この状態では、脱水素化反応器3の反応容器31内を水素の雰囲気にすることで、脱水素化触媒周辺に残存するトルエンが水素化反応によって有機ハイドライドとなる反応のほうが、有機ハイドライドが脱水素化反応によってトルエンとなる反応よりも優位となるため、脱水素化触媒の劣化抑制、回復の効果を得ることができる。
図3は、脱水素化反応器3の反応温度とMCH平衡転化率との関係を示すグラフ(平衡曲線)である。図3に示すように、反応圧力を所定の値に設定した場合は、反応温度の変化に伴ってMCH平衡変化率が変化する。すなわち、反応温度が高い温度領域ではMCH平衡転化率が100%に近く、反応温度が低下するに従ってMCH平衡転化率が低下し、ある反応温度にてMCH平衡転化率が50%となり、当該反応温度よりも低い温度領域ではMCH平衡転化率は50%未満の値となる。また、脱水素化反応器3の反応圧力が高くなるほど、グラフは高温側へ移動する。従って、脱水素化反応器3の反応圧力が高くなるほど、MCH平衡転化率が50%となるときに反応温度が高くなる。
図4は、MCH平衡転化率が50%となるときの反応圧力と反応温度の関係を示すグラフである。このグラフAは、縦軸を反応温度とし、横軸を反応圧力とし、図3においてMCH平衡転化率が50%となるときの反応温度と反応温度をプロットすることによって作成される。なお、反応圧力は、水素の分圧(絶対圧)である。グラフAよりも反応温度が低い反応領域では、MCH平衡転化率が50%未満となることで、水素化反応が優位に進む領域となる。なお、グラフAは、以下の式(2)で示される。xが反応圧力であり、yが反応温度である。ただし、図3及び図4においては、有機ハイドライドとしてMCHを採用した場合の条件を例にして説明したが、他の物質を採用した場合は、当該物質に合わせた条件を用いる。

y= 346.64x0.1273
=1 …(2)
以上のような関係に基づいて、制御部23は、脱水素化反応器3の反応温度と反応圧力との関係によって定められる反応領域のうち、有機ハイドライドの平衡転化率が50%未満となる反応領域E1に反応温度及び反応圧力を保持するように制御を行う。すなわち、制御部23は、図4に示すグラフAよりも反応温度が低い反応領域E1の何れかの値となるように、反応温度及び反応圧力を設定して保持する。なお、制御部23は、反応温度及び反応圧力が反応領域E1内の値となるように一定の値に保持するように制御してもよい。あるいは、制御部23は、反応領域の値である限り、反応温度及び反応圧力が変化することを許容してもよい。
制御部23は、図4に示すような、有機ハイドライドの平衡転化率が50%未満となる反応領域E1を示すマップ等のデータを予め記憶しておき、あるいは演算によって反応領域E1を取得し、脱水素化反応器3の反応温度及び反応圧力が反応領域E1内に収まるかを判定した上で、値を設定してもよい。あるいは、制御部23は、反応領域E1内の何れかの値(一組、あるいは複数組)を予め取得しておき、システム待機時には、予め取得しておいた値を用いて制御してもよい。また、制御部23は、反応温度を200℃以下に保持してよい。図4から理解されるように、反応温度が200℃以下の領域では、反応圧力に関わらず、有機ハイドライドの平衡転化率が50%未満となり、水素化反応速度が脱水素化反応速度よりも早くなる。従って、制御部23は、反応圧力を考慮・制御することなく、条件を満たすことができる。なお、低温では反応速度が非常に小さいため、反応温度は100℃以上とすることが好ましい。また、制御部23は、脱水素化反応器3の反応圧力を0.1MPaA以上に保持してよい。また、制御部23は、脱水素化反応器3の反応圧力を0.3MPaA以上に保持してよい。
制御部23は、システム待機状態とする際に、脱水素化反応器3の反応圧力に合わせて、上記条件を満たすように、反応温度を制御してよい。ただし、制御部23は、反応圧力を考慮せず、反応温度を200℃以下としてよい。または、制御部23は、システム待機状態とする際に、脱水素化反応器3の反応温度に合わせて、上記条件を満たすように、反応圧力を制御してよい。あるいは、制御部23は、システム待機状態とする際に、上記条件を満たすように、反応温度及び反応圧力を両方制御してよい。
なお、制御部23は、反応温度を制御する際は、加熱部24による熱の供給量を制御する。例えば、制御部23は、熱媒体の温度、流量を調整することで、熱の供給量を調整できる。また、制御部23は、反応圧力を制御する際は、弁41の絞り等の調整、水素供給部22による水素の供給量の調整などを行う。また、制御部23は、脱水素化反応器3に設けられた温度センサーを用いて反応温度を把握してよい。なお、反応温度として、例えば熱媒体の温度を把握してよい。また、制御部23は、脱水素化反応器3に設けられた圧力センサーを用いて反応圧力を把握してよい。なお、反応圧力として、例えば水素精製器入口(図1中L4)の圧力を把握してよい。
次に、図5を参照して、本実施形態に係る脱水素化システム150がシステム待機状態となる際の制御内容について説明する。ただし、処理手順は図5に示すものに限定されるものではない。
まず、制御部23は、システム停止処理を行う(ステップS10)。制御部23は、少なくとも原料供給部21による原料の供給を停止する。なお、制御部23は、運転中に加熱部24によって脱水素化反応器3に熱を供給している状態を継続する。次に、制御部23は、脱水素化反応器3に対して水素含有ガスを供給する(ステップS20)。これによって、制御部23は、反応容器31内を水素含有ガスの雰囲気とする。次に、制御部23は、脱水素化反応器3の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を設定すると共に当該条件を保持する(ステップS30)。制御部23は、当該条件を保持した状態にて、システム待機状態を継続する(ステップS40)。S40の処理が終了することによって、図5に示す処理が終了する。
次に、本実施形態に係る脱水素化システム150、及び脱水素化システム150の運転方法の作用・効果について説明する。
ここで、脱水素化反応器3にて脱水素化反応を行った場合には、脱水素化物が反応容器31内に残存する場合がある。この場合、残存した脱水素化物が脱水素化触媒と反応し、脱水素化触媒の表面にコークが析出して、脱水素化触媒が劣化するおそれがある。これに対して、本実施形態に係る脱水素化システム150において、制御部23は、原料供給部21による脱水素化反応器3への原料の供給を停止している時に、水素供給部22によって反応容器31内を水素含有ガスの雰囲気とすると共に、加熱部24によって脱水素化反応器3に熱を供給する。この状態で、制御部23は、脱水素化反応器3の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持する。これによって、反応容器31内では、水素含有ガス中の水素と、残存した脱水素化物との間で水素化反応が進行する。このように残存した脱水素化物を水素化することによって、脱水素化触媒の劣化を抑制することができる。また、脱水素化触媒を回復することも出来る。また、システム待機状態の間、加熱部24にて脱水素化反応器3に熱を供給しておくことによって、脱水素化反応器3が高温な状態にてスタンバイする状態(ホットスタンバイ)となることで、速やかにシステムの起動を行うことができる。この際、脱水素化触媒の劣化の抑制、回復を行うことによって、更に速やかにシステムの起動を行うことができる。
また、本実施形態に係る脱水素化システム150において、制御部23は、脱水素化反応器3の反応温度と反応圧力との関係によって定められる反応領域のうち、有機ハイドライドの平衡転化率が50%未満となる反応領域E1に反応温度及び反応圧力を保持する。このような反応領域E1の範囲内で、脱水素化反応器3の反応温度及び反応圧力を自由に設定することができる。例えば、反応領域E1の範囲内において反応温度を高く設定しておくことで、高温状態でのホットスタンバイが可能となる。これによって、起動を速やかに行うことができる。
本発明は上述の実施形態に限定されるものではない。
例えば、脱水素化反応器の構成は図2に示すような多管式のものに限定されず、単管式のものを採用してもよい。その他、プレート型熱交換器のような構成の脱水素化反応器を採用してもよい。
21…原料供給部、22…水素供給部、23…制御部、24…加熱部、31…反応容器、32…触媒層、150…脱水素化システム。

Claims (6)

  1. 有機ハイドライドを含む原料を流通させる反応容器、及び、前記反応容器内に配置され、前記有機ハイドライドを脱水素化反応によって水素と脱水素化物とに変換する脱水素化触媒を備える脱水素化反応器と、
    前記脱水素化反応器へ前記原料を供給する原料供給部と、
    水素を含有する水素含有ガスを前記脱水素化反応器へ供給する水素供給部と、
    前記脱水素化反応器へ熱を供給する加熱部と、
    制御部と、を備え、
    前記制御部は、
    前記原料供給部による前記脱水素化反応器への前記原料の供給を停止している時に、
    前記水素供給部によって前記反応容器内を前記水素含有ガスの雰囲気とすると共に、前記加熱部によって前記脱水素化反応器に熱を供給し、
    前記脱水素化反応器の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持した状態にて、システム待機状態とする、脱水素化システム。
  2. 前記制御部は、
    前記脱水素化反応器の反応温度と反応圧力との関係によって定められる反応領域のうち、前記有機ハイドライドの平衡転化率が50%未満となる反応領域に前記反応温度及び前記反応圧力を保持する、請求項1に記載の脱水素化システム。
  3. 前記制御部は、前記脱水素化反応器の反応温度を200℃以下に保持する、請求項1又は2に記載の脱水素化システム。
  4. 前記制御部は、前記脱水素化反応器の反応圧力を0.1MPaA以上に保持する、請求項1〜3の何れか一項に記載の脱水素化システム。
  5. 前記制御部は、前記脱水素化反応器の反応圧力を0.3MPaA以上に保持する、請求項1〜3の何れか一項に記載の脱水素化システム。
  6. 請求項1〜5の何れか一項に記載の脱水素化システムの運転方法であって、
    前記原料供給部による前記脱水素化反応器への前記原料の供給を停止している時に、
    前記水素供給部によって前記反応容器内を前記水素含有ガスの雰囲気とすると共に、前記加熱部によって前記脱水素化反応器に熱を供給し、
    前記脱水素化反応器の反応条件として、脱水素化反応速度に比して水素化反応速度が大きくなる条件を保持した状態にて、システム待機状態とする、脱水素化システムの運転方法。
JP2014164905A 2014-08-13 2014-08-13 脱水素化システム、及び脱水素化システムの運転方法 Pending JP2016040218A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164905A JP2016040218A (ja) 2014-08-13 2014-08-13 脱水素化システム、及び脱水素化システムの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164905A JP2016040218A (ja) 2014-08-13 2014-08-13 脱水素化システム、及び脱水素化システムの運転方法

Publications (1)

Publication Number Publication Date
JP2016040218A true JP2016040218A (ja) 2016-03-24

Family

ID=55540746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164905A Pending JP2016040218A (ja) 2014-08-13 2014-08-13 脱水素化システム、及び脱水素化システムの運転方法

Country Status (1)

Country Link
JP (1) JP2016040218A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757058B1 (ja) * 2019-05-24 2020-09-16 株式会社辰巳菱機 脱水素システム、触媒保持装置
WO2020241059A1 (ja) * 2019-05-24 2020-12-03 株式会社辰巳菱機 脱水素システム、触媒保持装置
EP4129891A4 (en) * 2020-03-30 2024-05-01 Eneos Corp HYDROGEN SUPPLY SYSTEM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059303A (ja) * 1973-09-27 1975-05-22
US5200375A (en) * 1990-10-15 1993-04-06 Mobil Oil Corporation Hydrogen regeneration of monofunctional dehydrogenation and aromatization catalysts
JP2005211845A (ja) * 2004-01-30 2005-08-11 Chiyoda Corp 水素化芳香族類の脱水素触媒及びその製造方法
JP2006326521A (ja) * 2005-05-27 2006-12-07 Toyota Motor Corp 触媒再生方法、水素生成装置および燃料電池システム
US20100018906A1 (en) * 2008-07-22 2010-01-28 Lapinski Mark P Apparatus and process for removal of carbon monoxide
WO2011019037A1 (ja) * 2009-08-11 2011-02-17 三菱化学株式会社 触媒の製造方法
WO2014157133A1 (ja) * 2013-03-25 2014-10-02 Jx日鉱日石エネルギー株式会社 水素供給システムの運転方法、水素供給設備及び水素供給システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059303A (ja) * 1973-09-27 1975-05-22
US5200375A (en) * 1990-10-15 1993-04-06 Mobil Oil Corporation Hydrogen regeneration of monofunctional dehydrogenation and aromatization catalysts
JP2005211845A (ja) * 2004-01-30 2005-08-11 Chiyoda Corp 水素化芳香族類の脱水素触媒及びその製造方法
JP2006326521A (ja) * 2005-05-27 2006-12-07 Toyota Motor Corp 触媒再生方法、水素生成装置および燃料電池システム
US20100018906A1 (en) * 2008-07-22 2010-01-28 Lapinski Mark P Apparatus and process for removal of carbon monoxide
WO2011019037A1 (ja) * 2009-08-11 2011-02-17 三菱化学株式会社 触媒の製造方法
WO2014157133A1 (ja) * 2013-03-25 2014-10-02 Jx日鉱日石エネルギー株式会社 水素供給システムの運転方法、水素供給設備及び水素供給システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757058B1 (ja) * 2019-05-24 2020-09-16 株式会社辰巳菱機 脱水素システム、触媒保持装置
WO2020241059A1 (ja) * 2019-05-24 2020-12-03 株式会社辰巳菱機 脱水素システム、触媒保持装置
EP4129891A4 (en) * 2020-03-30 2024-05-01 Eneos Corp HYDROGEN SUPPLY SYSTEM

Similar Documents

Publication Publication Date Title
CN105555923B (zh) 用于催化重整的方法
JP5864393B2 (ja) 水素供給システム
JP2014073922A (ja) 水素供給システム
JP2016040218A (ja) 脱水素化システム、及び脱水素化システムの運転方法
JP2016000679A (ja) 水素製造装置及び水素製造方法
JP2006225169A (ja) 水素の製造装置および製造方法
JP2015227255A (ja) 水素供給システム
JP2015227256A (ja) 水素供給システム
WO2021193740A1 (ja) 水素供給システム
JP6086976B2 (ja) 水素供給システムの運転方法、水素供給設備及び水素供給システム
JP5986477B2 (ja) パラフィンの製造方法および製造装置
US20230111727A1 (en) Hydrogen supply system
WO2021200727A1 (ja) 水素供給システム
JP6236354B2 (ja) 水素供給システム
WO2021193767A1 (ja) 水素供給システム
JP2016050145A (ja) 脱水素化システム
WO2022118636A1 (ja) 水素供給システム
JP2015224184A (ja) 水素供給システム
JP2017001914A (ja) 水素製造装置及び水素製造方法
JP6376999B2 (ja) 水素製造装置及び水素製造方法
JP2018002486A (ja) 水素製造装置
JP2016169133A (ja) 水素製造装置及び水素製造方法
JP2015224180A (ja) 水素供給システム
JP2016169134A (ja) 脱水素反応器
JP2018111628A (ja) 水素製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180918